Percolation and Combinatorics

March 20, 2009

This is intended as a fun course. The subject is quite new (around 50 years old), but there is a large amount of literature on it. Unlike in previous years, notes will not be given out, since the course will follow the lecturer's recent book Percolation quite closely.

Basic Concepts

1. Percolation was originally developed to study the passage of liquids through porous media, but in our context it is the study of random sampling of lattice-like infinite graphs; we are mostly interested in the component structure. Specifically, we take Λ, the ground graph, to be some infinite graph, and select vertices or edges at random to obtain Λ_{p} (where p is the probability of selecting an individual vertex or edge). The theory was founded by Broadbeut and Hammersly in 1957.
2. Terminology; in this field vertices are known as sites and edges as bonds; a site is open if we hae selected it, and a subgraph is open if we have selected all its sites and bonds. We shall clook in particular at open paths, known in this field as "open self-avoiding walks". An open cluster is a component of Λ_{p}.

Some cases: Λ_{p}^{b} is bond percolation, where we select edges as random and take the graph formed by all vertices of Λ and these edges. Λ_{p}^{s} is site percolation, where we select vertices at random and take the subgraph induced by these vertices. $\vec{\Lambda}$ is where our graphs are taken to be oriented; we may allow Λ to be a multigraph.
3. To formalize the above a little: $\Lambda=(V, E)$; we'll define bond percolation. A configuration is a map $\omega: E \rightarrow\{0,1\} e \mapsto \omega_{e}$. Ω is the stet of all configurations, the state space. We define Σ to be the σ-field on Ω generated by cylindrical sets $C(F, \sigma)=\left\{\omega \in \Omega: \omega_{f}=\sigma_{f} \forall f \in F\right\}$, where $F \subset E$ is finite and $\sigma: F \rightarrow\{0,1\} . \omega_{e}$ is called the state of e, either open or closed.

Probabilities: $\boldsymbol{p}=\left(p_{e}\right)_{e \in E}, 0 \leq p_{e} \leq 1 . \mathbb{P}_{p}(C(F, \sigma))=\prod_{\sigma_{e}=1, e \in F} p_{e} \prod_{\sigma_{e}=0, e \in F}(1-$ $\left.p_{e}\right)(\star)$. Let $\mathbb{P}_{\boldsymbol{p}}^{b}$ be the measure on Σ generated by (\star).

For $F_{1}, F_{2} \subset E$ finite, $F_{1} \cap F_{2}=\emptyset, \sigma: F_{1} \cup F_{2} \rightarrow\{0,1\}$, then $\mathbb{P}_{\boldsymbol{p}}\left(\omega_{f}=\right.$ $\left.\sigma_{f} \forall f \in F_{1} \mid \omega_{f}=\sigma_{f} \forall f \in F_{2}\right)=\mathbb{P}_{\boldsymbol{p}}\left(\omega_{f}=\sigma_{f} \forall f \in F_{1}\right)(\star \star)!$

We often have $\boldsymbol{p}=(p)$, in which case we write \mathbb{P}_{p}. Obviously, we define site percolation measure the same way; for the moment, everything we say applies equally to both cases.
4. A natural coupling. Take $\left(X_{e}\right)_{e \in E}$ independent RVs, each uniformly distributed on $[0,1] .\left(X_{e}\right) \rightarrow \Lambda_{\boldsymbol{p}}$ with edge-set $\left\{e \in E: p_{e} \geq X_{e}\right\}$. If $\boldsymbol{p} \leq \tilde{\boldsymbol{p}}$ (i.e. $\left.\boldsymbol{p}_{e} \leq \tilde{\boldsymbol{p}_{e}} \forall e\right)$, then $\Lambda_{\boldsymbol{p}} \subset \Lambda_{\tilde{\boldsymbol{p}}}$.
5. Critical probability. Fix a site $x \in \Lambda$; let C_{x} be the open cluster of x, $\left|C_{x}\right|$ is the number of sites in C_{x}. Define $\vartheta_{x}(p)=\mathbb{P}_{p}\left(C_{x}\right.$ is infinite); $\vartheta_{x}(p)$ is monotone increasing. Taking, as we almost always do in this course, Λ to be a connected, locally finite, infinite graph (usually \mathbb{Z}^{d}), $\vartheta_{x}(p)=0 \Leftrightarrow \vartheta_{y}(p)=0$ for any $y \in \Lambda$: take a path L from x to y, say of length l, then $\vartheta_{y}(p) \geq p^{l} \vartheta_{x}(p)$. So, define the critical probability $p_{H}(\Lambda)=\sup \left\{p: \vartheta_{x}(p)=0\right\}$; this is independent of x.
6. Let E be the event that there is an infinite open cluster.

0 Theorem

(this should really be theorem -5 or so, and is here only because the lecturer would be embarassed to deliver a lecture with no theorems): $\mathbb{P}_{p}(E)=0$ if $p<p_{H}, 1$ if $p>p_{H}$: i) suppose $p<p_{H} ; \mathbb{P}_{p}(E) \leq \sum_{x} \vartheta_{x}(p)=0$. ii) Suppose $p>p_{H}$, then $\mathbb{P}_{p}(E) \geq \theta_{x}(p)>0$. Hence by Kolmogrov's 0-1 laws, $\mathbb{P}_{p}(E)=1$. Kolmogrov's 0-1 laws: For $\left(X_{i}\right)$ independent RVs, Σ the σ-field generated by $\left(X_{i}\right)$, let $A \in \Sigma$ be independent of $X_{1}, \ldots, X_{n} \forall n$. Then $\mathbb{P}(A)$ is 0 or 1 . We apply this with $\left(X_{e}\right)=\left(\omega_{e}\right) ; E$ is independent of any finite set of ω_{e}.
7. Another critical probability: Define $\chi_{x}(p)=\mathbb{E}_{p}\left(\left|C_{x}\right|\right)$. This is monotone increasing (by the coupling). $\chi_{x}(p)$ and $\chi_{y}(p)$ are about the same (i.e. they are the same up to a constant factor, here $\left.p^{l}\right) \cdot p_{T}(\Lambda)=\sup \left\{p: \chi_{x}(p)<\infty\right\}$, independent of x; this is the Temperly critical probability.

Clearly we have $p_{H}(\Lambda) \geq p_{T}(\Lambda): \chi_{v_{0}}=\mathbb{E}\left(\left|C_{v_{0}}\right|\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(\left|C_{v_{0}}\right| \geq n\right)$ and every summand is $\geq \vartheta_{v_{0}}$. If $\Lambda=T$ a tree, clearly $p_{T}=p_{H}$.

Often we consider Λ homogenous: $\forall x, y \in \Lambda \exists \phi \in \operatorname{Aut}(\Lambda): \phi(x)=y$.
8. Path counting. Given Λ, write $\mu_{l}(\Lambda ; x)=$ the number of self-avoiding walks (i.e. paths) of length l, starting at x. If Λ is homogenous, can define $\mu_{l}(\Lambda)=\mu_{l}(\Lambda ; x) \forall x$. We have $\mu_{k+l} \leq \mu_{k}+\mu_{l}$ by concatenation (all $k+l$-paths are the concatenation of a k-path and an l-path but the converse is not true). Thus $\lambda=\lim _{l \rightarrow \infty} \mu_{l}^{\frac{1}{l}}$ exists; this is the connective constant of Λ.

Theorem: For Λ as always, suppose $\mu_{l}(\Lambda ; x) \leq(\lambda+o(1))^{l}$ as $l \rightarrow \infty$. Then $p_{T}^{b}(\Lambda) \geq \frac{1}{\lambda}: \chi_{x}(p)=\mathbb{E}_{p}\left(\left|C_{x}\right|\right)=\sum_{y} \mathbb{P}_{p}\left(y \in C_{x}\right)=\sum_{y} \mathbb{P}_{p}(\exists$ open $x-y$ path $)=$ $\mathbb{E}_{p}(\#$ open paths starting at $x)=\sum_{l} \mu_{l}(\Lambda ; x) p^{l}$. Suppose $p<\frac{1}{\lambda}$, then $\chi_{x}(p) \leq$ $C+\sum_{l \geq l_{0}} c^{l}<\infty$, by taking c with $p \lambda<c<1$ and l_{0} large enough that for $l \geq l_{0}, \mu_{l}(\Lambda ; x) p \leq c^{l}$. So $p \leq p_{T}(\Lambda)$ and so $p_{T}(\lambda) \geq \frac{1}{\lambda}$.
9. The Bethe lattice is the k-regular infinite tree; it is used a bit in physics. We shall consider T_{k}, the rooted k-branching tree (which has a root; each node on level n branches k times so there are k times as many nodes on level $n+1$), which closely resembles the Bethe lattice of degree $k+1$. This is in some sense the simplesd example base graph to consider; it is obviously not worth considering graphs of maximum degree <3.

Theorem: i) if the maximum degree $\Delta(\Lambda)=\Delta \geq 3$ then $p_{T} \geq \frac{1}{\Delta-1}$ ii) For $k \geq 2, p_{T}^{b}\left(T_{k}\right)=p_{H}^{b}\left(T_{k}\right)=\frac{1}{k}:$ i) $\mu_{l}(\Lambda ; x) \leq \Delta(\Delta-1)^{l+1}=(\Delta-l+o(1))^{l}$ so we are done by the previous theorem. ii) Consider $T_{k, n}$, the subgraph "up to" level n (e.g. $T_{2,3}$ contains the root, the two first-level vertices, the four secondlevel vertices and the eight third-level vertices). Consider bond percolation with probability p. Let $\pi_{k}=\mathbb{P}_{p}\left(\exists\right.$ open path from v_{0} to the set of leaves. We have $1-\pi_{m+1}=\left(1-p \pi_{m}\right)^{k}$: for there to not be any paths to level $m+1$, for each of the nodes at level 1 , the subtree they are the root of must not contain any paths
to level m, or there must be no edge from the root to that node. So $\pi_{m+1}=$ $1-\left(1-p \pi_{m}\right)^{k}$; call this $f\left(\pi_{m}\right)$, i.e. $f(x)=1-(1-p x)^{k}$ for $0 \leq x \leq 1$. What does this f look like? $f^{\prime}(x)=k p(1-p x)^{k-1} ; f^{\prime \prime}(x)=-k(k-2) p^{2}(1-p x)^{k-2}$. So f is monotone increasing and concave. If $f^{\prime}(0)=k p>1$, then by considering the graph and the fact that $f^{\prime}(1)<1$, there is a unique $x_{0}, 0<x_{0}<1$, with $f\left(x_{0}\right)=x_{0} . \pi_{0}=1>x_{0}$, and if $\pi_{n}>x_{0}$ then $\pi_{n+1}=f\left(\pi_{n}\right)>x_{0}$. Hence, if $p>\frac{1}{k}$ then $\vartheta_{v_{0}}(p) \geq x_{0}>0$. Consequently $p>p_{H}$, so we have $p_{H} \leq \frac{1}{k}$, and hence $p_{T}=p_{H}=\frac{1}{k}$.
10. Note: more is true. As an exercise for the reader, it is acutally relatively easy to calculate $\vartheta_{v_{0}}\left(\frac{1}{k}\right)$. Indeed, $\chi_{v_{0}}\left(\frac{1}{k}\right)=\infty, \vartheta_{v_{0}}\left(\frac{1}{k}\right)=0$ for $T_{k}: \chi_{v_{0}}\left(\frac{1}{k}\right)=$ $\mathbb{E}_{\frac{1}{k}}\left(\left|C_{v_{0}}\right|\right)=\mathbb{E}_{\frac{1}{k}}\left(\#\right.$ open paths starting at $\left.v_{0}\right)=\sum_{l=0}^{\infty} k^{l}\left(\frac{1}{k}\right)^{l}=\sum 1=\infty$. For $\vartheta, f_{k, \frac{1}{k}}(x)=1-\left(1-\frac{x}{k}\right)^{k}, \pi_{0}=1, \pi_{1}=f\left(\pi_{0}\right), \ldots\left(\right.$ recall $\pi_{n}=\mathbb{P}($ component goes down to level $\left.n)\right)$. Then $x-f(x)>0$ on $(0,1]$ and is increasing since $1-f^{\prime}(x)=1-\left(1-\frac{x}{k}\right)^{k-1}>0$. Hence, if $\pi_{n} \geq \epsilon>0$ then $\pi_{n}-f\left(\pi_{n}\right) \geq \epsilon-f(\epsilon)>0$. Hence there can be at most $\frac{1}{\epsilon-f(\epsilon)}+1 \pi_{n}$ s which are $\geq \epsilon$; thus $\pi_{n} \rightarrow 0$, so $\vartheta_{\frac{1}{k}}^{b}\left(T_{k}\right)=0$.
[11.] Plane graphs: Consider $\Lambda \subset \mathbb{R}^{2}$, and Λ 3-connected; this implies, though it is a difficult theorem, that the drawing of Λ on the sphere is unique. For example, a subgraph of \mathbb{Z}^{2}. i) Every cycle C separates \mathbb{R}^{2} into its interior and exterior, as can be shown easily using winding numbers. ii) Eulers formula implies $K_{3,3}$ and K_{5} are nonplanar. We know but will never use that a graph is nonplanar iff it contains a topological copy of one of these. iii) Let a, b, c, d be vertices around a cycle C in that order. Then Λ does not contain vertex-disjoint paths from a to c and b to d both in the interior or both in the exterior of C, by e.g. if both are in the interior, draw an exterior point connected to a, b, c, d, then we have a planar K_{5}. Or we can also prove using $K_{3,3}$: add points e between a and b, f between c and d, joined by an exterior path.
12. Dual graphs: For Λ a 3 -connected plane graph, we construct a graph Λ^{\star}, the dual of Λ, by assigning a vertex to every face of (the map of) Λ, and for every bond f of Λ, joining the vertices of Λ^{\star} corresponding to the faces bordering f by an edge f^{\star} (deleting f, two faces "unite"; join by f^{\star} the vertices of these faces). E.g. a triangular lattice becomes a hexagonal lattice; the correspondence is always between vertices and faces, edges and edges, and faces and vertices. E.g. $\Lambda=\mathbb{Z}^{2}$ the square lattice has $\Lambda^{\star}=\mathbb{Z}^{2}+\left(\frac{1}{2}, \frac{1}{2}\right)$ - this lattice is "self-dual".
13. A basic property of \mathbb{Z}^{2}. For $C \subset \mathbb{Z}^{2}$ finite, $\mathbb{Z}^{2} \backslash C$ has a unique infinite component C_{∞}. The outer boundary $\partial_{\infty} C$ of C is formed by the bonds dual to the bonds between C and C_{∞}.

Lemma 3: For a finite $C \subset \mathbb{Z}^{2}$ which is the vertex set of a connected graph, the outer boundary $\partial_{\infty} C$ is a cycle containing C in its interior: let \vec{F} be the set of bonds from C to C_{∞} (considered as directed inthis way), and \vec{F}^{\star} the set of dual bonds, with \vec{f}^{\star} obtained from \vec{f} by rotating it through $\frac{\pi}{2}$ (in the positive sense). We claim that for any oriented bond $\vec{f}^{\star}=\overrightarrow{u v} \in \vec{F}^{\star}$, there is a unique $\overrightarrow{v w} \in \vec{F}^{\star}$ leaving v. Proving this is fiddly rather than difficult and the details are left as an exercise; use $R=\mathbb{Z}^{2} \backslash\left(C \cup C_{\infty}\right)$ and consider which of these three sets some vertices may be in; in particular, say v lies in the square $a b c d$ with f being the bond $a b$; then e.g. if $c \in C_{\infty}$ we are done, if $d \in C$ done and so on. The difficult case is when $c \in C, d \in C_{\infty}$, but this cannot arise, as we must then have a path on the outside from a to c and another from b to d, contradicting planarity. Thus $\partial_{\infty} C \supset$ some cycle $S ; C$ is in the interior of S,
the infinite component is outside. If $\vec{f}^{\star} \in \partial_{\infty} C$, say $\vec{f}=y z$, then $y \in C$ and $z \in$ the infinite component of the rest. But then \vec{f} crosses S, so $\vec{f}^{\star} \in S$. Thus $\partial_{\infty} C \subset S$ and we have the result.
14. Simple bounds on $p_{H}^{b}\left(\mathbb{Z}_{2}\right)$: Theorem 4: $\frac{1}{3} \leq p_{H}^{b} \leq \frac{2}{3}$: i) $\Delta\left(\mathbb{Z}^{2}\right)=4$ ii) If the component of the origin is finite, we must have a cycle around it in the dual graph, and none of the bonds dual to this open. We will show the probability of a large cycle is small. Take $0<p<1$ and consider bond percolation on \mathbb{Z}^{2}; let L_{k} be the path from $(0,0)$ to $(k, 0)$ along the x axis. Let A_{k} be the event that L_{k} is open; $\mathbb{P}_{p}\left(A_{k}\right)=p^{k}$. As we always do, we define $f^{\star} \in \Lambda^{\star}$ open iff the corresponding $f \in \Lambda=\mathbb{Z}^{2}$ is closed. Let B_{k} be the event that there is no open cycle in Λ^{\star} surrounding L_{k}. By Lemma 3, if C_{0} is finite then its outer boundary is an open cycle in Λ^{\star} surrounding C_{0}; hence $A_{k} \cap B_{k}$ is a subset of the event that C_{0} is infinite.

Take $p>\frac{2}{3}$. Then $\mathbb{P}\left(\left\{C_{0}\right.\right.$ is $\left.\left.\infty\right\}\right) \geq \mathbb{P}\left(A_{k} \cap B_{k}\right)$. A_{k}, B_{k} depend on disjoint sets of bonds (A_{k} on L_{k}, B_{k} on the complement of L_{k}), so this is $\mathbb{P}\left(A_{k}\right) \mathbb{P}\left(B_{k}\right)=$ $\mathbb{P}\left(B_{k}\right) p^{k}$. We claim $\mathbb{P}\left(B_{k}\right)>0$ if k is large enough. The probability a cycle of length $2 l$ in Λ^{\star} is open is $(1-p)^{2 l}$; the number of cycles in Λ^{\star} of length $2 l$ surrounding 0 is $\leq l 3^{2 l-1}$ - the cycle must cross the positive x axis in one of l places, then if we proceed around the cycle there are at most 3 possible ways to go at each step. Therefore, $\mathbb{P}\left(\overline{B_{k}}\right) \leq \sum_{l \geq k+2} \mathbb{P}(\exists$ a cycle of length $2 l$ surrounding 0$) \leq$ $\sum_{l \geq k+2} \mathbb{E}(\#$ cycles of length $2 l$ surrounding 0$) \leq \sum_{l \geq k+2} l 3^{2 l-1}(1-p)^{2 l}<\sum_{l \geq k} l(3(1-$ $p))^{2 l}$. $p>\frac{2}{3}$ so this is a convergent geometric series, so $\mathbb{P}\left(\overline{B_{k}}\right)<1$ if k is large enough, i.e. for large $k \mathbb{P}\left(B_{k}\right)>0$. Thus $p \geq p_{H}^{b}\left(\mathbb{Z}^{2}\right)$ and we have the result.
15. Remarks: i) This is Peierl's argument, given in 1936. ii) Write $\lambda_{m}\left(\mathbb{Z}^{2}\right)$ for the number of paths in \mathbb{Z}^{2} starting at 0 of length n. Then $\lambda_{n}^{\frac{1}{n}} \rightarrow \lambda=\lambda\left(\mathbb{Z}^{2}\right)$ the connective constant of \mathbb{Z}^{2}. Our proof actually shows $\frac{1}{\lambda} \leq p_{T}^{b}\left(\mathbb{Z}^{2}\right) \leq p_{H}^{b}\left(\mathbb{Z}^{2}\right) \leq$ $1-\frac{1}{\lambda}$. Current results give $2.62 \leq \frac{1}{\lambda} \leq 2.68$; for a while in the early stages of the subject it was hoped that connective constants would "give us everything", and physicists are still studying them. iii) $\frac{1}{2 \lambda-1} \leq p_{T}^{b}\left(\mathbb{Z}^{d}\right) \leq p_{H}^{b}\left(\mathbb{Z}^{d}\right) \leq \frac{2}{3}$, this last by considering a \mathbb{Z}^{2} subset of \mathbb{Z}^{d}.
16. Oriented percolation. We take $\vec{\Lambda}$ an oriented multigraph, locally finite; \vec{C}_{x} is the open out-cluster of x, we define $p_{T}^{b}(\vec{\Lambda} ; x), p_{H}^{b}(\vec{\Lambda} ; x)$ in the obvious way in relation to this. If $\vec{\Lambda}$ is homogenous then these are independent of x; if $\vec{\Lambda}$ is strongly connected (for any $x, y \in \vec{\Lambda}$, there is a (correctly oriented) path from x to y in Λ), then again p_{T}, p_{H} are independent of x.
17. Bond vs Site: Theorem 5: Let Λ be a locally finite, oriented multigraph; $x \in \vec{\Lambda}$. i) $p_{H}^{b}(\vec{\Lambda} ; x) \leq p_{H}^{s}(\vec{\Lambda} ; x)$, and the same for p_{T} ii) Suppose $\Delta_{\text {in }}$, the max in-degree of Λ, is finite (theorem is actually valid otherwise, but a bit silly). Then $p_{H}^{s}(\vec{\Lambda} ; x) \leq 1-\left(1-p_{H}^{b}(\vec{\Lambda} ; x)\right)^{\Delta_{\text {in }}}$: i) take $0<p<1$. It suffices to show $\mathbb{P}_{p}^{s}\left(\left|C_{x}\right| \geq n\right) \leq \mathbb{P}_{p}^{b}\left(\left|C_{x}\right| \geq n\right) \forall n$, as then by taking the limit as $n \rightarrow \infty$ we have the result for p_{H}, and since $\chi_{x}^{S}(\vec{\Lambda})=\sum_{n} \mathbb{P}_{p}^{S}\left(\left|C_{x}\right| \geq n\right) \geq \sum_{n} \mathbb{P}_{p}^{b}\left(\left|C_{x}\right| \geq\right.$ $n)=\chi_{x}^{b}$, we have the result for p_{T}. In fact we shall prove a little more, that $\mathbb{P}_{p}^{s}\left(\left|C_{x}\right| \geq n\right) \leq p \mathbb{P}_{p}^{b}\left(\left|C_{x}\right| \geq n\right) \forall n$, i.e. $\mathbb{P}_{p}^{s}\left(\left|C_{x}\right| \geq n \mid x\right.$ is open $) \leq \mathbb{P}_{p}^{b}\left(\left|C_{x}\right| \geq n\right)$. We may wlog treat $\vec{\Lambda}$ as finite (e.g. by considering $\vec{\Lambda}_{n}$, the ball of radius n about x). We explore C_{x} by considering a random sequence of tripartitions of $V(\vec{\Lambda})$; first, for site: $T=\left(T_{t}\right)=\left(R_{t}, D_{t}, U_{t}\right)_{t=1}^{l}$ - respectively, the "reached", "dead" and "untested" vertices of $\vec{\Lambda} . R_{1}=\{x\}, D_{1}=\emptyset, U_{1}=V \backslash\{x\}$.

Given a tripartition $T=(R, D, U)$ of V, if there is no $\overrightarrow{r u}$ for $r \in R, u \in U$, set $f(T)=0$. Otherwise pick a bond $\overrightarrow{r u}$ for $r \in R, u \in U$ and set $f(T)=\overrightarrow{r u}$. We shall use the MTU (Mene Tekel Upharsim) algorithm, an exploration process.

For site: we'll define a random sequence $\mathcal{T}=\left(T_{t}\right)_{t=1}^{l}=\left(R_{t}, D_{t}, U_{t}\right)$ of tripartitions of $V: R_{1}=\{x\}, D_{1}=\emptyset, U_{1}=V \backslash\{x\}$. Suppose we've reached $T_{t}=\left(R_{t}, D_{t}, U_{t}\right)$. If $f\left(T_{t}\right)=\emptyset$, end the search; $l=t$. Otherwise if $f\left(T_{t}\right)=\overrightarrow{r u}$, test u; it is open or closed. If u is closed, $R_{t+1}=R_{t}, D_{t+1}=D_{t} \cup\{u\}, U_{t+1}=$ $U_{t} \backslash\{u\}$. If u is open, $R_{t+1}=R_{t} \cup\{u\}, D_{t+1}=D_{t}, U_{t+1}=U_{t} \backslash\{u\}$. Clearly, $R_{l}=C_{X}$.

For bond: the condition on x being open is irrelevant. $\mathcal{T}^{\prime}=\left(T_{t}^{\prime}\right)=$ $\left(R_{t}^{\prime}, D_{t}^{\prime}, U_{t}^{\prime}\right) ; R_{1}^{\prime}=\{x\}, D_{1}^{\prime}=\emptyset, U_{1}^{\prime}=V \backslash\{x\}$. Suppose we've reached T_{t}^{\prime}; if $f\left(T_{t}^{\prime}\right)=\emptyset$, finish. Otherwise, if $f\left(T_{t}^{\prime}\right)=\overrightarrow{r u}$ test $\overrightarrow{r u}$; if it is closed set $R_{t+1}^{\prime}=R_{t}^{\prime}, D_{t+1}^{\prime}=D_{t}^{\prime} \cup\{u\}, U_{t+1}^{\prime}=U_{t}^{\prime} \backslash\{u\}$. If $\overrightarrow{r u}$ is open we set $R_{t+1}^{\prime}=$ $R_{t}^{\prime} \cup\{u\}, D_{t+1}^{\prime}=D_{t}^{\prime}, U_{t+1}^{\prime}=U_{t}^{\prime} \backslash\{u\}$. Clearly $R_{l}^{\prime} \subset C_{x}^{b}$. But R_{l}, R_{l}^{\prime} have the same resolution. So we have part i) of theorem 5.

For part ii), that $p^{s} \leq 1-\left(1-p^{b}\right)^{\Delta_{\text {in }}}$ where $\Delta_{\text {in }}$ is the maximum in-degree, consider bond percolation on $\vec{\Lambda}$ with probability $p, 0<p<1$; declare x open with probability p. Declare $z \neq x$ open if at least one of the bonds into z is open $(\exists \overrightarrow{y z}$ open $) . \quad r_{z}=\mathbb{P}(z$ is open $)=1-(1-p)^{i u(z)} \leq r=1-(1-p)^{\Delta_{\text {in }}}$. We've defined a site percolation measure with probability $\boldsymbol{r}=\left(r_{z}\right) ; r_{z} \leq r \forall z$. Hence if $p>p_{H}^{b}$ then $r>p_{H}^{s}$.

Corollary 6: For Λ a connected, locally finite infinite multigraph, $p_{H}^{b}(\Lambda) \leq$ $p_{H}^{s}(\Lambda)$, and if $\Delta<\infty, p_{H}^{s}(\Lambda) \leq 1-\left(1-p_{H}^{b}(\Lambda)\right)^{\Delta}$. This is instant from theorem 5 - form a directed graph by replacing each edge in Λ with two edges in opposite directions to form $\vec{\Lambda}$, and $\Delta_{\text {in }}(\vec{\Lambda})=\Delta(\Lambda)$.
18. \mathbb{Z}^{2} and \mathbb{Z}^{d} : Lemma $7: \frac{1}{3} \leq p_{T}^{b}\left(\mathbb{Z}^{2}\right) \leq \cdots \leq p_{H}^{s}\left(\overrightarrow{\mathbb{Z}^{2}}\right) \leq \frac{80}{81}$. We have the first inequality already; clearly $p_{T}^{b}\left(\mathbb{Z}^{2}\right) \leq p_{T}^{b}\left(\overrightarrow{\mathbb{Z}^{2}}\right) \leq p_{H}^{b}\left(\overrightarrow{\mathbb{Z}^{2}}\right)$, and this is $\leq p_{H}^{s}\left(\overrightarrow{\mathbb{Z}^{2}}\right)$ by the previous theorem. We have $\Lambda=\overrightarrow{\mathbb{Z}^{2}}, \Lambda^{\star} \cong \mathbb{Z}^{2}$; consider percolation with probability p. Call a cycle in Λ^{\star}, taken anticlockwise (here considering Λ^{\star} to be unoriented), blocking if it surrounds 0 and for any $\overrightarrow{x y} \in \overrightarrow{\mathbb{Z}}^{2}$, if $\overrightarrow{x y}^{\star}$ is in the cycle then y is closed. If \vec{C}_{0} is the component of $\mathbf{0}$ (in our oriented percolation) then its outer boundary is a blocking cycle. If B is a cycle of length $2 l$ in Λ^{\star} (around $0), \mathbb{P}_{p}(B$ is blocking $) \leq(1-p)^{\frac{l}{2}}$, since l of the edges of B are going up or left, and if we count the vertices to their right and above them (i.e. the vertices which we need to be closed) we count each at most twice (since a vertex can be above one edge of B and to the right of another, but no more), so there are at least $\frac{l}{2}$ distinct vertices which must be closed. Let $L_{k}=\{(0,0), \ldots,(k, 0)\}, A_{k}$ the event that all the sites in L_{k} are open, B_{k} the event that there is no blocking cycle surrounding L_{k}. $A_{k} \cap B_{k} \subset$ the event that \vec{C}_{0} is infinite; A_{k}, B_{k} depend on disjoint sets of vertices so $\mathbb{P}\left(A_{k} \cap B_{k}\right)=\mathbb{P}\left(A_{k}\right) \mathbb{P}\left(B_{k}\right)=p^{k+1} \mathbb{P}\left(B_{k}\right)$. We want that this is $\dot{i} 0$. Write Y_{l} for the number of blocking cycles of length $2 l$; $\mathbb{P}\left(\overline{B_{k}}\right) \leq \mathbb{P}\left(\sum_{l>k} Y_{l}>0\right) \leq \sum_{l>k} \mathbb{P}\left(Y_{l}>0\right) \leq \sum_{l>k} \mathbb{E}\left(Y_{l}\right) \leq \sum l 3^{2 l-1}(1-p)^{\frac{l}{2}} \leq$ $\sum_{l>k} l(81(1-p))^{\frac{l}{2}}$. Hence if $p>\frac{80}{81}$, so that $81(1-p)<1$, and k is large enough, $\mathbb{P}_{p}\left(\overline{B_{k}}\right)<1$ and we have the result.

Let $\left(e_{i}\right)_{1}^{d}$ be the standard basis, $k=\left\lfloor\frac{d-1}{2}\right\rfloor$; we will consider $\overrightarrow{\mathbb{Z}^{2 k}}$. For $\overrightarrow{u v} \in \overrightarrow{\mathbb{Z}^{d}}, v=u+e_{i}$ for some i; we say v is an x-neighbour of u if $1 \leq i \leq k$
and a y-neighbour if $k+1 \leq i \leq 2 k$. Let $\varphi(\boldsymbol{u})=\left(\sum_{1}^{k} u_{i}, \sum_{k+1}^{2 k} u_{j}\right)$. If P is an infinite oriented path in $\overrightarrow{\mathbb{Z}^{d}}$ starting at $\mathbf{0}$, then $\varphi(P)$ is an (infinite) oriented path in $\overrightarrow{\mathbb{Z}^{2}}$; however, any naively stated converse is false.

Theorem 8: $\frac{1}{2 d-1} \leq p_{T}^{b}\left(\mathbb{Z}^{d}\right) \leq p_{H}^{s}\left(\overrightarrow{\mathbb{Z}^{d}}\right)=O\left(\frac{1}{d}\right)$: the first inequality by maximal degree being $2 d$, the middle by each of the 3 differences between the two terms increasing the critical probability. For the final part, consider percolation on $\overrightarrow{\mathbb{Z}^{d}}$ with probability p. Let $k=\left\lfloor\frac{d-1}{2}\right\rfloor, 2 k \leq d$; consider $\overrightarrow{\mathbb{Z}^{2 k}}$. We'll use the MTU algorithm: consider tripartitions of \mathbb{Z}^{2} as $\left(T_{t}\right)=\left(R_{t}, D_{t}, U_{t}\right)_{t=0}^{\infty}$ and a sequence of subsets $\left(\tilde{R}_{t}\right)_{0}^{\infty} \subset \mathbb{Z}^{d}, \varphi\left(\tilde{R}_{t}\right)=R_{t}$. We have $R_{t} \subset C_{0} \subset \mathbb{Z}^{2}$ [under percolation with some probability] and $\tilde{R}_{t} \subset \vec{C}_{0}$ in $\underset{\tilde{\mathbb{R}}^{d}}{\vec{d}}$. Condition on the event that $\mathbf{0}$ is open; $R_{0}=\{\mathbf{0}\}, D_{0}=\emptyset, U_{0}=\mathbb{Z}^{2} \backslash\{0\} ; \tilde{R}_{0}=\{\mathbf{0}\}$. Update as follows: given $\left(R_{t}, D_{t}, U_{t}\right), \tilde{R}_{t}$, we ask: is there an oriented bond from R_{t} to U_{t} ? If so, pick one, say $\overrightarrow{r u}$. Suppose $\overrightarrow{r u}$ goes in the x direction; pick $\tilde{r} \in \tilde{R}_{t}$ with $\varphi(\tilde{r})=r$. Does \tilde{r} has an open x-neighbour? If not, $R_{t+1}=R_{t}, D_{t+1}=$ $D_{t} \cup\{u\}, U_{t+1}=U_{t} \backslash\{u\}, \tilde{R}_{t+1}=\tilde{R}_{t}$. If there is such an open site, [pick one] \tilde{u}, then $R_{t+1}=R_{t} \cup\{u\}, D_{t+1}=D_{t}, U_{t+1}=U_{t} \backslash\{u\}, \tilde{R}_{t+1}=\tilde{R}_{t} \cup\{\tilde{u}\}$. [If $\overrightarrow{r u}$ goes in the y direction, similar]. If there is no $\overrightarrow{r u}$, finish.

If $\left|\bigcup R_{t}\right|=\infty$ then $\left|\bigcup \tilde{R}_{t}\right|=\infty$. The exploration process $\left(R_{t}, D_{t}, U_{t}\right)$ is just an exploration process of \vec{C}_{0} in $\rightarrow Z^{2} ; \bigcup R_{t}=C_{0}$. In $\rightarrow Z^{2}$, each site is taken (added to R_{t}) with probability $1-(1-p)^{k}$. Hence, if $1-(1-p)^{k}>$ $\frac{80}{81}, \mathbb{P}\left(\left|\cup R_{t}\right|=\infty\right)>0$; in this case, we have percolation on $\overrightarrow{\mathbb{Z}^{d}}$. Thus if $1-(1-p)^{k}>\frac{80}{81}\left(\right.$ in fact if $\left.1-(1-p)^{k}>p_{T}^{s}\left(\overrightarrow{\mathbb{Z}^{2}}\right)\right)$ then $p \geq p_{H}^{s}\left(\overrightarrow{\mathbb{Z}^{d}}\right)$. For this to occur it suffices that $(1-p)^{k}<\frac{1}{81}$; since $(1-p)^{k}<e^{-k p}$ it suffices that $e^{-k p}<\frac{1}{81}$, i.e. that $p k>\log 81$, i.e. $p>\frac{\log 81}{k}$. So it suffices that $p>\frac{2 \log 81}{d-1}$; in particular $p_{H}^{s}\left(\mathbb{Z}^{d}\right)<\frac{10}{d}$ for d sufficiently large.

Probabilistic Tools

We have already seen Kolmogrov's 0-1 law.
Lemma 1 (Tekete's Lemma): Let $\left(a_{n}\right)_{1}^{\infty}$ be a non-negative sequence of reals which is subadditive $a_{n+m} \leq a_{n}+a_{m}$. Then $\lim \frac{a_{n}}{n}$ exists (and is $<\infty$; if we relax the conditions and allow the a_{i} to be negative, the limit still exists but may be $-\infty$): let $a=\underline{\lim } \frac{a_{n}}{n}$ (or just inf $\frac{a_{n}}{n}$), then $\forall \epsilon>0 \exists k$ such that $\frac{a_{k}}{k}<a+\epsilon$. Let $c=\max _{1 \leq i \leq k-1} a_{i}$. Then for n, write $n=k q+r, 0 \leq r \leq k-1$, and $a_{n} \leq q a_{k}+c$. So $\frac{a_{n}}{n} \leq \frac{a k}{k}+\frac{c}{n} \leq a+\epsilon+\frac{c}{n}$. Therefore $\varlimsup a_{n} \leq a+\epsilon$; this is true $\forall \epsilon>0$. so we are done.

We shall be working in the weighted cube $Q_{p}^{n} ; Q^{n} \cong\{0,1\}^{[n]} \cong \mathcal{P}([n])$: for $A \subset[n], A \leftrightarrow \chi_{A}=$ a binary sequence e.g. $(0,1, \ldots) . \boldsymbol{p}=\left(p_{i}\right)_{1}^{n}$; for $A \subset Q^{n}$, $\mathbb{P}_{\boldsymbol{p}}(A)=\sum_{a \in A} \prod_{a_{i}=1} p_{i} \prod_{a_{i}=0}\left(1-p_{i}\right)$. If $p_{i}=p \forall i$ we write Q_{p}^{n}.

Although "officially" we are interested in infinite graphs, in practice knowing about finite subgraphs will tell us everything - e.g. for \mathbb{Z}^{2} we only really need to know what happens in finite rectangles. If such a rectangle contains N bonds, the probability space relevant to bond percolation is Q_{p}^{N}.

An event or property $A \subset Q_{p}^{n}$ is monotone increasing or an up-set if whenever $\boldsymbol{a}=\left(a_{i}\right) \in A, \boldsymbol{b}=\left(b_{i}\right) \in Q^{n}$ and $\boldsymbol{a} \leq \boldsymbol{b}$ (i.e. $\left.a_{i} \leq b_{i} \forall i\right)$ then $\boldsymbol{b} \in A$; the obvious analagous definition exists for a monotone decreasing event or down-set.

Lemma 2 (Harris' Lemma): If A, B are up-sets in Q_{p}^{n} then $\mathbb{P}_{\boldsymbol{p}}(A \cap B) \geq$ $\mathbb{P}(A) \mathbb{P}(B)(\star)$; if both are down-sets, we have the same result while if one is up and the other down, $\mathbb{P}(A \cap B) \leq \mathbb{P}(A) \mathbb{P}(B)$: suppose we have both up or both down. We shall prove (\star) by induction on n; the base case $n=1$ is trivial or $n=0$ even more so. Let $A_{0}=\left\{\boldsymbol{a} \in Q^{n-1}:\left(a_{1}, \ldots, a_{n-1}, 0\right) \in A\right\}, A_{1}=\{\boldsymbol{a} \in$ $\left.Q^{n-1}:\left(a_{1}, \ldots, a_{n-1}, 1\right) \in A\right\} ;$ we have $\mathbb{P}_{\boldsymbol{p}}(A)=\left(1-p_{n}\right) \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{0}\right)+p_{n} \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{1}\right)$; similarly for $B . \mathbb{P}(A \cap B)=\left(1-p_{n}\right) \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{0} \cap B_{0}\right)+p_{n} \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{1} \cap B_{1}\right)$, which by induction is $\geq\left(1-p_{n}\right) \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{0}\right) \mathbb{P}\left(\boldsymbol{p}^{\prime}\left(B_{0}\right)+p_{n} \mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B_{1}\right)\right.$. We want that this is $\geq\left(\left(1-p_{n}\right) \mathbb{P}\left(A_{0}\right)+p_{n} \mathbb{P}\left(A_{1}\right)\right)\left(\left(1-p_{n}\right) \mathbb{P}\left(B_{0}\right)+p_{n} \mathbb{P}\left(B_{1}\right)\right)$; subtracting these gives $p(1-p) \mathbb{P}\left(A_{0}\right) \mathbb{P}\left(B_{0}\right)+p(1-p) \mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B_{1}\right)-p(1-p) \mathbb{P}\left(A_{0}\right) \mathbb{P}\left(B_{1}\right)-p(1-$ p) $\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B_{0}\right)=p(1-p)\left(\mathbb{P}\left(A_{0}\right)-\mathbb{P}\left(A_{1}\right)\right)\left(\mathbb{P}\left(B_{0}\right)-\mathbb{P}\left(B_{1}\right)\right) \geq 0$ as required. For A up and B down, $\mathbb{P}(A \cap B)=\mathbb{P}(A)-\mathbb{P}\left(A \cap B^{c}\right) \leq \mathbb{P}(A)-\mathbb{P}(A) \mathbb{P}\left(B^{c}\right)=$ $\mathbb{P}(A)-\mathbb{P}(A)(1-\mathbb{P}(B))=\mathbb{P}(A) \mathbb{P}(B)$ [other cases similar].

For \mathcal{A}, \mathcal{B} up-sets in $\mathcal{P}(n)$, define $\mathcal{A} \square \mathcal{B}=\{C \subset[n]: \exists A \in \mathcal{A}, B \in \mathcal{B}: A \cap B=$ $\emptyset, C \supset A \cup B\}$, i.e. the set of elements of Q^{n} which have disjoint "certificates" for belonging to \mathcal{A} and to \mathcal{B}. E.g. if A is the set of elements of Q^{n} containing four consecutive 1 s and B the set of elements of Q^{n} containing 31 s where there are at least 2 elements in between the first and second and the second and third, these are both up-sets, and $A \square B$ is the set of elements of Q_{n} with 3 1s separated by 2 elements in between, and disjoint from these, four consecutive 1s. Clearly we always have $A \square B \subset A \cap B$.

Theorem 3 (van den Berg - Kesten): If A, B are up-sets, $\mathbb{P}(A \square B) \leq \mathbb{P}(A) \mathbb{P}(B) ;$ induct on n, the $n=1$ case being trivial. Define $A_{0}, A_{1}, B_{0}, B_{1}$ as before; $C_{0}=A_{0} \square B_{0} \subset\left(A_{0} \square B_{1}\right) \cap\left(A_{1} \square B_{0}\right), C_{1}=A_{0} \square B_{1} \cup A_{1} \square B_{0} \subset A_{1} \square B_{1} . \mathbb{P}\left(C_{0}\right)+$ $\mathbb{P}\left(C_{1}\right) \leq \mathbb{P}\left(\left(A_{0} \square B_{1}\right) \cap\left(A_{1} \square B_{0}\right)\right)+\mathbb{P}\left(\left(A_{0} \square B_{1}\right) \cup\left(A_{1} \square B_{0}\right)\right)=\mathbb{P}\left(A_{0} \square B_{1}\right)+$ $\left.\mathbb{P}\left(A_{1} \square B_{0}\right)\right) \leq \mathbb{P}\left(A_{0}\right) \mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B_{0}\right)$. Multiplying this by $p_{n}\left(1-p_{n}\right)$ and adding $\left(1-p_{n}\right)^{2} \times \mathbb{P}\left(C_{0}\right) \leq \mathbb{P}\left(A_{0}\right) \mathbb{P}\left(B_{0}\right)$ and $p_{n}^{2} \times \mathbb{P}\left(C_{1}\right) \leq \mathbb{P}\left(A_{1}\right) \mathbb{P}\left(B_{1}\right)$ (both these inequalities being true by the induction hypothesis), $(1-p) \mathbb{P}\left(C_{0}\right)+$ $p \mathbb{P}\left(C_{1}\right) \leq\left((1-p) \mathbb{P}\left(A_{0}\right)+p \mathbb{P}\left(A_{1}\right)\right)\left((1-p) \mathbb{P}\left(B_{0}\right)+p \mathbb{P}\left(B_{1}\right)\right)$ i.e. $\mathbb{P}(C) \leq \mathbb{P}(A) \mathbb{P}(B)$ as required.

1. Suppose $A_{1}, A_{2} \subset Q_{\boldsymbol{p}}^{n}, \mathbb{P}\left(A_{1} \cup A_{2}\right) \geq 1-\frac{1}{100} \Rightarrow \max _{i} \mathbb{P}\left(A_{i}\right) \geq \frac{1-\frac{1}{100}}{2}$. If the A_{i} are increasing, then this becomes $\geq 1-\frac{1}{10}$: suppose A_{i} are increasing so $\overline{A_{i}}$ are decreasing. $\mathbb{P}\left(A_{1} \cup A_{2}\right) \geq 1-\epsilon \Rightarrow \mathbb{P}\left(\overline{A_{1}} \cap \overline{A_{2}}\right) \leq \epsilon \therefore \mathbb{P}\left(\overline{A_{1}}\right) \mathbb{P}\left(\overline{A_{2}}\right) \leq$ $\epsilon \therefore \min \mathbb{P}\left(\overline{A_{i}}\right) \leq \sqrt{\epsilon} \therefore \max \mathbb{P}\left(A_{i}\right) \geq 1-\sqrt{\epsilon}$. Slightly more generally, for $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq 1-\epsilon, A_{i}$ increasing, $\max _{i} \mathbb{P}\left(A_{i}\right) \geq 1-\epsilon^{\frac{1}{n}}$.
2. Consider $G_{n, p}$, and A the event that there is a cycle of length $\frac{n}{2}, B$ the event that there exists a Hamiltonian cycle; both these are increasing, so we have $\mathbb{P}(A \square B) \leq \mathbb{P}(A) \mathbb{P}(B) \leq \mathbb{P}(A \cap B)$. $(A \square B$ is of course the event that there are, edge-disjoint, a Hamiltonian cycle and a cycle of length $\frac{n}{2}$).
3. $\mathbb{P}_{p}(A)$, for A increasing, as a function of p, will be an increasing function; its graph will always have positive gradient. E.g. in the simplest possible case, $A=\{S \subset[n]: 1 \in S\}, \mathbb{P}_{p}(A)=p$ and the graph is simply a straight line of gradient 1. But in fact in all "interesting" cases, the graph has a "sharp threshold"; it is close to 0 until p gets close to some threshold probability, then "shoots up" to close to 1 . We aim to show that this occurs by showing that (for A always assumed increasing) if $\mathbb{P}_{p}(A)$ is neither very small nor very large, then $\frac{d}{d p} \mathbb{P}_{p}(A)$ is large.
4. The influence of a RV: For $A \subset Q_{\boldsymbol{p}}^{n}, \omega \in Q_{p}^{n}, \omega_{i}$ is pivotal at ω for A if precisely one of $\left(\omega_{1}, \ldots, \omega_{i-1}, 0, \omega_{i+1}, \ldots, \omega_{n}\right),\left(\omega_{1}, \ldots, \omega_{i-1}, 1, \omega_{i+1}, \ldots, \omega_{n}\right)$
belongs to A. Wlog consider ω_{n} rather than ω_{i} in the following: set $A_{i}=$ $\left\{\omega^{\prime}=\left(\omega_{j}\right)_{j=1}^{n-1} \in Q_{p^{\prime}}^{n-1}:\left(\omega_{1}, \ldots, \omega_{n-1}, i\right) \in A\right\}$ where $\boldsymbol{p}^{\prime}=\left(p_{1}, \ldots, p_{n-1}\right)$, for $i=0,1$. Set $A_{+}=A_{1} \backslash A_{0}, A_{-}=A_{0} \backslash A_{1}, A_{b}=A_{0} \cap A_{1}$. We have $\mathbb{P}_{\boldsymbol{p}}(A)=p_{n} \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{+}\right)+\left(1-p_{n}\right) \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{-}\right)+\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{b}\right)$. The (signed) influence of ω_{n} on A is defined by $\beta_{n}(A):=\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{+}\right)-\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{-}\right)$; the (absolute) influence of ω_{n} is $\overline{\beta_{n}}(A):=\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{+}\right)+\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{-}\right)$; note that if A is increasing these are the same (since A_{-}is empty).

Margulis (and Russo)

Lemma 4: $\frac{\partial}{\partial p_{n}} \mathbb{P}_{\boldsymbol{p}}(A)=\beta_{n}(A)$; in particular, if $A \subset \mathbb{Q}_{\boldsymbol{p}}^{n}$ and $\boldsymbol{p}=(p, \ldots, p)$ then $\frac{\partial}{\partial p} \mathbb{P}_{p}(A)=\sum_{i=1}^{n} \beta_{i}(A)$ (this follows by the chain rule): $\frac{\partial}{\partial p_{n}} \mathbb{P}_{\boldsymbol{p}}(A)=$ $\frac{\partial}{\partial p_{n}}\left(p_{n} \mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{+}\right)+\left(1-p_{n}\right) \mathbb{P}_{\boldsymbol{p}^{\prime}}(A)+\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{b}\right)\right)=\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{+}\right)-\mathbb{P}_{\boldsymbol{p}^{\prime}}\left(A_{-}\right)$.

Consider $A \subset Q^{n}\left(=Q_{\frac{1}{2}}^{n}\right) ; \overline{\beta_{n}}(A)=\frac{\{\text { edge boundary of } A \text { in direction } n\} \mid}{2^{n-1}}$ so $\sum_{i=1}^{n} \overline{\beta_{i}}(A)=\frac{\left|\partial_{e}(A)\right|}{2^{n-1}}$. If $|A|=2^{n-1},\left|\partial_{e}(A)\right| \geq 2^{n-1}$; more generally if $|A|=2^{x}$, $\left|\partial_{e}(A)\right| \geq 2^{x}(n-x)$. If $|A|=t 2^{n}$ (i.e. $\mathbb{P}_{\frac{1}{2}}(A)=t$) then $\sum_{i=1}^{n} \overline{\beta_{i}}(A) \geq$ $t 2^{n} \frac{n-\log \left(t 2^{n}\right)}{2^{n-1}}=2 t \log \frac{1}{t}$. This is "already looking good", since this quantity is nonnegligible precisely for t not near 0 or 1 , but we can improve it a lot. If $\mathbb{P}_{\frac{1}{2}}(A)=\frac{1}{2}$, the extremal example is a half-cube, for which $\sum_{1}^{n} \overline{\beta_{i}}(A)=\overline{\beta_{n}}(A)$. This suggests we can do better if the β_{i} are close to each other:

Ben-Or and Linial

Theorem 5 (Kahm, Kalai and Linial '88): $\sum_{1}^{n} \overline{\beta_{i}}(A)^{2} \geq c t^{2}(1-t)^{2} \frac{(\log n)^{2}}{n}$, where $t=\mathbb{P}_{\frac{1}{2}}(A)$ and c is an absolute constant. Bourgain, Kahn, Kalai, Katznelson and Linial found a similar result for the solid cube $[0,1]^{n}$.

Theorem 6: For every $p>0$, there is an absolute constant c such that $\max _{i} \overline{\beta_{i}}(A) \geq c t(1-t) \frac{\log n}{n}$.
$A \subset Q^{n}$ is called symmetric if $\forall i, j \in[n] \exists$ a permutation $\pi:[n] \rightarrow[n]$ such that $\pi(i)=j$ and $\omega \in A \Rightarrow \omega_{\pi}:=\left(\omega_{\pi(1)}, \ldots, \omega_{\pi(n)}\right) \in A$.
E.g. $[n] \times[n]$, a grid, and consider bond percolation with probability p, A the event that the resulting graph is connected; this is not symmetric. However, if we identify opposite sides to form a torus, it becomes symmetric, and indeed is symmetric for any other event e.g. $A=\exists$ a long path.

Maximal influence: For $A \subset Q_{\frac{1}{2}}^{n}$, II implies $\max \overline{\beta_{i}}(A) \geq c t \frac{\log \frac{1}{t}}{n}$, where $t=\mathbb{P}_{\frac{1}{2}}(A)$; in fact we may find $c=2$. BKKKL implies for $A \subset Q_{p}^{n}, \max \overline{\beta_{i}}(A) \geq$ $c t(1-t) \frac{\log n}{n}$.

Thresholds (increase of $\mathbb{P}_{p}(A)$: Suppose $A \subset Q_{p}^{n}$ is a symmetric up-set; using the Margulis-Russo lemma (which we haven't the time to prove) we get:

Theorem 7: Suppose $A \subset Q_{p}^{n}$ is a symmetric up-set, $\mathbb{P}_{p}(A)>\epsilon>0, \epsilon<\frac{1}{2}$. Then $\mathbb{P}_{q}(A) \geq 1-\epsilon$ provided $q-p \geq c \frac{\log \frac{1}{2 \epsilon}}{\log n}$. This is a very good result, but says little if p is very small; fortunately for that case we have:

Theorem 8: The same result holds provided $q-p \geq c p \log \frac{1}{p} \frac{\log \frac{1}{2 c}}{\log n}$.
Note that these results do not hold for A almost given by a "junta", e.g. $A=\left\{\left(\omega_{i}\right)_{1}^{n}: \omega_{1}+\omega_{2}+\omega_{3} \geq 2\right\}$, which has $\mathbb{P}_{\frac{1}{2}}(A)=\frac{1}{2}$ [this A is very much not symmetric].

Bond percolation on \mathbb{Z}^{2}, the square lattice

Our aim in this section is to proove the celebrated results of Haris and Kosten, which give values for $p_{T}^{b}\left(\mathbb{Z}^{2}\right)$ and $p_{H}^{b}\left(\mathbb{Z}^{2}\right)$.

1. Crossing rectangles: a rectangle $R=[m] \times[n]$ has $m n$ sites and $2 m n-$ $m-n$ bonds. For $\Lambda=\mathbb{Z}^{2}$, we can simply say $\Lambda^{\star}=\mathbb{Z}^{2}$, but for a rectangle it is not clear how we should treat the boundary, so we make some more definitions: the horizontal dual R^{h} is an $(m-1) \times(n+1)$ rectangle, having vertices inside each face of R and extra rows along the top and bottom, but no extra columns along the edges. For each horizontal bond f of R, f^{\star} is a vertical bond of R^{h}.

The vertical dual of R, R^{v}, is $(m+1) \times(n-1)$; for $m, n \geq 2,\left(R^{h}\right)^{v}=R=$ $\left(R^{v}\right)^{h}$; if R is $(n+1) \times n$ then we consider R^{\star} to be $R^{h}, n \times(n+1)$. Let $H(R)$ be the event that there is an open crossing of R from left to right; $V(R)$ the same for top to bottom.

Consider bond percolation with probability p on $\Lambda=\mathbb{Z}^{2}$; this corresponds to bond percolation with probability $1-p$ on $\Lambda^{\star}=\mathbb{Z}$, by: for any configuration ω on Λ, ω^{\star} is the configuration on Λ^{\star} such that f is open iff f^{\star} is closed.

Lemma 1: For R an $m \times n$ rectangle, $m, n \geq 2$, for every configuration ω on R exactly one of $\omega \in H(R), \omega^{\star} \in V\left(R^{h}\right)$ holds: draw R. Draw a square in the centre of each bond of R, i.e. around the intersection of each bond f with its corresponding f^{\star}. Then connect the corners of these squares with diagonal lines, so that we now have a tiling by squares and octagons, with an octagon around each vertex of R and each vertex of R^{h}.

Colour the octagons black if they correspond to vertices of R, white for vertices of R^{h}, and colour the squares according to our percolation: black if f is open, white if f^{\star} is open (and the squares on the left and right edges for which there is no f^{\star} always black). Consider the lines separating black and white regions to form the interface graph $I(w)$; orient every edge therof such that the black region is on the right and the white on the left.

For every vertex v in the interior of the tiling, there is exactly one bond going into v and one leaving it; the only vertices for which this does not hold are the four corners. At the top left we have a bond going into the graph, at the top right one coming out, at the bottom left coming out and at the bottom right going in. Thus $I(\omega)$ is some oriented cycles and two oriented paths. Each of these paths gives either an open horizontal crossing of R or an open vertical crossing of R^{h}; in fact we obtain either the topmost and bottommost horizontal crossings in R or the leftmost and rightmost vertical crossings in R^{h}. (Note that this proof shows e.g. the leftmost vertical crossing depends only on bonds in it and to its left (since we can find it via a "hand-on-left-wall method" in the coloured tiling); thus it will be independent of an event defined depending only on the bonds to its right). We cannot have both events as if so, we have two vertices top and bottom joined to each other, and two left and right joined to each other, and neither path crossing each other or the outer square; then add a vertex outside the square and join it to the four previously mentioned ones, and we have a planar drawing of K_{5}.

Corollary 2: i) For $R=[m+1] \times[n]$ a rectangle, $\forall p, \mathbb{P}_{p}(H(R))+\mathbb{P}_{1-p}\left(V\left(R^{h}\right)\right)=$ 1 ii) IF $R=[n+1] \times[n]$ then $\mathbb{P}_{\frac{1}{2}}(H(R))=\frac{1}{2}$ iii) If S is a square, $\mathbb{P}_{\frac{1}{2}}(H(S))>\frac{1}{2}$: i) If ω is distributed as a percolation with probability p then ω^{\star} has the distribution of a percolation with probability $1-p ;\{\omega \in H(R)\}$ and $\left\{\omega^{\star} \in V\left(R^{h}\right)\right\}$ par-
tition [the state space] Ω. ii) For $R^{h} n \times(n+1)$, clearly $\mathbb{P}_{\frac{1}{2}}(H(R))=\mathbb{P}_{\frac{1}{2}}\left(V\left(R^{h}\right)\right)$; combine this with the previous result. iii) When we enlarge S from an $n \times n$ square to an $(n+1) \times n$ rectangle, the probability becomes $\frac{1}{2}$ by the previous result.

Write $h_{p}(m, n):=\mathbb{P}_{p}(H(R))$ where R is an $m \times n$ rectangle, and $h(m, n)=$ $h_{\frac{1}{2}}(m, n)$. We want to show that for $p>\frac{1}{2}$, the probability of a horizontal crossing of a rectangle of any "aspect ratio" is large, provided n is large enough; we shall get their slowly.

Lemma 3: Let $R=[m] \times[2 n], S$ the $[r] \times n]$ rectangle in the "bottom left" corner of $R, X(R, S)$ the event that there are open paths P_{1}, P_{2} such that P_{1} is a vertical crossing of S and P_{2} joins P_{1} to the RHS of R. Then $\mathbb{P}_{p}(X(R, S)) \geq \frac{1}{2} \mathbb{P}_{p}(H(R)) \mathbb{P}_{p}(V(S))$.

The proof is conceptually simple: consider P_{1} and its reflection P_{1}^{\prime}; any P_{2} which is a horizontal crossing of R must hit one of these. But we need to be able to use Harris' lemma, and P_{1}^{\prime} doesn't form an up-set, so we shall need some technical manouvers. Write $L V(S)=P_{1}$ for P_{1} the leftmost vertical $\tilde{\tilde{P}}_{1}$ crossing of S, \emptyset if there is no such crossing. Let P_{1}^{\prime} be the reflection of P_{1}, $\tilde{P}_{1}=P_{1} \cup P_{1}^{\prime} \cup$ the single bond in the middle joining them, $R\left(P_{1}\right)=$ the part of R to the right of \tilde{P}_{1}. Let $Y\left(P_{1}\right)$ be the event that $R\left(P_{1}\right)$ has an open path from \tilde{P}_{1} to the RHS of $R, Z\left(P_{1}\right)$ be that that $R\left(P_{1}\right)$ has an open path from P_{1} to the RHS of R. We clearly have $\mathbb{P}\left(Z\left(P_{1}\right)\right) \geq \frac{1}{2} \mathbb{P}\left(Y\left(P_{1}\right)\right) \geq \frac{1}{2} \mathbb{P}(H(R))$. The event $L V(S)=P_{1}$ is independent of all the bonds of $R\left(P_{1}\right)$; in particular it is independent of $Z\left(P_{1}\right) . \quad\left\{L V(S)=P_{1}\right\} \cap Z\left(P_{1}\right) \subset X(R, S)$; thus $\bigcup_{P_{1}}\left\{L V(S)=P_{1}\right\} \cap Z\left(P_{1}\right) \subset X(R, S) \therefore \mathbb{P}(X(R, S)) \geq \sum_{P_{1}} \mathbb{P}\left(Z\left(P_{1}\right) \mid L V(S)=\right.$ $\left.P_{1}\right) \mathbb{P}(L V(S))=P_{1} \geq \sum_{P_{1}} \frac{1}{2} \mathbb{P}(H(R)) \mathbb{P}\left(L V(S)=P_{1}\right)=\frac{1}{2} \mathbb{P}(H(R)) \mathbb{P}(V(S))$, as required.

Corollary 4: $h\left(m_{1}+m_{2}-r, 2 n\right) \geq \frac{1}{4} h\left(m_{1}, 2 n\right) h\left(m_{2}, 2 n\right) h(r, n)^{2} h(n, r)$, since if we consider a $m_{1}+m_{2}-r \times 2 n$ rectangle as being an $m_{1} \times 2 n$ rectangle overlapping an $m_{2} \times 2 n$ rectangle, with the overlap being two $r \times n$ rectangles, say one of them is S, if we have an open vertical crossing of S and an open "horizontal" path from this crossing to the LHS of the left rectangle, another open vertical crossing of S and an open "horizontal" path from this to the RHS of the right rectangle, and an open horizontal crossing of S, then by their powers combined we have an open horizontal crossing of the entire rectangle.

For example, applying this $m_{1}=m_{2}=2 n+1, r=n-1$ gives $h(3 n+3,2 n) \geq$ 2^{-7}; feeding this result back in we have $h(5 n+7,2 n) \geq 2^{-19}$ and similarly $h(6 n+9,2 n) \geq 2^{-25}$, which we shall use.

Theorem 4 (Harris, 1960): For bond percolation on $\mathbb{Z}^{2}, \vartheta\left(\frac{1}{2}=0\right.$: write $r\left(C_{0}\right)$ for the l_{∞}-radius of C_{0}. We claim $\mathbb{P}_{\frac{1}{2}}\left(r\left(C_{0}\right) \geq n\right) \leq n^{-c}(\star)$, where $c>0$ is an absolute constant: consider $\Lambda=\mathbb{Z}^{2}, \Lambda^{\star} \cong \mathbb{Z}^{2}$, and probability $\frac{1}{2}$; couple $f \leftrightarrow f^{\star}$ in the usual fashion. Consider a square annulus in Λ^{\star}; if we have an open path going around it, we are done. Consider the four "long" versions of the "side" rectangles; if we have lengthwise open crossings of each, they join to give a cycle as required - and we can use Harris freely for this.

More formally, let A_{k} be the square annulus in Λ^{\star} with centre ($\frac{1}{2}, \frac{1}{2}$), inner radius 4^{k} and outer radius 3×4^{k}. Let E_{k} be the event that there is an open cycle in A_{k} surrounding $0 ; A_{k}$ is made up of four $\left(3 \times 4^{k}+1\right) \times\left(4^{k}+1\right)$ rectangles (overlapping), and the probability that there is a crossing of such a rectangle "the long way" is, as we saw, $\geq 2^{-25}$, so $\mathbb{P}\left(E_{k}\right) \geq 2^{-100}$ by Harris.

Also $E_{k} \subset\left\{r\left(C_{0}\right) \leq 3 \times 4^{k}<4^{k+1}\right\} \therefore \mathbb{P}\left(r\left(C_{0}\right) \geq n\right) \leq(1-\epsilon)^{l} \leq e^{-\epsilon l}$, if $4^{l+1} \leq n$. Indeed, $\left(E_{k}\right)_{k=1}^{\infty}$ are independent since the annuli are disjoint; $\mathbb{P}\left(\left|C_{0}\right|=\infty\right) \leq \mathbb{P}\left(r\left(C_{0}\right) \geq n\right) \forall n \therefore \mathbb{P}\left(\left|C_{0}\right|=\infty\right)=0$.

We showed that $\mathbb{P}_{\frac{1}{2}}\left(r\left(C_{0}\right) \geq n\right) \leq n^{-C}$; we have also that it is $\geq \frac{1}{2 n}$ by considering an $n \times n$ square: the probability that it has an open crossing is $\frac{1}{2}$, so there is at least one vertex on the left hand edge for which there is an open crossing starting at that vertex with probability $\geq \frac{1}{2 n}$; position the square such that that vertex is the origin, then done.

Thus $0<c \leq \lim \inf \frac{-\log \mathbb{P}_{\frac{1}{2}}\left(r\left(C_{0}\right) \geq n\right)}{\log n} \leq \lim \sup \frac{-\log \mathbb{P}_{\frac{1}{2}}\left(r\left(C_{0}\right) \geq n\right)}{\log n} \leq 1$. Clearly the limit exists, but proving this would guarantee the reader a fellowship at their college of choice. An even simpler open question, is to prove that e.g. $h(10 n, n) \rightarrow$ some h_{n}.

Harris tells us that $p_{H}^{b}\left(\mathbb{Z}^{2}\right) \geq \frac{1}{2}$.
2. A sharp transition. We saw $h_{\frac{1}{2}}(4 n, n) \geq c_{4}>0$. We aim to show that for $p>\frac{1}{2}, h_{p}(\rho n, n) \rightarrow 1$ as $n \rightarrow \infty$, for any fixed $\rho>1$ e.g. $\rho=100$.

Lemma 5: Let $p>\frac{1}{2}$ and $\rho \geq 1$. Then $\exists \gamma=\gamma(p)>0, n_{0}=n_{0}(p, \rho)$ such that if $n \geq n_{0}$ then $h_{p}\left(\rho_{n}, n\right) \geq 1-n^{-\gamma}$: our main weapon here is that if $A \subset Q_{p}^{N}$ is a symmetric upset with $\mathbb{P}_{p}(A) \geq \epsilon\left(<\frac{1}{2}\right)$ then $\mathbb{P}_{q}(A) \geq 1-\epsilon$ provided $q-p \geq c_{0} \frac{\log \frac{1}{2 \epsilon}}{\log N}$. It suffices to show the result for $h_{p}(3 n, 2 n)$, since everything remains exponential if we "glue" multiple rectangles to make larger ones (we shall see this more formally later).

Define $\mathbb{T}_{5 n}$ the $5 n \times 5 n$ torus, with $25 n^{2}$ sites and $50 n^{2}$ bonds. Let A be the event that there is a $4 n \times n$ or $n \times 4 n$ rectangle in $\mathbb{T}_{5 n}$ with a crossing "the long way"; this is clearly a symmetric upset in Q_{p}^{N}, where $N=50 n^{2}$. $\mathbb{P}_{\frac{1}{2}}(A) \geq c_{4}>0$ (by just considering some particularl fixed $4 n \times n$ rectangle). Let $\delta=\frac{p-\frac{1}{2}}{25 C_{0}}, \epsilon=n^{-50 \delta}$ (thus $\delta=\frac{\log \frac{1}{\epsilon}}{50 \log n} . p-\frac{1}{2}=25 C_{0} \frac{\log \frac{1}{\epsilon}}{50 \log n}$. Take n large enough to have $\epsilon<c_{4}$, then $\mathbb{P}_{\frac{1}{2}}(A)>\epsilon$. Then $\mathbb{P}_{p}(A) \geq 1-\epsilon=1-n^{-50 \delta}$.

Let R_{1}, \ldots, R_{50} be the canonical $3 n \times 2 n$ and $2 n \times 3 n$ rectangles in $\mathbb{T}_{25 n^{2}}$; the bottom-left vertices are $(i n, j n)$. Let F_{i} be the event that R_{i} is crossed "the long way". Then $A \subset \bigcup_{1}^{50} F_{i}$; each F_{i} is an upset so $\exists F_{i}$ such taht $\mathbb{P}_{p}\left(F_{i}\right) \geq$ $1-\epsilon^{\frac{1}{50}}=1-n^{-\delta}$.

For general p, e.g. taking $\gamma=\frac{\delta}{2}$ works: $1-\mathbb{P}($ open crossing $) \leq(2 \rho-5) n^{-\delta}<$ $n^{-\frac{\delta}{2}}$ for ρ fixed and n large enough, and we can cross a $\rho n \times 2 n$ rectangle using $2 \rho-5$ crossings of $3 n \times 2 n$ rectangles - divide it into $n \times n$ blocks, then consider horizontal crossings of each first $3 n \times 2 n$ rectangle and vertical crossings of each $2 n \times 2 n$ square (other than those at the end); these will combine to give a horizontal crossing of the entire rectangle.

Corollary 6: $\forall \rho \geq 1, p>\frac{1}{2}, h_{p}(\rho n, n) \rightarrow 1$.
Theorem 7 (Kesten, 1980): For $p>\frac{1}{2}, \vartheta(p)>0$ (i.e. $\mathbb{P}_{p}\left(E_{\infty}\right)=1$); $p_{H}^{b}\left(\mathbb{Z}^{2}\right) \leq$ $\frac{1}{2}$): Let R_{k} be $\left[2^{k} n\right] \times\left[2^{k+1} n\right]$ if k is even, $\left[2^{k+1} n\right] \times\left[2^{k} n\right]$ for k odd; place all the rectangles with their bottom left corner at the origin (then a vertical crossing of R_{1} and a horizontal crossing of R_{2} must meet, and this must meet a vertical crossing of R_{3}, and so on). Let E_{k} be the event that R_{k} has an open crossing the long way; $\bigcap_{k=0}^{\infty} R_{k} \subset E_{\infty}$ [yes, technically false, but only in a sense that doesn't matter $]$. $\mathbb{P}\left(\bigcap R_{k}\right)=1-\mathbb{P}\left(\bigcup R_{k}^{c}\right) \geq 1-\sum \mathbb{P}\left(R_{k}^{c}\right) \geq 1-\sum\left(2^{k} n\right)^{-\gamma}$, which is >0 if n is sufficiently large.
4. Exponential decay: Usually (as we have just seen), above the "threshold"
probability, the probability of an event tents to 1 polynomially; however, usually below the threshold the probability tents to 0 exponentially.

Consider site percolation on Λ; our state space is $\Omega=\{0,1\}^{V(\Lambda)}$. A cylindrical set is a subset $E_{F} \subset \Omega$ depending only on the states of the sites in some finite set F. Write \mathcal{C} for the algebra of cylindrical sets; we define a site percolation measure on Λ to be the completion of a finitely additive probability measure on \mathcal{C}.

A SPM \mathbb{P} on Λ is called k-independent if any two cylindrical events $E_{F}, E_{F^{\prime}}$ with $d\left(F, F^{\prime}\right) \geq k$ the events are independent (i.e. for finite sets $U, W \subset V(\Lambda)$ at distance $\geq k$, the states in U, W are independent); for $k=1$ this of course becomes independence in the usual sense, for $k \geq 2$ we "get funnier measures"

Examples: 1. Consider \mathbb{P} an (independent) bond percolation measure on Λ; define $\tilde{\mathbb{P}}$ on $V(\Lambda)$ by: a site $v \in V(\Lambda)$ is open if there is an open path (in \mathbb{P}) of length 3 starting at v. This measure $\tilde{\mathbb{P}}$ is 6 -independent. 2 . Pick 3×3 squares independently with probability p and declare a site open if it is in one of these squares; this is 5-independent.

Lemma 8: Let $\Delta \geq 2$. Then $\exists a=a(\Delta, k)>0$ and $p_{1}(\Delta, k)$ such that if $\Delta(\Lambda) \leq \Delta$ and \mathbb{P} is a k-independent site percolation measure on $V(\Lambda)$ with $\mathbb{P}(v$ open $) \leq p_{1}(\Delta, k) \forall v \in V(\Lambda)$ then $\tilde{\mathbb{P}}\left(\left|C_{v}\right| \geq n\right) \leq e^{-a n} \forall n \geq 1, v \in V(\Lambda)$: Fix $p>0, v \in V(\Lambda)$. 1) The number of n-sets $U \subset V(\Lambda)$ containing v such that $\Lambda[U]$ is connected is $\leq(e \Delta)^{n-1}$ (exercise; we can also obtain a slightly stronger result using trees rather than connected graphs). 2) Write $b(r, \Delta)=$ $1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{r-1} ; \forall w \in V(\Lambda)$ there are at most $b(r, \Delta)$ vertices within distance r of $w . \forall U \subset V(\Lambda),|U|=n \exists W \subset U,|W| \geq \frac{n}{b(k-1, \Delta)}$ such that $d\left(w, w^{\prime}\right) \geq k \forall w, w^{\prime} \in W, w \neq w^{\prime}$ (by just picking vertices greedily). Hence, given $U \subset V(\Lambda),|U|=n$, the probability that every site in $\Lambda_{p}[U]$ is open is $\leq p^{\frac{n}{b(k-1, \Delta)}}$. 3) $\mathbb{P}\left(\left|C_{v}\right| \geq n\right) \leq(e \Delta)^{n-1} p^{\frac{n}{b(k-1, \Delta)}}<\left(e \Delta p^{\frac{1}{b(n-1, \Delta)}}\right)^{n}$; hence choosing $p_{1}=p$ such that $e^{-a}=e \delta p^{\frac{1}{b(k-1, \Delta)}}<1$ and this value of a we have the result.

Theorem 9: Let $p<\frac{1}{2}$, then $\exists a(p)>0$ such that in bond percolation on \mathbb{Z}^{2} with probability $p, \mathbb{P}\left(\left|C_{0}\right| \geq n\right) \leq e^{-a n} \forall n \geq 2: \mathbb{P}$ is an independent bond percolation on $\Lambda=\mathbb{Z}^{2}$. We'll define $\tilde{\mathbb{P}}$ a 5 -independent site percolation on \mathbb{Z}^{2} such that the probability of any site being open is small and large open clusters in \mathbb{P} correspond to lange open clusters in $\tilde{\mathbb{P}}$ (This is an important general technique, but one which must be used with care; if applied crudely it gives terrible bounds). Let $s=m+1$, to be defined later; consider a tiling of \mathbb{Z}^{2} by $s \times s$ squares $S_{i j}=\{i s, i s+1, \ldots, i s+m\} \times\{j s, j s+1, \ldots, j s+m\}:$ $(i, j) \in \mathbb{Z}^{2}$. We have $\Lambda \leftrightarrow \Lambda^{\star}, p \leftrightarrow 1-p$ as usual. Declare (i, j) to be closed (in our new percolation $\tilde{\mathbb{P}}$) if in the square annulus of outer diameter $3 m$ and inner diameter m around $S_{i j}$ in Λ^{\star}, there is an open cycle surrounding $S_{i j}$; $\tilde{\mathbb{P}}((i, j)$ is closed $) \geq\left(h_{1-p}(3 m, m)\right)^{4} \therefore \tilde{\mathbb{P}}((i, j)$ open $) \leq 1-h_{1-p}(3 m, n)^{4}<$ $p_{1}(5,4)$ (our site percolation $\tilde{\mathbb{P}}$ is 5 -independent). So $\tilde{\mathbb{P}}\left(\left|\tilde{C}_{0}\right| \geq n\right) \leq e^{-a n}$ where $a=a(5,4)$. If $\left|C_{0}\right| \geq(3 s)^{2}$ ther every "square" $S_{i j}$ that C_{0} meets is open (i.e. the corresponding (i, j) is open, because C_{0} meets the square in Λ so there cannot be a cycle in Λ^{\star} surrounding the square). Hence $\mathbb{P}\left(\left|C_{0}\right| \geq n\right) \leq \mathbb{P}\left(\left|\tilde{C}_{0}\right| \geq\right.$ $\left.\frac{n}{(3 s)^{2}}\right) \leq e^{-\frac{a}{3 s^{2}} n}$ (strictly speaking this is only true for $n \geq 3 s^{2}$, but we can find a bound for $n<3 s^{2}$ and incorporate this into our exponent); this gives the result.

Theorem 10 (Kesten's theorem): $p_{T}^{b}\left(\mathbb{Z}^{2}\right)=p_{H}^{b}\left(\mathbb{Z}^{2}\right)=\frac{1}{2}$: We know $p_{T}^{b}\left(\mathbb{Z}^{2}\right) \leq$ $p_{H}^{b}\left(\mathbb{Z}^{2}\right) \leq \frac{1}{2}$ (and in fact we know this second \leq is an $=$, by Harris). If $p<\frac{1}{2}$,
$\mathbb{E}_{p}^{b}\left(\left|C_{0}\right|\right) \leq 1+\sum_{k=2}^{\infty} k e^{-k a}<\infty$, so we are done.
Lemma 11: For $k \geq 1 \exists p_{k}<1$ such that if P is a k-independent bond percolation measure on \mathbb{Z}^{2} (or \mathbb{Z}^{n}) with [each] bond open with probability $>p_{k}$ then $\mathbb{P}\left(E_{\infty}\right)=1$: the proof is by Peierl's argument. If we have a cycle around 0 , we can find many bounds in this which are all far apart from each other. (Proving that e.g. p_{1} is in fact quite small is a far trickier matter).

Another proof that $p_{H}^{b}\left(\mathbb{Z}^{2}\right) \leq \frac{1}{2}$: consider $P>\frac{1}{2}$, take a "grid" of $n \times n$ squares in our original Λ, and "shade them" such that every square whose x and y coordinates are both odd is shaded, otherwise left blank. Consider these shaded squares as forming the sites of a new percolation [on \mathbb{Z}^{2}] (in fact the argument also works if we consider every square as a site in the new percolation, but it "looks more like a lattice" this way). In this new percolation we consider a horizontal bond from a to b to be open if we have an open horizontal crossing of the $3 n \times n$ rectangle with a and b as its two ends in the original percolation, and also a vertical crossing of the leftmost of the two, a (this last condition so that if we have bonds from a to b to c in the new percolation, we really do have an open crossing from a to c in the original percolation); similarly a vertical bond is considered open if we have a vertical crossing of the $n \times 3 n$ rectangle it corresponds to and also a horizontal crossing of the lowest $n \times n$ square of this. This defines a new 1 -independent (note that k-independence is defined in terms of sites, so this is really true; it is not the case that two bonds joined to the same site are independent in the new percolation, but it does not need to be) percolation measure $\tilde{\mathbb{P}}$ where the probability of a bond being open is $\geq h_{p}(3 n, n) h_{p}(n, n)$, which will be $>p_{1}$ for n large enough.

The Aizenmann-Kesten-Newmann Theorem and Critical Probabilities

1. The AKN Theorem. Consider Λ (with the usual conditions e.g. locally finite). A subgroup $\Phi \subset$ Aut Λ is a group of translations if \forall finite $F \subset V(\Lambda)$, $\exists \varphi \in \Phi, \varphi(F) \cap F=\emptyset$ (equivalently, $\forall x \in V(\Lambda), n \geq 1 \exists \varphi \in \Phi: d(x, \varphi(x) \geq n)$). Consider site percolation, as we shall do throughout thes section unless otherwise stated. A site percolation measure on Λ is translation invariant if $\forall F \subset V(\Lambda)$ finite, $\mathbb{P}\left(E_{F}\right)=\mathbb{P}\left(\varphi^{\star}\left(E_{F}\right)\right) \forall \varphi \in \Phi$, and translation independent if $\forall F \subset V(\Lambda)$ finite $\exists \varphi \in \Phi$ such that $E_{F}, \varphi^{\star}\left(E_{F}\right)$ are independent, for E_{F} any cylindrical event depending only on F and φ^{\star} denoting "the translation of the event under φ ".

Theorem 1 (0-1 law for translation invariant events): Let Λ be as usual, \mathbb{P} translation invariant and translation indepedent. Let E be a translation invariant event. Then $\mathbb{P}(E)=0$ or 1: let $\epsilon>0$. Then \exists finite F such that $\mathbb{P}\left(E \Delta E_{F}\right)<\epsilon$. We may assume $\mathbb{P}\left(E_{F}\right) \leq \mathbb{P}(E)$ (otherwise replace E by E^{c}). We want to bound $\mathbb{P}(E)-\mathbb{P}(E)^{2}$: Let $\varphi \in P h i$ be such that $E_{f}, \varphi^{\star}\left(E_{F}\right)$ are independent. $\mathbb{P}(E)-\mathbb{P}(E)^{2} \leq \mathbb{P}(E)-\mathbb{P}\left(E_{F}\right)^{2}=\mathbb{P}(E)-\mathbb{P}\left(E_{F} \cap \varphi^{\star}\left(E_{F}\right)\right) \leq$ $\mathbb{P}\left(E \backslash E_{F}\right)+\mathbb{P}\left(E \backslash \varphi^{\star}\left(E_{F}\right)\right)<\epsilon+\mathbb{P}\left(\varphi^{\star}(E) \varphi^{\star}\left(E_{F}\right)\right)<2 \epsilon$ (since the second term is the same as $\left.\mathbb{P}\left(E \backslash E_{F}\right)\right)$. Since this holds for all ϵ, it must hold for one of E, E^{c} for arbitrarily small ϵ; thus one of these has $\mathbb{P}(E) \leq \mathbb{P}\left(E^{2}\right)$ and so $\mathbb{P}(E)=0$ or 1.

Write I_{k} for the event that there are exactly k infinite open clusters.

Theorem 2: For Λ, Φ as usual, \mathbb{P} an independent translation invariant site percolation probability, one of I_{0}, I_{1}, I_{∞} has probability 1 : We have $\mathbb{P}\left(I_{k}\right)=1$ for exactly one of the I_{k}. Suppose $2 \leq k<\infty$. Pick $x_{0} \in V$; write A_{n} for the event that $\Lambda \backslash B_{n}\left(x_{0}\right)$ has at least one infinite open cluster and every such meets $S_{n+1}\left(x_{0}\right)$. We have $I_{k} \subset \bigcup_{n=1}^{\infty} A_{n}$, so $\mathbb{P}\left(A_{n}\right)>0$ for some n. I_{1} contains the intersection of the event that every site in $B_{n}\left(x_{0}\right)$ is open with A_{n}, so $\mathbb{P}\left(I_{1}\right) \geq\left(\prod_{x \in B_{n}} p_{x}\right) \mathbb{P}\left(A_{n}\right)>0$ (we take percolation measures to always be positive, $p_{x}>0 \forall x$ - otherwise our assumption that Λ is connected would be meaningless). So $\mathbb{P}\left(I_{1}\right)>0$, a contradiction.

Using K's earlier 0-1 law alone would only give us that one of $I_{0}, \bigcup_{1 \leq k<\infty} I_{k}, I_{\infty}$ has probability 1 , so this is a big improvement.

Technical lemma: Lemma 3: Let G be a finite graph with k components, $L, C \subset V(G), L \cap C=\emptyset$ and every component of G contains at least one vertex of C. Write G_{c} for the component of G containing $c \in C$; we have $\bigcup_{c \in C} G_{c}=G$. Suppose [for each $c \in C$] $G_{c}-c$ has $m_{c} \geq 3$ components containing vertices of L. Then $|L| \geq 2 k+\sum_{c \in C}\left(m_{c}-2\right)$: since this is linear in components we may take $k=1$, and we may assume G is a minimal connected graph containing $L \cup C$ (as any additional edges or vertices can only help us). This means G is a tree and all leaves belong to $L\left(d(c) \geq m_{c} \geq 3\right)$; also $|L| \geq 3$. But then $|L|$ is at least the number of leaves, $\geq 2+\sum_{c \in C}\left(m_{c}-2\right)$.

We want to rule out the case $\mathbb{P}\left(I_{\infty}\right)=1$, but clearly some graphs (e.g. the Bethe lattice where each vertex has degree 3, with $p>\frac{1}{2}$) may have this. So we define: a graph Λ is amenable if $\forall x \in V(\Lambda), \frac{\left|S_{n}(x)\right|}{\left|B_{n}(x)\right|} \rightarrow 0$, and uniformly amenable if this convergence is uniform (i.e. $\forall \epsilon>0 \exists n_{0}: \forall x \in$ $\left.V(\Lambda) \forall n>n_{0} \frac{\left|S_{n}(x)\right|}{\left|B_{n}(x)\right|}<\epsilon\right) . \quad \Lambda$ is of finite type if $V(\Lambda)=\bigcup_{1}^{k} V_{i}$ with $\forall x, y \in$ $V_{i} \exists \varphi \in \operatorname{Aut} \Lambda: \varphi(x)=y$. Note that any amenable graph of finite type is uniformly amenable.

Theorem 4 (AKN): Let Λ be an amenable graph of finite type, \mathbb{P} an independent site percolation measure on Λ with $p_{x}=p_{y}>0$ if x, y have the same type. Then I_{0} or I_{1} has probability 1 (this is one of the two "pillars", our main tools for studying critical probabilities): suppose not, then $\mathbb{P}\left(I_{\infty}\right)=1$. Let $A_{r}(x)$ be the event that $\Lambda-B_{r}(x)$ has ≥ 3 infinite open clusters meeting $S_{r+1}(x) . \mathbb{P}\left(A_{r}(x)\right) \rightarrow 1$ as $r \rightarrow \infty ;$ pick an r such taht $\mathbb{P}\left(A_{r}(x)\right) \geq a>$ $0 \forall x \in V\left(\Lambda\right.$. Fix x_{0}, then take W a maximal subset of $V\left(B_{n}\left(x_{0}\right)\right)$ such that if $w, w^{\prime} \in W, w \neq w^{\prime}$ then $d\left(w, w^{\prime}\right) \geq 2 r+2$. We have $|W| \geq \frac{\left|B_{n}(x)\right|}{b_{2 r+1}(\Delta)}$ (where $b_{n}(\Delta)=1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{n-1}$ and $\Delta=\Delta(\Lambda)$, which exists by finite type). Hence, if n is large enough, $|W|>a^{-1}\left|S_{n+r+1}\left(x_{0}\right)\right|$.

Call $B_{r}(x)$ a cut-ball if $A_{r}(x)$ holds. The expected number of cut-balls is $\geq a|W|>\left|S_{n+r+1}\left(x_{0}\right)\right|$; pick a configuration ω for which there are $s>$ $\left|S_{n+r+1}\left(x_{0}\right)\right|$ cut-balls, say C_{1}, \ldots, C_{s}. There are some components in the open subgraph given by $\omega-\bigcup_{1}^{s} C_{i}$ that meet the spheres $S_{r+1}(w)$ about the centres of the cut-balls; let L_{1}, \ldots, L_{t} be the infinite components and F_{1}, \ldots, F_{u} the finite ones. Considre $\Lambda\left[\bigcup_{1}^{s} C_{i} \cup \bigcup_{1}^{t} L_{j} \cup \bigcup_{1}^{u} F_{k}\right]$; contract this to form G by [each] $C_{i} \rightarrow$ [a single vertex] $c_{i}, L_{j} \rightarrow l_{j}, F_{k} \rightarrow f_{k}$. Then $G, C=\left\{c_{1}, \ldots, c_{s}\right\}, L=\left\{l_{1}, \ldots, l_{t}\right\}$ satisfy the conditions of Lemma 3 ; hence $t \geq s+2$ and we have a contradiction, since the L_{j} are disjoint and every L_{j} must meet $S_{n+r+1}\left(x_{0}\right)$.
2. The Harris-Kesten Theorem, Once Again

Theorem 5 (Harris, '60; Zhang's proof, '98): For bond percolation on \mathbb{Z}^{2},
$\vartheta\left(\frac{1}{2}\right)=0$: set $p=\frac{1}{2}$ and suppose $\vartheta\left(\frac{1}{2}\right)>0$. Then $\mathbb{P}\left(I_{1}\right)>0$, so by theorem $4, \mathbb{P}\left(I_{1}\right)=1$. Let $S_{n}=[n] \times[n]$. For any infinite component, a sufficiently large square will meet it, so there is an n_{0} such that if $n \geq n_{0}-1$ then $\mathbb{P}\left(S_{n}\right.$ meets an infinite component $) \geq 1-10^{-4}$; call this probability $\mathbb{P}(F)$. Write E_{1} for the event that there is an infinite open path P_{1} leaving S_{n} "upwards" (i.e. from the top side), and analagously E_{2} to the right, E_{3} down, E_{4} left. $\bigcup_{1}^{4} E_{i} \supset F \therefore \mathbb{P}\left(\bigcup_{1}^{4} E_{i}\right) \geq 1-10^{-4} \therefore \mathbb{P}\left(E_{i}\right) \geq 1-\frac{1}{10}$ for some i, and by symmetry this holds for all i. Let S^{\prime} be the $(n-1) \times(n-1)$ square in the dual $\Lambda^{\star} \cong \mathbb{Z}^{2}$ contained in S; define $E_{1}^{\prime}, \ldots, E_{4}^{\prime}$ in the obvious way; we have $\mathbb{P}\left(E_{i}^{\prime}\right) \geq 1-\frac{1}{10} \forall i$. Then let $E=E_{1} \cap E_{2}^{\prime} \cap E_{3} \cap E_{4}^{\prime}$; we have $\mathbb{P}(E) \geq \frac{3}{5} \therefore$ the probability of E and all the bonds of S_{n} being open is >0. Then let P_{1} be the path in E_{1}, and analagously; P_{1} and P_{3} can be joined within S_{n}. So these either meet (outside S_{n}), forming a cycle surrounding the left or right side of S_{n}, but this contradicts that $P_{2}^{\prime}, P_{4}^{\prime}$ are infinite, or they form an open two-way infinite path, dividing the plane into two, so I_{1}^{\prime} cannot hold (since we have $P_{2}^{\prime}, P_{4}^{\prime}$ infinite on both sides of the plane, a contradiction. This proof is nice since it is quite general, in that it does not rely on any local properties of \mathbb{Z}^{2}.

The second "pillar" is Aisenmann-Newman (though a slightly weaker form of the result, proven by Menshikov, contains all the critical features): Suppose Λ under the usual conditions is of finite type and $\left|B_{r}(x)\right| \leq r^{\frac{\log r}{100}} \forall x$ for sufficiently large r. Then for $p<p_{H}^{s}(\Lambda), \mathbb{P}\left(\left|C_{x}\right| \geq n\right) \leq e^{-a n}$, where $a=a(p, \Lambda)>0$; the proof is on one of the example sheets. This gives us:

Theorem 6 (Kesten): $p_{T}^{b}\left(\mathbb{Z}^{2}\right)=p_{H}^{b}\left(\mathbb{Z}^{2}\right)=\frac{1}{2}$ (on the example sheet we shall see $p_{T}^{b}=p_{H}^{b}=: p_{C}^{b}$ for a large class of lattices): Suppose $p_{H}^{b}\left(\mathbb{Z}^{2}\right)>\frac{1}{2}$. Then at $p=\frac{1}{2}, \mathbb{P}\left(\left|C_{0}\right| \geq n+1\right) \leq e^{-a n}$. But $\mathbb{P}(H(R))=\frac{1}{2}$ for any $(n+1) \times n$ rectangle R, so $\mathbb{P}\left(\left|C_{x}\right| \geq n+1\right) \geq \frac{1}{2 n}$, which gives a contradiction if n is large enough.
3. Site percolation on the Triangular Lattice

The triangular lattice T is closely associated with the hexagonal or honeycomb lattice H; site percolation on T corresponds to face percolation on H.

Lemma 7: Let R be an $m \times n$ "parallelogram" in T. Then for any p, $\mathbb{P}_{p}(H(R))+\mathbb{P}_{1-p}(V(R))=1$: more is true: we claim that for all configurations (i.e. assignments of open and closed states [to sites]), there is either an open horizontal crossing or a closed vertical crossing, but not both: pass to the "interface graph", a parallelogram in H, and colour hexagons black if they correspond to open sites, white for closed; the space above and below the parallelogram is white and that to its left and right black. Direct edges so that they have black on their right and white on their left, then the inward-pointing edge at the top left must connect to one of the outgoing edges and so on as before. We cannot have both crossings as this gives (with a very small amount of work) a planar drawing of K_{5}.

Theorem 8: $p_{T}^{s}(T)=p_{H}^{s}(T)=\frac{1}{2}$. i) Suppose $p_{C}^{s}(T)>\frac{1}{2}$. Consider site percolation with probability $p=\frac{1}{2}$; by AN we have exponential decay: $\exists a>0$ such that $\mathbb{P}\left(\left|C_{0}\right| \geq n\right) \leq e^{-a n}$. On the other hand, considering an $n \times n$ parallelogram $P, \mathbb{P}\left(\left|C_{x}\right| \geq n\right) \geq \frac{1}{2 n}$, a contradiction for n large. ii) Suppose $p_{C}^{s}(T)<\frac{1}{2}$. Take percolation with probability $\frac{1}{2}$; consider the "dual" obtained by exchanging open bonds for closed. Then $\mathbb{P}\left(I_{1}\right)=\mathbb{P}^{\prime}\left(I_{1}^{\prime}\right)=1$. Let H_{n} be the regular hexagon in T with $6 n$ sites on the perimeter; write E_{i} for the event that there is an [infinite] open path with exactly one site in H_{n}, on side i [defining
the sides so that they do not overlap]. We may take $\mathbb{P}\left(\bigcup_{1}^{6} E_{i}\right) \geq 1-10^{-6}$ (by n sufficiently large) so $\mathbb{P}\left(E_{i}\right) \geq 1-\frac{1}{10} \forall i$; thus $\mathbb{P}\left(E_{1} \cap E_{2}^{\prime} \cap E_{4} \cap E_{5}^{\prime}\right) \geq 1-\frac{4}{10}$; then the probability that this occurs and every site in the interior of H_{n} is open is ¿ 0 , since the E_{i}, E_{i}^{\prime} are independent of the sites inside H_{n}. However, we then as before have P_{1}, P_{4} open leaving the hexagon from top and bottom and P_{2}, P_{5} closed leaving it from left and right; as the sites inside are all open we can join P_{1}, P_{4} by some path, so there is a two-way infinite open path separating $P_{2}^{\prime}, P_{5}^{\prime}$ and so $\mathbb{P}\left(I_{\geq 2}^{\prime}\right)>0$, a contradiction.
4. Bond percolation on T and H

Lemma: $p_{c}^{b}(T)+p_{c}^{b}(H)=1$: let R be a "rectangle" in T, where the "last zigzag" of edges on the "vertical" sides is not present, so that e.g. the right hand

edge looks like a "stack" of $\Sigma \mathrm{s}$:
Dualise, then $\mathbb{P}_{p}(H(R))+\mathbb{P}_{1-p}\left(V\left(R^{\star}\right)\right)=1$ by the usual "interface graph" proof. i) Suppose $p_{c}^{b}(T)+p_{c}^{b}(H)<1$; pick p with $p>p_{c}^{b}(T), 1-p>p_{c}^{b}(H)$. Consider bond percolation with probability p on T, coupled with bond percolation on H with probability $1-p$, and consider semi-infinite paths away from a hexagon as usual. ii) If $p_{c}^{b}(T)+p_{c}^{b}(H)>1$, pick $p, p<p_{c}^{b}(T), 1-p<p_{c}^{b}(H)$, then we have exponential decay, but since we always have either a horizontal crossing of a rectangle or a vertical crossing in the dual the decay can be at most $\frac{c}{n}$, so we have a contradiction, again as usual.

Star-triangle transformation: consider replacing a triangle $x y z$ with a "star" where each of x, y, z is connected to a central vertex w. If we could find probability distributions such that the probability of each possible "connectedness combination" is the same for both, then we could use this to dualise T. Observe that if the probability of bond percolation on the triangle is p and that on the star r, the case where all vertices are connected means we need $p^{3}+3 p^{2}(1-p)=r^{3}$, two connected (e.g. $\{x, y\}$, or symetrically any other pair) gives $p(1-p)^{2}=r^{2}(1-r)$, and none connected $(1-p)^{3}=(1-r)^{3}+3 r(1-r)^{2}$. If we set $r=1-p$ these reduce to $p^{3}+3 p^{2}-3 p^{3}-1+3 p-3 p^{2}+p^{3}=0$ i.e. $p^{3}-3 p+1=0$; the solution
(in $(0,1)$) to this is $p_{0}:=2 \sin \frac{\pi}{18}=0.3472 \ldots$.
Theorem 9: $p_{c}^{b}(T)=2 \sin \frac{\pi}{18} ; p_{c}^{b}(H)=1-2 \sin \frac{\pi}{18}$: dualise the triangular lattice by replacing each "upward" pointing triangle with a star, giving a hexagonal lattice. Consider bond percolation on T with probability p_{0}; couple it with an independent percolation on H by chosing the bonds in each triangular "domain" (star) with probability $1-p_{0}$ such that the set of sites connected in a given domain in T is precisely that connected in H (we can do this by the above). Conisder $C_{0}, C_{0}^{\prime} ; C_{0} \subset C_{0}^{\prime}$ as for any open path in T, the corresponding path in H is open. $\left|C_{0}\right| \leq\left|C_{0}^{\prime}\right| \leq 4\left|C_{0}\right|$: being very crude, the sites of C_{0}^{\prime} are at most the sites of C_{0} and the three neighbours of each. So $\mathbb{P}_{p_{0}}\left(\left|C_{0}\right| \geq n\right) \leq \mathbb{P}\left(\left|C_{0}^{\prime}\right| \geq n\right) \leq \mathbb{P}\left(\left|C_{0}\right| \geq \frac{n}{4}\right) \therefore \vartheta_{p_{0}}(T, 0)=\vartheta_{1-p_{0}}(H, 0)$.

Suppose $p_{c}(T)<p_{0}$; then $p_{c}(H)>1-p_{0}$, but then $\vartheta\left(T, p_{0}\right)>0, \vartheta(H, 1-$ $\left.p_{0}\right)=0$, a contradiction; the converse is similar.

This appears to be the end of the course. The lecturer wished to emphasise that this is not a reflection of the state of the art in the subject; while there are still physicists attempting to find better bounds on the critical probabilities of various lattices, most mathematical work in the field is now on deeper results.

