
Set Theory and Logic

February 4, 2009

Computable Functions

Notation: λx.p(x), where p is an expression, denotes that x is a bound variable.
Definition: A (computable) primitive recursive function Nk → N is de-

fined recursively by: S : x 7→ x + 1 is computable, λx.0 is computiable,
projnm(x1, . . . , xn) = xm is computable, [we may compose functions nonrecur-
sively: if g1, . . . , gk are primitive recursive then so is f(g1, . . . , gk) - I believe this
was defined incorrectly in lectures], and if g, h are computable and f is defined by
f(x1, . . . , xk, 0) = g(x1, . . . , xk), f(x1, . . . , xk, S(n)) = h(x1, . . . , xk, n, f(x1, . . . , xk, n))
then f is also computable. This is called primitive recursion (note we may only
recurse on the last variable). The collection of functions so defined are the
primitive recursive functions. It is not obvious that e.g. the Fibonacci number
function Fib(n) is primitive recursive; however, it is the case that the pairing and
unpairing functions p(x, y), π1(x), π2(x) are primitive recursive, so writing 〈x, y〉
for an ordered pair and 1st(x), 2nd(x) for π1(x), π2(x) we can define F (0) =
〈1, 1〉, F (n + 1) = 〈2nd(F (n)), 1st(F (n)) + 2nd(F (n))〉, Fib(n) = 2nd(F (n)).

Note: These are all total functions, by structural induction.
Definition: The Ackermann function A(x, y) is defined by A(x + 1, y + 1) =

A(x, A(x + 1, y)), A(x, 0) = x + 1, A(0, y) = 1. This is obviously computable,
but not primitive recursive. As a proof sketch, this is because it dominates
every primitive recursive function. Definition: For f, g : N → N, f dominates g
if ∃n0 ∈ N such that ∀n > n0, f(n) > g(n). We can also define domination for
multivariate functions. We prove A(x, y) dominates f , for all primitive recursive
f , by structural induction.

Lemma: A(x, y) is computable, by induction on N × N with the lexicographic
ordering: let 〈x+1, y+1〉 be the least pair such that A(x+1, y+1) is undefined,
then A(x + 1, y) is defined, and so A(x, A(x + 1, y)) is defined.

The Ackermann function gives us a hint of how to construct n-recursive
functions which are not (n − 1)-recursive. There are even functions which are
(computable) total but not n-recursive for any n, e.g. Goodstein: Consider
taking a number n (e.g. 7 say) and expanding it in powers of two, then expanding
their exponents in powers of two and so on, e.g. 22 + 2 + 1 is this case. Then
replace 2 with 3 and subtract 1: 33 + 3; replace 3 with 4 and subtract 1:
44 + 1 + 1 + 1, and so on. The Goodstein function of n is defined as the number
of times we can do this before reaching 0.

This tells us recursion isn’t the “correct” notion of computable functions.
Instead, we have to accept that computable functions need not be total, e.g.
λn. ⊥, the everywhere undefined function, is trivially computable by a program
which inputs n and then loops forever. Hand-in-hand with this comes the notion

1

of inversion or minimization: for f : N → N computable, f−1(x) is the least n
such that f(n) = x. If f is total computable then f−1 is computable (but not
necessarily total). (We cannot form f−1 for a general computable f ; given such
a function we can compute “an inverse” for a given n by some sort of “diagonal
strategy”, e.g. performing the first step of computing f(1), then the first step of
computing f(2), the second step of computing f(1), the first step of computing
f(3), the second step of computing f(2), the third step of computing f(1) and
so on, and stopping if we finish computing f(x) = n for some x. But this inverse
x thereby found is in no sense canonical; it is extremely sensitive to the precise
computing strategy we used).

Therefore, we define: the General Recursive Functions, also called Partial
Recursive Functions or General Computable Functions, have the same defini-
tion as that of primitive recursive functions with the addition of inversion, but
subject to the constraint that “you are only allowed to do it once” [the lecturer
appeared to be saying that this can replace primitive recursion in the defini-
tion, but that is frankly ludicrous]. This is “correct”: we will later prove that
any “legitimate” function definition, i.e. any definition constructed by using all
the permitted techniques arbitrarily many times but only applying inversion to
functions which are in fact total, is equivalent to one in the required form.

What we have been doing so far is a “syntactic” characterisation of com-
putability. There is also a “semantic” characterisation in terms of machines.
Two architectures appear in the literature; Turing machines and Minsky (aka
Register) Machines. (A Turing machine is a Finite State Machine (i.e. a set
of states and a transition function from pairs (state,input) to states; one state
is usually identified as the “start” state and some states “final” or “accepting”
states, where a machine in such a state at the completion of input is considered
as giving a positive result) which takes inputs froma tap and may move the tape
one space forward or backward and/or write on the tape as a “side effect”. A
register machine uses (mathematically idealised) registers which hold members
of N and insturctions. Either type of machine can simulate the other). These
two capture a notion of computation which is “finite but unbounded” (e.g. a
Turing machine’s tape is infinite in both directions, but the input program is
finite), and deterministic.

It is eminently plausible (if too fiddly for the lecturer to be capable of giving
a proof) that any syntacticly expressible function can be computed by such a
machine. In fact the two notions of computability are equivalent. To see this,
consider that since the machines are deterministic, we can form the function
T (m, i, t), which outputs a “cine film” of the first t steps undertaken by a Tur-
ing machine whose description is encoded by m when given the input i. This
T : N3 → N, Kleene’s T -function, is primitive recursive, though this fact is
nonobvious.

If a machine M exists to compute a function f - i.e., M , when input with n,
proceeds through finitely many steps and eventually reaches some “halt” state,
at which point we can observe the value f(n) from the machine in some fashion
- then we can calculate this using T - we seek the least t such that T (m, i, t) has,
as its last element, a description which says M has halted, and then extract the
“magic number” from the last “frame” of our “film”.

So, this notion exists both syntacticly and semanticly; therefore it is in
some sense “natural” and “important”. However, is it the “correct” notion
of computability? In some sense this is a mathematical question which can

2

never be proven - for, if one had a proof that this was so, one would need a
characterisation of “the correct notion of computability”, which would mean
that the statement was false. The Church-Turing thesis is the assertion that
this is the correct notion of computability.

Some evidence in favour of this comes from the fact that there is another
characterisation of the same thing: the λ-calculus. We write e.g. (fx)x to
mean (f(x))(x); we have expressions like λx.[], λx.x, called I, λx.λy.x, called
K, λf.λxf(fx), known as 2, λf.λxf(f(fx)) which is called 3 and so on; these
are the Church numerals. λnλfλx.f(nfx) is the successor function, yielding
the successor of n; λnλm.λfλx(nf)(mfx) is plus. Note that since our func-
tions are only of one variable, rather than being an N × N → N function this is
a N → (N → N) function. A little consideration will see that any function can be
expressed naturally in this form; this is known as Currying. λnλmλf.λxn(mf)x
is multiplication; as an exercise the reaxer should consider the function λnλmλfnmf .

There are notions of e.g. true and false in this formalism, which enable us
to construct many things.

Consider e.g. fact n = if n=0 then 1 else n * fact(n-1). This is not an
obviously valid definition; we need to prove by induction that it is well defined.
Consider F : (N → N) → (N → N): Ff = λn if n = 0 then 1 else n × f(n − 1).
Suppose that F has a fixed point f , i.e. Ff = f , i.e. ∀n, f(n) = Ffn = if n = 0
then 1 else n × f(n − 1). So if such a fixed point exists, we have a factorial
function - more generally, if such fixed points always exist, then we may define
functions by recursion in this fashion.

Define: Y = λf.(λxf(xx))(λxf(xx)). Observe that e.g. Y g = (λx.g(xx))(λx.g(xx)) =
g((λx.g(xx))(λx.g(xx))) = g(Y g); thus Y g is a fixed point of g.

We say a function f is λ-computable if there is a λ-term which, when applied
to the Church numeral n, gives the Church numeral f(n). The lecturer refused
to be drawn on the decidability of this proposition. In any case, this turns out
to give the same characterisation of computability as that above.

Decidable sets of natural numbers

Our first throught: X ⊂ N is decidable (or in old notation, recursive) iff there is
a total computable f : N → {0, 1} such that f−1′′{1} = X (this is notation: in
normal mathematics, it is not necessary to distinguish between a function being
applied to a value f(x) = y, or applied to a set f(X) = {f(x) : x ∈ X}, as we
can tell these from context. But in set theory the distinction between sets and
values is more fluid, so we need the notation: we use f ′x for the first case and
f ′′X for the second).

A notion which turns out to be more useful in practice: X ⊂ N is semidecid-
able (recursively enumerable) iff there is a partial recursive f : N → {0, 1} with
f−1′′{1} = X, f ′′X = {1} - “members of X can be recognised”, “membership
in X can be confirmed in finite time”.

There are several ways to define such a set: we might want to define a
semidecidable set to be f ′′N of a partial computable function N → N, or the
same for a total computable f , or even {n : f(n) ↓} for some parallel computable
f : N → N; fortunately these notations are all equivalent (Notation: ↓ denotes
“halts”, ↑ “does not halt”), as can be proved reasonably easily. E.g. given
f, f ′′N = X and f partial computable, we can calculate a total computable g
with g′′N = X by diagonal computation: g(n) computes the first step of f(1),

3

then the first step of f(2), the first two steps of f(1), the first step of f(3), the
first two steps of f(2) and so on, and outputs the nth value output from one
of these. (We might think it was better to “store” the state and “resume” to
perform one more step in each time, but in fact the proof is easier if we simply
recalculate and do one more step each time). (As will be common in the course,
we are ignoring the finite case; it would be easy to find a suitable g if X is
merely a finite set). Similarly, for a parallel computable h which halts only on
those values which are ∈ X , run f on all values in parallel, and if f outputs n,
halt (outputting, say, 0). The remaining cases are left as an exercise.

Write e{n} or en for the machine identified by n; we sometimes call n its
gnumber (Gödel number).

Halting problem: can we determine in general whether M(n) ↓? Suppose we
had a machine M taking ordered pairs such that M〈x, y〉 ↓=yes if ex(y) ↓, ↓=no
if ex(y) ↑. Then we can construct a machine M⋆ with M⋆〈x, y〉 ↑ if ex(y) ↓,
↓=no if ex(y) ↑. Combine this with the machine a 7→ 〈a, a〉 to get a machine M †

with M †a (= M⋆〈a, a〉) ↑ if ea(a) ↓, ↓ if ea, a) ↑. Now M † has a gnumber m,
so M †m =↑ if em(m) ↓, ↓ if em(m) ↑, but em = M †, so this is a contradiction,
and the original machine M cannot exist. Thus, there are semidecidable sets
which are not decidable, e.g. {〈x, y〉 : ex(y) ↓} =: K, the halting set. This is the
“nastiest set you need to know about” unless you study degree theory, which is
the study of computation relative to an oracle, classifying “levels of nastiness”.
Note that the above argument holds given any oracle, so there is no maximum
level of nastiness.

Important fact: There is a universal machine. Recall T (m, i, t) was primitive
recursive; a machine that computes T can be used to simulate any machine.

We know we can encode strings of mathematical symbols as numbers, so we
can encode a theory as a set of natural numbers. Is this set decidable? An
undecidable axiom set would be somewhat useless, but how about a semide-
cidable set? If a theory has a semidecidable set of axioms it is said to be
recursively axiomatizable. Without proof, any such theory has a semidecidable
set of theorems - we can form a machine to diagonally compute all axioms of
the theory, and couple this to a machine which will do a “brute force” “breadth
first search”, generating all provable statements in the theory.

Fact(Craig): Every semidecidable theory T (i.e. one whose theorems are a
semidecidable set) has a decidable axiomatization. For this we need the follow-
ing aside: suppose X is semidecidable but not decidable. We have X = f ′′N

where f is total computable. This f cannot emit X in increasing order (or
anything remotely resembling it), as that would make X decidable: if you run f
until some number larger than n is emitted, we then know all numbers < n not
yet emitted do not lie in X . Take our machine and modify it to ignore theorems
of the form φ∧ 1 = 1. Then, modify again so that the nth theorem emitted has
a chain of n 1 = 1s appeneded to the end, φ∧ 1 = 1∧ 1 = 1 I.e., we encode
(φ, n) where n is the “time” when φ was emitted. But then the set output by
this is decidable.

Given φ(a, b) computable, fix a and consider λb.φ(a, b). There is a com-
putable function which does this (using gnumbers); call it S : (φ, a) 7→ λb.φ(a, b);
and so on for functions with multiple arguments, S : (φ, a) 7→ λb.φ(a, b). This
is called the S − m − n theorem. Changing notation again (thanks, lecturer)
and writing φe for the function with gnumber e, φe(a, b) = φS(e,a)(b).

Corollary (Fixed Point Theorem): Let h : N → N be total computable. Then

4

∃n such that φn = φh(n): consider the map (e, x) 7→ φh(S(e,e))(x). This is
computable, say its computed by the ath machine. Then set n := S(a, a), then
φn(x) = φS(a,a)(x) = φa(a, x) = φh(S(a,a))(x) = φh(n)(x). This tells us that
there are many pairs of distinct machines which compute the same function.

The halting set is an example of a general phenomenon: Intension vs Exten-
sion. The terminology is from medieval philosophy, but useful to us: “intention”
is the “meaning” of a function - in our case, the syntax of its declaration - while
“extension” is its “meaning” or “extent” - the “graph” of the function.

Rice’s theorem: Let A be a nonempty proper subset of the set of all com-
putable functions in one variable. Then {n : φn ∈ A} is not decideable: find
natural numbers a, b such that φa ∈ A, φb ∈ A. Aside: χ(A) generally denotes
a characteristic function of A in the sense λn. if n ∈ A then 1 else fail (possibly
not halting). Assume A is decidable so we can form χ(A) to be total, i.e. it
gives 1 on elements of A, 0 on nonelements of A. So we can define g(n) = if
φn ∈ A then b else a computable. By the fixed point theorem there is n such
that φn = φg(n). If φn ∈ A then φg(n) = φn ∈ A and g(n) = b by construction
of g [so φg)(n) /∈ A]. But if φn /∈ A then φg(n) = φn /∈ A but g(n) = a. Thus we
have a contradiction.

Natural deduction for propositional logic: Any binary connector is charac-
terised by its truth table. We can construct all possible ones out of some basic
ones; it’s possible to construct all from | (NAND), but more practical to use
∧,∨ →; also ¬, which is shorthand: ¬A = A →⊥. ⊥ is always false. There
are several basic rules: the elimination (or, in nonstandard terminology, “use”)
rules for ∧: A∧B

A
, A∧B

B
, for → A,A→B

B
, and for ⊥, ⊥

A
, and the introduction rules

for ∧, A,B
A∧B

and ∨, B
A∨B

, A
A∨B

(we shouldn’t really need two cases here; this is
a limitation of our linear proof notation). There are also two more complicated

rules: → introduction,

[A]
...
B

A → B

(the dots denoting a proof of B from A, and

the square brackets denoting that we have “used up” the A and no longer need
to suppose it for the resulting statement to be true). And finally or elimination:

[A] [B]

A ∨ B
...

...
C C
C

, somewhat the “hardest” of the rules. Aside: it is natural

to generalize or elimination to sets of n variables, A ∨ B ∨ C ∨ D; in this case
⊥
A

is simply the empty case of this.
We can use these rules to find “natural” proofs for various tautologies;

work “backwards” using the elimination rules, to obtain our premises, and
then “forwards” to try and obtain the conclusions we need, e.g. to proove
(A → (B → C)) → ((A ∧ B) → C, we first use → elimination to show we need
to prove (A ∧ B) → C from A → (B → C), and then again to find we need to
prove C from that and A ∧ B. It is then relatively easy to complete the proof
(obtaining A from A∧B and using this with A → (B → C) to get B → C, then
using A ∧ B again to get B and combining these to get C.

5

To be able to prove all tautologies we also need classical negation:

[¬A]
...
⊥

A

,

or alternatively ¬¬A
A

.
The “obvious” proof strategy described above does not always work; e.g.

to prove A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C), we need to avoid expanding fully
immediately; we should use → introduction, but not or introduction until later
in the proof. Thus proving in this system doesn’t seem like something that can
obviously be done in polynomial time [whether it can is an open question, if I
understand the lecturer correctly].

Disjunctive normal forms: this gives a standard representation for any for-
mula. Given e.g. F (A, B, C), simply form the truth table of F , and then write
out the disjunction of the combinations on which F is true - e.g. if F is true
when A is false, B is true and C is false, and also true when A is true, B is
true and C is true, we could write it as (¬A ∧ B ∧ ¬C) ∨ (A ∧ B ∧ C) ∨
There is also a Conjunctive Normal Form, but this is far harder to understand
intuitively. We can use these normal forms to prove the completeness theorem;
we then only need to show that we can prove any true statement in disjunctive
normal form, which is far eaiser to do inductively than showing we can prove a
general true statement.

Consider forming a proof step-bp-step; if we want to prove (A → (B →
C)) → ((A → B) → (A → C)), at first we see our proof will take the form

A → (B → C)
...

(A → B) → (A → C)

, then it becomes clear it will be

A → (B → C)
... A → B
...

...
A → C

,

etc. But we don’t know “how much space to leave” in the areas denoted by the
dots, which can be an obstruction to doing this mechanically.

Thus, some prefer to reason about sequents. ⊢ is a “metta” statement;
it claims the RHS is provable from the LHS. So we would consider our first
statement as ⊢ (A → (B → C)) → ((A → B) → (A → C)), and then we know
that it follows from A → (B → C) ⊢ (A → B) → (A → C), which in turn
will follow from A → (B → C), A → B ⊢ A → C. These statements with ⊢
are called sequents. The rules for ⊢ are: for ∧, the rule on the left is Γ,A,B⊢C

Γ,A∧B⊢C
,

and the rule on the right is Γ⊢A,Γ⊢B
Γ⊢A∧B

; for ∨, on the left Γ,A⊢C,...,Γ,B⊢C
Γ,A∨···∨B⊢C

and on

the right Γ⊢A
Γ⊢A∨B

; for →, Γ,vdashA,Γ,B⊢C
Γ,A→B⊢C

and Γ,A⊢B
Γ⊢A→B

. Note that here we always
only have one formula on the right. This is actually insufficient to give us all of
classical logic; we only obtain “constructive knowledge”. To obtain full classical
logic we need to relax this constraint and allow many formulae on the right; we
now consider Γ ⊢ ∆ to mean: if everything in Γ is true then something in ∆ is
true. The additional rules are: on the left, Γ⊢∆,A

Γ,¬A⊢∆ and on the right Γ,A⊢∆
Γ⊢∆,¬A

.
Natural deduction rules for the predicate calculus: there are two simple

rules, ∀-elimination ∀xF (x)
F (a) and ∃-introduction F (a)

∃xF (x) , and two more compli-

6

cated ones: ∃-elimination,

[F (a)]
∃xF (x) . . .

P
P

where “a” must not apear free in

the premises of “P”, and ∀-introduction, also called universal generalization:
...

F (a)
∀xF (x)

, where “a” must not be free in the assumptions. The equivalent se-

quent rules are on the left Γ,F (a)⊢∆
Γ,∀xF (x)⊢∆ and on the right Γ⊢∆,F (a)

Γ⊢∆,∀xF (x) with the

“side conditions” that “a” must not appear free in the lower sequent, on the left
Γ,F (a)⊢∆

Γ,∃xF (x)⊢∆ with, if you trust the lecturer, the same side conditions, and on the

right Γ⊢∆,F (a)
Γ⊢∆,∃xF (x) .

Aside: we call the formula we are “using” from our assumptions the eigenformula,
and the one in the target the eigenvariable

There is one last rule, which is neither really on the left nor on the right:
Γ ⊢ ∆, A A, Γ′ ⊢ ∆′

Γ ∪ Γ′ ⊢ ∆ ∪ ∆′ . This makes finding proofs much harder,

since it lacks the subformula property; for all other rules, everything appearing
on the top is a subformula of the bottom. So our “search space” suddenly
becomes infinite.

We seek reassurence that any sequent provable by means of cut is also prov-
able without it. Might there be a method that takes a proof of a sequent and
processes it into a proof without cut - “cut elimination”?

Note that “⊢” - the sequent that true implies false - must not be provable

for the system to be consistent. Since by cut,
⊢ A A ⊢

⊢
, a proof of cut

elimination is equivalent to a proof of consistency for the system - thus it must
not be easy.

Consider a proof like:

Γ ⊢ ∆, A Γ, A, B ⊢ ∆
Γ ⊢ A, B

Γ, B ⊢ ∆

Γ ⊢ ∆
.

Note that while we cut again below, the things we’re cutting on are shorter;
therefore, we look to find a well-ordering of proofs, and then consider shorter
things as “more important”.

ǫ-terms: Consider ⊢ (∃x)(∀y)(F (y) → F (x)). This isn’t provable construc-
tively. The only way to get this is ∃ on the right, but (∀y)(F (y) → F (x)) is silly.

Now, a trick: keep a copy of the formula on the right.
⊢ (∀y)(F (y) → F (x)) ⊢ (∃

⊢ (∃x)(∀y)(F (y) → F (x))

by ∃-R. Note: we can contract Γ⊢∆,φ,φ
Γ⊢∆,φ

. Continuing,

F (b), F (c) ⊢ F (a), F (b)
F (b) ⊢ F (a), F (c) → F (b)

⊢ F (b) → F (a), F (c) → F (b)
⊢ F (b) → F (a), (∀y)(F (y) → F (b))

⊢ F (b) → F (a), (∃x)(∀y)(F (y) → F (x))
⊢ (∀y)(F (y) → F (a)), (∃x)(∀y)(F (y) → F (x))

⊢ (∃x)(∀y)(F (y) → F (x))

.

Essentially, this is the law of excluded middle, or proof by cases (either F (y) is
always false, so F (y) → F (x) is always true, or F (y) is true for some y = y0

which suffices as a witness).

7

This is useful because it lets us introduce constants with axioms: (ǫx)(F (x))
(this is an ǫ-term).

Proposition: Every theory in a countable language can be extended to a
complete theory: Let φ0, φ1, . . . enumerate the closed formulae of L. Let T0 = T ;
set Tn+1 = Tn ∪ {φn} if this is consistent, Tn otherwise. Then Tω =

⋃
n<ω Tn is

complete.
Theorem: Every consistent theory in first-order logic has a model: Let T

be a consistent theory, let T ⋆ be complete. Enlarge L(T) by adding ǫ-terms for
every φ such that T ⊢ (∃x)(φ(x)) (add in (ǫx)(φ(x))). Call this languag eL1.
In this new language, T ⋆ is no longer complete, so complete it to T ⋆

1 . Iterate
ω times and take the union T ⋆

∞; any model for T ⋆
∞ models T as well. Then

obtain a model for T ⋆
∞ by taking all the ǫ-terms we have constructed en route;

the reader should verify that this is indeed a model.
There is “no entity without identity” - entities are only interesting if we have

a robust notion of when two of them are the same. Are proofs valid entities?
In particular, does removing cuts bring proofs to a normal form? No - consider

Γ⊢∆
Γ⊢∆,A

- “weakening-R”. Consider

D1 D2

...
...

Γ⊢∆
Γ⊢∆,A

Γ⊢∆
A,Γ⊢∆

Γ ⊢ ∆

. If eliminiating cuts

is ok, this tells us that D1, D2 are the same proof - i.e. any two proofs of the
same sequence are the same. This cannot be right. This is a reason to only
allow one thing on the right (constructivism).

Definition: A filter in a boolean algebra B (a distributive complemented
lattice) is an upward-closed subset of B closed under binary intersection, i.e.
F ⊂ B such that (∀y)(y ≥ x, x ∈ F ⇒ y ∈ F) and (∀x, y ∈ F)(X ∧ Y ∈ F).
E.g. 1) a principal filter {y : y ≥ a} 2) cofinite subsets of N ⊂ P(N).

Fix a Boolean algebra B and consider {F ⊂ B : F is a filter} partially or-
dered by inclusion. We claim this poset is chain-complete, i.e. the union of
any chain of filters is another filter. (Snotty logician-type point: this is obvi-
ous from the syntax, since filters are defined by elementary properties, so their
unions must be filters). By Zorn’s lemma, there is a maximal elment wrt ⊂.
(Note: we wanted to always consider proper filters. This is ok since we have
(and can exclude) a minimal elment of B). Consider such a maximal F . Suppose
x /∈ F, x /∈ F . Consider F ∪ {x} and close to obtain a filter (or if x is the least
element of B, adjoin x instead). This gives a new bigger filter, contradiction.
Thus, if F is maximal then ∀x ∈ B, x ∈ F or x ∈ F . Such filters are called
ultrafilters.

In N, a trivial example is {S ⊂ N : 17 ∈ S}. But, writing down a sentence
that picks out a nonprincipal ultrafilter is, to the lecturer’s knowledge, impossi-
ble in any Boolean algebra; the lecturer or my intermediary is unsure whether
this is actually a theorem.

Let {Ai : i ∈ I} be a family of structure of the same signature (i.e. with
the same number and types of operations and relations).

∏
i∈I Ai is that struc-

ture whose carrier (aka underlying) set is the “cartesian” (or “direct”) product
φi∈IAi of the carrier sets; the operations, relations etc. are defined pointwise.

Typically, we do this only when all the Ai � T for some syntacticly simple T ,
e.g. T is algebraic if T is axiomatized by (∀x)(

∧
j∈J tj = sj) where the tj , sj are

words in the function letters of L(T); this is “universal closure of conjunction

8

of equations”.
Birkhoff’s theorem is that a theory T is algebraic iff the class of its models

is closed under homomorphism, substructure and product; a proof will not be
given in this course. There are many theorems of this form, relating syntactic
and semantic definitions of some particular class of theories.

For
∏

i∈I Ai consider a filter F ⊂ P(I). This defines an equivalence relation
on

∏
i∈I Ai the carrier set of

∏
i∈I Ai by f ∼F g if {i : f(i) = g(i)} ∈ F . This

opens up the possibility of quotient structures, but what are the relations on

the quotient?
Q

i∈I
Ai

F
� R([f], [g]) iff {i : R(f(i), g(i))} ∈ F . These are called

reduced products (wrt F); they are “nothing special” unless F is ultra. In that
case the quotient “reduced product” is called an ultraproduct

Jerzy Loś’s Theorem: Let {Ai : i ∈ I} be a family of structures all with

the same signature, and let U ⊂ P(I) be an ultrafilter. Then
Q

i∈I
A

U � φ iff
{i : Ai � φ} ∈ U ; the proof is inductive, not given here.

An interesting special case: when all the factors are the same, we write AI

U

and call this an ultrapower. We have an embedding of A into AI

U by a 7→ [λi.a]U
(the lecturer clearly expected people to immediately grasp, but I did not, that
we are viewing AI as the set of functions I → A, which is correct (since that’s
what it is), but still somewhat nonintuitive). This is an elementary embedding:
if (∀a)(A � φ(a) ⇒ B � φ(i(a))). If i is actually the identity (so A ⊂ B) we
say A is an elementary substructure of B, A ≺ B. E.g. 〈Q,≤〉 is an elementary
substructure of 〈R,≤〉, and 〈Q, +,≤, 0〉 ≺ 〈R, +,≤, 0〉, but this is not so if we
also include multiplication (we would then have “too many zeroes”).

Suppose for φ A � φ iff B � φ. We say A ≡ B, A and B are elementarily
equivalent. (There are nontrivial questions to be asked about this notion, e.g.
until recently it was unknown whether the free groups on 2 and 3 generators
are elementarily equivalent).

If every finite subset of T has a model then T has a model. We have shown
this via consistency: the former implies everyfinite subset of T is consistent,
thus T is consistent, and then finally we get the result; we would like a more
direct proof, which we can do by using ultraproducts:

Let ∆ be a set of sentences in predicate calculus such that every finite ∆′ ⊂ ∆
has a model. Then ∆ has a model: Let S be the set of finite subsets of ∆ (which
we shall see later by the name of Pℵ0

(∆)). Let Xs = {t ∈ S : s ⊂ t}. For each
s pick a model Ms � s. Consider the family {Xs : s ∈ S}. This has the
finite intersection property: every finite subset of it has nonemty intersection,
which the lecturer claims means it can be extended to an ultrafilter U ⊂ P(S).

Now consider the ultraproduct
Q

s∈S
Ms

U . This is a model of ∆, because for
every φ ∈ ∆, X{φ} is one of the sets that generated the ultrafilter U . Note that
this proof did not require the assumption that the language was countable.

A model M is said to be saturated if whenever φ,φ2, φ3, . . . all with the
same number of arguments are “finitely satisfiable”, i.e. ∀ finite X ⊂ N∃x :∧

i∈X φi(x) there always ∃x :
∧

i∈N
φi(x).

Ehrenfeucht-Mostowski - although not the first to use the notion of a set of indiscernibles,
they were the first to realise it was a useful, general one. For M a structure,
〈I, <〉 ⊂ M is a set of indiscernibles iff ∀φ(. . .) ∈ L(M),M � φ(x1, . . . , xn) ⇔
M � φ(y1, . . . , yn) for x1 < x2 < · · · < xn and y1 < y2 < · · · < yn - “M cannot
distinguish between ordered tuples”.

Let T be a theory with infinite models and 〈I, <〉 any total order. Then T

9

has a model in which 〈I, <〉 is embedded as a SOI. The original proof, using
Ramsey’s theorem, is: Add to L(T) names ci for every member of I. Add
axioms to supply order information about the ci. Call this theory T ⋆. Now add
(infinitely many) axioms to say the ci are a SOI. Call this theory T I . We will
show that every finite fragment of T I is consistent, then done: consider such
a fragment T ′. It mentions only finitely many constants, say c1, c3, c4, c5, and
only finitely many predicates φ1, φ2, φ3, φ4. Let M be a model of T ⋆ (which
exists by compactness). These predicates, plus <, divide up [{ci : i ∈ I}M]m

(where [X]m = {Y ⊂ X : |Y | = m}) (where m is the supremum of the arities
of φ1, φ2, φ3, φ4), according to where each is true or false (so in fact they will
divide it into 2n pieces where there are n predicates) (there is some irrelevant
faff for when the φi have different arities). By Ramsey’s theorem there is a
monochromatic set of size ¿ the set of constants under consideration (in fact
infinite).

A directed set is a set (X,≤): ∀x, y ∈ X∃z ∈ X : x, y ≤ z. A set is κ-directed
if ∀x1, . . . , xκ ∈ X∃z : ∀i, xi ≤ z. A directed system is a family 〈Mi : i ∈ I〉 of
structures, where 〈I ≤〉 is a directed set, such that for i < j ∈ I∃fij : Mi →֒ Mj

and the embeddings commute. This gives us the concept of a limit structure
(in the terminology of the field, a direct limit; in category-theoretic language, a
colimit); we could define this explicitly, but it is more enlightening to consider
abstractly. ThIf the embeddings fij are all elementary, so are the embeddings
Mi →֒ M∞. Without elementarity, all we get is preservation of [at this point I
had enough of the lecturing of this course].

10

