
Quantum Computation

March 20, 2009

The subject of computer science has succeeded by abstracting the notion of
“computation” from its physical implementation - thus, rather than electrons
and chips, we speak of bits and logical operations. Nevertheless, it is important
to consider what is possible in the real, physical world. For example, com-
puter science studies primarily deterministic, “Turing” computation, and for a
while it seemed this was the “best possible” model of computation. However, it
emerges that probabilistic computers are useful for some applications, and ana-
logue computation also appears worthy of some consideration (although having
received said attention, it seems to be useless in practice). Finally, we consider
quantum computation, the subject of this course; the lecturer believes it is very
much useful.

It must be said that of the various approaches to building a quantum com-
puter, none has advanced very far. Therefore while our initial motivation was
the physical reality, we shall return rapidly to theory, and consider quantum
computers far beyond that which can currently be built in the lab.

If we had such a “full” quantum computer, the obvious applications are much
faster codebreaking, and also database search. More appealing to the mathe-
matician is the ability to simulate complicated quantum systems in reasonable
time; of course, the best applications likely remain to be discovered.

We shall return briefly to classical computation to understand where we are;
there are several universal architectures for classical computation, e.g. Turing
machines or cellular automata. We shall consider circuit models: the bits, 0
or 1, are input on wires, and pass through a series of gates to give an output.
Gates are usually (at least initially) described by truth tables. E.g. we have

the AND gate, whose output is given by the table:

Input Output
00 0
01 0
10 0
11 1

. Other

examples would be the NOT gate, and the CNOT or “controlled NOT” gate,
which takes two inputs, the first of which acts as a control on a NOT gate for

the second input (and is also outputted unchanged):

Input Output
00 00
01 01
10 11
11 10

.

Truth tables are hard to manipulate mathematically. So, we will instead

associate each classical bit with a 2D real vector: 0 =

(

1
0

)

, 1 =

(

0
1

)

. We will

1

use the Dirac bra-ket notation: vectors are kets |v〉, dual vectors are bras 〈v|,
and the inner product is 〈u|v〉; states are orthogonal if this is 0. So for example

〈0|1〉 =
(

1 0
)

(

0
1

)

= 0. The norm is ||v〉| =
√

〈v|v〉; we say |v〉 is normalised

if this is 1. A set of states is orthonormal if each is normalised and pairs are
orthogonal, e.g. |0〉, |1〉.

Multiple bits are given by tensor products: if we have two bits input with

values |0〉, |1〉 respectively, |v〉 = |0〉 ⊗ |1〉 =

(

1
0

)

⊗
(

0
1

)

=









1

(

0
1

)

0

(

0
1

)









=









0
1
0
0









.

We will sometimes write |u〉 ⊗ |v〉 as |u〉|v〉 or even just |uv〉.
Note that the tensor product of vector spaces of dimension d1, d2 is of di-

mension d1d2, so the space of states of n bits is 2n-dimensional, quite large.
Gates are represented by operators or matrices, e.g. the AND gate A =

|0〉(〈00| + 〈10| + 〈01|) + |1〉〈11| =

(

1 1 1 0
0 0 0 1

)

; similarly we have the NOT

gate X and the CNOT gate CX . The identity gate I corresponds to an empty
wire.

When applying gates in series, we take their ordinary (operator or matrix)
product; when applying gates to distinct wires in parallel, we take their tensor
product. We can use this approach to derive the output of any classical circuit,
e.g. if we have three wires inputting, the top two pass into an AND gate,
then the bottom through a NOT gate, and then the two wires we now have
through a CNOT gate, then when the input bits are |1〉, |1〉, |0〉, the output will
be CX(I ⊗ X)(A ⊗ I)|110〉, which we can calculate to be |10〉. The beauty
of this approach is that rather than calculating a huge truth table, we only
have a product of operators. Note that the gates in the circuit diagram appear
left-to-right, but operators are written right-to-left.

Now, on to quantum. Quantum theory is a general framework for describing
physical systems and their evolution. The central part is: the physical state of
a closed system is given by a normalised complex vector (within that system’s
Hilbert space), which evolves unitarily. Our Hilbert spaces will always be finite-
dimensional, i.e. ordinary complex vector spaces. We form the quantum version
of a bit, the qubit, by simply allowing the vectors in our previous formalism to
take any normalised 2-dimensional complex vector as their state, i.e. |ψ〉 =

α|0〉 + β|1〉 =

(

α
β

)

for any |α|2 + |β|2 = 1, rather than just |0〉 and |1〉. If

αβ 6= 0 we say this state is a superposition of |0〉 and |1〉.
Note that the corresponding bra is the Hermitian conjugate 〈ψ| = (|ψ〉)† =

(

α⋆ β⋆
)

. The states |0〉, |1〉 form a basis for single-qubit states; we call them the
computational basis states; for n-qubit states the computational basis consists
of all tensor products of |0〉 and |1〉.

Unitary evolution is linear, reversible, and norm-preserving. As in the clas-
sical case, any unitary evolution or gate can be represented by an operator
|ψ〉 → U |ψ〉. However, such an operator is unitary iff U †U = UU † = I, or
equivalently, if its rows/columns as a matrix form an orthonormal basis.

Of the gates we considered earlier, the NOT and CNOT gates are unitary;
these are widely used in quantum computation. However, the AND gate is

2

not unitary; it is irreversible, and changes the number of qubits, so cannot
be used in our circuits (In classical physics, even though the dynamics are
reversible, we build AND gates (which act by dumping information into the
environment). It is possible to construct a similar gate in quantum theory,
which will be represented by a super-operator, but this generally takes pure
states to mixed states and is generally bad, and not useful for computation).
There are various new gates which are not possible in the classical theory, e.g.

the Hadamard gate H = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|) = 1√

2

(

1 1
1 −1

)

;

it is helpful to define another orthonormal basis |±〉 = 1√
2
(|0〉 ± |1〉), then

H = |+〉〈0|+ |−〉〈1|; also note X = |+〉〈+|− |−〉〈−|. Also, we define the Z gate:
Z = |0〉〈0|− |1〉〈1|. This is one of a family of phase gates Rφ = |0〉〈0|+eiφ|1〉〈1|.
Finally, the controlled-Z gate on 2 qubits, CZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z.

We can combine these gates into a quantum circuit, e.g. H followed by
Z gives ZH ; on input |0〉 the output state is ZH |0〉 = 1√

2
(|0〉 − |1〉). But

how should we interpret such a superposition state? To understand this, we
include ourselves in the quantum state: measuring the output qubit will be
some physical process, therefore modelled by a unitary evolution U : say the
qubit state is α|0〉+β|1〉 and we are in some about-to-measure state |a〉. In order
to recover the classical case, we require U |0〉⊗|a〉 = |0〉⊗|b〉, U |1〉⊗|a〉 = |1〉⊗|c〉
where |b〉, |c〉 are the states where we see a 0 or a 1 respectively. We can do this;
however, linearity now fixes U in general: U(α|0〉+β|1〉)⊗|a〉 = α|0〉|b〉+β|1〉|c〉
- now we are also in the superposition.

This is known as the measurement problem, and is not fully resolved; some
popular interpretations are the many-worlds approach, which states that the
universe really behaves like this; some form of “hidden variables” notion, which
claims that quantum theory is merely an approximation to some deeper under-
lying theory, or some notion of “collapse” of superpositions of sufficiently large
objects. However, all these interpretations agree on the resulting experience:
with probability |α|2 you see 0 and the qubit state becomes |0〉, while with
probability |β|2 you see 1 and the qubit state becomes 1.

Most approaches tend to introduce axioms for dealing with measurements.
Theoretically this is deeply unsatisfying; there is no physical distinction be-
tween a measurement and an ordinary interaction. However, pragmatically, we
see what happens in the lab. A measurement is described by a set of measure-
ment operators Mk satisfying the completeness relation

∑

kM
†
kMk = I. The

measurement gives result k with probability |Mk|ψ〉|2, and the resulting state

is Mk|ψ〉
|Mk|ψ〉| . The constraint essentially just ensures that probability is conserved:

the probability of outcome k is |Mk|ψ〉|2 = (Mk|ψ〉)†(Mk|ψ〉 = 〈ψ|M †
kMk|ψ〉, so

∑

k prob(k) = 〈ψ|(∑kM
†
kMk)|ψ〉 which should always be equal to 〈ψ|ψ〉 = 1.

This choice of formalism gives us the best set of “useful” measurements; the sim-
plified “observables” seen in basic QM are certainly insufficient for some cases
we will want to cover. Those correspond to projective measurement, where each

measurement operator is a projector satisfying M = M2 = M †, e.g. our com-
putational basis measurement on a single qubit: M0 = |0〉〈0|,M1 = |1〉〈1|. (But
note that any of these measurements can be done by interacting with an ancilla
and then performing a projective measurement). Note that global phase factors
are unmeasurable.

3

We can now perform a full quantum computation, e.g. if we input two qubits
in state |0〉 and pass the first through a Hadamard gate, then the two through a
CNOT gate with the first as control and finally the second through a Z gate, the
output state will be (I ⊗ Z)CX(H ⊗ I)|00〉 = 1√

2
(|00〉 − |11〉); thus, measuring

the output yields (0 0) or (1 1) with probability 1
2 each.

Universality

Note that for a general quantum circuit we allow CNOT gates to have the con-
troller and controllee bits non-adjacent; however, restricting these to adjacent
bits only makes a polynomial difference to the compute time. (It is possible to
construct a “swap” gate by three CNOT gates in succession with the middle one
“upside down”). We prepare the input state |ψin〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, then
apply a series of unitary operations to the state at successive times: |ψout〉 =
UTUT−1 . . . U1|ψin〉. T is called the circuit depth; each Ut is a tensor product of
1- and 2-qubit gate unitaries, acting in parallel. Finally, we measure the output
qubits in the computational basis; we obtain the result (x1, . . . , xn) ∈ {0, 1}N
with probability |〈x1x2 . . . xn|ψout〉|2.

In the classical model, some simple sets of gates are sufficient to generate
all logical operations, e.g. NOT and AND will suffice. If we restrict ourselves
to unitary gates we require a three-bit gate, e.g. the Toffoli gate, a “controlled
controlled NOT”, which is sufficient by itself.

In the quantum case, it is less obvious that we can generate all operations
from some simple set of gates, since there is now a continuous space of possible
unitary operations, However, we can in fact generate all possible unitary opera-

tions on the state space simply by all phase gates

(

1 0
0 eiφ

)

(a continuous fam-

ily), the Hadamard gate 1√
2

(

1 1
1 −1

)

, and the CNOT gate |0〉〈0|⊗I+|1〉〈1|⊗X .

We shall prove this in four steps: 1) we can construct all 1-bit unitaries using
phase gates and Hadamards, 2) We can use these and CNOT gates to form
Controlled-U gates, for arbitrary unitary U and arbitrary numbers of control
bits. 3) We can modify controlled-U gates to form V which apply a unitary
operator U to the subspace spanned by any two computational basis states, and
are the identity everywhere else (think about it: a controlled-U gate is such a
gate where the two computational basis states are |1 . . . 10〉, |1 . . .11〉). 4) Any
unitary matrix can be expressed as a sequence of V gates each of which acts
nontrivially only on a 2D subspace.

For single qubit universality, consider the gates: α phase, then Hadamard,

then β phase, then Hadamard, then γ phase: this forms U = 1
2

(

1 0
0 eiγ

) (

1 1
1 −1

) (

1 0
0 eiβ

) (

1 1
1 −1

) (

1 0
0 eiα

ei
β
2

(

cos β2 ieiα sin β
2

ieiγ sin β
2 ei(α+γ) cos β2

)

. We can see that up to an irrelevant global phase

factor, this represents a general single bit unitary: for a unitary matrix, the first
column must form a complex vector of norm 1, which the given matrix contains
in complete generality, and then the second column is determined up to its
relative phase α.

For a controlled-U gate, we first generate a controlled-phase gate: noting that
X followed by −φ phase followed by X is a φ phase gawe with a overall phase

4

factor of e−iφ, X(|0〉〈0| + e−iφ|1〉〈1|)X = (|1〉〈1| + e−iφ|0〉〈0|) = e−iφ(|0〉〈0| +
eiφ|1〉〈1|), we see if we have: φ

2 phase gate on the second qubit, CNOT, φ2 phase

gate on the first qubit and −φ
2 phase bit on the second qubit, CNOT gate, this

corresponds to a controlled φ phase gate; note the necessity of the phase gate
on the top to ensure that the phase factors cancel. (While a global phase does
not matter, a phase change only when the CNOT gate is “triggered” would be
important).

Since H2 = I we can now generate any Controlled-U gate analagously to
the single-qubit case: controlled-α, Hadamard on the second qubit, controlled-β,
Hadamard on the second qubit, controlled-γ, δ on the first qubit gives a general
controlled-U . Note the need for the aditional phase gate δ on the control qubit;
this allows us to modify the global phase of U (a controlled-U followed by a
δ on the control qubit is equivalent to a controlled=eiδU), which unlike in the
single-qubit case, is important, since the U is only triggered some of the time.

We can generate a U -gate controlled by k qubits (i.e. triggered only if all
the k control qubits are 1), which we shall call a CkU gate, inductively: suppose
we have CkU gates, then say we have k “top” control lines, a “middle” control

line, and a “bottom” controlled line. Then we have a controlled-
√
U gate, on

the bottom, controlled by the middle, followed by a CkX gate, controlled by the

top, on the middle, then a controlled-(
√
U)† gate, on the bottom, controlled by

the middle, a CkX gate, constrolled by the top, on the middle, and finally a Ck√
U

gate, on the bottom, controlled by the top; the reader may check this always
gives the correct outcomes.

√
U always exists, non-uniquely, as U is unitary:

its eigenvalues are always phases, so can be halved.
These controlled-U gates act nontrivially only on two computational basis

states, |1 . . . 10〉, |1 . . .11〉; in matrix form e.g. a C2
U looks like:

























1
1

1
1

1
1

U00 U01

U10 U11

























.

By permuting the basis states before and after the gate, we can build gates that
act as an arbitrary unitary on the subspace spanned by any two basis states. We
form our permutation P by: map the first basis state to |1 . . . 11〉 by putting X
gates on the bits which are currently |0〉. Then we move the second basis state
from wherever it has ended up to |1 . . . 10〉 by permutations that swap two basis
states by a single bit flip and leave all others unchanged (and so we repeatedly
swap our basis state with adjacent ones until we reach |1 . . . 10〉, without passing
through |1 . . . 11〉). We do these permutations by n-way CNOT gates with X
gates surrounding the approprate controls: thus e.g. to swap |1000〉, |1010〉, we
place a controlled NOT gate on the third qubit with controls on all three other
bits, and X gates on each side of the control on the second and fourth bits. Sim-
ply reversing the order of the circuit P gives us the inverse P †. Then the circuit

PC
(n−1)
U P † acts by U on the desired subspace and not at all on the other vectors,

e.g. for the 3-bit case where we have chosen P |100〉 = |111〉, P |001〉 = |110〉, the

5

combined circuit in matrix form is V =

























1
U00 U01

1
1

U10 U11

1
1

1

























.

Finally, we can express any unitary U as a product of V -operations, each
of which acts nontrivially only on a 2D subspace: given a matrix U , we can
form a V gate such that V U has a zero in any one position on the left hand
column, and not changing any other entry of the left hand column other than

the top left, e.g. 1√
|u00|2+|u20|2









u⋆00 0 u⋆20 0
0 1 0 0
u20 0 −u00 0
0 0 0 1

















u00 u01 u02 u03

u10 u11 u12 u13

u20 u21 u22 u23

u30 u31 u32 u33









=









v00 v01 v02 v03
u10 u11 u12 u13

0 v21 v22 v23
u30 u31 u32 u33









; also the top left entry of the resulting matrix is real

positive. By a sequence of such operations we can change all elements of the
first column to 0 other than the top left which is now 1; by unitarity, the rows
and columns are all normalized vectors; thus, the top row is now all 0 other
than the first element. Then, recurse on the (n− 1)× (n− 1) submatrix in the
bottom right; by induction we eventually obtain a sequence of K V -gates with
VKVK−1 . . . V1U = I; then U = V †

1 . . . V
†
K .

Thus, we can construct an arbitrary unitary in terms of such V -gates, and
hence from only phase gates, Hadamards and CNOTs. Note this construction
is not very efficient; for N qubits we require O(4n) gates.

Note that our universal gate set is not unique; proving the universality of
other possible gate sets is now much easier, since we only need to construct this
set from them. For example, CZ, phase gates and Hadamards form a universal
set since we can construct a CNOT by a CZ with Hadamards on each side on
one qubit.

It is more practical to consider finite sets of gates; for such a set, it is
impossible to perfectly recreate every unitary, since there are only countably
many possible circuits but uncountably many unitary operations. However,
we will consider a set of gates as universal - “approximate universality” - if
they can be used to approximate any unitary operation to an arbitrary accu-
racy, i.e. given U, ǫ we can find a finite sequence of gates GM . . . G1 such that
‖U − GM . . . G1‖ ≤ ǫ, where we use the operator norm ‖A‖ = sup{|A|ψ〉| :
|ψ〉| = 1}. Given an error in the unitary of ǫ, the difference in probability
for obtaining any measurement result is at most 2ǫ: |MU |ψ〉|2 − |MV |ψ〉|2 =
〈ψ|U †M †MU |ψ〉 − 〈ψ|V †M †MV |ψ〉 = 〈ψ|(U − V)†M †MU + V †M †M(U −
V)|ψ〉 ≤ ‖U − V ‖‖M †M‖(‖U‖ + ‖V ‖); ‖M †M‖ is ≤ 1 by completeness, and
‖U‖, ‖V ‖ are ≤ 1 by unitarity, so this is ≤ 2‖U − V ‖.

Furthermore, if we approximate each gate independently, the errors grow
at most linearly in the number of gates: ‖U2U1 − V2V1‖ = ‖U2(U1 − V1) +
(U2 − V2)V1‖ ≤ ‖U2‖‖U1 − V1‖+ ‖U2 − V2‖‖V ‖ ≤ ‖U1 − V1‖+ ‖V2‖. The main
point about this is that it is not exponential; thus, this method is (relatively)

6

practical. To obtain an overall error of ǫ in a circuit of K gates, we only need
to ensure the error on each is less than ǫ

K .
A finite universal set can be obtained by using the previous universal gate

set with just a single phase gate (with an angle that is not a rational multiple of
π, e.g. 1 radian); by using the phase gate M times we can get arbitrarily close to
any other phase gate, with error of order 1

M ; thus obtaining the desired accuracy

requires an overhead of M ∼ K
ǫ . A better universal set is obtained by choosing

our phase gate to have φ = π
4 ; as is proven in Nielsen and Cheung[?], combining

this with Hadamards allows us to approximate any phase gate needing only
M ∼ log K

ǫ .

Deutsch’s Problem

This presents an example where quantum computation is more efficient than
classical. As always we are concerned with asymptotic performance; we char-
acterise a problem by n, usually the number of input bits; then we write
g(n) = O(f(n) if ∃c,m such that |g(n)| ≤ |cf(n)|∀n > m; g(n) = Ω(f(n)
if ∃c,m such that |g(n)| ≥ |cf(n)|∀n > m, and g(n) = Θ(f(n)) if g(n) =
O(f(n)), g(n) = Ω(f(n)).

An oracle is a “black box” which takes a “question” in the form of an n-
bit string and returns an m-bit “answer” which is some function of the input;
here we shall restrict ourselves to 1-bit output - “yes/no” answers. To consider
oracles in quantum circuits we need to consider a “reversible” oracle; say our
oracle inputs x1, . . . , xn, y and outputs x1, . . . , xn, y ⊕ f(x) where by a ⊕ b we
mean (a + b) mod 2. This can then be made quantum by replacing the bits
with qubits; the oracle will be a unitary transformation Uf =

∑

x

∑

y |x〉|y ⊕
f(x)〉〈x|〈y|.

Classically, we would always input y = |0〉 and a “question” in the x bits,
so the oracle’s “answer” is given on the final bit which becomes simply f(x).
However, for the quantum oracle we can use a “trick”: set the y qubit to |−〉,
then our oracle Uf will act as a phase gate: Uf |x〉 ⊗ |−〉 = (−1)f(x)|x〉 ⊗ |−〉.
But since phase is a global factor we can view this as acting on the “question”
qubits and leaving the “answer” unchanged. Of course, a global phase factor
is undetectable; this will induce a detectable change in the output state only
when the input is a superposition. The same trick can be used on any controlled
gate, e.g. if we feed |ψ〉 ⊗ |−〉 into a CNOT gate, the output can be seen as
Z|ψ〉 ⊗ |−〉.

The examples in this lecture are “artifical” cases which nevertheless serve
as a proof of principle that quantum computation can have an advantage over
classical; we shall move on to “real-world” applications later. The first example
was an oracle problem found by Deutsch: suppose we’re given a reversible func-
tion for an unknown 1-bit function f , Uf =

∑

x,y∈{0,1} |x〉〈x| ⊗ |y ⊕ f(x)〉〈y|.
We wish to determine whether f(x) is constant, f(0) = f(1), or “balanced”
(f(0) 6= f(1)), with the minimum number of oracle queries. The best classical
solution to this problem requries two queries; we simply apply f to 0 and 1,
and from the results we can calculate f(0)⊕f(1), which tells us our result; note
that we have “done too much work” here, since we can also read off the values
of f(0), f(1). Thus we have obtained two bits of information about f where we
only really wanted 1.

7

Using quantum computation, we can solve the problem using only one or-
acle query: |ψout〉 = (H ⊗ I)Uf (H ⊗ H)(I ⊗ X)|0〉|0〉 will give an output of
(−1)f(0)|f(0) ⊕ f(1)〉 ⊗ 1√

2
(|0〉 − |1〉), i.e. our result can be read off from the

first qubit. Note that we still only learn one bit of information about f from
one query; we cannot determine f(0) or f(1) without further queries.

We can generalise this to an n-qubit boolean function: we are given the
promise that either f is constant, or balanced (f(x) = 0 for exactly half the
possible xs, 1 otherwise), and must determine which (Deutsch-Jozsa). We first
apply a NOT gate on the final (“answer”) qubit and then Hadamards on all
qubits; this is a frequent way to start, because it generates an equal superposi-
tion of all inputs followed by a |−〉: under a set of Hadamards in parallel, |0〉
becomes 1√

2n
(|0〉 + |1〉)(|0〉 + |1〉) Then we apply f to this state, and then

Hadamard all our “question” qubits and measure them; if all the outputs are
0 the function is constant, in any other case it must be balanced. The final
qubit, the “answer”, will always remain 1√

2
(|0〉 − |1〉), so there is nothing to

be gained by measuring it. To see that this works, we have that |ψout〉, which
we take to be the state immediately before the final measurement, is (H⊗n ⊗
I)Uf (H

⊗n⊗H)(I⊗X)|0〉⊗n|0〉 = (H⊗n⊗I)Uf(H⊗n⊗H)|0〉|1〉 = 1√
2n+1

(H⊗n⊗
I)Uf (

∑

x∈{0,1}n |x〉)(|0〉 − |1〉) = 1√
2n+1

(H⊗n⊗ I)(
∑

x∈{0,1}n(−1)f(x)|x〉)(|0〉 −
|1〉) = (H⊗n 1√

2n

∑

x∈{0,1}n(−1)f(x)|x〉) ⊗ 1√
2
(|0〉 − |1〉). Whilst we could com-

pute this state fully, it is more convenient to now consider measurement: the
probability of measuring 0 on all of the first n qubits can be found using the mea-
surement operatorM = |0〉〈0|⊗I (we could form a complete set of measurement
operators by e.g. Mx =

⊗

i |xi〉〈xi| ⊗ I, but we only actually need to consider
M0 here). The probability of this outcome is |M |ψout〉|2 = |(|0〉 ⊗ 1√

2
(|0〉 −

|1〉))(〈0|H⊗n 1√
2n

∑

x∈{0,1}n(−1)f(x)|x〉)|2; the first large bracket here is a nor-

malised vector, and so applying theHs this is |(1√
2n

∑

y∈{0,1}n〈y|)(1√
2n

∑

x∈{0,1}n(−1)f(x)|x〉)|2 =
1
2n

∑

y

∑

x(−1)f(x)δxy|2 = | 1
2n

∑

x(−1)f(x)|2, which is 1 for f constant and 0
for f balanced.

For a classical oracle, to reliably determine whether f is constant or balanced
requires 2n−1 + 1 queries (sock problem); the quantum case requires only one
query. However, in the classical case after sampling k random values of x,
the probability of an error, ǫ, is exponentially small: the only way we can be
wrong is if we declare the function to be constant when it is in fact balanced,

which happens with probability ǫ = 2n−1−1
2n−1

2n−1−2
2n−2 . . . 2n−1−k+1

2n−k+1 ≤ (1
2)k−1. So

if we permit a small error probability ǫ, our classical circuit will require only
1 + log2

1
ǫ = Ω(1) queries.

For a problem where there is a substantial difference between the quantum
and even a probabilistic classical solution, we have the Bernstein-Vazirani prob-
lem: we are given an oracle for an n-bit boolean function f(x) and the promise
that f(x) = a·x (modulo 2), and must find a in the least number of queries. For
the quantum case the exact same circuit as for Deutsch-Jozsa outputs a in the
first n qubits (consider a measurement operatorM = |a1〉〈a1⊗· · ·⊗|an〉〈an|⊗I,
then since H⊗n|a〉 =

∑

y∈{0,1}n(−1)a·x|y〉, we can calculate |M |ψout〉|2 =

|(1√
2n

∑

y∈{0,1}n(−1)a·x〈y|)(
∑

x∈{0,1}n(−1)a·x|x〉)|2 = | 1
2n

∑

x 1|2 = 1. In the

classical case, each oracle query gives us 1 bit of information; we cannot do any
better than trying x = (1, 0, . . . , 0), (0, 1, 0, . . . , 0) etc. Thus we require n queries

8

to determine a with certainty; even in the probabilistic case, if we are permitted
k queries the best we can do is to discover k bits of a; we shall then have to guess
the remaining n− k bits, meaning the error probability ǫ = (1

2)n−k; thus even
if we allowed some fixed error probability ǫ we still need k ≥ n− log 1

ǫ = Ω(n)
uses of the oracle.

Grover’s Search Algorithm

Consider a database of 2n entries. Searching a sorted database can be done in
O(n) steps (by binary chop); however, searching an unsorted database is much
harder, requiring O(2n) entries. E.g. it is easy to find a given name in the
’phone book, but very hard to find a given telephone number.

Suppose x indexes the entries of our database, and we are seeking to find a
record for which a particular field F (x) = A. For now suppose there is a unique
record a for which this holds. We can consider the search as an oracle problem:
each query asks “is x the correct entry”, returning 1 if x = a, 0 otherwise. As
always, we wish to discover a in as few oracle queries as possible.

Grover’s search algorithm circuit consists of: we have first a NOT gate on
the last “answer” qubit, then a row of Hadamards, as usual. Then we have
several iterations of a Grover operation G, before measuring all the “question”
qubits. Each G consists of one call to the oracle fa, and then a particular phase
gate V|ψ〉 on the “question” qubits. Therefore we require one oracle query for
each G. This is a probabilistic algorithm; the final measurement will give a

with high probability, but not certainly.
Set |ψ〉 = 1√

2n

∑

x∈{0,1}n |x〉, the equally weighted superposition over all

basis states. V|ψ〉 = 2|ψ〉〈ψ| − I - it leaves |ψ〉 invariant and gives all states
orthogonal to it a -1 phase factor. Since the “answer” qubit of the oracle is
always in a state |−〉, its action on the “question” qubits can be described by a
similar phase gate: Ufa

= I − 2|a〉〈a| = −V|a〉 (it applies a -1 phase factor to
|a〉, for which the oracle response is 1, and leaves orthogonal states, for which
the oracle response is 0, unchanged).

Thus, if we ignore the “answer” qubit for now, the effective circuit on the
remaining qubits is a row ofHs, then iteratedG = V|ψ〉(−V|a〉), then finally mea-
surement. Observe thatG = (2|ψ〉〈ψ|−I)(I−2|a〉〈a|) preserves the 2D subspace
spanned by |ψ〉, |a〉; it does not move states out of this subspace. Remember
|ψ〉, |a〉 are not orthogonal; therefore, define |a⊥〉 to be such that |a〉, |a⊥〉 are
an ON basis for the aforementioned subspace: |a⊥〉 = 1√

2n−1

∑

x 6=a |x〉. Note

|ψ〉 = 1√
2n
|a〉 +

√

2n−1
2n |a⊥〉.

If we restrict our attention to the subspace, −V|a〉 = V|a⊥〉. Our states

will always take the form |φ〉 = α|a〉 + β|a⊥〉 with α, β real, so we can view
this subspace as the 2D real plane. Then, geometrically, V|a⊥〉 represents a

reflection in the |a⊥〉 axis; similarly, V|ψ〉 is a reflection in the |ψ〉 axis. Thus
their combined effect on states in the subspace is a rotation by angle 2θ, where θ

is the angle between |ψ〉, |α⊥〉; θ = sin−1 1√
2n

(recall |ψ〉 = 1√
2n

|a〉+
√

2n−1
2n |a⊥〉;

thus if we let the |a⊥〉 axis be the “x” axis, |ψ〉 points mostly to the right and
slightly up.

Thus, iterating the Grover operation, we rotate the initial state |ψ〉 “up”

9

towards the |a〉 axis, in steps of 2θ. For the final result to be as close as

possible to |a〉, we iterate G k = closest integer to
π
2 −θ
2θ ≤ π

4

√
2n = O(2

n
2)

times. The state immediately before measurement is then at angle α ≤ θ
from the |a〉 state. Measuring in the computational basis our outcomes are |a〉
with probability cos2 α, or any other state with equal probability sin2 α

2n−1 (recall

|α⊥〉 =
∑

x 6=a |x〉). Thus the probability of an error ǫ ≤ sin2 θ = 1
2n .

Grover’s algorithm requires O(2
n
2) queries (even if we require a smaller ǫ,

we can just repeat k times and take a “majority vote”), while the best classical
search algorithm requires O(2n), even if we allow it to be probabilistic; thus this
achieves a quadratic speedup.

If there are M different solutions A = {a1, . . . ,aM} satisfying our search
criteria, then our search oracle is fA, where fA(x) = 1 if x ∈ A, 0 otherwise.
We apply Grover’s algorithm identically, except that in place of |a〉, |a⊥〉 we
have |A〉 = 1√

M

∑

x∈A |x〉, |A⊥〉 = 1√
2n−M

∑

x/∈A |x〉 - evenly weighted super-

positions of correct and incorrect answers. The only difference from before is

that the angle of the state |ψ〉 from |A⊥〉 changes; now θ = sin−1
√

M
2n ; thus

the required number of Grover operations k is different. When we measure the
“question” qubits we will obtain a random element of A, i.e. a random “correct”
answer, except for an error probability ǫ ≤ M

2n . If M is unknown we might think
this would cause problems, since θ and hence k depend on M , but there is a
“quantum counting” algorithm, which we may see later in the course, which can
determine M in O(2

n
2) oracle queries, so our quadratic speedup is retained.

Although we have phrased this section in terms of databases, actually build-
ing a database which functioned like this would be a hard task - it is necessary
to be able to query the database without it measuring the query |x〉, as that
would collapse the superposition. We can imagine a database which worked
with e.g. photons and beam splitters to perform such a measurement, but this
is not yet technically feasible. However, such a “database” is a good model for
an interesting class of mathematical problems - in particular, problems where
it is hard to find a solution, but easy to check whether a particular candidate is
a solution or not, so the best approach to finding a solution really is by testing
all possibilities. E.g. if we want to factor a number J which is a product of two
large primes, we can see this as an oracle problem where the oracle is the (quite
simple) circuit which determines whether x is a factor of J ; to find a factor clas-

sically in the naive way, one would have to “query” this “oracle” O(J
1
2) times,

to test all possible factors up to J
1
2 , wheras using Grover’s algorithm we can do

so with O(J
1
4) queries. Of course, this is in fact worse than the best classical

approaches to the problem, and we shall see later there is a far better quantum
method for factorisation.

Classical Computational Complexity

Thus far we have considered oracle problems; they make it easy to demonstrate a
separation between quantum and classical approaches, but give slightly artificial
problems, and cannot be used to express the difficulty of solving more general
mathematical problems.

Complexity classes are usually defined in terms of Turing machines. There
are several different but equivalent definitions of such; we take it to consist of

10

a tape, infinite in both directions, each “square” of which contains a symbol
from a finite alphabet A (with a distinguished element “blank”), a “read-write
head” pointing towards a particular square on the tape, a “state register” which
contains states from a finite set S, one of which is a “starting” state and one or
more of which are “halting” states, and a “table” (S,A) → (S, {R,L}, A), which
maps from the machine’s current state and the symbol “read” from the current
square to a new symbol to “write” to the current square (possibly blank), a
direction “left” or “right” for the tape to be shifted by one square, and a new
state of the machine. The machine starts in the start state and with the head
pointing towards a particular position on the tape; the input to the algorithm
consists of finitely many non-blank squares on the tape. The “rules” in the table
are applied repeatedly until the machine reaches a “halt” state; at this point it
stops, and its output is considered to be whatever is now written on the tape.

A Turing machine of this form would usually be constructed to solve a spe-
cific problem, but it is relatively easy to construct a universal Turing machine,
which reads as input a description of another Turing machine along with its
input, and simulates that Turing machine, outputting what it would output.

The Church-Turing Thesis is that any function we consider as being com-
putable by an algorithm is computable by a Turing machine. Quantum theory
does not challenge this; we only claim that it is possible to compute computable
functions more efficiently using quantum computation.

We want a notion of how “hard” a problem is to solve on a computer which
is indepedent of the precise implementation details and the specific computer
used. We consider a problem to be solvable efficiently if the quantity of resources
required scales polynomially with the problem size: f(n) = poly(n) if there is

a k such that f(n) = O(nk). This is obviously a coarse measure (e.g. for prac-
tical problem sizes, O(2

n
1000) might be preferable to O(n1000)), but in practice

works well as a classification. Its great advantage is that it is independent of
the precise details of the computational model; different computational models
can generally simulate each other with polynomial overhead; we say they are
“equivalent” if so. In a slight abuse of notation, we tend to call any problem
which requires greater than polynomial resources “exponential”, even though
some functions e.g. O(nlog n) are not truly exponential.

For examples of the universality of this definition, Turing machines appear
able to simulate any other classical deterministic algorithm with an overhead
at most polynomial in the number of elementary operations, e.g. they can
provably simulate classical circuits with such efficiency. Turing machines with
two tapes give only a polynomial speedup over a one-tape machine; only allowing
gates to act “locally” (i.e. between neighbouring bits) in a circuit only incurs a
polynomial overhead. It is believed to be false that a classical Turing machine
can simulate a quantum circuit in polynomial time, but as with many problems
in this field this is not proven - see later.

Many computational tasks can be formulated as decision problems, which
are clean and easy to state. In these, there is a variable-sized input, but the
answer is always a “yes” or “no”. We can describe them more formally using
languages: a language L is a subset of all possible strings composed of characters
from some finite alphabet A, e.g. in the binary alphabet A = {0, 1}, the lan-
guage of odd numbers is L = {1, 01, 11, 101, . . .} ⊂ {0, 1, 00, 01, 10, 11, . . .}. The
language represents those inputs for which the answer to the decision problem

11

(in this case, “is x odd?”) is “yes”.
The complexity class P is defined to be the set of languages which can be

decided by a Turing machine in polynomial time: a language L is decided by a
Turing machine if, when given x as input, it reaches the halting state “accept”
if x ∈ L and the halting state “reject” if x /∈ L. A langiage is decided in
polynomial time if for all strings x, the Turing machine halts in the correct
state after poly1(|x|) steps. Intuitively, P represents those decision problems
which can be solved efficiently on a classical deterministic computer; it is hard
to prove a problem does not lie in P , since we need to prove that no possible
algorithm could solve it in polynomial time.

As a demonstration of the model independence of complexity classes, we
could also define P based on classical circuits; this is somewhat clunkier, because
we need different circuits for different input sizes. A language L (with alphabet
{0, 1}; this is not a real problem as languages with larger alphabets can be
encoded in binary with polynomial overhead) is in P if there is a uniformly-
generated family of polynomial-size classical circuits {Cn} such that when x is
input into the circuit C|x|, it outputs 1 if x ∈ L and 0 if x /∈ L. (A circuit Cn
is polynomial-size if it contains poly(n) gates, each of which acts on O(1) bits.
A circuit family {Cn} is uniformly-generated if there is a turing machine which
inputs (a representation of) n and outputs (a description of) the circuit Cn in
polynomial time. For compatibility with reversible/quantum computers (where
we don’t have the “fanout” gate where an input |ψ〉 7→ |ψ〉 ⊗ |ψ〉 (in fact this
is impossible by the no cloning theorem)), the circuit is also allowed poly(n)
“working” bits prepared in some fixed computational basis state independent
of x (usually 0), and permitted to output some “garbage” bits alongside the
“true” output). (To see that the uniformity condition is important, consider
the decision problem: is x the middle prime in the range 1, 2|x|? This appears
“hard” to solve, at least in terms of a Turing machine, but if we were allowed
to generate our circuit for |x| arbitrarily, we could easily solve it in polynomial
time by “precomputing” the middle prime in that range, so the circuit would
simply be “compare this number with x, if they are equal output yes, otherwise
output no”.)

Somewhat surprisingly, randomness seems to be useful in solving compu-
tational problems. Thus we define the complexity class BPP: bounded error,
probabilistic, polynomial time. This is the set of language which can be de-
cided in polynomial time on a probabilistic Turing machine (i.e. one which is
permitted to have state updates conditioned on a coin toss; of course there is
an equivalent definition in terms of circuits permitted to input some random
bits) with error probability at most 1

3 (this is arbitrary; any ǫ in the range
0 < ǫ < 1

2 does not change the class, since we may use “majority voting” to
obtain a smaller error probability with only a polynomial overhead (in fact only
a constant factor’s difference; the probability of an error drops like 2−Ω(k), the
“Chernoff bound”). Intuitively, it contains those problems which can be solved
efficiently on a probabilistic classical computer. The “strong Church Turing
thesis” claims that “all effectively solvable problems are in BPP”: any model of
computation can be simulated by a probabilistic turing machine with at most
a polynomial overhead. Quantum theory does seem to violate this.

There are some languages believed to be outside BPP; however, this cannot
be proven. For example, the factoring decision problem: given two n-bit integers
x and y < x, does x have a nontrivial factor less than y (the input is a composite

12

of two integers, but we’re grown-up enough to handle that). This is a somewhat
contrived version of the problem in order to have the form of a decision problem,
but notice that if we had an efficient solution to this, we could also factor
numbers efficiently, by using binary search, which only incurs a polynomial
overhead. Thus “we get the full power of the problem form the decision version”,
and this is a general phenomenon.

It is believed that this decision problem is hard to solve classically, but it is
easy to prove that the answer is “yes”: given a factor, verifying that it divides
exactly is an easy decision problem, in P . We call the factor a witness to the
decision problem. The complexity class of decision problems with witnesses
checkable in polynomial time is called NP (for non-deterministic polynomial
time; it is possible to define it in terms of non-deterministic Turing machines,
although we shall not do so in this course). Formally, a language L lies in NP if
there is a Turing machine such that if x ∈ L there exists a witness w such that
if we input “x-blank-w” it reaches the “accept” halting state in time poly(|x|),
and if x /∈ L then for all strings w, when we input “x-blank-w” it reaches the
“reject” halting state in time poly(|x|). (Note that it is implicit that our witness
must have size poly(|x|), since the Turing machine can only read one bit in each
timestep).

PSPACE is the set of languages decidable by a Turing machine using only
polynomial space on the tape: for an input x, the algorithm must not move
the tape more than poly(|x|) squares from its starting position. Intuitively, this
corresponds to those decision problems which can be solved in finite time on a
deterministic polynomial-sized computer. We would like to also define this for a
circuit by saying that the conditions are as for P , but with no constraint on the
total number of gates; however, at any given time there may be at most poly(n)
bits in the circuit. However, while this is an intuitively correct definition, we
cannot make it formally valid since the uniformity condition breaks down.

To summarise the known relations between the complexity classes: P is con-
tained in PSPACE, as a Turing machine only moves one square per timestep,
so any computation done in poly(n) timesteps will necessarily use only poly(n)
space. P is contained in NP as we could just ignore the witness input; NP
is contained in PSPACE as we could try out all possible witnesses sequentially
(we shall not prove this in detail at this stage, since it is very similar to the
quantum case, which we shall cover later). P is contained in BPP as we could
just ignore the random inputs (in the circuit model; in the Turing machine
model we would just not use any probabilistic state changes). BPP is contained
in PSPACE as we could try out each possible value for the random variables
sequentially and count the number which accept. The relation between BPP
and NP is not proven; nor is it proven that any of the mentioned complexity
classes are distinct. It is generally believed that P does not equal PSPACE;
it is thought that BPP is probably equal to P since efficient (polynomial-time)
good pseudorandom number generators seem to exist, and so any probabilis-
tic polynomial-time algorithm can be made deterministic with only polynomial
overhead by combining in with a pseudorandom number generator, but this is
not proven. The most famous open problem is whether P=NP; there is a million
dollar prize on offer for any proof one way or the other on this.

13

Quantum Computational Complexity

The complexity class BQP - bounded error, quantum, polynomial-time - de-
scribes those decision problems which can be solved efficiently [with high prob-
ability] on a quantum computer; the formal definition is usually given using
the quantum circuit model, although it can also be defined in terms of Turing
machines: A language L (with alphabet {0, 1}) is in BQP if there exists a uni-
form family of polynomial-sized quantum circuits {Cn} such that when |x〉|0〉
is inupt to the circuit C|x|, the probability of obtaining 1 in a computational

basis measurement of the first output is ≥ 2
3 if x ∈ L,≤ 1

3 if x /∈ L. Circuits
are composed of gates from some universal set; we require the matrix elements
of all gates must be efficiently computable (the nth gate must be obtainable by
a Turing machine in time poly(n). As with BPP, the choice of 2

3 as the required
probability is arbitrary.

For a Quantum Turing Machine, we associate each configuration of a normal
Turing machine with a different orthonormal vector. Evolution is given by a
unitary operator U , which acts on the internal state and current square, and
moves the tape head by one step. We also require the entries of U to be efficiently
computable. After each update, we partially measure the internal state to see
whethere it is a halting state (and whether it accepts or rejects); it is essential
that we do not fully measure it with a basis as that would collapse this to a
probabilistic classical Turing machine. At a general time-step the machine will
be in a complex superposition of classical states. We can define BQP as the
set of languages which can be decided in polynomial time on a quantum Turing
machine with error probability at most 1

3 .
Clearly, P is a subset of BQP: we can restrict to reversible gates in the circuit

definition of P without changing the complexity class by using ancillas; these
reversible gates can be used in the quantum circuit, then we simply use qubits
in computational basis states.

BPP is also a subset of BQP: circuits in BPP are permitted poly(n) random
bits as input. We simulate this by adding poly(n) ancillas and passing these
through Hadamard gates, then connecting these to the circuit’s random inputs.
This does give the same results: the input state corresponding to inputs of
x, working bits, and random bits is |x〉|0〉(1√

2k

∑

r∈{0,1}k |r〉). The classical

reversible circuit U then permutes the computational basis states such that
U |x〉|0〉|r〉 has 1 as its first qubit iff r is one of the random inputs for which the
circuit would give an output of 1, 0 otherwise; when we measure, the probability
of obtaining the result 1 is thus precisely the proportion of possible random
inputs for which the classical circuit would output 1, and similarly for 0.

BQP is contained in PSPACE. The naive way to simulate a computation -
storing the components of the state vector in the computational basis, 〈x|ψ〉,
and updating these each time a gate is applied, could, interestingly, be done
efficiently in terms of time, if we had a parallel architecture (e.g. a circuit model
rather than a Turing machine): each gate update can be done in constant time,
hence the simulation may run in poly(n) time. However, to simulate an n-bit
quantum computation we must store 2n complex numbers (the coefficients of
each possible state), and hence require O(2n) bits of working memory, thus this
does not show that BQP is in PSPACE.

We can simulate quantum computation using only polynomial memory but

14

taking exponentially long time. Consider a quantum circuit on n qubits with
depth T ; the amplitude for obtaining the final computational basis state |yT 〉,
if we start from the basis state |y0〉, is 〈yT |UTUT−1 . . . U1|y0〉; expanding in the
computational basis between each pair of unitaries this is 〈yT |UT

∑

yT−1
|yT−1〉〈yT−1|UT−1 · · ·

∑

y1
|y1〉〈y1|U1

which we can express as a “sum over paths”
∑

y1,...,yT−1
〈yT |UT |yT−1〉〈yT−1|UT−1|yT−2〉 . . . 〈y1|U1|y0〉;

the sum is over all possible values of each of the yj . The complex number
〈yk|Uk|yk−1〉 can be easily computed in polynomial space by using the matrix
representation of Uk; by computing each of these in turn and multiplying them in
an accumulator, we can compute the product 〈yT |UT |yT−1〉〈yT−1|UT−1|yT−2〉 . . . 〈y1|U1|y0〉
corresponding to a given “path” in space poly(n). We can store the sequence
(y1, . . . ,yT) in space nT = poly(n), so we can calculate our amplitude for a
given final state 〈yT |ψ〉 by summing over all possible (y1, . . . ,yT−1) (the cal-
culation for any fixed sequence can be done in polynomial space, then we add
the result to an accumulator and reuse the same working bits for the next value
of the sequence). Finally, we can iterate through all possible values of yT for
which the first qubit is in the state |1〉, summing |〈yT |ψ〉|2 in an accumulator,
and thus obtain the probability of the measurement of the first qubit giving
output 1.

The time required for this is dominated by running through all values of
y1,y2, . . . ,yT−1; there are 2nT possible values so this will take time O(2nT)
and is thus exponential in the circuit size. The space requirement is actually
dominated by the space taken to store y1,y2, . . . ,yT−1, which is polynomial in n;
thus BQP is contained in PSPACE. This also shows that anything computable
on a quantum computer is computable (perhaps inefficiently) on a classical
computer, thus supporting the Church-Turing thesis.

The relationship between BQP and NP is not proven. BQP contains some
problems (e.g. factoring) which are known to be in NP but thought to lie
outside BPP. However, it is thought that BQP does not contain NP. An “easy”
way to prove NP ⊂ BQP would be to show that an NP-complete problem lay
in BQP; there is a large class of “NP-complete” problems for which any problem
in NP can be efficiently (i.e. in polynomial time) transformed into that problem.
Proving NP * BQP would be a strong result, since it would imply P 6= NP
and thus PSPACE 6= P .

Simon’s Algorithm and the Quantum Fourier Trans-

form

Simon’s algorithm is a solution to an oracle problem, and the first to demon-
strate an exponential speedup in quantum over (probabilistic) classical com-
putation. It provides the inspiration for Shor’s algorithm. Oracle problems
of course “do not tell the whole story”, but do suggest a separation between
complexity classes.

Simon’s problem: We are given the oracle for an n-bit to (n − 1)-bit func-
tion f(x) and the promise that f(x) = f(y) ⇔ y = x ⊕ a for some fixed a.
Determine a in the minimal number of oracle queries. We consider the oracle
reversible as before, but with n “question” and n− 1 “answer” bits.

To determine a classically, we have no better option than: sample f(x) for
various x, until we find two for which the answers are the same, i.e. f(x) = f(y);

15

then we declare a = x⊕y. Unfortunately, this requires Ω(2
n
2) queries: note for

every pair of values x,y with f(x) 6= f(y), all this tells us is that a 6= x⊕y; thus
after k non-matching queries we can eliminate less than k2 possible values of a,
leaving over 2n − k2 possibilities. The probability of obtaining a match on the
(k + 1)th query is then Pk+1 ≤ k

2n−k2 . Summing these, plus the probability of
guessing a correctly if there is no match, the probability of correctly determining

a in k queries is P ≤ ∑k
i=1 Pi+

1
2n−k2 ≤

k(k−1)
2 +1

2n−k2 ≤ k2

2n−k2 ; thus for a probability

of success greater than 1 − ǫ we require k ≥ 2
n
2

√

1−ǫ
2−ǫ = Ω(2

n
2).

Using a quantum method we can solve the problem (with high probabil-
ity) in only O(n) queries: consider the circuit where we input all |0〉s, then
Hadamard the “question” qubits. We pass through the oracle, then Hadamard
the “question” qubits again, finally measuring the “question” qubits only. (Note
that unlike in previous cases we do not X and Hadamard the “answer” qubits
to place them in state |−〉; rather, we let them remain in state |0〉). The final
state |ψ〉 = (H⊗n⊗I)Uf(H⊗n⊗I)|0〉|0〉 = 1√

2n
(H⊗n⊗I)Uf

∑

x∈{0,1}n |x〉|0〉 =
1√
2n

(H⊗n ⊗ I)
∑

x |x〉|f(x)〉 = 1
2n

∑

x

∑

k∈{0,1}n(−1)x·k|k〉|f(x)〉.
The probability of measuring the result r on the first n bits is found using

Mr = |r〉〈r|⊗I; |Mr|ψ〉|2 = 〈ψ|Mr|ψ〉 = 1
22n

∑

x′,k′∈{0,1}n(−1)x′·k′〈k′|〈f(x′)|(|r〉〈r|⊗
I)

∑

x,k(−1)x·k|k〉|f(x)〉 = 1
2)2n

∑

x,x′(−1)x′·r+x·r〈f(x′)|f(x)〉 = 1
22n

∑

x(−1)x·r+x·r+

(−1)(x⊕a)·r+x·r = 1
22n

∑

x 1 + (−1)a·r = 1
2n−1 for a · r = 0, 0 otherwise. Thus

we measure a random bitstring r satisfying a · r = 0.
Each such r tells us that some sum of the bits in a is 0; with (n−1) linearly

independent such r, we can uniquely determine a 6= 0. We can obtain this
information in O(n) queries with high probability:

Given k lineraly indepedent vectors, their span is 2k vectors. Since there
are 2n−1 vectors for which a · r = 0, the probability that the k + 1th vector

is linearly indepedent from the rest is pk+1 = 1 − 2k

2n−1 . Thus the probability
that the first n − 1 vectors are all linearly independent is p = (1 − 1

2n−1)(1 −
1

2n−2) . . . (1 − 1
2) ≥ (1 − (1

2n−1 + 1
2n−2 + · · · + 1

22))1
2 ≥ 1

4 . Since we can easily
determine whether we have found n − 1 linearly independent vectors, we can
achieve success probabilities arbitrarily close to 1 with O(n) oracle queries - even
naively repeating the entire process if there is some linear dependence among
our n − 1 vectors suffices to show this works. (In fact, if we are a little more
careful in our proof, (n−1)+log 1

ǫ queries will obtain n−1 linearly independent
vectors with probability 1 − ǫ).

Since the remainder of the quantum algorithm can be done in polynomial
time, we can solve Simon’s problem with a small probability of error in polyno-
mially many oracle queries on a quantum computer, while a classical approach
takes Ω(2

n
2) queries.

Simon’s work inspired the period-finding algorithm which forms the heart of
Shor’s algorithm; this finds the value of a if we are given f(x) = f(x + a).

The quantum Fourier transform on an N -dimensional Hilbert space is given
by UFT = 1√

N

∑N−1
x,k=0 e

2πixk
N |k〉〈x|. If we interpret a bitstring x = x1 . . . xn

as an integer in binary form with x1 the MSB, x = 2n−1x1 + · · · + 20xn, the
action of the QFT on k qubits is given by UFT = 1√

2n

∑

x,k e
2πixk

2n |k〉〈x| =
1√
2n

∑

x,k e
iωnxk|k〉〈x| where ωn := 2π

2n .

To see that we cam implement this UFT efficiently using controlled phase

16

gates and Hadamards, we expanding k in binary, UFT = 1√
2n

∑

x(
∑

k1∈{0,1} e
iω1xk1 |k1〉)(

∑

k2∈{0,1} e
iω2xk2 |k2〉)

1√
2n

∑

x(|0〉+ eiω1x|1〉)(|0〉 + eiω2x|1〉) . . . (|0〉 + eiωnx|1〉)〈x|. Then expanding x

in binary and using 2k−1ωk = π we have UFT = 1√
2n

∑

x(|0〉+ (−1)xn |1〉)(|0〉+

(−1)xn−1eiω2xn |1〉) . . . (|0〉 + (−1)x1ei(ω2x2+···+ωnxn)|1〉)〈x|.
It is marginally easier to implement the “mirror image” of UFT , whose out-

put has the MSB last. This is done by e.g. for n = 4, the first qubit has a
Hadamard gate followed by controled phase gates with phases ω2, ω3, ω4 con-
trolled by qubits 2,3,4 respectively, then we act on the second qubit with a
Hadamard, then a ω2 phase gate controlled by qubit 3, then an ω3 phase gate
controlled by qubit 4, then we act on qubit 3 by a Hadamard followed by a ω2

phase gate controlled by qubit 4, and finally we act on qubit 4 by a Hadamard.
We see that this circuit requires O(n2), i.e. polynomially many, gates.

Period- and order-finding

This is an actual, practical use for quantum computation - an efficient algo-
rithm for factoring (in fact, for solving the discrete logarithm problem, which
this also does) would enable rapid cracking of many importart cryptosystems
in use today. It would also go some way to suggesting a “real” separation be-
tween quantum and classical computation, since a lot of effort has been put
into efficient classical factoring, with (so far) no success. The heart of Shor’s
algorithm is a period-finding circuit inspired by that in Simon’s algorithm, using
the Quantum Fourier Transform.

We consider the problem: given the oracle for an m-bit to n-bit function
f(x), with m = O(n) but m > 2n, and the promise that there is a nonzero
period a such that f(x) = f(a) ⇔ y = x + ka for some integer k, determine
a in the minimum number of queries (notation: non-boldface a means we are
considering a as a number rather than a bitstring). Since there are only 2n

possible outputs to f , we have a ≤ 2n; the requirement that m > 2n ensures
that our range of x contains at least 2n periods a. As always, we consider a
reversible oracle; there are m “question” and n “answer” bits.

Our quantum circuit is quite simple: first, we Hadamard all the “ques-
tion” qubits, then pass our bits to the oracle f , then we apply the QFT
UFT = 1√

2m

∑

x,k e
i 2πxk

2m |k〉〈x| to the “question” qubits (some treatments will

equivalently use the inverse Fourier transform U †
FT), before measuring them.

The pre-measurement state is (UFT ⊗ I)Uf (H
⊗m ⊗ I)|0〉|0〉 = 1√

2m
(UFT ⊗

I)
∑

x |x〉|f(x)〉 = 1
2m

∑

k

∑

x e
i 2πxk

2m |k〉|f(x)〉.
If we were to measure the answer qubits, we would obtain some bitstring

y0, and then the question qubits immediately after the oracle would be in an
equal superposition of all the |x〉 states with f(x) = y0. But x0 is random here,
so measuring the question qubits immediately after the oracle would give very
little information about a. By taking the Fourier transformation we can find
information about a, ignoring x0, y0.

We shall first consider the case when b = 2m

a is an integer, i.e. the range of
x covers an integer number of periods; the general case is similar but somewhat

more complicated. The pre-measurement state can be expressed as 1
2m

∑

k

∑a−1
bx=0

∑b−1
l=0 e

i
2π(bx+la)k

2m |k〉|f(x)〉 =
1

2m

∑2m−1
k=0

∑a−1
bx=0 e

i 2πxk
2m (

∑b−1
l=0 e

i 2πlk
b)|k〉|f(x)〉, since by the promise, f(x) is in-

17

dependent of l. Note that the bracketed term is zero unless k = jb for some
integer 0 ≤ j ≤ a − 1; the probability of obtaining any particular value of
j is uniform, so = 1

a . Given k = jb we will attempt to determine a using
continued fractions (this method generalises to b non-integral; there are better
methods for this special case).

This is now entirely classical: any real number x ∈ (0, 1) is the limit of a
sequence of rationals x1 = 1

a1
, x2 = 1

a1+
1

a2

, x3 = 1
a1+ 1

a2+ 1
a3

, . . . ; we can define

these by α0 = x and ak, αk are the integral and fractional parts of 1
αk−1

respec-

tively. Two important properties: 1) if x is rational, this sequence terminates
at the simplest (i.e. with smallest denominator) rational representation of x 2)
if x is within 1

2r2 of j
r , then the simplest version of j

r will appear as one of the
xk, after O((log2 r)

3) (i.e. polynomially many) operations.
Given k = jb we have k

2m = j
a ; applying the continued fractions algorithm

to k
2m therefore gives j

a in its simplest form, say as j′

a′ . If j is prime, clearly

no simplification of j
a is possible, and so a = a′. Since j is a uniform integer

from (0, a−1), by bounds on the density of primes, the probability of obtaining
a prime j is greater than 1

2 log2 a
> 1

2n ; we can easily check whether a′ is the

true period using two oracle queries (we have a′ ≤ a, so we may just input
x = 0, x = a′ and see whether the outputs match), so we can obtain a with high
probability using O(n) repetitions. We can in fact do better than this (although
we don’t actually “need” to): by performing the algorithm O(1) primes we will

obtain with high probability
j′1
a′1
,
j′2
a′2

with (j′1, j
′
2) = 1, then a =

a′1a
′
2

(a′1,a
′
2)

. (We can

efficiently compute the GCD of two n-bit integers in O(n2) steps using Euclid’s
algorithm).

For the general case, 2m

a will not be an integer, so the range of x will not con-
tain an exact number of periods; however, since m > 2n, the previous approach
will still succeed with high probability. Define b(x) to be the number of times
f(x) is achieved in the complete range of x; so |b(x) − 2m

a | < 1. Then the pre-

measurement state is 1
2m

∑

k

∑a−1
bx=0 e

i 2πxk
2m (

∑b(bx)−1
l=0 ei

2πilk
2m)|k〉|f(x)〉. Then the

probability of measuring a particular value of k is 1
22m

∑a−1
bx=0 |

∑b(bx)−1
l=0 ei

2πalk
2m |2,

which will be close to 0 unless k ≈ j 2m

a for some integer j.

The probability that there is some j with |k − j 2m

a | < 2m−2n−1 is O(1) for
m > 2n, and approaches 1 rapidly as m increases; to achieve success probability
1 − ǫ requires m = 2n + O(log 1

ǫ). Given that we have obtained a k with

|k − j 2m

a | < 2m−2n−1 we have | k2m − j
a | < 2−2n−1 < 1

2a2 , so it can be proven

that the continued fractions algorithm applied to k
2m will return j′

a′ , the simplest

form of j
a , as one of the approximations. We can tell we have a valid j′, a′ when

we have a′ ≤ 2n, | k2m − j′

a′ | < 2−2n−1; as before, we can find a using O(1) such

values of j′

a′ . Therefore, we can find periods efficiently on a quantum computer
with high probability, using O(1) oracle queries andO(n3) additional operations;
no efficient classical algorithm is known (and indeed, for this particular oracle,
it can be proven to be impossible).

We can use the quantum period-finding algorithm to efficiently order find:
given positive integers r,N, r < N and promised that (r,N) = 1, the order of r
modulo N is the least integer a (existence ensured by (r,N) = 1)) such that ra

mod N = 1. To use the previous problem, define f(x) = rx mod N ; then this

18

is periodic with period a, f(x) = f(y) iff x = y + ka for integer k. Thus, given
an “oracle” for f(x) = rx mod N , we can use the period finding algorithm
to efficiently determine a, the order of r mod N . Since this is not an oracle
problem, however, we shall need to build our “oracle” ourselves, and it must be
efficient.

Let n be the smallest integer such that 2n ≥ N . Our circuit first prepares
m = O(n) n-bit ancillas containing the binary representations of r mod N, r2

mod N, r4 mod N, . . . ; we can do this efficiently by repeated squaring mod-
ulo N (clearly, a circuit to input x and output x2 (in reversible fashion) can
be easily constructed). We then compute rx mod N by a series of multipli-
cations controlled by the bits of x, accumulating the result in another ancilla:
rx mod N = (r2

m−1

mod N)x1(r2
m−2

mod N)x2 . . . (r2
0

mod N)xn mod N
(again, we can easily implement multiplication modulo N reversible). We fol-
low this with the unitary |y⊕ rx mod N〉〈y| on the answer register, so that the
answer register now has the answer, as it would were this an oracle. Finally,
we reverse our process of computing rx mod N so that we do not have “junk”
registers which remain entangled with the x (input) register. If we did not do
this, we would have decoherence - see later.

The process as a whole requires O(n3) gates, and is thus polynomial; we can
find the order in O(n3) steps.

Shor’s Factoring Algorithm

The factoring problem is: given a composite number N , find one of its nontrivial
factors. Shor’s algorithm has two parts: a classical algorithm for efficiently
factoring a number, given the ability to do order-finding efficiently, and the
previous quantum algorithm for efficient order-finding.

The classical algorithm is: 1. Check whether N is even; if so, output 2. 2.
Check whether N = pd for some p, d > 1; if so, output p. 3. Pick a random
positive integer r < N (i.e. r ∈ {1, 2, . . . , N − 1}) 4. Compute the GCD (r,N).
5. If this GCD is > 1, output it and halt. 6. Compute the order of r modulo
N , i.e. the least integer a such that ra mod N = 1 7. If a is odd, go back to
step 3. 8. If r

a
2 mod N = N − 1, go back to step 3. 9. Output (r

a
2 − 1, N).

Explanation: the first two steps are just eliminating some special cases which
would otherwise cause problems later on. We can perform step 2. in O(n3)
operations by simply, for each 1 < d < n, calculating a close approximation to

p = 2
log d

n (in O(2) operations) and checking whether the integers close to this
work (since we can never have N = pd for d > n).

Steps 4-5 are again essentially a check; it is unlikely that the GCD is > 1,
but possible; if so, it would cause problems later on, but we now have a factor
as required. Knowing that the GCD is 1 means that we can guarantee the
order-finding problem has a solution.

Step 6 is the essential quantum step; no efficient classical algorithm for order
finding is known. Note that we can of course incorporate the rest of the (classical
probabilistic) steps into a quantum circuit efficiently, in the same way we did
when proving BQP ⊃ BPP .

In steps 7 and 8 we reject some cases where the final step doesn’t work.
Given that N is odd and has at least two distinct prime factors (as we ensured
in steps 1 and 2) we can show that the probability of failing one of these steps

19

is no more than 1
2 (so our success probability becomes 1− ǫ with only O(log2

1
ǫ)

repetitions of the loop), using number theory; see Nielsen and Schrang for the
complete proof. Essentially, if we decompose N as a product of prime powers
pd11 . . . pdk

k , let ai be the order of r modulo pdi

i and define fi as the largest integer
such that ai mod 2fi = 0. Then steps 7. and 8. only fail if the fi are all the
same (step 7 if f1 = 0∀i, step 8 if they’re > 0). The probability for fi to take
any particular value is at most 1

2 , so the probability of falure is at most 1
2k−1 ≤ 1

2

(Note that if N is an odd prime power pd, the algorithm always fails at step 8).
If we reach step 9 we have a even and r

a
2 mod N 6= N − 1; then we can

guarantee that (r
a
2 − 1, N) is a factor: we have ra mod N = 1. Let x = r

a
2

mod N (valid since a even); we have (x2 − 1) mod N = 0 ⇒ (x − 1)(x + 1)
mod N = 0; since x+1 6= N , both (x+1), (x−1) are smaller than N , but their
product is divisible by N ; thus each contains at least one nontrivial common
factor with N .

In total, Shor’s algorithm takes O(n3) elementary operations to return a fac-
tor with arbitrarily high probability, wheras the best known classical approaches
take exponentially many. By repeatedly applying the algorithm we can obtain
a complete factorisation of N : there are efficient [hah!] classical algorithms for
determining primality, so we know when we have abtained a prime factor, and
any n-bit number has at most n prime factors. Each application of Shor’s algo-
rithm partitions the factors into two sets (those in the output f and those in N

f),

so after (n− 1) iterations, we identify all factors; thus a complete factorisation
can be done in poly(n) time. This of course also allows efficient solution of the
factoring decision problem; thus factoring is in BQP.

[The lecturer here gave a description of RSA, which I imagine to be well
known to most readers so shall not repeat here]. Note that quantum cryptog-
raphy provides a provably secure (though non-publickey) cryptosystem, even in
a world with quantum computation.

The hidden subgroup problem

Interestingly, both the cases where we’ve seen an exponential quantum speedup -
Simon’s algorithm and Shor’s period-finding algorithm - can be cast as examples
of a more general problem, the hidden subgroup problem. Given an oracle for a
function f : G→ A from a group to some finite set, and the proomise that there
is a subgroup H ⊂ G such that f(g1) = f(g2) ⇔ g1H = g2H , find (a generating
set for) H in the minimum number of oracle queries. Simon’s problem, where
our oracle f : {0, 1}n → {0, 1}n−1 has f(x) = f(y) ⇔ x = y or a; we can
express this as G = (Z2)

n, H = {0,a}.
Shor’s period-finding algorithm is strictly only a hidden subgroup for the

case where b = 2m

a is an integer. Then G = Z2m , H = {0, a, 2a, . . . , (b − 1)a}.
More generally, we can consider the period finding problem as defined for an
infinite range of inputs (rather than just m bits); G = Z, H = aZ.

In both these examples, the group G is abelian; in fact, using a quantum
computer we can efficiently solve any hidden subgroup problem where G is finite
abelian (and we can extend this to any finitely generated abelian group); the
key to this result is that any such gorup is isomorphic to a product of groups
ZN , where each N is a power of a prime.

Imagine we are given a reversible oracle for f : G → A for such a G, where

20

group elements g = (x1, . . . , xm) ∈ G = ZN1 × · · ·×ZNm
are input by inputting

each of the xi in the form: if Ni is a power of 2, xi is represented by logNi
qubits; otherwise xi is represented y ni = poly(logNi) >> logNi qubits (this is
to ensure that an even superposition of input qubits really is an (approximately)
even superposition of the group elements; we interpret xi as modulo Ni). In
addition to these “question” qubits there are, of course, more than log |A| “an-
swer” qubits; if the inputs are x1, . . . , xm, y, the outputs are x1, . . . , xm,y⊕f(x1

mod N1, . . . , xm mod Nm).
The quantum circuit for this problem is simple: first we Hadamard each

“question” qubit, then input all qubits to the oracle, then we FT each xi block
of “question” qubits (note we perform a separate FT for each i, not a single
large FT) before measuring the “question” qubits, obtaining result ki for each
xi. By a slight generalization of our previous techniques it can be shown that
we measure a value of k such that h ◦ k =

∑m
i=1

hiki

2ni
is close to an integer for

all h ∈ H ; if all Ni are powers of 2, it will be exactly an integer for all h. Once
we have poly(log |G|) different values of k satisfying this linear relation, we can
find a generating set for H with high probability using generalizations of the
techniques used in Simon’s and Shor’s algorithms.

In fact, these two present good examples of the two “extreme” cases: where
G is a product of many subgroups, or a single group; a general G will be “in
between” and we have to use a combination of both techniques (linear algebra
and continued fractions). In Simon’s algorithm, G = (Z2)

n
∴ n1 = n2 = · · · =

nm = 1; each Fourier transform on the output acts only on a single qubit, and
is thus just a Hadamard; we have the same circuit before. h◦k being an integer
∀h means a · k =

∑

i aiki mod 2 = 0 (trivially 0 · k is an integer) - we have the
same condition as before.

In Shor’s algorithm G = Z2m ; there is a single m-qubit FT on the output.
h ◦ k is always a multiple of ak

2m , so to say it is always close to an integer is the

same as saying
∑

aiki = 2mj for some integer j, which gives k
2m ≈ j

a as before.
Some other interesting problems which can be cast as abelian hidden sub-

group problems include the discrete logarithm problem (given a, b = as in some
finite cyclic group, find s) and finding the order of a permutation (given P , the
smallest n such that Pn = 1).

The definition of hidden subgroup problems remains valid when the group
G is not abelian; an example of a problem which can be cast in this form is the
graph isomorphism problem: given two graphs, is there an isomorphism between
them? Finding a (efficient) quantum algorithm for this is an open problem; no
general quantum algorithm for efficiently solving the hidden subgroup problem
in the nonabelian case is known. There are some efforts to implement cryp-
tosystems based on these problems, which may offer the possibility of secure
classical cryptography even assuming the existence of quantum computers.

Measurement-based quantum computing

The models of quantum computation we have discussed so far have been directly
analagous to their classical equivalents. Mesaurement-based (or “one-way”)
quantum computation is a uniquely quantum architecture for computation, with
no classical analoge; it is perhaps closer to suggesting how to build a physical
quantum computer. It is universal in the usual sense.

21

Essentially, we prepare a quantum system in a large entangled state, a graph
state or cluster state; we shall cover the former first since the equivalence to
quantum circuits is clearer. For these, we prepare a state structured to mimic a
particular quantum circuit - the graph has vertices corresponding to single-qubit
gates, and edges to the circuit links between them. Two-qubit gates (i.e. CNOT
and the like) are modelled by two vertices with an edge between them. Then
we perform some sequence of single-qubit measurements on this large entangled
state.

More specifically, for a graph, we define the corresponding graph state as
follows: for every vertex, prepare a qubit in the |+〉 state; then along every edge,
apply a controlled-Z gate CZ = |00〉〈00|+|01〉〈01|+|10〉〈10|−|11〉〈11|. This gives
a maximally entangled state - the state is an equally-weighted superposition of
every computational basis state, with a phase factor of -1 for each pair of 1s in
a state which are connected in the graph. E.g. if the graph is a triangle (K3)
the state is 1√

8
(|000〉 + |001〉+ |010〉 + |100〉 − |011〉 − |110〉 − |101〉 − |111〉).

We measure the qubits one by one to carry out the computation. We
shall use two types of measurement: computational basis measurements M0 =
|0〉〈0|,M1 = |1〉〈1|, and phase measurements, paramaterised by angle θ: M0 =
|vθ0〉〈vθ0 |,M1 = |vθ1〉〈vθ1 |, using the orthonormal pair of states |vθ0〉 = 1√

2
(|0〉 +

eiθ|1〉), |vθ1〉 = 1√
2
(|0〉 − eiθ|1〉). (For θ = 0 these are |+〉, |−〉).

The key idea behind this approach is that we can use entanglement and
measurements to perform unitary qubit operations. Consider: given a qubit in
state |ψ〉 = α|0〉+β|1〉 prepare an ancilla in state |+〉 and apply a Cz operation;
Cz |ψ〉|+〉 = α|0〉|+〉 + β|1〉|−〉. We can rearrange this state as 1√

2
(|vθ0〉(α|+〉 +

βe−iθ|−〉) + |vθ1〉(α|+〉 − βe−iθ|−〉)). Then make a measurement with angle θ
on the first qubit; with probability 1

2 we read the result 0, and the state of
the second qubit becomes α|+〉 + βe−iθ|−〉 = U(θ)|ψ〉 where U(θ) denotes the
unitary transformation |+〉〈0| + e−iθ|−〉〈1| (which we shall shortly show forms
part of a universal gate set). If the result is 1, the state of the secont qubit
becomes α|+〉 − βe−iθ|−〉 = XU(θ)|ψ〉; we view the X as an “error”. So the
overall effect of our measurement, with result r, is XrU(θ). We can iterate
this procedure to perform a sequence of unitaries: if we have a graph of three
nodes in a line (i.e. |+〉 states entangled using CZs), but the leftmost qubit’s
state has somehow become |ψ〉, then if we measure the first qubit at angle
θ1 obtaining result r1 and the second at θ2 obtaining r2, this implements the
operation Xr2U(θ2)X

r1U(θ1). Therefore, by performing such a sequence and
then measuring the final qubit in the computational basis, we can perform any
single-qubit quantum computation up to X “errors” (it is simple to show that
U(θ)s can generate any single-qubit unitary. Requiring the input state to be |+〉
rather than |0〉 does not change the computational power at all, since we only
need a Hadamard gate (which we have by U(0)) to change between the two.
(But note that in many quantum algorithms we would start by Hadamarding
all our qubits into |+〉 states anyway).

Clearly, we can trivially simulate a CZ gate; we simply include an edge
between our two parallel qubit “path”s. These are enough to form a universal
gate set; a H is given by a U(0), a φ phase gate is given by U(0)U(−φ), and
a CNOT gate can be given by a CZ where the “controlled” qubit has U(0)s
on either side of it. Therefore, up to random X errors, we can implement
any quantum computation using measurements on an appropriate graph state

22

- and note that at this stage, there is nothing preventing us from performing
all measurements simultaneously. If each “phase” measurement gives the result
0, there are no X errors and we perform precisely the computation we wanted;
however, the probability of this drops exponentially with the size of the circuit.

To deal with errors, we “push” them to the end of the computation: to
push an X error through a U(θ), U(θ)X = ZU(−θ) (up to an irrelevant global
phase). To push a Z error through, U(θ)Z = XU(θ). We push errors through
CZ gates using CZ(Z ⊗ I) = (Z ⊗ I)CZ , CZ(X ⊗ I) = (X ⊗ Z)CZ (and their
vertically-flipped versions); see the second example sheet for more on this. Once
we have “pushed” the errors to the end of the computation we can deal with
them in ordinary, classical fashion (given that we know what they are): a Z-
error at this point has no effect (it only changes the phase), while an X-error
flips the relevant output bit. Sine X2 = Z2 = I, ZX = −XZ, the only ultimate
error combinations we need to consider are I,X, Z,XZ.

Note that we now need to adapt our measurements based on previous re-
sults, in order to successfully “push” the errors. E.g. suppose we want to
perform the comutation U(θ3)U(θ2)U(θ1)|+〉; we first prepare a 4-qubit graph
state, with the four in a line. We measure the first (leftmost) qubit at angle θ1,
getting result r1; we have thus performed Xr1U(θ1). So we make the second
measurement (on the second qubit) at an angle of (−1)r1θ2, obtaining result R2;
we have therefore performed Xr2U((−1)r1θ2)X

r1U(θ1) = Xr2Zr1U(θ2)U(θ1).
We similarly need to adapt the third measurement; this time we also need
to push a Z-error through. We measure at (−1)r2θ3, and thus have per-
formed Xr3U((−1)r2θ3)X

r2Zr1U(θ2)U(θ1) = Xr3Zr2U(θ3)Z
r1U(θ2)U(θ1) =

Xr1+r3Zr3U(θ3)U(θ2)U(θ1). Then we measure the final qubit in the compu-
tational basis, obtaining the result i′ = i⊕r1⊕r3, where i is the result we want;
we can obtain this by i′ ⊕ r1 ⊕ r3.

Therefore, we can replicate the results of any quantum circuit with certainty,
by a sequence of single-qubit measurements on an appropriate graph state. Mea-
surement can be done left-to-right on the graph state, pushing forward the errors
and adapting measurements as we go. Any circuit with poly(n) gates can be
simulated using a graph state with poly(n) qubits and poly(n) classical process-
ing to deal with the errors. Since we need to adapt measurements, it also takes
poly(n) timesteps (for most graphs, some clever analysis will likely find it is not
necessary to perform the measurements strictly left-to-right, but we will not be
able to do better than poly(n) even with such optimization). A curiousity is
that since the “result” measurement is never adaptive (it’s always performed in
the computational basis), we can in fact perform this first, and have our “an-
swer” i′ at the start (This does not let us avoid performing the computation; i′

gives us no information about i until we know what the “errors” rj are).
A brief note on cluster states: these are the graph states corresponding to

2D lattices. We can use these for “more general” measurement-based quantum
computation: measuring a qubit in the Z-direction disconnects it from the graph
state (introducing a Z-error on all connected qubits if the result is 1, but this
can be dealt with as usual). Thus we can “etch” a graph state into the cluster
by choosing which qubits we wish to use for computation, and then meausring
all others in the Z-direction. Note that to separate two horizontal qubit lines
we need to leave a gap between them (since we can only disconnect qubits, not
individual edges); the vertical links (which should CZ gates) are therefore longer
than we should be. However, if we make a phase measurement with θ = 0 on

23

an intermediate qubit, up to a Z-error this is equivalent to removing it; we also
use this technique to implement “empty wires” in the circuit. Therefore, we can
use a cluster state to replicate any graph state for a planar graph (one with no
crossed edges); this is equivalent to any quantum circuit in which the CZ gates
only act between neighbouring qubits. We have seen before that such circuits
are universal; we can therefore simulate any polynomially sized quantum circuit
on n qubits by a measurement-based quantum computation on a square cluster
state containing poly(n) qubits.

Mixed States and Open-system Dynamics

So far we have considered a quantum computer as a closed system under our
perfect control. In practice our gates will be imperfectly constructed and qubits
will undergo some interactions with the environment, introducing errors. We
would like to be able to model these processes probabilisticly; we shall therefore
use the quantum theory of mixed states, which obviously allows us to handle
probabilistic errors in the circuit, and somewhat surprisingly, also allows us to
treat interaction with the environment.

Suppose we do not know the precise quantum state; rather, we know the sys-
tem is in one of the states |ψi〉 with respective probabilities pi. Observe that if
we perform a measurement characterised by operatorsMk, the probability of ob-
taining the result k is

∑

i piprob(k | ψi) =
∑

i p|Mk|ψi〉|2 =
∑

i pi〈ψi|M
†
kMk|ψi〉 =

∑

i,j pi〈ψi|M
†
k |j〉〈j|Mk|ψi〉 =

∑

i,j pi〈j|Mk|ψi〉〈ψi|M †
k |j〉 =

∑

j〈j|Mk(
∑

i pi|ψi〉〈ψi|)M
†
k |j〉;

the probability of obtaining a given measurement result depends only on the
density operator ρ =

∑

i pi|ψi〉〈ψi|. Therefore, if two different ensembles of
quantum states give the same density operator, they will give the same proba-
bilities for all measurement results and so be experimentally indistinguishable -

e.g. an equal mixture of |0〉, |1〉 gives the same mixed state ρ = I
2 as an equal

mixture of |+〉, |−〉, or any other pair of orthogonal states; thus these are indis-
tinguishable. This is a deep property; on some levels it is what allows causality
to be preserved even given quantum phenomena.

We can express a density operator using the computational basis as a density matrix,

e.g. ρ = 2
3 |0〉〈0| + 1

3 |+〉〈+| =

(

5
6

1
6

1
6

1
6

)

. Note that the diagonal elements here

sum to 1, as will always be the case; see later.
It is useful to use the the trace tr(A) =

∑

i〈i|A|i〉 (we can use any orthonor-
mal basis {|i〉}); for A written as a matrix this is simply the sum of the diagonal
elements. The trace has cyclic symmetry tr(AB) = tr(BA).

It is easy to see that all density operators ρ are 1. Hermitian ρ = ρ† 2.
Positive operators 〈φ|ρ|φ〉 ≥ 0∀φ (sometimes this is taken to imply 1., since the
inequality only makes sense if the quantity on the left is always real) 3. tr(ρ) = 1;
we can here use the slight abuse of notation that tr(|ψ〉〈φ|) = tr(〈φ|ψ〉) = 〈φ|ψ〉.
Furthermore, any operator satisfying these properties can be viewed as the
density operator for some mixed state (e.g. a mixture of the eigenstates of ρ
with probabilities equal to the corresponding eigenvalues, since we have that
said eigenvalues are ≥ 0 (since ρ is positive) and sum to 1 (since trρ = 1)).

We can in fact reformulate all of quantum theory in terms of density op-
erators rather than vectors: the state of a physical system is represented by a
density operator (a trace 1 positive operator) ρ on a Hilbert space, the evolu-

24

tion of a closed system is given by a unitary operator U and takes the form
ρ → UρU † (the reader may observe this corresponds to |ψ〉 → U |ψ〉). When
a measurement (characterised by operators Mk) is performed on the state, the

result k is obtained with probability tr(MkρM
†
k) = tr(M †

kMkρ), and in this case

the state becomes
MkρM

†

k

tr(MkρM
†

k
)
; observe this means that if we only care about the

outcome probabilities and not the post-measurement states, we only need the
“POVM elements” M †

kMk to characterise the measurements.
If the system is in a definite quantum state |ψ〉 we say it is a pure state; ρ is

then a projector |ψ〉〈ψ|. Note that in this formalism the irritating global phase
factors simply do not appear; if |ψ′〉 = eiφ|ψ〉 then |ψ′〉〈ψ′| = |ψ〉〈ψ|. This is
good, since such phases have no physical relevance.

The density operator of a mixture is simply the mixture of the correspond-
ing density operators. Unfortunately, expressing superpositions is more difficult
than in the vector formalism. Density operators for independent systems com-
bine via the tensor product as usual.

An advantage of this formalism is that we can define a state corresponding
to a part of an entangled system, e.g. one of the qubits for |ψ〉 = 1√

2
(|00〉+|11〉).

Given a general state ρAB of two systems, the state of system A is given by the
reduced density operator ρA = trB(ρAB) =

∑

i(I ⊗ 〈i|)ρAB(I ⊗ |i〉), the partial
trace of ρAB over B. This can be used to obtain the outcome probabilities for
any measurement on system A (provided there is no further interaction between
A and B): the result of Mk ⊗ I on ρAB is the same as that of Mk on ρA. For

example, for the pure entangled state |ψ〉 = 1√
3
|0〉|0〉 +

√

2
3 |1〉|1〉, the reduced

density operators of the systems A,B are given by ρA = ρB = 1
3 |0〉〈0|+ 2

3 |1〉〈1|.
Note that even though the system is in a pure state, e.g. the system A considered
alone behaves as though it were in a probabilistic mixture of states. Also note
that ρAB 6= ρA⊗ ρB - but this difference only becomes apparrent if the systems
interact again.

We can represent the density operators for a single qubit geometrically as
the Bloch Sphere: if we write a general normalised single-qubit pure state as

|ψ〉 = eiα(cos θ2 |0〉 + sin θ
2e
iφ|1〉) (it is convenient to use θ

2 rather than θ), the
density matrix ρ can be expressed as 1

2 (I + r · σ), where r is the unit vector
(sin θ cosφ, sin θ sinφ, cos θ) (i.e. the point (θ, φ) on the unit sphere) and σi are
the Pauli matrices. Thus pure states correspond to points on the surface of the
unit sphere (e.g. |0〉〈0| is the “North” pole z = 1, |1〉〈1| the “south” pole, and
|+〉〈+| the point x = 1. Mixed states lie inside the sphere, with their r vector
being the mixture of the r vectors of their components. All single-qubit density
operators have ρ = I+r·σ

2 for some real vector r, |r| ≤ 1.

We can write any single-qubit unitary as U ∝ e−iθ|v〉〈v|; this is a rotation of
the Bloch sphere by angle θ about the axis through the point |v〉〈v. Orthogonal
states correspond to opposite points on the surface of the Bloch sphere.

Unfortunately, this approach does not generalise to higher dimensional sys-
tems; in fact, there is no “nice” characterisation of general trace 1 positive
operators.

Density operators allow us to represent more general or complicated quan-
tum dynamics, essential for modelling possible errors in quantum computers.
For example, our gates may have some probabilistic error in their construction
e.g. a phase gate Rα might actually be Rα′ for some α′ with some probability

25

distribution close to α. Also, the qubits may undergo some (unitary) interaction
with their environment, which may cause entanglement, meaning the states of
the qubits considered alone become mixed:

Consider a system in state ρS and an environment, initially in a state |0〉〈0|
(for simplicity) uncorrelated with it (this is crucial), so ρSE = ρS⊗|0〉〈0|. If these
interact unitarily the state becomes ρ′SE = U(ρS ⊗ |0〉〈0|)U †; the final state of

the system is then ρ′S = trE(ρ′SE) =
∑

k EkρSE
†
k where Ek = (I⊗〈k|)U(I⊗|0〉.

More generally, the unitary evolution of a system in state ρ with an initially
uncorrelated environment can always be represented by a map of the form ρ→
D(ρ) =

∑

k EkρE
†
k. This D is sometimes caled a superoperator; the operators

Ek are Kraus operators. Since the trace of ρ must be preserved, the {Ek}
must satisfy the completeness relation

∑

k E
†
kEk = I. The converse is also true:

any map D(ρ) with Kraus operators satisfying the completeness relation can be
implemented by unitary interaction with an initially uncoupled environment; we
need to define U |i〉|0〉 =

∑

k(Ek|i〉)|k〉∀i. This does not define U completely, but
the completeness relation ensures this U maps orthogonal states to orthogonal
states; this means we can complete U to form an operator which is unitary on
the whole space.

Maps expressible as such D(ρ) =
∑

k EkρE
†
k,

∑

k E
†
kEk = 1 are actually the

most general maps with some entirely reasonable properties: linearity (D(p1ρ1+
p2ρ2) = p1D(ρ1) + p2D(ρ2), which the behaviour would be very weird without,
complete positivity (D is positive even when acting as part of a larger system,
i.e. I⊗D(ρ) is positive when ρ is) (e.g. matrix transposition is positive but not
completely positive - but if we put a transposition as part of a larger quantum
system, the combined action will not give a valid density matrix as a result),
and trace preservation (so that D(ρ) has trace 1, given that ρ does).

Some examples: if there is just one Kraus operator it must be unitary, and
this reduces to the usual case. For a probabilistic mixture of unitaries Uk with
probabilities pk, set Ek =

√
pkUk, thus D(ρ) =

∑

i piUiρU
†
i . Decoherence: if

Ek = |k〉〈k| for some orthonormal basis, we say it decoheres the state into that
basis: it collapses any quantum superposition to a “classical” mixture of basis
states. Finally, a useful test case for general results is Ek = |ψ〉〈k| for any
orthonormal basis |k〉, which “throws away” our state and maps any state to
|ψ〉.

Note that the dynamics Ek are equivalent to performing the measurement

Mk = Ek and then ignoring the result: ρ→ ∑

k prob(k)ρk =
∑

k tr(EkρE
†
k)

EkρE
†

k

tr(EkρE
†

k
)

=
∑

k EkρE
†
k. We can model an imperfect measurement (in which we lose some

of the result) by associating some subset of Kraus operators {Erk} with each

possible result r, so prob(r) = tr(
∑

k ErkρE
†
rk), ρ

′
r =

P

k ErkρE
†

rk

prob(r) . As with gen-

eral quantum dynamics, we can also derive this form of a general measurement
from some basic requirements. Thus, any completely general open system dy-
namics, including any number of measurements with results r1, . . . , rn, can be
described by a set of Kraus operators {Er1r2...rNk} with prob(r1, . . . , rN) =

tr(
∑

k Er1,...,rNkρE
†
r1,...,rNk

), ρ′r1...rN
=

P

k Er1,...,rN kρE
†

r1,...,rN k

prob(r1,...,rN) . (Interestingly,

any general quantum measurement can be modelled by introducing an ancilla,
applying a joint unitary evolution and then performing an ordinary, projective
measurement on the ancilla).

26

Quantum Error Correction

The ability to control errors is not only a practical concern; some problems
believed to not be in P seem to have efficient solutions on analogue computers
(where variables may be continuous parameters), but any remotely realistic
model of errors requires one to effectively discretise the parameters, effectively
reducing to an ordinary Turing machine. It is therefore a concern to see whether
we can correct for errors in a quantum computer without reducing its power to
that of a classical computer. (Fortunately we will show that we can).

First, consider we are storing a classical bit for a while, or transmitting it
through some channel, such that it has probability ǫ of becoming flipped. To
increase the chance of error recovery we can store 3 copies of this bit, and then
take a “majority vote” as the output at the end of the storage period. Then the
probability of an error becomes ǫ′ = 3ǫ2 − 2ǫ3, which is < ǫ for ǫ small (in fact
for ǫ < 1

2 . This is a simple error correcting code.
We can use the same code to protect against quantum bit flip errors; consider

ρ → DX(ρ) = (1 − ǫ)ρ + ǫXρX . However, we cannot create three copies of a
general state |ψ〉, by the no-cloning theorem; by linearity, if we encode the basis
states by |0〉 → |0X〉 = |0〉|0〉|0〉, |1〉 → |1X〉 = |1〉|1〉|1〉 then we must have
|ψ〉 = α|0〉 + β|1〉 → |ψX〉 = α|0〉|0〉|0〉 + β|1〉|1〉|1〉, which is not (generally)
equal to |ψ〉|ψ〉|ψ〉. However, this encoding can still protect arbitrary states
against bit flip errors: we cannot (as in the classical case) simply measure each
of the three qubits in the computational basis and take a majority vote, as then
our output would be |0〉 or |1〉, and not |ψ〉. So instead, we measure which qubit
has been flipped without learning anything about |ψ〉; we can do this by the
error detection measurement M0 = |000〉〈000| + |111〉〈111|,M1 = |100〉〈100| +
|011〉〈0111|,M2 = |010〉〈010| + |101〉〈101|,M3 = |001〉〈001| + |110〉〈110|. (this
works because e.g. X ⊗ I ⊗ I|ψX〉 = α|100〉 + β|011〉 etc.) The result of this
is called the error syndrome. If no qubits have been flipped, we’ll obtain the
result k = 0 with certainty; if qubit n alone has been flipped we will obtain
result k = n with certainty. (We can also track exactly what happens in the
case where more than one bit has been flipped, but this is of less interest). In
any case, the post-measurement state will be unchanged from pre-measurement.

Given the error syndrome, if we assume there has been at most one bit flip,
we can correct the error and recover the inital encoded state: if k = 0 we do
nothing, if k ∈ {1, 2, 3} we apply an X gate to the kth qubit, this reversing any
single bit flip (if more than one qubit has been flipped, our resulting state will
be X ⊗X ⊗X |ψX〉 rather than |ψX〉). Finally, we decode to the original state
using the reverse of the encoding circuit (viz: CNOT gate controlled by qubit
1 acting on qubit 2, CNOT gate controlled by qubit 1 acting on qubit 3; qubits
2 and 3 outputting |0〉). The process as a whole gives precisely |ψ〉 when there
are 0 or 1 bit-flips, thus reducing the error probability from ǫ to ǫ′ = 3ǫ2 − 2ǫ3

(as in the classical case).
We shall refer to the process of error detection and recovery as error correc-

tion; although it is most clearly described as a measurement followed by some
operation depending on it, we can implement it by a unitary quantum circuit.
(viz: add two ancillas in state |0〉. Perform CNOTS controlled on qubits 1 and
2 on the first ancilla, and CNOTS controlled on qubits 2 and 3 on the second
ancilla; the two ancillas can now be seen as bits representing “does 1 differ from
2?” and “does 2 differ from 3?”. So we perform a CCNOT on qubit 2 controlled

27

by the two ancillas, a CCNOT on qubit 1 controlled by the two ancillas with
Xs surrounding the second qubit control, and a CCNOT on qubit 3 controlled
by the two ancillas with Xs surrounding the first qubit control).

By repeatedly performing error correction during the storage time T we can
achieve arbitrarily small error probabilities: the error probability in time T

N will

be approximately ǫ
N ; performing error correction after each T

N will reduce this to
approximateli 3(ǫN)2. Adding the error probabilities for each of the N intervals,

the total error probability is approximately 3ǫ2

N , which can be made arbitrarily
small by increasingN . Of course, we are (for now) assuming our error correction
circuits are perfect, errors only occur during storage, not computation. Also note
that we use a fresh set of |000〉 ancillas each time, which are “carrying away
entropy” from the system; in this course we obey the laws of thermodynamics.

We can use a similar scheme to protect against random Z errors ρ→ D(ρ) =
(1− ǫ)ρ+ ǫZρZ: we simply replace the computational basis states |0〉, |1〉 in the
encoding and error-correction scheme by |+〉, |−〉 respectively, since a phase flip
or Z gate acting on a qubit changes |+〉 to |−〉 and vice versa.

Suppose we have not just one of bit or phase flips to worry about, but
the possibility of either or both; consider the depolarising map ρ → D(ρ) =
(1 − ǫ)ρ + ǫ

3 (XρX + Y ρY + ZρZ). This corresponds to a uniform shrinking
of the Bloch sphere, and is equivalent to with some probability (not in fact
the same ǫ) throwing away ρ and replacing it with the maximally mixed state
I
2 . Note that Y = iZX ; hence on a single qubit we can consider this map as
applying either I, X , Z or ZX .

We can protect against such errors by combining (the lecturer says “con-
catenating”, but I don’t believe that’s the correct term) the two previous codes
to generate Shor’s 9-qubit code: encode the input with the phase-flip code and
then the bit-flip code. E.g. |0〉 → |0Z〉 = | + ++〉 → |0ZX〉 = |+X〉|+X〉|+X〉 =

1
2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉); similarly |1ZX〉 = 1

2
√

2
(|000〉 −

|111〉)(|000〉 − |111〉)(|000〉 − |111〉). We correct errors by correcting any sin-
gle bit-flip error on each triplet 1-3, 4-6, 7-9 as for the bit-flip code, and
then correcting any single phase flip error: applying Z to one of the qubits
in the kth triplet flips it between |+X〉 and |−X〉. So we can detect the
result k by applying an encoded phase-flip measurement e.g. M1 = | −X
+X+X〉〈−X +X+X |+ |+X−X−X〉〈+X−X−X |. Note that M0,M1,M2,M3 do
not cover the whole space, we have some spare dimensions; we need to include
M4 = I − (M0 + M1 + M2 + M3), which will be a measurement result that
simply tells us things have gone very wrong. While conceptually clear this set
of measurements might be hard to apply in practice, but there is a simpler set
which will replicate the results; see the example sheet.

By protecting against a single X , Y or Z error, Shor’s code protects against
an arbitrary single qubit error: suppose an error has occured on one of the
qubits, given by a Kraus operator Ek. As I,X, Y, zZ form an operator basis
for a single qubit, we can expand Ek = aI + bX + cY + dZ. But each of these
components gives a different error syndrome, so the syndrome measurement will
collapse the effect of the error to I with probability |a|2, X with probability |b|2
etc. Then in the recovery phase we correct the detected error, and thus recover
the original state perfectly.

If the error probability on a single qubit is ǫ, the error probability of the
output will be ǫ′ ≤

(

9
2

)

ǫ2 = 36ǫ2. Also note that in general, any error correcting

28

code correcting a set of errors S will also correct any error whose Kraus operators
are linear combinations of the elements of S, e.g. a code to protect against Z
will protect against Ek = αI + βZ.

In general, a code is given by a subspace HC ⊂ H of a Hilbert space into
which the initial states are encoded. It corrects errorsD(ρ) if there is an allowed
dynamics R(ρ) such that R(D(ρC)) = ρC∀ρC ∈ HC ⊗H⋆

C . For schemes where
correction is a syndrome measurement Mk and corresponding recovery Uk we
have R(ρ) =

∑

k UkMkρM
†
kU

†
k , but there is no requirement for recovery to be

like this.
Some other codes useful for protecting against single-qubit errors are the 7-

qubit Steane code, which is useful in practice since gates are easy to implement
directly on the encoded state: |0〉 = 1√

8
(|0000000〉 + |1010101〉 + |0110011〉 +

|1100110〉 + |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉), |1〉 = (X ⊗ X ⊗
X ⊗X ⊗X ⊗X ⊗X)|0〉, and the 5-qubit code, which is the shortest possible
for correcting arbitrary single-qubit errors (it’s necessary that each of the 3
possible errors applied to each of 5 possible qubits of the codeword for |0〉, plus
the codeword itself, give distinct points in the space and that all those arrived
at from |1〉 by the same operations are different; thus the space must be of
dimension at least 2×(1+15) = 32, which it is. But the same calculation means
that for a 4-qubit code the 4-qubit space would have to be of dimension at least
2×(1+12) = 26, which it is not). It has |05〉 = 1√

8
(|00000〉+ |10010〉+ |01001〉+

|10100〉+ |01010〉+ |00101〉− |00110〉− |11000〉− |00011〉 − |10001〉 − |01100〉−
|01111〉−|11110〉−|11101〉−|10111〉−|11011〉), |15〉 = (X⊗X⊗X⊗X⊗X)|05〉;
it isn’t practically very useful.

Now that we have methods for error-resistant storage or transmission of
information, what about errors in computation itself? Suppose that each basic
gate or time-step of storage in the circuit has a probability ǫ of introducing
an X , Y or Z error (or, for e.g. CZ gates, possibly some constant number of
errors, i.e. one for each output qubit). As before, correcting for this simple
error model also corrects more general quantum dynamics, where the correct
unitary operator U for each gate is replaced by some D(ρ) in some sense “close”
to UρU †. Note that gates which act on more than 1 qubit (e.g. CZ) may
introduce correlated errors on these qubits.

To protect against these errors, we encode each qubit using an error correct-
ing code (as we shall see later, we usually want to use Steane’s 7-qubit code),
and perform gates and measurements directly on the encoded state. We also
perform an error correction (syndrome detection and recovery) after each time
step; thus for the circuit where we measure H |0〉 we would prepare an encoded
|0〉, error-correct, perform an encoded H , error-correct and then perform an en-
coded measurement. However, this alone is not enough to ensure a small error
probability: our error-correcting code ensures that so long as there is only one
error on an encoded qubit, the logical state will be unaffected. But a single error
within a procedure may propagate to many errors in the output, e.g. if we have
an X error before the control of a CNOT gate, this gives us two X errors - one
on each output line. We must avoid this; in particular, we cannot decode the
encoded state, perform the computation and then reencode, as a single error in
the computation would result in too many errors in the final state.

For error correction to work, we require that a single error inside a procedure
generates at most one error on each encoded qubit at the output (i.e. one in

29

each “block” of outputs corresponding to a single qubit); we also require that if
the procedure is a measurement it outputs the correct result. Such a procedure
is called fault-tolerant.

Suppose that all the procedures in our circuit are fault-tolerant (“FT”) (it is
not at all obvious at this stage taht this is possible). So we prepare an encoded
|0〉 FTly, perform an FT error correction, apply an FT encoded H , another
round of FT error correction and finally an FT encoded measurement. Now,
we can “pass through” an error: if there was e.g. an error in the first FT error
correction, this will result in only one error on the output qubits from it, which
is equivalent to an error at the very start of the FT encoded H - so if there are
no further errors in the H itself, we will have at most one error on the output
to the H , since the H is FT.

This circuit could therefore only fail if there are two or more errors before the
end of the first error correction, or after the start of the final error correction, or
between the start of one error correction and the end of the next. Each basic op-
eration in the original circuit (preparation, gate, or measurement) corresponds
to a block of procedures [in which two errors will ruin us]; the probability of two
or more errors in each block of procedures is ǫ′ ≤ cǫ2 for some constant c. If the
maximum number of elementary components in a block (which we hope will ex-

ist, and be a constant, independent of the circuit size) is k, then c = 1
2k(k+ 1);

we gain an advantage from error correction if ǫ < 1
c . A reasonable value might

be k = 102, giving c = 104. Then given a circuit composed of n basic op-
erations, the probability of an error in the encoded fault-tolerant version will
be ≤ nǫ′ ≤ ncǫ2. These arguments generalise to arbitrary circuits, with each
basic gate corresponding to a block of FT error correction on the input, an FT
encoded gate and FT error correction on the output.

Thus, we may reduce the probability of error in a circuit, provided that the
error per component ǫ < some threshold ǫth = 1

c ; we aslo need that the required
procedures for universal quantum computation can be made fault-tolerant; that
is a universal set of gates, computational basis measurements, preparation of
|0〉 and error correction:

1. Gates: the simplest gates to apply fault-tolerantly are those which can
be achieved simply by applying an operation on each encoded qubit in parallel;
these are called transversal gates. E.g. for many codes, a FT encoded X gate
can be done simply by applying an X to each encoded qubit; in this situation,
one error will clearly only affect one output. Our reason for liking the Steane
code is that many standard gates have such transversal (and therefore fault
tolerant) implementations, including H,X, Y, Z,CX , Rπ

2
; however, these gates

do not form a universal set; in fact any circuit made of them can be efficiently
simulated classically (the Gottesman-Knill Theorem, which we sadly lack time
to cover in this course; essentially, we can push tensor products of X,Y, Z, I
states through these gates easily, similar to what we did in the measurement-
based quantum computation case).

To complete a universal set, we need to also have the gate Rπ
4

(also some-

times called Rπ
8
, since it is a rotation of the Bloch sphere by π

8 ;

(

e−
iπ
8

e
iπ
8

)

=

(

1

e
iπ
4

)

). This can be implemented fault-tolerantly in a similar way to im-

plementing U(θ) in measurement-based quantum computation; we prepare an

30

ancilla using the method below, entangle it with the state, measure the original
qubit and apply a unitary correction - but we lack the time to cover this in
detail.

2. Preparation. This is easy; while creating a |0〉 can be hard because a
single error near the start can corrupt many qubits, since we know what we
are trying to create we can prepare several copies, test them, and discard those
which are not correct.

3. Measurement; in the Steane code, computational basis measurements

can be done transversally. Syndrome diagnosis requires the use of |0〉 or |0〉+|1〉√
2

ancillas, but these can be prepared and tested using the above method; we then
apply transversal CX gate and measure each ancilla qubit.

Error-correcting codes and fault-tolerant procedures therefore allow us to
reduce the error probability in a circuit of n basic components to ncǫ2. However,
for n large this may still be close to 1. But, to correct errors in arbitrarily large
circuits we can simply concatenate our codes; at each new level of encoding
we encode using qubits in the previous level (So e.g. if we were using the
bit-flip code |0〉 = |000〉 etc., |0Xk〉 = |0Xk−1〉|0Xk−1〉|0Xk−1〉). Similarly, we
build a level k FT gate out of a number of level k − 1 FT gates and FT error
correction (built out of level k− 1 FT components), and likewise measurements
and preparations. Each level of encoding improves (provided ǫ < 1

c) the error
probability in the same way as before; we go from ǫ to cǫ2 to c(cǫ2)2 and so on,

so the error probability on a level k component is ǫk ≤ cǫ2k−1 ≤ · · · ≤ (cǫ)2
k

c .
Thus we can achieve the total error probability nǫk to be ≤ δ by taking k ≥
log

log n
cδ

log 1
cǫ

= O(log logn). The overhead in each layer of encoding is at most a

constant factor d, thus the total overhead is dk = poly(logn) - very efficient.
We thus have the threshold theorem for quantum computation: a quantum

circuit of n gates can be simulated with arbitrarily low probability of error δ
using O(npoly(log n

δ)) imperfect components, provided the probability of error
on each component is ǫ < some constant threshold ǫth.

The precise value of this threshold depends on the details of the error model,
code used and procedures; values around ǫth = 10−4 can be proven for rea-
sonable schemes, and simulations suggest values an order of magnitude larger
work. This is not within current manufacturing capability, but does not seem
an infeasible level of tolerance. While the scaling of the overhead is good in a
computer-science sense, however, for reasonable sized computations it seems to
amount to around 103 physical qubits and gates per logical qubit. (There are
tradeoffs to be made; we can achieve a proven value of ǫth ≈ 10−3 and simula-
tions showing values up to 10−2 working, but then have an overhead factor of
106 or more for moderate computations).

Successful error correction seems to require fresh ancillas (preparing a large
number of ancillas at the start of the computation isn’t enough, since we can-
not store them without accumulating errors; also this assumption seems like it
might be absolutely necessary on entropic grounds) and parallel computation
(since otherwise for each timestep on n qubits we introduce O(n) errors while
correcting only O(1). Also note that all our proofs rely on some “reasonable”
assumptions about errors, such as errors on different components being inde-
pendent; it remains to be seen whether this will hold in practice. However, it
must be emphasised that this situation is much better than that with analogue

31

computation, which fails when we apply any error model, realistic or not. It
seems there is no fundamental physical reason to prevent quantum computers
being realised.

Physical Implementations

Building a physical quantum computer which can outperform a classical com-
puter (e.g. for factoring) appears some way off. There is a tension between two
requirements; we need the qubits to be well isolated, to minimise errors and
decoherence from interactions with the environment, but we also need to be
able to manipulate them directly to be able to prepare, apply gates and mea-
sure. E.g. photons are easy to isolate, but hard to interact with at all; spins of
particles are the opposite.

Trying to be positive, the lecturer points out that there are many side bene-
fits to attempting to construct a quantum computer; precise control over quan-
tum systems (e.g. photons, ions, etc.) is something of general application, and
quantum computation provides a good benchmark for how much control we
have over physical system. (The lecturer even strretced to claim that there are
foundational implications; quantum computation provides a clean, precise test
that shows that quantum behaviour really is ocurring. Therefore, if we can
show that some problem not in P can be solved with a quantum computer, this
demonstrates that the basis of physics really is quantum rather than classical.
But the Bell inequalities do this a lot more clearly and simply).

DiVincenzo suggested some requirements to say we have a scalable quantum
computer: 1. A scalable physical system, with well-defined qubits, 2. The
ability to initialize the qubits to a simple initial state, 3. Decoherence times
(this informally means the time for serious environmental disturbance; there are
many ways to define it, but the principle is clear) much longer than individual
gate times, 4. The ability to implement a universal gate set, and 5. The ability
to measure individual qubits. Fault tolerance requires in addition to these: low
errors, largely uncorrelated errors, the ability to perform parallel operations,
and the ability to initialize fresh qubits during the computation.

The initial approach was NMR; the qubits are nuclear spins on a molecule in
solution in a strong magnetic field, and gates are applied by transverse electro-
magnetic pulses. This has achieved some proof-of-concept success, e.g. running
Shor’s algorithm with 7 qubits, but does not scale (since it is necessary to find
a molecule where each nucleus has a different energy level so that we can ad-
dress each qubit individually, and large molecules tend to be highly symmetric);
it is mostly defunct as a modern approach. There are also some foundational
concerns; the states which are used are highly mixed and typically unentangled,
so questions have been raised as to whether this is “true” quantum computa-
tion; nevertheless, it does seem capable of running quantum algorithms with no
known classical equivalent.

Ion traps are a somewhat attractive approach; qubits are electron energy
levels in ions, confined in an electric field. Interactions are done rather elegantly
by coupling these energy levels to the collective motion of the set of ions. 8
entangled ions have been achieved, and the process scales to a certain extent
in that it is easy to use multiple traps. However, interaction and in particular
parallel operations are difficult with a larger computer, and the whole process

32

is generally quite slow.
As a more theoretical than practical approach, Knill, Laflame and Milburn

proved it is possible to do universal fault-tolerant quantum computation using
only linear optics; the qubits are photon polarisations/positions, interactions
are done via non-deterministic measurements. It is hard to have two photons
interact directly; the demonstrated gate acts correctly only when two measure-
ments return the results we want, which happens 1

4 of the time (but we do
know whether the measurement has worked correctly). Thus there is a huge
number of photons required per logical qubit; also the need for good sources
and detectors for individual photons may be somewhat problematic. However,
this method does have advantages; low decoherence, scalability, and the ease of
building graph states.

There are various schemes for solid state implementations, and this is where
most of the money is currently being invested; generally the qubits are quanta
of spin, charge or magnetic flux inside a semiconductor. These are scalable,
compact approaches, and we are used to working with semiconductors, but
creating even 1 or 2 qubits is difficult; the systems are also generally quite noisy
and require very precise fabrication.

One approach favoured by the lecturer is the use of atoms trapped in optical
lattices, formed by counter-propagating laser beams. The qubits are internal
atomic states; shifting the beams can cause atoms to collide and become entan-
gled. This allows us to generate very large cluster states, but individual qubits
are hard to measure; it might be useful for simulation of many-body systems.

There is also the adiabatic approach; a many qubit system is prepared in
the ground state of a simple Hamiltonian, which in then slowly changed such
that the system remains in the ground state. The final Hamiltonian encodes
the problem; its ground state encodes the answer, which we can then measure.
The principles are valid, but there are proofs that in any nontrivial quantum
computation the first excited state must necessarily fall very close to the ground
state, making keeping the system in its ground state difficult. A company, “D-
Wave”, have claimed a working 28-bit quantum computer using this approach,
but have yet to demonstrate any actual quantum computation.

This concludes the course; the lecturer recommends Nielson and Chuang’s
textbook for further information.

33

