
Percolation and Combinatorics

March 20, 2009

This is intended as a fun course. The subject is quite new (around 50 years
old), but there is a large amount of literature on it. Unlike in previous years,
notes will not be given out, since the course will follow the lecturer’s recent book
Percolation quite closely.

Basic Concepts

1. Percolation was originally developed to study the passage of liquids through
porous media, but in our context it is the study of random sampling of lattice-like
infinite graphs; we are mostly interested in the component structure. Specifi-
cally, we take Λ, the ground graph, to be some infinite graph, and select vertices
or edges at random to obtain Λp (where p is the probability of selecting an indi-
vidual vertex or edge). The theory was founded by Broadbeut and Hammersly
in 1957.

2. Terminology; in this field vertices are known as sites and edges as bonds;
a site is open if we hae selected it, and a subgraph is open if we have selected
all its sites and bonds. We shall clook in particular at open paths, known in
this field as “open self-avoiding walks”. An open cluster is a component of Λp.

Some cases: Λb
p is bond percolation, where we select edges as random and

take the graph formed by all vertices of Λ and these edges. Λs
p is site percolation,

where we select vertices at random and take the subgraph induced by these

vertices.
−→
Λ is where our graphs are taken to be oriented; we may allow Λ to be

a multigraph.
3. To formalize the above a little: Λ = (V, E); we’ll define bond percola-

tion. A configuration is a map ω : E → {0, 1} e 7→ ωe. Ω is the stet of all
configurations, the state space. We define Σ to be the σ-field on Ω generated
by cylindrical sets C(F, σ) = {ω ∈ Ω : ωf = σf∀f ∈ F}, where F ⊂ E is finite
and σ : F → {0, 1}. ωe is called the state of e, either open or closed.

Probabilities: p = (pe)e∈E , 0 ≤ pe ≤ 1. Pp(C(F, σ)) =
∏

σe=1,e∈F pe

∏
σe=0,e∈F (1−

pe) (⋆). Let Pb
p

be the measure on Σ generated by (⋆).
For F1, F2 ⊂ E finite, F1 ∩ F2 = ∅, σ : F1 ∪ F2 → {0, 1}, then Pp(ωf =

σf∀f ∈ F1 | ωf = σf∀f ∈ F2) = Pp(ωf = σf∀f ∈ F1) (⋆⋆)!
We often have p = (p), in which case we write Pp. Obviously, we define site

percolation measure the same way; for the moment, everything we say applies
equally to both cases.

4. A natural coupling. Take (Xe)e∈E independent RVs, each uniformly
distributed on [0, 1]. (Xe) → Λp with edge-set {e ∈ E : pe ≥ Xe}. If p ≤ p̃ (i.e.
pe ≤ p̃e∀e), then Λp ⊂ Λp̃.
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5. Critical probability. Fix a site x ∈ Λ; let Cx be the open cluster of x,
|Cx| is the number of sites in Cx. Define ϑx(p) = Pp(Cx is infinite); ϑx(p) is
monotone increasing. Taking, as we almost always do in this course, Λ to be a
connected, locally finite, infinite graph (usually Zd), ϑx(p) = 0 ⇔ ϑy(p) = 0 for
any y ∈ Λ: take a path L from x to y, say of length l, then ϑy(p) ≥ plϑx(p). So,
define the critical probability pH(Λ) = sup{p : ϑx(p) = 0}; this is independent
of x.

6. Let E be the event that there is an infinite open cluster.

0 Theorem

(this should really be theorem -5 or so, and is here only because the lecturer
would be embarassed to deliver a lecture with no theorems): Pp(E) = 0 if
p < pH , 1 if p > pH : i) suppose p < pH ; Pp(E) ≤ ∑

x ϑx(p) = 0. ii) Suppose
p > pH , then Pp(E) ≥ θx(p) > 0. Hence by Kolmogrov’s 0-1 laws, Pp(E) = 1.
Kolmogrov’s 0-1 laws: For (Xi) independent RVs, Σ the σ-field generated by
(Xi), let A ∈ Σ be independent of X1, . . . , Xn∀n. Then P(A) is 0 or 1. We
apply this with (Xe) = (ωe); E is independent of any finite set of ωe.

7. Another critical probability: Define χx(p) = Ep(|Cx|). This is monotone
increasing (by the coupling). χx(p) and χy(p) are about the same (i.e. they
are the same up to a constant factor, here pl). pT (Λ) = sup{p : χx(p) < ∞},
independent of x; this is the Temperly critical probability.

Clearly we have pH(Λ) ≥ pT (Λ): χv0 = E(|Cv0 |) =
∑∞

n=1 P(|Cv0 | ≥ n) and
every summand is ≥ ϑv0 . If Λ = T a tree, clearly pT = pH .

Often we consider Λ homogenous: ∀x, y ∈ Λ∃φ ∈ Aut(Λ) : φ(x) = y.
8. Path counting. Given Λ, write µl(Λ; x) = the number of self-avoiding

walks (i.e. paths) of length l, starting at x. If Λ is homogenous, can define
µl(Λ) = µl(Λ; x)∀x. We have µk+l ≤ µk + µl by concatenation (all k + l-paths
are the concatenation of a k-path and an l-path but the converse is not true).

Thus λ = liml→∞ µ
1
l

l exists; this is the connective constant of Λ.
Theorem: For Λ as always, suppose µl(Λ; x) ≤ (λ + o(1))l as l → ∞. Then

pb
T (Λ) ≥ 1

λ
: χx(p) = Ep(|Cx|) =

∑
y Pp(y ∈ Cx) =

∑
y Pp(∃ open x− y path) =

Ep(# open paths starting atx) =
∑

l µl(Λ; x)pl. Suppose p < 1
λ
, then χx(p) ≤

C +
∑

l≥l0
cl < ∞, by taking c with pλ < c < 1 and l0 large enough that for

l ≥ l0, µl(Λ; x)p ≤ cl. So p ≤ pT (Λ) and so pT (λ) ≥ 1
λ
.

9. The Bethe lattice is the k-regular infinite tree; it is used a bit in physics.
We shall consider Tk, the rooted k-branching tree (which has a root; each node
on level n branches k times so there are k times as many nodes on level n + 1),
which closely resembles the Bethe lattice of degree k + 1. This is in some
sense the simplesd example base graph to consider; it is obviously not worth
considering graphs of maximum degree < 3.

Theorem: i) if the maximum degree ∆(Λ) = ∆ ≥ 3 then pT ≥ 1
∆−1 ii) For

k ≥ 2, pb
T (Tk) = pb

H(Tk) = 1
k
: i) µl(Λ; x) ≤ ∆(∆ − 1)l+1 = (∆ − l + o(1))l so

we are done by the previous theorem. ii) Consider Tk,n, the subgraph “up to”
level n (e.g. T2,3 contains the root, the two first-level vertices, the four second-
level vertices and the eight third-level vertices). Consider bond percolation with
probability p. Let πk = Pp(∃open path from v0 to the set of leaves. We have
1−πm+1 = (1− pπm)k: for there to not be any paths to level m+1, for each of
the nodes at level 1, the subtree they are the root of must not contain any paths
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to level m, or there must be no edge from the root to that node. So πm+1 =
1 − (1 − pπm)k; call this f(πm), i.e. f(x) = 1 − (1 − px)k for 0 ≤ x ≤ 1. What
does this f look like? f ′(x) = kp(1 − px)k−1; f ′′(x) = −k(k − 2)p2(1 − px)k−2.
So f is monotone increasing and concave. If f ′(0) = kp > 1, then by considering
the graph and the fact that f ′(1) < 1, there is a unique x0, 0 < x0 < 1, with
f(x0) = x0. π0 = 1 > x0, and if πn > x0 then πn+1 = f(πn) > x0. Hence, if
p > 1

k
then ϑv0(p) ≥ x0 > 0. Consequently p > pH , so we have pH ≤ 1

k
, and

hence pT = pH = 1
k
.

10. Note: more is true. As an exercise for the reader, it is acutally relatively
easy to calculate ϑv0(

1
k
). Indeed, χv0(

1
k
) = ∞, ϑv0(

1
k
) = 0 for Tk: χv0(

1
k
) =

E 1
k
(|Cv0 |) = E 1

k
(# open paths starting at v0) =

∑∞
l=0 kl( 1

k
)l =

∑
1 = ∞. For

ϑ, fk, 1
k
(x) = 1−(1−x

k
)k, π0 = 1, π1 = f(π0), . . . (recall πn = P(component goes down to level n)).

Then x−f(x) > 0 on (0, 1] and is increasing since 1−f ′(x) = 1−(1− x
k
)k−1 > 0.

Hence, if πn ≥ ǫ > 0 then πn − f(πn) ≥ ǫ − f(ǫ) > 0. Hence there can be at
most 1

ǫ−f(ǫ) + 1 πns which are ≥ ǫ; thus πn → 0, so ϑb
1
k

(Tk) = 0.

[11.] Plane graphs: Consider Λ ⊂ R2, and Λ 3-connected; this implies,
though it is a difficult theorem, that the drawing of Λ on the sphere is unique.
For example, a subgraph of Z2. i) Every cycle C separates R2 into its interior
and exterior, as can be shown easily using winding numbers. ii) Eulers formula
implies K3,3 and K5 are nonplanar. We know but will never use that a graph is
nonplanar iff it contains a topological copy of one of these. iii) Let a, b, c, d be
vertices around a cycle C in that order. Then Λ does not contain vertex-disjoint
paths from a to c and b to d both in the interior or both in the exterior of C, by
e.g. if both are in the interior, draw an exterior point connected to a, b, c, d, then
we have a planar K5. Or we can also prove using K3,3: add points e between a

and b, f between c and d, joined by an exterior path.
12. Dual graphs: For Λ a 3-connected plane graph, we construct a graph Λ⋆,

the dual of Λ, by assigning a vertex to every face of (the map of) Λ, and for every
bond f of Λ, joining the vertices of Λ⋆ corresponding to the faces bordering f

by an edge f⋆ (deleting f , two faces “unite”; join by f⋆ the vertices of these
faces). E.g. a triangular lattice becomes a hexagonal lattice; the correspondence
is always between vertices and faces, edges and edges, and faces and vertices.
E.g. Λ = Z2 the square lattice has Λ⋆ = Z2 + (1

2 , 1
2 ) - this lattice is “self-dual”.

13. A basic property of Z2. For C ⊂ Z2 finite, Z2 \ C has a unique infinite
component C∞. The outer boundary ∂∞C of C is formed by the bonds dual to
the bonds between C and C∞.

Lemma 3: For a finite C ⊂ Z2 which is the vertex set of a connected graph,

the outer boundary ∂∞C is a cycle containing C in its interior: let
−→
F be the

set of bonds from C to C∞ (considered as directed inthis way), and
−→
F ⋆ the

set of dual bonds, with
−→
f ⋆ obtained from

−→
f by rotating it through π

2 (in the

positive sense). We claim that for any oriented bond
−→
f ⋆ = −→uv ∈ −→

F ⋆, there is a

unique −→vw ∈ −→
F ⋆ leaving v. Proving this is fiddly rather than difficult and the

details are left as an exercise; use R = Z2 \ (C ∪ C∞) and consider which of
these three sets some vertices may be in; in particular, say v lies in the square
abcd with f being the bond ab; then e.g. if c ∈ C∞ we are done, if d ∈ C done
and so on. The difficult case is when c ∈ C, d ∈ C∞, but this cannot arise, as
we must then have a path on the outside from a to c and another from b to d,
contradicting planarity. Thus ∂∞C ⊃ some cycle S; C is in the interior of S,
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the infinite component is outside. If
−→
f ⋆ ∈ ∂∞C, say

−→
f = yz, then y ∈ C and

z ∈ the infinite component of the rest. But then
−→
f crosses S, so

−→
f ⋆ ∈ S. Thus

∂∞C ⊂ S and we have the result.
14. Simple bounds on pb

H(Z2): Theorem 4: 1
3 ≤ pb

H ≤ 2
3 : i) ∆(Z2) = 4 ii) If

the component of the origin is finite, we must have a cycle around it in the dual
graph, and none of the bonds dual to this open. We will show the probability
of a large cycle is small. Take 0 < p < 1 and consider bond percolation on Z2;
let Lk be the path from (0, 0) to (k, 0) along the x axis. Let Ak be the event
that Lk is open; Pp(Ak) = pk. As we always do, we define f⋆ ∈ Λ⋆ open iff the
corresponding f ∈ Λ = Z2 is closed. Let Bk be the event that there is no open
cycle in Λ⋆ surrounding Lk. By Lemma 3, if C0 is finite then its outer boundary
is an open cycle in Λ⋆ surrounding C0; hence Ak ∩ Bk is a subset of the event
that C0 is infinite.

Take p > 2
3 . Then P({C0 is ∞}) ≥ P(Ak ∩ Bk). Ak, Bk depend on disjoint

sets of bonds (Ak on Lk, Bk on the complement of Lk), so this is P(Ak)P(Bk) =
P(Bk)pk. We claim P(Bk) > 0 if k is large enough. The probability a cycle of
length 2l in Λ⋆ is open is (1 − p)2l; the number of cycles in Λ⋆ of length 2l sur-
rounding 0 is ≤ l32l−1 - the cycle must cross the positive x axis in one of l places,
then if we proceed around the cycle there are at most 3 possible ways to go at
each step. Therefore, P(Bk) ≤ ∑

l≥k+2 P(∃ a cycle of length 2l surrounding 0) ≤
∑

l≥k+2 E(# cycles of length 2l surrounding 0) ≤ ∑
l≥k+2 l32l−1(1−p)2l <

∑
l≥k l(3(1−

p))2l. p > 2
3 so this is a convergent geometric series, so P(Bk) < 1 if k is large

enough, i.e. for large k P(Bk) > 0. Thus p ≥ pb
H(Z2) and we have the result.

15. Remarks: i) This is Peierl’s argument, given in 1936. ii) Write λm(Z2) for

the number of paths in Z2 starting at 0 of length n. Then λ
1
n
n → λ = λ(Z2) the

connective constant of Z2. Our proof actually shows 1
λ
≤ pb

T (Z2) ≤ pb
H(Z2) ≤

1 − 1
λ
. Current results give 2.62 ≤ 1

λ
≤ 2.68; for a while in the early stages of

the subject it was hoped that connective constants would “give us everything”,
and physicists are still studying them. iii) 1

2λ−1 ≤ pb
T (Zd) ≤ pb

H(Zd) ≤ 2
3 , this

last by considering a Z2 subset of Zd.

16. Oriented percolation. We take
−→
Λ an oriented multigraph, locally finite;−→

C x is the open out-cluster of x, we define pb
T (

−→
Λ ; x), pb

H(
−→
Λ ; x) in the obvious

way in relation to this. If
−→
Λ is homogenous then these are independent of x; if−→

Λ is strongly connected (for any x, y ∈ −→
Λ , there is a (correctly oriented) path

from x to y in Λ), then again pT , pH are independent of x.
17. Bond vs Site: Theorem 5: Let Λ be a locally finite, oriented multigraph;

x ∈ −→
Λ . i) pb

H(
−→
Λ ; x) ≤ ps

H(
−→
Λ ; x), and the same for pT ii) Suppose ∆in, the max

in-degree of Λ, is finite (theorem is actually valid otherwise, but a bit silly).

Then ps
H(

−→
Λ ; x) ≤ 1 − (1 − pb

H(
−→
Λ ; x))∆in : i) take 0 < p < 1. It suffices to show

Ps
p(|Cx| ≥ n) ≤ Pb

p(|Cx| ≥ n)∀n, as then by taking the limit as n → ∞ we

have the result for pH , and since χS
x (
−→
Λ) =

∑
n PS

p (|Cx| ≥ n) ≥ ∑
n Pb

p(|Cx| ≥
n) = χb

x, we have the result for pT . In fact we shall prove a little more, that
Ps

p(|Cx| ≥ n) ≤ pPb
p(|Cx| ≥ n)∀n, i.e. Ps

p(|Cx| ≥ n | x is open) ≤ Pb
p(|Cx| ≥ n).

We may wlog treat
−→
Λ as finite (e.g. by considering

−→
Λ n, the ball of radius n

about x). We explore Cx by considering a random sequence of tripartitions of

V (
−→
Λ); first, for site: T = (Tt) = (Rt, Dt, Ut)

l
t=1 - respectively, the “reached”,

“dead” and “untested” vertices of
−→
Λ . R1 = {x}, D1 = ∅, U1 = V \ {x}.

4



Given a tripartition T = (R, D, U) of V , if there is no −→ru for r ∈ R, u ∈ U ,
set f(T ) = 0. Otherwise pick a bond −→ru for r ∈ R, u ∈ U and set f(T ) = −→ru. We
shall use the MTU (Mene Tekel Upharsim) algorithm, an exploration process.

For site: we’ll define a random sequence T = (Tt)
l
t=1 = (Rt, Dt, Ut) of

tripartitions of V : R1 = {x}, D1 = ∅, U1 = V \ {x}. Suppose we’ve reached
Tt = (Rt, Dt, Ut). If f(Tt) = ∅, end the search; l = t. Otherwise if f(Tt) = −→ru,
test u; it is open or closed. If u is closed, Rt+1 = Rt, Dt+1 = Dt ∪ {u}, Ut+1 =
Ut \ {u}. If u is open, Rt+1 = Rt ∪ {u}, Dt+1 = Dt, Ut+1 = Ut \ {u}. Clearly,
Rl = CX .

For bond: the condition on x being open is irrelevant. T ′ = (T ′
t ) =

(R′
t, D

′
t, U

′
t); R′

1 = {x}, D′
1 = ∅, U ′

1 = V \ {x}. Suppose we’ve reached T ′
t ;

if f(T ′
t ) = ∅, finish. Otherwise, if f(T ′

t) = −→ru test −→ru; if it is closed set
R′

t+1 = R′
t, D

′
t+1 = D′

t ∪ {u}, U ′
t+1 = U ′

t \ {u}. If −→ru is open we set R′
t+1 =

R′
t ∪ {u}, D′

t+1 = D′
t, U

′
t+1 = U ′

t \ {u}. Clearly R′
l ⊂ Cb

x. But Rl, R
′
l have the

same resolution. So we have part i) of theorem 5.
For part ii), that ps ≤ 1 − (1− pb)∆in where ∆in is the maximum in-degree,

consider bond percolation on
−→
Λ with probability p, 0 < p < 1; declare x open

with probability p. Declare z 6= x open if at least one of the bonds into z is
open (∃−→yz open). rz = P(z is open) = 1 − (1 − p)iu(z) ≤ r = 1 − (1 − p)∆in .
We’ve defined a site percolation measure with probability r = (rz); rz ≤ r∀z.
Hence if p > pb

H then r > ps
H .

Corollary 6: For Λ a connected, locally finite infinite multigraph, pb
H(Λ) ≤

ps
H(Λ), and if ∆ < ∞, ps

H(Λ) ≤ 1− (1− pb
H(Λ))∆. This is instant from theorem

5 - form a directed graph by replacing each edge in Λ with two edges in opposite

directions to form
−→
Λ , and ∆in(

−→
Λ) = ∆(Λ).

18. Z2 and Zd: Lemma 7: 1
3 ≤ pb

T (Z2) ≤ · · · ≤ ps
H(

−→
Z2) ≤ 80

81 . We have the

first inequality already; clearly pb
T (Z2) ≤ pb

T (
−→
Z2) ≤ pb

H(
−→
Z2), and this is ≤ ps

H(
−→
Z2)

by the previous theorem. We have Λ =
−→
Z2, Λ⋆ ∼= Z2; consider percolation with

probability p. Call a cycle in Λ⋆, taken anticlockwise (here considering Λ⋆ to be

unoriented), blocking if it surrounds 0 and for any −→xy ∈
−→
Z2, if −→xy⋆ is in the cycle

then y is closed. If
−→
C 0 is the component of 0 (in our oriented percolation) then

its outer boundary is a blocking cycle. If B is a cycle of length 2l in Λ⋆ (around

0), Pp(B is blocking) ≤ (1 − p)
l
2 , since l of the edges of B are going up or left,

and if we count the vertices to their right and above them (i.e. the vertices
which we need to be closed) we count each at most twice (since a vertex can be
above one edge of B and to the right of another, but no more), so there are at
least l

2 distinct vertices which must be closed. Let Lk = {(0, 0), . . . , (k, 0)}, Ak

the event that all the sites in Lk are open, Bk the event that there is no blocking

cycle surrounding Lk. Ak ∩ Bk ⊂ the event that
−→
C 0 is infinite; Ak, Bk depend

on disjoint sets of vertices so P(Ak ∩ Bk) = P(Ak)P(Bk) = pk+1P(Bk). We
want that this is ¿0. Write Yl for the number of blocking cycles of length 2l;
P(Bk) ≤ P(

∑
l>k Yl > 0) ≤ ∑

l>k P(Yl > 0) ≤ ∑
l>k E(Yl) ≤

∑
l32l−1(1−p)

l
2 ≤

∑
l>k l(81(1−p))

l
2 . Hence if p > 80

81 , so that 81(1−p) < 1, and k is large enough,

Pp(Bk) < 1 and we have the result.

Let (ei)
d
1 be the standard basis, k = ⌊d−1

2 ⌋; we will consider
−−→
Z2k. For

−→uv ∈
−→
Zd, v = u + ei for some i; we say v is an x-neighbour of u if 1 ≤ i ≤ k
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and a y-neighbour if k + 1 ≤ i ≤ 2k. Let ϕ(u) = (
∑k

1 ui,
∑2k

k+1 uj). If P is

an infinite oriented path in
−→
Zd starting at 0, then ϕ(P ) is an (infinite) oriented

path in
−→
Z2; however, any naively stated converse is false.

Theorem 8: 1
2d−1 ≤ pb

T (Zd) ≤ ps
H(

−→
Zd) = O( 1

d
): the first inequality by

maximal degree being 2d, the middle by each of the 3 differences between the two
terms increasing the critical probability. For the final part, consider percolation

on
−→
Zd with probability p. Let k = ⌊d−1

2 ⌋, 2k ≤ d; consider
−−→
Z2k. We’ll use

the MTU algorithm: consider tripartitions of Z2 as (Tt) = (Rt, Dt, Ut)
∞
t=0 and

a sequence of subsets (R̃t)
∞
0 ⊂ Zd, ϕ(R̃t) = Rt. We have Rt ⊂ C0 ⊂ Z2

[under percolation with some probability] and R̃t ⊂ −→
C 0 in

−→
Zd. Condition on

the event that 0 is open; R0 = {0}, D0 = ∅, U0 = Z2 \ {0}; R̃0 = {0}. Update
as follows: given (Rt, Dt, Ut), R̃t, we ask: is there an oriented bond from Rt to
Ut? If so, pick one, say −→ru. Suppose −→ru goes in the x direction; pick r̃ ∈ R̃t

with ϕ(r̃) = r. Does r̃ has an open x-neighbour? If not, Rt+1 = Rt, Dt+1 =
Dt ∪ {u}, Ut+1 = Ut \ {u}, R̃t+1 = R̃t. If there is such an open site, [pick one]
ũ, then Rt+1 = Rt ∪ {u}, Dt+1 = Dt, Ut+1 = Ut \ {u}, R̃t+1 = R̃t ∪ {ũ}. [If −→ru
goes in the y direction, similar]. If there is no −→ru, finish.

If |⋃ Rt| = ∞ then |⋃ R̃t| = ∞. The exploration process (Rt, Dt, Ut) is

just an exploration process of
−→
C 0 in −→Z2;

⋃
Rt = C0. In −→Z2, each site is

taken (added to Rt) with probability 1 − (1 − p)k. Hence, if 1 − (1 − p)k >

80
81 , P(|⋃ Rt| = ∞) > 0; in this case, we have percolation on

−→
Zd. Thus if

1 − (1 − p)k > 80
81 (in fact if 1 − (1 − p)k > ps

T (
−→
Z2)) then p ≥ ps

H(
−→
Zd). For this

to occur it suffices that (1 − p)k < 1
81 ; since (1 − p)k < e−kp it suffices that

e−kp < 1
81 , i.e. that pk > log 81, i.e. p > log 81

k
. So it suffices that p > 2 log 81

d−1 ;

in particular ps
H(Zd) < 10

d
for d sufficiently large.

Probabilistic Tools

We have already seen Kolmogrov’s 0-1 law.
Lemma 1 (Tekete’s Lemma): Let (an)∞1 be a non-negative sequence of reals

which is subadditive an+m ≤ an + am. Then lim an

n
exists (and is < ∞; if we

relax the conditions and allow the ai to be negative, the limit still exists but may
be −∞): let a = lim an

n
(or just inf an

n
), then ∀ǫ > 0∃k such that ak

k
< a + ǫ.

Let c = max1≤i≤k−1 ai. Then for n, write n = kq + r, 0 ≤ r ≤ k − 1, and
an ≤ qak + c. So an

n
≤ ak

k
+ c

n
≤ a + ǫ + c

n
. Therefore lim an ≤ a + ǫ; this is

true ∀ǫ > 0. so we are done.
We shall be working in the weighted cube Qn

p
; Qn ∼= {0, 1}[n] ∼= P([n]): for

A ⊂ [n], A ↔ χA = a binary sequence e.g. (0, 1, . . . ). p = (pi)
n
1 ; for A ⊂ Qn,

Pp(A) =
∑

a∈A

∏
ai=1 pi

∏
ai=0(1 − pi). If pi = p∀i we write Qn

p .
Although “officially” we are interested in infinite graphs, in practice knowing

about finite subgraphs will tell us everything - e.g. for Z2 we only really need to
know what happens in finite rectangles. If such a rectangle contains N bonds,
the probability space relevant to bond percolation is QN

p .
An event or property A ⊂ Qn

p is monotone increasing or an up-set if when-
ever a = (ai) ∈ A, b = (bi) ∈ Qn and a ≤ b (i.e. ai ≤ bi∀i) then b ∈ A; the
obvious analagous definition exists for a monotone decreasing event or down-set.
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Lemma 2 (Harris’ Lemma): If A, B are up-sets in Qn
p then Pp(A ∩ B) ≥

P(A)P(B) (⋆); if both are down-sets, we have the same result while if one is up
and the other down, P(A ∩ B) ≤ P(A)P(B): suppose we have both up or both
down. We shall prove (⋆) by induction on n; the base case n = 1 is trivial or
n = 0 even more so. Let A0 = {a ∈ Qn−1 : (a1, . . . , an−1, 0) ∈ A}, A1 = {a ∈
Qn−1 : (a1, . . . , an−1, 1) ∈ A}; we have Pp(A) = (1 − pn)Pp′(A0) + pnPp′(A1);
similarly for B. P(A ∩ B) = (1 − pn)Pp′(A0 ∩ B0) + pnPp′(A1 ∩ B1), which by
induction is ≥ (1 − pn)Pp′(A0)P(p′(B0) + pnP(A1)P(B1). We want that this
is ≥ ((1 − pn)P(A0) + pnP(A1))((1 − pn)P(B0) + pnP(B1)); subtracting these
gives p(1 − p)P(A0)P(B0) + p(1 − p)P(A1)P(B1) − p(1 − p)P(A0)P(B1) − p(1 −
p)P(A1)P(B0) = p(1 − p)(P(A0) − P(A1))(P(B0) − P(B1)) ≥ 0 as required. For
A up and B down, P(A ∩ B) = P(A) − P(A ∩ Bc) ≤ P(A) − P(A)P(Bc) =
P(A) − P(A)(1 − P(B)) = P(A)P(B) [other cases similar].

For A,B up-sets in P(n), define A�B = {C ⊂ [n] : ∃A ∈ A, B ∈ B : A∩B =
∅, C ⊃ A ∪ B}, i.e. the set of elements of Qn which have disjoint “certificates”
for belonging to A and to B. E.g. if A is the set of elements of Qn containing
four consecutive 1s and B the set of elements of Qn containing 3 1s where there
are at least 2 elements in between the first and second and the second and third,
these are both up-sets, and A�B is the set of elements of Qn with 3 1s separated
by 2 elements in between, and disjoint from these, four consecutive 1s. Clearly
we always have A�B ⊂ A ∩ B.

Theorem 3 (van den Berg - Kesten): If A, B are up-sets, P(A�B) ≤ P(A)P(B);
induct on n, the n = 1 case being trivial. Define A0, A1, B0, B1 as before;
C0 = A0�B0 ⊂ (A0�B1)∩(A1�B0), C1 = A0�B1∪A1�B0 ⊂ A1�B1. P(C0)+
P(C1) ≤ P((A0�B1) ∩ (A1�B0)) + P((A0�B1) ∪ (A1�B0)) = P(A0�B1) +
P(A1�B0)) ≤ P(A0)P(B1) + P(A1)P(B0). Multiplying this by pn(1 − pn)
and adding (1 − pn)2× P(C0) ≤ P(A0)P(B0) and p2

n× P(C1) ≤ P(A1)P(B1)
(both these inequalities being true by the induction hypothesis), (1−p)P(C0)+
pP(C1) ≤ ((1−p)P(A0)+pP(A1))((1−p)P(B0)+pP(B1)) i.e. P(C) ≤ P(A)P(B)
as required.

1. Suppose A1, A2 ⊂ Qn
p
, P(A1 ∪ A2) ≥ 1 − 1

100 ⇒ maxi P(Ai) ≥ 1− 1
100

2 . If

the Ai are increasing, then this becomes ≥ 1 − 1
10 : suppose Ai are increasing

so Ai are decreasing. P(A1 ∪ A2) ≥ 1 − ǫ ⇒ P(A1 ∩ A2) ≤ ǫ ∴ P(A1)P(A2) ≤
ǫ ∴ min P(Ai) ≤ √

ǫ ∴ max P(Ai) ≥ 1 − √
ǫ. Slightly more generally, for

P(
⋃n

i=1 Ai) ≥ 1 − ǫ, Ai increasing, maxi P(Ai) ≥ 1 − ǫ
1
n .

2. Consider Gn,p, and A the event that there is a cycle of length n
2 , B the

event that there exists a Hamiltonian cycle; both these are increasing, so we
have P(A�B) ≤ P(A)P(B) ≤ P(A∩B). (A�B is of course the event that there
are, edge-disjoint, a Hamiltonian cycle and a cycle of length n

2 ).
3. Pp(A), for A increasing, as a function of p, will be an increasing function;

its graph will always have positive gradient. E.g. in the simplest possible case,
A = {S ⊂ [n] : 1 ∈ S}, Pp(A) = p and the graph is simply a straight line
of gradient 1. But in fact in all “interesting” cases, the graph has a “sharp
threshold”; it is close to 0 until p gets close to some threshold probability, then
“shoots up” to close to 1. We aim to show that this occurs by showing that
(for A always assumed increasing) if Pp(A) is neither very small nor very large,
then d

dp
Pp(A) is large.

4. The influence of a RV: For A ⊂ Qn
p
, ω ∈ Qn

p
, ωi is pivotal at ω for A

if precisely one of (ω1, . . . , ωi−1, 0, ωi+1, . . . , ωn), (ω1, . . . , ωi−1, 1, ωi+1, . . . , ωn)
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belongs to A. Wlog consider ωn rather than ωi in the following: set Ai =
{ω′ = (ωj)

n−1
j=1 ∈ Qn−1

p′ : (ω1, . . . , ωn−1, i) ∈ A} where p′ = (p1, . . . , pn−1),
for i = 0, 1. Set A+ = A1 \ A0, A− = A0 \ A1, Ab = A0 ∩ A1. We have
Pp(A) = pnPp′(A+) + (1− pn)Pp′(A−) + Pp′(Ab). The (signed) influence of ωn

on A is defined by βn(A) := Pp′(A+) − Pp′(A−); the (absolute) influence of ωn

is βn(A) := Pp′(A+) + Pp′(A−); note that if A is increasing these are the same
(since A− is empty).

Margulis (and Russo)

Lemma 4: ∂
∂pn

Pp(A) = βn(A); in particular, if A ⊂ Qn
p

and p = (p, . . . , p)

then ∂
∂p

Pp(A) =
∑n

i=1 βi(A) (this follows by the chain rule): ∂
∂pn

Pp(A) =
∂

∂pn
(pnPp′(A+) + (1 − pn)Pp′(A) + Pp′(Ab)) = Pp′(A+) − Pp′(A−).

Consider A ⊂ Qn (= Qn
1
2

); βn(A) = |{edge boundary of A in direction n}|
2n−1 so

∑n
i=1 βi(A) = |∂e(A)|

2n−1 . If |A| = 2n−1, |∂e(A)| ≥ 2n−1; more generally if |A| = 2x,

|∂e(A)| ≥ 2x(n − x). If |A| = t2n (i.e. P 1
2
(A) = t) then

∑n
i=1 βi(A) ≥

t2n n−log(t2n)
2n−1 = 2t log 1

t
. This is “already looking good”, since this quantity

is nonnegligible precisely for t not near 0 or 1, but we can improve it a lot. If
P 1

2
(A) = 1

2 , the extremal example is a half-cube, for which
∑n

1 βi(A) = βn(A).
This suggests we can do better if the βi are close to each other:

Ben-Or and Linial

Theorem 5 (Kahm, Kalai and Linial ’88):
∑n

1 βi(A)2 ≥ ct2(1−t)2 (log n)2

n
, where

t = P 1
2
(A) and c is an absolute constant. Bourgain, Kahn, Kalai, Katznelson

and Linial found a similar result for the solid cube [0, 1]n.
Theorem 6: For every p > 0, there is an absolute constant c such that

maxi βi(A) ≥ ct(1 − t) log n
n

.
A ⊂ Qn is called symmetric if ∀i, j ∈ [n]∃ a permutation π : [n] → [n] such

that π(i) = j and ω ∈ A ⇒ ωπ := (ωπ(1), . . . , ωπ(n)) ∈ A.
E.g. [n] × [n], a grid, and consider bond percolation with probability p, A

the event that the resulting graph is connected; this is not symmetric. However,
if we identify opposite sides to form a torus, it becomes symmetric, and indeed
is symmetric for any other event e.g. A = ∃ a long path.

Maximal influence: For A ⊂ Qn
1
2

, II implies maxβi(A) ≥ ct
log 1

t

n
, where

t = P 1
2
(A); in fact we may find c = 2. BKKKL implies for A ⊂ Qn

p , maxβi(A) ≥
ct(1 − t) log n

n
.

Thresholds (increase of Pp(A): Suppose A ⊂ Qn
p is a symmetric up-set; using

the Margulis-Russo lemma (which we haven’t the time to prove) we get:
Theorem 7: Suppose A ⊂ Qn

p is a symmetric up-set, Pp(A) > ǫ > 0, ǫ < 1
2 .

Then Pq(A) ≥ 1 − ǫ provided q − p ≥ c
log 1

2ǫ

log n
. This is a very good result, but

says little if p is very small; fortunately for that case we have:

Theorem 8: The same result holds provided q − p ≥ cp log 1
p

log 1
2ǫ

log n
.

Note that these results do not hold for A almost given by a “junta”, e.g.
A = {(ωi)

n
1 : ω1 + ω2 + ω3 ≥ 2}, which has P 1

2
(A) = 1

2 [this A is very much not

symmetric].
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Bond percolation on Z2, the square lattice

Our aim in this section is to proove the celebrated results of Haris and Kosten,
which give values for pb

T (Z2) and pb
H(Z2).

1. Crossing rectangles: a rectangle R = [m] × [n] has mn sites and 2mn −
m − n bonds. For Λ = Z2, we can simply say Λ⋆ = Z2, but for a rectangle it is
not clear how we should treat the boundary, so we make some more definitions:
the horizontal dual Rh is an (m − 1)× (n + 1) rectangle, having vertices inside
each face of R and extra rows along the top and bottom, but no extra columns
along the edges. For each horizontal bond f of R, f⋆ is a vertical bond of Rh.

The vertical dual of R, Rv, is (m + 1) × (n− 1); for m, n ≥ 2, (Rh)v = R =
(Rv)h; if R is (n + 1)× n then we consider R⋆ to be Rh, n× (n + 1). Let H(R)
be the event that there is an open crossing of R from left to right; V (R) the
same for top to bottom.

Consider bond percolation with probability p on Λ = Z2; this corresponds
to bond percolation with probability 1− p on Λ⋆ = Z, by: for any configuration
ω on Λ, ω⋆ is the configuration on Λ⋆ such that f is open iff f⋆ is closed.

Lemma 1: For R an m × n rectangle, m, n ≥ 2, for every configuration ω

on R exactly one of ω ∈ H(R), ω⋆ ∈ V (Rh) holds: draw R. Draw a square in
the centre of each bond of R, i.e. around the intersection of each bond f with
its corresponding f⋆. Then connect the corners of these squares with diagonal
lines, so that we now have a tiling by squares and octagons, with an octagon
around each vertex of R and each vertex of Rh.

Colour the octagons black if they correspond to vertices of R, white for
vertices of Rh, and colour the squares according to our percolation: black if f is
open, white if f⋆ is open (and the squares on the left and right edges for which
there is no f⋆ always black). Consider the lines separating black and white
regions to form the interface graph I(w); orient every edge therof such that the
black region is on the right and the white on the left.

For every vertex v in the interior of the tiling, there is exactly one bond
going into v and one leaving it; the only vertices for which this does not hold
are the four corners. At the top left we have a bond going into the graph, at
the top right one coming out, at the bottom left coming out and at the bottom
right going in. Thus I(ω) is some oriented cycles and two oriented paths. Each
of these paths gives either an open horizontal crossing of R or an open vertical
crossing of Rh; in fact we obtain either the topmost and bottommost horizontal
crossings in R or the leftmost and rightmost vertical crossings in Rh. (Note
that this proof shows e.g. the leftmost vertical crossing depends only on bonds
in it and to its left (since we can find it via a “hand-on-left-wall method” in the
coloured tiling); thus it will be independent of an event defined depending only
on the bonds to its right). We cannot have both events as if so, we have two
vertices top and bottom joined to each other, and two left and right joined to
each other, and neither path crossing each other or the outer square; then add
a vertex outside the square and join it to the four previously mentioned ones,
and we have a planar drawing of K5.

Corollary 2: i) For R = [m+1]×[n] a rectangle, ∀p, Pp(H(R))+P1−p(V (Rh)) =
1 ii) IF R = [n+1]× [n] then P 1

2
(H(R)) = 1

2 iii) If S is a square, P 1
2
(H(S)) > 1

2 :

i) If ω is distributed as a percolation with probability p then ω⋆ has the distribu-
tion of a percolation with probability 1−p; {ω ∈ H(R)} and {ω⋆ ∈ V (Rh)} par-
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tition [the state space] Ω. ii) For Rhn×(n+1), clearly P 1
2
(H(R)) = P 1

2
(V (Rh));

combine this with the previous result. iii) When we enlarge S from an n × n

square to an (n + 1) × n rectangle, the probability becomes 1
2 by the previous

result.
Write hp(m, n) := Pp(H(R)) where R is an m × n rectangle, and h(m, n) =

h 1
2
(m, n). We want to show that for p > 1

2 , the probability of a horizontal
crossing of a rectangle of any “aspect ratio” is large, provided n is large enough;
we shall get their slowly.

Lemma 3: Let R = [m] × [2n], S the [r] × n] rectangle in the “bottom
left” corner of R, X(R, S) the event that there are open paths P1, P2 such
that P1 is a vertical crossing of S and P2 joins P1 to the RHS of R. Then
Pp(X(R, S)) ≥ 1

2Pp(H(R))Pp(V (S)).
The proof is conceptually simple: consider P1 and its reflection P ′

1; any
P2 which is a horizontal crossing of R must hit one of these. But we need
to be able to use Harris’ lemma, and P ′

1 doesn’t form an up-set, so we shall
need some technical manouvers. Write LV (S) = P1 for P1 the leftmost vertical
crossing of S, ∅ if there is no such crossing. Let P ′

1 be the reflection of P1,
P̃1 = P1 ∪ P ′

1∪ the single bond in the middle joining them, R(P1) = the part
of R to the right of P̃1. Let Y (P1) be the event that R(P1) has an open path
from P̃1 to the RHS of R, Z(P1) be that that R(P1) has an open path from
P1 to the RHS of R. We clearly have P(Z(P1)) ≥ 1

2P(Y (P1)) ≥ 1
2P(H(R)).

The event LV (S) = P1 is independent of all the bonds of R(P1); in partic-
ular it is independent of Z(P1). {LV (S) = P1} ∩ Z(P1) ⊂ X(R, S); thus⋃

P1
{LV (S) = P1}∩Z(P1) ⊂ X(R, S) ∴ P(X(R, S)) ≥ ∑

P1
P(Z(P1) | LV (S) =

P1)P(LV (S)) = P1 ≥ ∑
P1

1
2P(H(R))P(LV (S) = P1) = 1

2P(H(R))P(V (S)), as
required.

Corollary 4: h(m1 +m2− r, 2n) ≥ 1
4h(m1, 2n)h(m2, 2n)h(r, n)2h(n, r), since

if we consider a m1 + m2 − r × 2n rectangle as being an m1 × 2n rectangle
overlapping an m2 × 2n rectangle, with the overlap being two r × n rectangles,
say one of them is S, if we have an open vertical crossing of S and an open
“horizontal” path from this crossing to the LHS of the left rectangle, another
open vertical crossing of S and an open “horizontal” path from this to the RHS
of the right rectangle, and an open horizontal crossing of S, then by their powers
combined we have an open horizontal crossing of the entire rectangle.

For example, applying this m1 = m2 = 2n+1, r = n−1 gives h(3n+3, 2n) ≥
2−7; feeding this result back in we have h(5n + 7, 2n) ≥ 2−19 and similarly
h(6n + 9, 2n) ≥ 2−25, which we shall use.

Theorem 4 (Harris, 1960): For bond percolation on Z2, ϑ(1
2 = 0: write r(C0)

for the l∞-radius of C0. We claim P 1
2
(r(C0) ≥ n) ≤ n−c (⋆), where c > 0 is an

absolute constant: consider Λ = Z2, Λ⋆ ∼= Z2, and probability 1
2 ; couple f ↔ f⋆

in the usual fashion. Consider a square annulus in Λ⋆; if we have an open path
going around it, we are done. Consider the four “long” versions of the “side”
rectangles; if we have lengthwise open crossings of each, they join to give a cycle
as required - and we can use Harris freely for this.

More formally, let Ak be the square annulus in Λ⋆ with centre (1
2 , 1

2 ), inner
radius 4k and outer radius 3 × 4k. Let Ek be the event that there is an open
cycle in Ak surrounding 0; Ak is made up of four (3 × 4k + 1) × (4k + 1)
rectangles (overlapping), and the probability that there is a crossing of such a
rectangle “the long way” is, as we saw, ≥ 2−25, so P(Ek) ≥ 2−100 by Harris.
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Also Ek ⊂ {r(C0) ≤ 3 × 4k < 4k+1} ∴ P(r(C0) ≥ n) ≤ (1 − ǫ)l ≤ e−ǫl,
if 4l+1 ≤ n. Indeed, (Ek)∞k=1 are independent since the annuli are disjoint;
P(|C0| = ∞) ≤ P(r(C0) ≥ n)∀n ∴ P(|C0| = ∞) = 0.

We showed that P 1
2
(r(C0) ≥ n) ≤ n−C ; we have also that it is ≥ 1

2n
by

considering an n × n square: the probability that it has an open crossing is 1
2 ,

so there is at least one vertex on the left hand edge for which there is an open
crossing starting at that vertex with probability ≥ 1

2n
; position the square such

that that vertex is the origin, then done.

Thus 0 < c ≤ lim inf
− log P 1

2
(r(C0)≥n)

log n
≤ lim sup

− log P 1
2
(r(C0)≥n)

log n
≤ 1. Clearly

the limit exists, but proving this would guarantee the reader a fellowship at
their college of choice. An even simpler open question, is to prove that e.g.
h(10n, n) → some hn.

Harris tells us that pb
H(Z2) ≥ 1

2 .
2. A sharp transition. We saw h 1

2
(4n, n) ≥ c4 > 0. We aim to show that for

p > 1
2 , hp(ρn, n) → 1 as n → ∞, for any fixed ρ > 1 e.g. ρ = 100.

Lemma 5: Let p > 1
2 and ρ ≥ 1. Then ∃γ = γ(p) > 0, n0 = n0(p, ρ)

such that if n ≥ n0 then hp(ρn, n) ≥ 1 − n−γ : our main weapon here is that
if A ⊂ QN

p is a symmetric upset with Pp(A) ≥ ǫ (< 1
2 ) then Pq(A) ≥ 1 − ǫ

provided q − p ≥ c0
log 1

2ǫ

log N
. It suffices to show the result for hp(3n, 2n), since

everything remains exponential if we “glue” multiple rectangles to make larger
ones (we shall see this more formally later).

Define T5n the 5n × 5n torus, with 25n2 sites and 50n2 bonds. Let A be
the event that there is a 4n × n or n × 4n rectangle in T5n with a crossing
“the long way”; this is clearly a symmetric upset in QN

p , where N = 50n2.
P 1

2
(A) ≥ c4 > 0 (by just considering some particularl fixed 4n × n rectangle).

Let δ =
p− 1

2

25C0
, ǫ = n−50δ (thus δ =

log 1
ǫ

50 log n
. p − 1

2 = 25C0
log 1

ǫ

50 log n
. Take n large

enough to have ǫ < c4, then P 1
2
(A) > ǫ. Then Pp(A) ≥ 1 − ǫ = 1 − n−50δ.

Let R1, . . . , R50 be the canonical 3n × 2n and 2n × 3n rectangles in T25n2 ;
the bottom-left vertices are (in, jn). Let Fi be the event that Ri is crossed “the

long way”. Then A ⊂ ⋃50
1 Fi; each Fi is an upset so ∃Fi such taht Pp(Fi) ≥

1 − ǫ
1
50 = 1 − n−δ.

For general p, e.g. taking γ = δ
2 works: 1−P(open crossing) ≤ (2ρ−5)n−δ <

n− δ
2 for ρ fixed and n large enough, and we can cross a ρn× 2n rectangle using

2ρ−5 crossings of 3n×2n rectangles - divide it into n×n blocks, then consider
horizontal crossings of each first 3n×2n rectangle and vertical crossings of each
2n × 2n square (other than those at the end); these will combine to give a
horizontal crossing of the entire rectangle.

Corollary 6: ∀ρ ≥ 1, p > 1
2 , hp(ρn, n) → 1.

Theorem 7 (Kesten, 1980): For p > 1
2 , ϑ(p) > 0 (i.e. Pp(E∞) = 1); pb

H(Z2) ≤
1
2 ): Let Rk be [2kn]× [2k+1n] if k is even, [2k+1n]× [2kn] for k odd; place all the
rectangles with their bottom left corner at the origin (then a vertical crossing
of R1 and a horizontal crossing of R2 must meet, and this must meet a vertical
crossing of R3, and so on). Let Ek be the event that Rk has an open crossing
the long way;

⋂∞
k=0 Rk ⊂ E∞ [yes, technically false, but only in a sense that

doesn’t matter]. P(
⋂

Rk) = 1−P(
⋃

Rc
k) ≥ 1−∑

P(Rc
k) ≥ 1−∑

(2kn)−γ , which
is > 0 if n is sufficiently large.

4. Exponential decay: Usually (as we have just seen), above the “threshold”
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probability, the probability of an event tents to 1 polynomially; however, usually
below the threshold the probability tents to 0 exponentially.

Consider site percolation on Λ; our state space is Ω = {0, 1}V (Λ). A cylindrical set
is a subset EF ⊂ Ω depending only on the states of the sites in some finite set F .
Write C for the algebra of cylindrical sets; we define a site percolation measure
on Λ to be the completion of a finitely additive probability measure on C.

A SPM P on Λ is called k-independent if any two cylindrical events EF , EF ′

with d(F, F ′) ≥ k the events are independent (i.e. for finite sets U, W ⊂ V (Λ)
at distance ≥ k, the states in U, W are independent); for k = 1 this of course
becomes independence in the usual sense, for k ≥ 2 we “get funnier measures”

Examples: 1. Consider P an (independent) bond percolation measure on Λ;
define P̃ on V (Λ) by: a site v ∈ V (Λ) is open if there is an open path (in P) of
length 3 starting at v. This measure P̃ is 6-independent. 2. Pick 3 × 3 squares
independently with probability p and declare a site open if it is in one of these
squares; this is 5-independent.

Lemma 8: Let ∆ ≥ 2. Then ∃a = a(∆, k) > 0 and p1(∆, k) such that if
∆(Λ) ≤ ∆ and P is a k-independent site percolation measure on V (Λ) with
P(v open) ≤ p1(∆, k)∀v ∈ V (Λ) then P̃(|Cv| ≥ n) ≤ e−an∀n ≥ 1, v ∈ V (Λ):
Fix p > 0, v ∈ V (Λ). 1) The number of n-sets U ⊂ V (Λ) containing v such
that Λ[U ] is connected is ≤ (e∆)n−1 (exercise; we can also obtain a slightly
stronger result using trees rather than connected graphs). 2) Write b(r, ∆) =
1 + ∆ + ∆(∆ − 1) + · · · + ∆(∆ − 1)r−1; ∀w ∈ V (Λ) there are at most b(r, ∆)
vertices within distance r of w. ∀U ⊂ V (Λ), |U | = n∃W ⊂ U, |W | ≥ n

b(k−1,∆)

such that d(w, w′) ≥ k∀w, w′ ∈ W, w 6= w′ (by just picking vertices greedily).
Hence, given U ⊂ V (Λ), |U | = n, the probability that every site in Λp[U ] is

open is ≤ p
n

b(k−1,∆) . 3) P(|Cv| ≥ n) ≤ (e∆)n−1p
n

b(k−1,∆) < (e∆p
1

b(n−1,∆) )n; hence

choosing p1 = p such that e−a = eδp
1

b(k−1,∆) < 1 and this value of a we have the
result.

Theorem 9: Let p < 1
2 , then ∃a(p) > 0 such that in bond percolation

on Z2 with probability p, P(|C0| ≥ n) ≤ e−an∀n ≥ 2: P is an independent
bond percolation on Λ = Z2. We’ll define P̃ a 5-independent site percolation
on Z2 such that the probability of any site being open is small and large open
clusters in P correspond to lange open clusters in P̃ (This is an important general
technique, but one which must be used with care; if applied crudely it gives
terrible bounds). Let s = m + 1, to be defined later; consider a tiling of Z2

by s × s squares Sij = {is, is + 1, . . . , is + m} × {js, js + 1, . . . , js + m} :
(i, j) ∈ Z2. We have Λ ↔ Λ⋆, p ↔ 1 − p as usual. Declare (i, j) to be closed
(in our new percolation P̃) if in the square annulus of outer diameter 3m and
inner diameter m around Sij in Λ⋆, there is an open cycle surrounding Sij ;

P̃((i, j) is closed) ≥ (h1−p(3m, m))4 ∴ P̃((i, j) open) ≤ 1 − h1−p(3m, n)4 <

p1(5, 4) (our site percolation P̃ is 5-independent). So P̃(|C̃0| ≥ n) ≤ e−an where
a = a(5, 4). If |C0| ≥ (3s)2 ther every “square” Sij that C0 meets is open
(i.e. the corresponding (i, j) is open, because C0 meets the square in Λ so there
cannot be a cycle in Λ⋆ surrounding the square). Hence P(|C0| ≥ n) ≤ P(|C̃0| ≥

n
(3s)2 ) ≤ e−

a

3s2 n (strictly speaking this is only true for n ≥ 3s2, but we can find

a bound for n < 3s2 and incorporate this into our exponent); this gives the
result.

Theorem 10 (Kesten’s theorem): pb
T (Z2) = pb

H(Z2) = 1
2 : We know pb

T (Z2) ≤
pb

H(Z2) ≤ 1
2 (and in fact we know this second ≤ is an =, by Harris). If p < 1

2 ,

12



Eb
p(|C0|) ≤ 1 +

∑∞
k=2 ke−ka < ∞, so we are done.

Lemma 11: For k ≥ 1∃pk < 1 such that if P is a k-independent bond
percolation measure on Z2 (or Zn) with [each] bond open with probability > pk

then P(E∞) = 1: the proof is by Peierl’s argument. If we have a cycle around
0, we can find many bounds in this which are all far apart from each other.
(Proving that e.g. p1 is in fact quite small is a far trickier matter).

Another proof that pb
H(Z2) ≤ 1

2 : consider P > 1
2 , take a “grid” of n × n

squares in our original Λ, and “shade them” such that every square whose x

and y coordinates are both odd is shaded, otherwise left blank. Consider these
shaded squares as forming the sites of a new percolation [on Z2] (in fact the
argument also works if we consider every square as a site in the new percolation,
but it “looks more like a lattice” this way). In this new percolation we consider
a horizontal bond from a to b to be open if we have an open horizontal crossing
of the 3n× n rectangle with a and b as its two ends in the original percolation,
and also a vertical crossing of the leftmost of the two, a (this last condition so
that if we have bonds from a to b to c in the new percolation, we really do have
an open crossing from a to c in the original percolation); similarly a vertical
bond is considered open if we have a vertical crossing of the n × 3n rectangle
it corresponds to and also a horizontal crossing of the lowest n × n square of
this. This defines a new 1-independent (note that k-independence is defined in
terms of sites, so this is really true; it is not the case that two bonds joined
to the same site are independent in the new percolation, but it does not need
to be) percolation measure P̃ where the probability of a bond being open is
≥ hp(3n, n)hp(n, n), which will be > p1 for n large enough.

The Aizenmann-Kesten-Newmann Theorem and

Critical Probabilities

1. The AKN Theorem. Consider Λ (with the usual conditions e.g. locally
finite). A subgroup Φ ⊂ AutΛ is a group of translations if ∀ finite F ⊂ V (Λ),
∃ϕ ∈ Φ, ϕ(F ) ∩ F = ∅ (equivalently, ∀x ∈ V (Λ), n ≥ 1∃ϕ ∈ Φ : d(x, ϕ(x) ≥ n)).
Consider site percolation, as we shall do throughout thes section unless otherwise
stated. A site percolation measure on Λ is translation invariant if ∀F ⊂ V (Λ)
finite, P(EF ) = P(ϕ⋆(EF ))∀ϕ ∈ Φ, and translation independent if ∀F ⊂ V (Λ)
finite ∃ϕ ∈ Φ such that EF , ϕ⋆(EF ) are independent, for EF any cylindrical
event depending only on F and ϕ⋆ denoting “the translation of the event under
ϕ”.

Theorem 1 (0-1 law for translation invariant events): Let Λ be as usual,
P translation invariant and translation indepedent. Let E be a translation
invariant event. Then P(E) = 0 or 1: let ǫ > 0. Then ∃ finite F such that
P(E∆EF ) < ǫ. We may assume P(EF ) ≤ P(E) (otherwise replace E by Ec).
We want to bound P(E) − P(E)2: Let ϕ ∈ Phi be such that Ef , ϕ⋆(EF ) are
independent. P(E) − P(E)2 ≤ P(E) − P(EF )2 = P(E) − P(EF ∩ ϕ⋆(EF )) ≤
P(E \EF ) + P(E \ϕ⋆(EF )) < ǫ + P(ϕ⋆(E)ϕ⋆(EF )) < 2ǫ (since the second term
is the same as P(E\EF )). Since this holds for all ǫ, it must hold for one of E, Ec

for arbitrarily small ǫ; thus one of these has P(E) ≤ P(E2) and so P(E) = 0 or
1.

Write Ik for the event that there are exactly k infinite open clusters.
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Theorem 2: For Λ, Φ as usual, P an independent translation invariant site
percolation probability, one of I0, I1, I∞ has probability 1: We have P(Ik) = 1
for exactly one of the Ik. Suppose 2 ≤ k < ∞. Pick x0 ∈ V ; write An

for the event that Λ \ Bn(x0) has at least one infinite open cluster and every
such meets Sn+1(x0). We have Ik ⊂ ⋃∞

n=1 An, so P(An) > 0 for some n. I1

contains the intersection of the event that every site in Bn(x0) is open with An,
so P(I1) ≥ (

∏
x∈Bn

px)P(An) > 0 (we take percolation measures to always be
positive, px > 0∀x - otherwise our assumption that Λ is connected would be
meaningless). So P(I1) > 0, a contradiction.

Using K’s earlier 0-1 law alone would only give us that one of I0,
⋃

1≤k<∞ Ik, I∞
has probability 1, so this is a big improvement.

Technical lemma: Lemma 3: Let G be a finite graph with k components,
L, C ⊂ V (G), L∩C = ∅ and every component of G contains at least one vertex
of C. Write Gc for the component of G containing c ∈ C; we have

⋃
c∈C Gc = G.

Suppose [for each c ∈ C] Gc − c has mc ≥ 3 components containing vertices of
L. Then |L| ≥ 2k +

∑
c∈C(mc − 2): since this is linear in components we may

take k = 1, and we may assume G is a minimal connected graph containing
L ∪ C (as any additional edges or vertices can only help us). This means G is
a tree and all leaves belong to L (d(c) ≥ mc ≥ 3); also |L| ≥ 3. But then |L| is
at least the number of leaves, ≥ 2 +

∑
c∈C(mc − 2).

We want to rule out the case P(I∞) = 1, but clearly some graphs (e.g.
the Bethe lattice where each vertex has degree 3, with p > 1

2 ) may have

this. So we define: a graph Λ is amenable if ∀x ∈ V (Λ), |Sn(x)|
|Bn(x)| → 0, and

uniformly amenable if this convergence is uniform (i.e. ∀ǫ > 0∃n0 : ∀x ∈
V (Λ)∀n > n0

|Sn(x)|
|Bn(x)| < ǫ). Λ is of finite type if V (Λ) =

⋃k
1 Vi with ∀x, y ∈

Vi∃ϕ ∈ AutΛ : ϕ(x) = y. Note that any amenable graph of finite type is
uniformly amenable.

Theorem 4 (AKN): Let Λ be an amenable graph of finite type, P an independent
site percolation measure on Λ with px = py > 0 if x, y have the same type.
Then I0 or I1 has probability 1 (this is one of the two “pillars”, our main
tools for studying critical probabilities): suppose not, then P(I∞) = 1. Let
Ar(x) be the event that Λ − Br(x) has ≥ 3 infinite open clusters meeting
Sr+1(x). P(Ar(x)) → 1 as r → ∞; pick an r such taht P(Ar(x)) ≥ a >

0∀x ∈ V (Λ. Fix x0, then take W a maximal subset of V (Bn(x0)) such that if

w, w′ ∈ W, w 6= w′ then d(w, w′) ≥ 2r + 2. We have |W | ≥ |Bn(x)|
b2r+1(∆) (where

bn(∆) = 1 + ∆+ ∆(∆− 1)+ · · ·+ ∆(∆− 1)n−1 and ∆ = ∆(Λ), which exists by
finite type). Hence, if n is large enough, |W | > a−1|Sn+r+1(x0)|.

Call Br(x) a cut-ball if Ar(x) holds. The expected number of cut-balls
is ≥ a|W | > |Sn+r+1(x0)|; pick a configuration ω for which there are s >

|Sn+r+1(x0)| cut-balls, say C1, . . . , Cs. There are some components in the open
subgraph given by ω−⋃s

1 Ci that meet the spheres Sr+1(w) about the centres of
the cut-balls; let L1, . . . , Lt be the infinite components and F1, . . . , Fu the finite
ones. Considre Λ[

⋃s
1 Ci∪

⋃t
1 Lj∪

⋃u
1 Fk]; contract this to form G by [each] Ci →

[a single vertex] ci, Lj → lj, Fk → fk. Then G, C = {c1, . . . , cs}, L = {l1, . . . , lt}
satisfy the conditions of Lemma 3; hence t ≥ s+2 and we have a contradiction,
since the Lj are disjoint and every Lj must meet Sn+r+1(x0).

2. The Harris-Kesten Theorem, Once Again
Theorem 5 (Harris, ‘60; Zhang’s proof, ‘98): For bond percolation on Z2,

14



ϑ(1
2 ) = 0: set p = 1

2 and suppose ϑ(1
2 ) > 0. Then P(I1) > 0, so by the-

orem 4, P(I1) = 1. Let Sn = [n] × [n]. For any infinite component, a suf-
ficiently large square will meet it, so there is an n0 such that if n ≥ n0 − 1
then P(Sn meets an infinite component) ≥ 1− 10−4; call this probability P(F ).
Write E1 for the event that there is an infinite open path P1 leaving Sn “up-
wards” (i.e. from the top side), and analagously E2 to the right, E3 down, E4

left.
⋃4

1 Ei ⊃ F ∴ P(
⋃4

1 Ei) ≥ 1 − 10−4 ∴ P(Ei) ≥ 1 − 1
10 for some i, and by

symmetry this holds for all i. Let S′ be the (n − 1) × (n − 1) square in the
dual Λ⋆ ∼= Z2 contained in S; define E′

1, . . . , E
′
4 in the obvious way; we have

P(E′
i) ≥ 1 − 1

10∀i. Then let E = E1 ∩ E′
2 ∩ E3 ∩ E′

4; we have P(E) ≥ 3
5 ∴

the probability of E and all the bonds of Sn being open is > 0. Then let P1

be the path in E1, and analagously; P1 and P3 can be joined within Sn. So
these either meet (outside Sn), forming a cycle surrounding the left or right
side of Sn, but this contradicts that P ′

2, P
′
4 are infinite, or they form an open

two-way infinite path, dividing the plane into two, so I ′1 cannot hold (since we
have P ′

2, P
′
4 infinite on both sides of the plane, a contradiction. This proof is

nice since it is quite general, in that it does not rely on any local properties of
Z2.

The second “pillar” is Aisenmann-Newman (though a slightly weaker form
of the result, proven by Menshikov, contains all the critical features): Suppose Λ

under the usual conditions is of finite type and |Br(x)| ≤ r
log r
100 ∀x for sufficiently

large r. Then for p < ps
H(Λ), P(|Cx| ≥ n) ≤ e−an, where a = a(p, Λ) > 0; the

proof is on one of the example sheets. This gives us:
Theorem 6 (Kesten): pb

T (Z2) = pb
H(Z2) = 1

2 (on the example sheet we shall
see pb

T = pb
H =: pb

C for a large class of lattices): Suppose pb
H(Z2) > 1

2 . Then at
p = 1

2 , P(|C0| ≥ n + 1) ≤ e−an. But P(H(R)) = 1
2 for any (n + 1)× n rectangle

R, so P(|Cx| ≥ n + 1) ≥ 1
2n

, which gives a contradiction if n is large enough.
3. Site percolation on the Triangular Lattice
The triangular lattice T is closely associated with the hexagonal or honey-

comb lattice H ; site percolation on T corresponds to face percolation on H .
Lemma 7: Let R be an m × n “parallelogram” in T . Then for any p,

Pp(H(R)) + P1−p(V (R)) = 1: more is true: we claim that for all configurations
(i.e. assignments of open and closed states [to sites]), there is either an open
horizontal crossing or a closed vertical crossing, but not both: pass to the “inter-
face graph”, a parallelogram in H , and colour hexagons black if they correspond
to open sites, white for closed; the space above and below the parallelogram is
white and that to its left and right black. Direct edges so that they have black
on their right and white on their left, then the inward-pointing edge at the top
left must connect to one of the outgoing edges and so on as before. We cannot
have both crossings as this gives (with a very small amount of work) a planar
drawing of K5.

Theorem 8: ps
T (T ) = ps

H(T ) = 1
2 . i) Suppose ps

C(T ) > 1
2 . Consider site

percolation with probability p = 1
2 ; by AN we have exponential decay: ∃a > 0

such that P(|C0| ≥ n) ≤ e−an. On the other hand, considering an n × n

parallelogram P , P(|Cx| ≥ n) ≥ 1
2n

, a contradiction for n large. ii) Suppose
ps

C(T ) < 1
2 . Take percolation with probability 1

2 ; consider the “dual” obtained
by exchanging open bonds for closed. Then P(I1) = P′(I ′1) = 1. Let Hn be the
regular hexagon in T with 6n sites on the perimeter; write Ei for the event that
there is an [infinite] open path with exactly one site in Hn, on side i [defining
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the sides so that they do not overlap]. We may take P(
⋃6

1 Ei) ≥ 1− 10−6 (by n

sufficiently large) so P(Ei) ≥ 1− 1
10∀i; thus P(E1 ∩E′

2 ∩E4 ∩E′
5) ≥ 1− 4

10 ; then
the probability that this occurs and every site in the interior of Hn is open is
¿0, since the Ei, E

′
i are independent of the sites inside Hn. However, we then as

before have P1, P4 open leaving the hexagon from top and bottom and P2, P5

closed leaving it from left and right; as the sites inside are all open we can join
P1, P4 by some path, so there is a two-way infinite open path separating P ′

2, P
′
5

and so P(I ′≥2) > 0, a contradiction.
4. Bond percolation on T and H

Lemma: pb
c(T ) + pb

c(H) = 1: let R be a “rectangle” in T , where the “last
zigzag” of edges on the “vertical” sides is not present, so that e.g. the right hand

edge looks like a “stack” of Σs:
Dualise, then Pp(H(R))+P1−p(V (R⋆)) = 1 by the usual “interface graph” proof.
i) Suppose pb

c(T ) + pb
c(H) < 1; pick p with p > pb

c(T ), 1 − p > pb
c(H). Consider

bond percolation with probability p on T , coupled with bond percolation on H

with probability 1 − p, and consider semi-infinite paths away from a hexagon
as usual. ii) If pb

c(T ) + pb
c(H) > 1, pick p, p < pb

c(T ), 1 − p < pb
c(H), then we

have exponential decay, but since we always have either a horizontal crossing of
a rectangle or a vertical crossing in the dual the decay can be at most c

n
, so we

have a contradiction, again as usual.
Star-triangle transformation: consider replacing a triangle xyz with a “star”

where each of x, y, z is connected to a central vertex w. If we could find probabil-
ity distributions such that the probability of each possible “connectedness com-
bination” is the same for both, then we could use this to dualise T . Observe that
if the probability of bond percolation on the triangle is p and that on the star r,
the case where all vertices are connected means we need p3+3p2(1−p) = r3, two
connected (e.g. {x, y}, or symetrically any other pair) gives p(1−p)2 = r2(1−r),
and none connected (1 − p)3 = (1 − r)3 + 3r(1 − r)2. If we set r = 1 − p these
reduce to p3 +3p2−3p3−1+3p−3p2 +p3 = 0 i.e. p3 −3p+1 = 0; the solution
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(in (0, 1)) to this is p0 := 2 sin π
18 = 0.3472 . . . .

Theorem 9: pb
c(T ) = 2 sin π

18 ; pb
c(H) = 1 − 2 sin π

18 : dualise the triangu-
lar lattice by replacing each “upward” pointing triangle with a star, giving a
hexagonal lattice. Consider bond percolation on T with probability p0; couple
it with an independent percolation on H by chosing the bonds in each triangu-
lar “domain” (star) with probability 1− p0 such that the set of sites connected
in a given domain in T is precisely that connected in H (we can do this by
the above). Conisder C0, C

′
0; C0 ⊂ C′

0 as for any open path in T , the cor-
responding path in H is open. |C0| ≤ |C′

0| ≤ 4|C0|: being very crude, the
sites of C′

0 are at most the sites of C0 and the three neighbours of each. So
Pp0(|C0| ≥ n) ≤ P(|C′

0| ≥ n) ≤ P(|C0| ≥ n
4 ) ∴ ϑp0(T, 0) = ϑ1−p0(H, 0).

Suppose pc(T ) < p0; then pc(H) > 1 − p0, but then ϑ(T, p0) > 0, ϑ(H, 1 −
p0) = 0, a contradiction; the converse is similar.

This appears to be the end of the course. The lecturer wished to emphasise
that this is not a reflection of the state of the art in the subject; while there are
still physicists attempting to find better bounds on the critical probabilities of
various lattices, most mathematical work in the field is now on deeper results.
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