
Combinatorics

December 22, 2008

The feel of this course is similar to graph theory; if you liked that you will
like this. The course is about subsets of finite sets, which might seem the thing
least likely to have interesting things to say about them, but in fact we’ll find a
lot of interesting results. The definitions here are simple; most of the ideas are
in the proofs themselves, so you cannot ignore the proofs as in other courses.
There are many nice, short proofs, even of very strong results - sometimes
results so strong that they seem like they couldn’t possibly be true.

An outline: there three chapters. The main one is on set systems; then we
have one on isoperimetric inequalities, i.e. minimising the perimiter of a shape
with given area, but working with finite rather than continuous sets. We are
mostly interested in the behaviour as the number n of dimensions gets large,
rather than finding the precisely best solution when n = 2 or 3 (though we
will do that as well). Finally we have a chapter on intersecting families of sets,
where we can obtain some surprisingly strong results with only basic algebra.

As usual, the content of the course is what is on the board rather than
anything else. There will be three examples sheets and three examples classes
for these; it is important to prepare work rather than just attending to listen to
these.

Books should be unnecessary for the course, but some of the audience
may want one for reference or to give a second perspective on things. The
recommended one is Bollboas’ “Combinatorics”; this is very gentle, almost
“bedside reading”; it gives a good feeling of what’s going on, and shows some
things that go beyond this course. Anderson’s “Combinatorics of Finite Sets”
is simple and clear, but less good in distinguishing between proofs that really
are trivial and proofs which merely appear trivial because they’ve used a very
clever idea. Both these books only really cover the first chapter; there are no
good published books for the second and third chapters.

The only prerequisites are the basic concepts of graph theory (the notions
of a graph and a path, and Hall’s theorem), and knowing what the integers
mod p are, and what a vector space is.

1 Set Systems

Let X be a set. A set system on X (or family of subsets of X) is a family A ⊂
P(X), e.g. X(r) = {A ⊂ X : |A| = r}. Unless otherwise stated we shall take
X = [n] = {1, . . . , n}. So e.g. |X(r)| = (nr

)

; so e.g. [4](2) = {12, 13, 14, 23, 24, 34}
(where of course 12 denotes {1, 2} and so on). Often we makeP(X) into a graph
by joining A to B if |A△B| = 1 (where △ is the symmetric difference). This
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graph is called the discrete cube Qn. There are two important ways to visualize
this: firstly, as a set of “levels” X(r), starting with the one-element X(n), then the
larger X(n−1), and so on down to the maximally-sized X( n

2
) for n even (or equally

sized X(⌈ n
2 ⌉) and X(⌊ n

2 ⌋) for n odd), then reducing in size to X(0). This is a useful
visualization in many ways, but doesn’t show the graph interconnections well
- there’s simply an awful mess of edges between any two adjacent levels. The
other visualization, which gives the graph its name, is as follows: identify a
point A ∈ P(X) with a 0-1 sequence of length n, e.g. {1, 3} → 10100 . . . . There is
then an obvious identification with the vertices of the unit cube in Rn.

Chains and antichains

A ⊂ P(X) is a chain if ∀A,B ∈ A,A ⊂ B or B ⊂ A, e.g. {12, 1257, 12357}. It is an
antichain if ∀A , B ∈ A,A * B, e.g. {1, 346, 2489}. How large can a chain be?
We can have |A| = n + 1 by e.g. A = {∅, 1, 12, . . . , [n]}; clearly we cannot beat
this , as a chain can meet a “level” X(r) in at most one point.

How large can an antichain be? We can have |A| = n, e.g. A = {1, 2, . . . , n};
in fact X(r) for any r is always an antichain. So we can achieve

(n
n
2

)

for n even or
( n
⌊ n

2 ⌋
)

for n odd; in fact this is optimal, but how do we prove this?

1.1 Theorem (Sperner’s Lemma)

(Note that there are two important results called “Sperner’s Lemma”, the other
being in algebraic topology)

LetA ⊂ P(X) be an antichain. Then |A| ≤ ( n
⌊ n

2 ⌋
)

: we’ll decompose P(X) into
( n
⌊ n

2 ⌋
)

chains, then we’re done. (This is a very clever idea - it mirrors the chain

case, where we proved the maximum size of a chain by decomposing the cube
into n + 1 antichains, the layers). To do this, it is sufficient to show that: i) for
each r < n

2 there is a matching (recall this means a set of disjoint edges) from X(r)

to X(r+1), and ii) for each r > n
2 there is a matching from X(r) to X(r−1); then we can

just put together these matchings to form our chains. By taking complements,
it is sufficient to prove only the first of these.

As an exercise the reader should try to find an explicit matching; this is
actually very hard. However, we can and shall of course just use Hall: consider
the subgraph G of Q spanned by X(r) ∪ X(r+1); it is bipartite. We have d(A) =
n− r∀A ∈ X(r) and d(A) = r+1∀A ∈ X(r+1). Given S ⊂ X(r), the number of S−Γ(S)
edges is |S|(n − r) (counting from below), but is also ≤ |Γ(S)|(r + 1) (counting
from above). Thus |Γ(S)| ≥ |S| n−r

r+1 ≥ |S| (as r < n
2 ), so by Hall there is a matching.

Remarks: 1. We can achieve |A| = ( n
⌊ n

2 ⌋
)

, by e.g. A = X⌊
n
2
⌋. 2. We have no

result on uniqueness; this proof tells us nothing about when |A|may =
( n
⌊ n

2 ⌋
)

.

Aim: If A is an antichain then
∑n

r=0
|A∩X(r) |

(n
r)
≤ 1, i.e. the sum of proportions

of levels filled is ≤ 1. This trivially implies Sperner.
For A ⊂ X(r) the shadow or lower shadow of A is ∂A = ∂−A = {B ∈

X(r−1) : B ∪ i ∈ A some i ∈ X} ⊂ X(r−1). E.g. if A = {123, 124, 234, 135}we have
∂A = {12, 13, 23, 14, 24, 34, 15, 35}.
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1.2 Local Lym

(“Lym” here is the initials of the mathematicians who first proved the result,
Lubal, Meshachin and Amamoto)

Let 1 ≤ r ≤ n and A ∈ X(r). Then |∂A|
(n

r)−1
≥ |A|

(n
r)

, i.e. “the fraction occupied by

∂A is ≥ that forA”.
Proof: the number of edges fromA to ∂A is |A|r (counting fromA) and is

≤ |∂A|(n− r+ 1) (counting from ∂A). Thus |A|r ≤ |∂A|(n− r+ 1), so |∂A||∂A| ≥
r

n−r+1 .

But
(n

r)−1

(n
r)
=

r
n−r+1 , so we have the result (or, for the reader who finds this last

numerical part ugly (which it is), we can argue from equality in the case where
A and ∂A are the whole layer).

When can there be equality in locality? We must have that ∀A ∈ A∀i ∈
A∀ j < A, (A − i) ∪ j ∈ A; thusAmust = ∅ or X(r).

1.3 Theorem (Lym inequality)

LetA ⊂ P(X) be an antichain. Then
∑n

r=0
|A∩X(r) |

(n
r)
≤ 1.

Proof 1: “Bubble down using local lym”. WriteAr forA∩ X(r). Firstly, we

have |An |
(n

n)
≤ 1. Now, ∂An and An−1 are disjoint subsets of X(n−1) (since A is an

antichain), so |∂An |
(n

n)−1
+
|An−1 |
(n

n)−1
=
|∂An∪An−1

(n
n)−1

≤ 1, so (by local lym) |An |
(n

n)
+
|An−1

(n
n)−1
≤ 1.

Also, ∂(∂An ∪ An−1) and An−2 are disjoint, so
|∂(∂An∪An−1 |

(n
n)−2

+
|An−2 |
(n

n)−2
≤ 1; thus (by

local lym again) |An |
(n

n)
+
|An−1 |
(n

n)−1
+
|An−2 |
(n

n)−2
≤ 1. Keep going; we get |An |

(n
n)
+ · · · + |A0 |

(n
0)
≤ 1.

When can we have equality in lym? We must have had equality in each
application of local lym; thus, for the greatest r with Ar , ∅, we must have
Ar = X(r), but thenA = X(r) sinceA is an antichain. So we have equality in lym
iff A = X(r), and so in particularly equality in Sperner iff A = X

n
2 (for n even)

orA = X⌊
n
2 ⌋ orA = X⌈

n
2 ⌉ (for n odd).

Proof 2: Choose, uniformly at random, a maximal chain C (i.e. A0 ⊂ A1 ⊂
· · · ⊂ An, with |Ai| = i∀i. For a fixed r-set A, we have P(A ∈ C) = 1

(n
r)

, so

P(CmeetsAr) =
|Ar |
(n

r)
(since the events are disjoint). Thus

∑n
r=0

|Ar |
(n

r)
≤ 1.

Since we didn’t use any actual probability here, only the language of prob-
ability, we can rewrite the proof using only counting: the number of maximal
chains is n! and the number of chains through a given r-set in r!(n − r)!, so
∑n

r=0 |Ar|r!(n − r)! ≤ n! and we have the result. But this only serves to obscure
things.

Shadows

If A ⊂ X(r), we know |∂A| ≥ |A| r
n−r+1 . But equality is very rare (it only occurs

for A = ∅ or A = X(r). What happens in between? Specifically, given |A|
fixed, how would we chooseA ⊂ X(r) to minimise |∂A|? It’s believable that for
|A| = (kr

)

, we should chooseA = [k](r) yielding ∂A = [k](r−1).

What about for
(k

r

)

< |A| < (k+1
r

)

for some k? It’s similarly believable that

we’d take [k](r) and some extra sets from [k + 1](r), e.g. for
(7

3

)

+
(4

2

)

3-sets, we’d
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tryA = [7](3) ∪ {A ∪ {8} : A ∈ [4]2}.

Two total orderings on X(r)

Given A,B ∈ X(r), write these as A = {a1 . . . ar},B = {b1 . . . br} with a1 < · · · <
ar, b1 < · · · < br. We say that A < B in the lexicographic or lex order if ∃i with

ai < bi and a j = b j∀ j < i; equivalently A < B if ai < bi where i = min{ j : a j , b j}.
Informally, for a set to be small in this ordering we “use small elements if
possible”. For example, the lexicographic ordering on [4](2) gives 12, 13, 14, 23,
24, 34; on [6](3) it is 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236,
245, 246, 256, 345, 346, 456.

We say A < B in the colexicographic or colex order if ∃i with ai < bi and

a j = b j∀ j > i; equivalently, A < B if ai < bi where i = max{ j : a j , b j}; informally,

“don’t use large elements”. Finally, equivalently A < B if
∑

i<A 2i <
∑

i∈B 2i, i.e.
if we write our sets as binary strings then this is just the usual order on such.
E.g. the colexicographic ordering on [4](2) is 12, 13, 23, 14, 24, 34; on [6](3) it is
123, 124, 134, 234, 125, 135, 235, 145, 245, 345, 126, 136, 236, 146, 246, 346, 156,
256, 356, 456. Note that [m](r) is an initial segment of [m + 1](r); thus we could
view the colexicographic order as an enumeration ofN(r), which is not the case
for the lexicographic order.

Our aim is to show that initial segments of colex have the smallest lower
shadow, i.e. ifA ⊂ X(r) andC ⊂ X(r) is the initial segment of colex with |C| = |A|,
then |∂C| ≤ |∂A|. In particular, this gives us that |A| = (kr

)⇒ |∂A| ≥ ( k
r−1

)

.

Compressions

GivenA ⊂ X(r), we’d like a way to replaceA by someA′ ⊂ X(r) with i) |A′| = |A|
ii) |∂A′| ≤ |∂A| and iii) A′ “looks more like” C thanA did. (Of course, strictly
speaking replacingAwith C immediately is a suitable operation; we also want
to be able to easily prove ii)). We’d like to find several such “compression”
operations, so that for any possible A we have A → A′ → A′′ · · · → B such
that eitherB = C, orB is so similar to C that we can see directly that |∂B| ≥ |∂C|.

i j-compressions

“Colex prefers 1 to 2” inspires: fix 1 ≤ i < j ≤ n. Then the i j-compression
is to “replace j by i if possible”: for A ⊂ X(r), let Ci j(A) = A ∪ i − j (the
precedence of operations here is obvious; in general we always read from left
to right) if j ∈ A, i < A and A otherwise, and for A ⊂ X(r) let Ci j(A) = {Ci j(A) :
A ∈ A} ∪ {A ∈ A : Ci j(A) ∈ A} (i.e. we replace A by Ci j(A) unless this is
another set already in A). So e.g. if A = {123, 124, 135, 235, 245, 367} then
C12(A) = {123, 124, 135, 235, 145, 367}. We sayA is i j-compressed if Ci j(A) =A.

We clearly have |Ci j(A) = |A|.

1.4 Lemma

Let 1 ≤ r ≤ n,A ⊂ X(r). Then for any 1 ≤ i < j ≤ n, |∂Ci j(A) ≤ |∂A|: write A′
for Ci j(A). We’ll show that for each B ∈ ∂A′ − ∂A we have j < B, i ∈ B, and
B ∪ j − i ∈ ∂A− ∂A′, then we’re clearly done.
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We have B ∪ x ∈ A′ for some x (and B ∪ x < A). So i ∈ B ∪ x, j < B ∪ x.
We cannot have i = x as then B ∪ i ∈ A′ so B ∪ i or B ∪ j ∈ A, so B ∈ ∂A,
a contradiction. So i ∈ B, j < B. Since B ∪ x ∪ j − i ∈ A, we certainly have
B ∪ j − i ∈ ∂A. We claim B ∪ j − i < ∂A′: suppose B ∪ j − i ∪ y ∈ A′ for
some y. Then we cannot have y = i (as then B ∪ j ∈ A′, whence B ∈ ∂A). So
i < B ∪ y ∪ j − i, j ∈ B ∪ y ∪ j − i, and so B ∪ y ∪ j − i and B ∪ y are both ∈ A (by
definition ofA′). So B ∈ ∂A, a contradiction.

The above proof is not one to memorize line by line; on the contrary, if you
understand what’s going on, you should be easily able to reproduce it from
scratch.

Remark: We actually showed that ∂(Ci j(A)) ⊂ Ci j(∂A).

We sayA ⊂ X(r) is left-compressed if Ci j(A) = A∀i < j.

1.5 Corollary

For A ⊂ X(r)∃B ⊂ X(r) with |B| = |A|, |∂B| ≤ |∂A| and B left-compressed:
define a sequence A0,A1, · · · ⊂ X(r) as follows: set A0 = A. Having chosen
A0, . . . ,Ak: if Ak is left-compressed, stop the sequence with it. Otherwise,
choose i < j with Ak not i j-compressed, and set Ak+1 = Ci j(Ak). This must
terminate (as e.g.

∑

A∈Ak

∑

x∈A x is decreasing in k); the system B = Ak has
|B| = |A| and |∂B| ≤ |∂A| by Lemma 4.

Remarks: 1. Alternatively: among all B ⊂ X(r) with |B| = |A| and |∂B| ≤
|∂A|, choose one with minimal

∑

A∈Ak

∑

x∈A x. 2. It is possible to apply each Ci j

at most once, if we choose the order sensibly. But this is not really relevant.
Any initial segment of colex is left-compressed. But the converse is easily

false, e.g. A = {123, 124, 125, 126, 127}. It is possible to prove the result we
want using only left-compression and some clever counting, but this is ugly
and painful.

“Colex prefers 23 to 14” inspires: for U,V ⊂ X with |U| = |V| and U ∩V = ∅,
define the UV-compression by: for A ∈ X(r), let CUV(A) = A ∪ U − V if V ⊂
A,A ∩ U = ∅, A otherwise, and for A ⊂ X(r), set CUV(A) = {CUV(A) : A ∈
A} ∪ {A ∈ A : CUV(A) ∈ A}. Note also that C{i},{ j}(A) = Ci j(A).

Unfortunately, we can have |∂CUV(A)| > |∂A|, e.g. let A = {147, 478};
|∂A| = 5. But then C23,14(A) = {237, 478}with |∂C23,14A| = 6.

SayA is UV-compressed if CUV(A) =A.

1.6 Lemma

Let U,V ⊂ X be disjoint with |U| = |V|. Let A ⊂ X(r). Suppose that (⋆)∀u ∈
U∃v ∈ V such thatA is (U−u,V−v)-compressed; this condition seems artificial
at this stage, but comes out of the proof. Then |∂CUV(A)| ≤ |∂A|. Proof: write
A′ for CUV(A). For any B ∈ ∂A′ − ∂A, we’ll show that U ⊂ B,V ∩ B = ∅ and
B∪V−U ∈ ∂A−∂A′, then done. We have B∪x ∈ A′ for some x (and B∪x < A).
Thus U ⊂ B∪x,V∩(B∪x) = ∅, and B∪x∪V−U ∈ A, so certainly V∩B = ∅. Also
x < U, because: if x ∈ U, then ∃y ∈ V withA being (U − x,V − y)-compressed,
but B ∪ x ∪ V − U ∈ A, so B ∪ y ∈ A, contradicting B < ∂A. Thus U ⊂ B. We
have B ∪ V − U ∈ ∂A, because B ∪ x ∪ V − U ∈ A. Suppose B ∪ V − U ∈ ∂A′:
so w∪ (B ∪V −U) ∈ A|prime. If w < U, because w∪ (B∪V −U) ∈ A′, we must
have w∪ (B∪V −U) and W ∪ B both inA (by the definitions of CUV), but then
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B ∈ ∂A, a contradiction. If w ∈ U, we have A (U − w,V − z)-compressed for
some z ∈ V. So from w ∪ (B ∪ V − U) ∈ A (true as this is a set which contains
V so cannot have been moved from another set intoA′) we obtain B∪ z ∈ A, a
contradiction.

Remark: We actually showed ∂CUV(A) ⊂ CUV(∂A).

1.7 Theorem (Kruskal-Katona Theorem)

Let A ⊂ X(r) (1 ≤ r ≤ n) and let C be the initial segment of colex on X(r)

with |C| = |A|. Then |∂A| ≥ |∂C|; in particular if |A| = (kr
)

then |∂A| ≥ ( k
r−1

)

.
Let Γ = {(U,V) : U,V ⊂ X, |U| = |V| > 0,max V > max U}; this last condition
lets us “head towards” colex. Define a sequence A0,A1, . . . by: set A0 = A.
Having chosen A0, . . . ,Ak, if Ak is UV-compressed for each (U,V) ∈ Γ then
stop the sequence withAk. Otherwise, choose (U,V) ∈ Γwith |U|minimal such
that Ak is not (U,V)-compressed, and set Ak+1 = CUV(Ak). For each u ∈ U,
setting v = min V we have (U − u,V − v) ∈ Γ ∪ {∅, ∅}, so Ak is (U − u,V − v)-
compressed. Thus by Lemma 6, |∂Ak+1| ≤ |∂Ak|. This sequence must terminate,
as
∑

A∈Ak

∑

i∈A 2i is decreasing. The final term B = Ak satisfies: |B| = |A| and
|∂B| ≤ |∂A|, and B is (U,V)-compressed ∀(U,V) ∈ Γ. We claim B = C: suppose
not, i.e. suppose we have A,B ∈ X(r) with A < B in colex and A < B,B ∈ B. Set
U = A−B,V = B−A. We have max V > max U (as A < B in colex), so (U,V) ∈ Γ,
so B ∈ B ⇒ A ∈ B, a contradiction.

It should not be surprising that this claim should hold, since we invented
(U,V)-compressions for use with colex; they are useless for anything else.

Remarks: 1) Equivalently, if |A| = (kr

r

)

+
(kr−1

r−1

)

+ · · · + (ks

s

)

where kr > kr−1 >

· · · > ks and s > 0, then |∂A| ≥ ( kr

r−1

)

+
(kr−1

r−2

)

+ · · ·+ ( ks

s−1

)

. 2) The proof only actually
used Lemma 6, not Lemma 4 or Corollary 5. But Lemma 4 is very useful in
understanding Lemma 6. 3) When do we have equality? The reader can check

that if |A| = (kr
)

and there is equality in Kruskal-Katona (i.e. |∂A| = ( k
r−1

)

) then

A = Y(k) for some Y ⊂ X with |Y| = k. But it is false in general that if equality
holds (|∂A| = |∂C|) then A is isomorphic to C (where A,B are isomorphic if

there is a permutation f : X→ X sendingA to B).
ForA ⊂ X(r) (0 ≤ r ≤ n− 1), the upper shadow ofA is ∂+A ⊂ X(r+1) given by

∂+A = {A ∪ x : A ∈ A, x ∈ X, x < A}. Now, A < B in colex on X(r) if and only if
Ac < Bc in lex on X(n−r) (with the ground-set order reversed - a condition which
is irrelevant up to isomorphism). So:

1.8 Corollary

Let A ⊂ X(r) (0 ≤ r ≤ n − 1) and let C be the initial segment of lex on X(r) with
|C| = |A|. Then |∂+C| ≤ |∂+A|.

Since the shadow of an initial segment of colex on X(r) is an initial segment
of colex on X(r−1) (if C = {A ∈ X(r) : A ≤ a1 . . . ar} then ∂C is precisely {B ⊂ X(r−1) :
X ≤ a2a3 . . . ar}), we have:
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1.9 Corollary

LetA ⊂ X(r) and letC be the initial segment of colex on X(r) with |C| = |A|. Then

|∂tA| ≥ |∂tC|∀1 ≤ t ≤ r; in particular if |A| = (kr
)

then |∂tA| ≥ ( k
r−t

)

: if |∂tA| ≥ |∂tC|
then ∂r+1A| ≥ |∂t+1C| by KK.

Intersecting Families

We sayA ⊂ P(X) is intersecting if A ∩ B , ∅∀A,B ∈ A (we shan’t even bother

defining disjoint families, since they are entirely uninteresting). How large can
an intersecting family be? We can have |A| = 2n−1 by e.g. A = {A ⊂ X : 1 ∈ A}.

1.10 Proposition

LetA ⊂ P(X) be intersecting, then |A| ≤ 2n−1: for any A ⊂ P(X), at most one of
A,Ac can belong toA.

Remark: there are many extremal systems, e.g. {A ∈ P(X) : |A| > n
2 } works

for odd n.
What if we restrict to A ⊂ X(r)? If r > n

2 this is silly, we can take A = X(r).
If r = n

2 this is also a silly case: choosing one set from each complimentary pair

A,Ac gives us 1
2

(n
r

)

and this is optimal as we can never have both A and Ac. So
we study the case r < n

2 .

The obvious guess is to setA = {A ∈ X(r) : 1 ∈ A}; this has |A| = (n−1
r−1

)

=
r
n

(n
r

)

.

We could also try e.g. B = {A ∈ X(r) : |A ∩ {1, 2, 3}| ≥ 2}. Observe that e.g. in
[8](3), |A| = 21 and |B| = 1 + 3 × 5 = 16 < 21 (there is one set {1, 2, 3} and 15 sets
meeting it in two elements each).

1.11 Theorem (Erdős-Ko-Rado)

Let r < n
2 and letA ⊂ X(r) be intersecting. Then |A| ≤ (n−1

r−1

)

.
For one way of proving this, “bubble down with KK”. For any A,B ∈ A, we

make the key observation that A∩B , ∅ is equivalent to A * Bc - this allows us

to use shadows etc. WriteA = {Bc : B ∈ A} ⊂ X(n−r). We have thatA and ∂n−2rA
are disjoint subsets of X(r). Suppose that |A| > (n−1

r−1

)

, then |A| > (n−1
r−1

)

=
(n−1

n−r

)

.

So |∂n−2rA| ≥ (n−1
r

)

by Corollary 9; thus |A| + |∂n−2rA| > (n−1
r−1

)

+
(n−1

r

)

=
(n

r

)

, a
contradiction. Note that the way this adds up neatly is no happy coincidence;
the numbers “had” to work out, since if A = {A ∈ X(r) : 1 ∈ A} then we have
equality andA, ∂n−2rA partition X(r).

An alternative proof, which is shorter and from first principles but requires
one idea “out of a hat”: consider cyclic orderings of X, i.e. bijections Zn ֒→ X.
Ask: how many of the A ∈ A are intervals (i.e. blocks of r consecutive elements)
in this ordering. The answer is at most r: suppose {c1, c2, . . . , cr} ∈ A¿ Then for
each 1 ≤ i ≤ r− 1, at most one of {ci−r+1 . . . ci} and {ci+1 . . . ci+r} belongs toA (and
no other sets to). Also, each r-set is (an interval) in precisely nr!(n − r)! of the n!
possible cyclic orderings - it could be any of the n intervals around the circle,
and there are r! ways to order the elements within the interval and (n− r)! ways
to order those without. So |A| ≤ r

n

(n
r

)

as required.
Remarks: 1. Formally, we are double-counting the edges in the bipartite

graph with vertex classesA and the set of cyclic orderings, where we join A ∈ A
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to a cyclic ordering C if A is an interval in C. 2. This method is called averaging

or Katona’s method.

Equality in Erdős-Ito-Rado

We want that if A ⊂ X(r) is intersecting (r < n
2 ) and |A| = (n−1

r−1

)

then A = {A ∈
X(r) : i ∈ A} for some i. From the second proof: for each cyclic ordering C we
have r intervals in A; these must be all the r intervals containing some point
x(C). Our task is to show that x(C) = x(C′)∀C,C′; sufficient to do this for C and
C′ differing by a single transposition of adjacent elements. Fix a cyclic ordering
C, and wlong take x(C) to be the point C0. Thus {C0, . . . ,Cr−1}, {C−r+1, . . . ,C0} ∈
A, {C1, . . . ,Cr}, {C−r, . . . ,C−1} < A.

Let C′ be obtained from C by swapping two adjacent elements , C0, say Ci

and Ci+1. Wlog take i ≥ n−1
2 (otherwise we can just reflect the cyclic ordering).

Then {C0, . . . ,Cr−1} is an interval of C′ and {C1, . . . ,Cr} an interval of C′ (unless
r = n−1

2 and i = n−1
2 , in which case {C1 . . .Cr−1,Cr+1} is an interval of C′. But

{C0 . . .Cr−1} ∈ A, {C1 . . .Cr} < A (and {C1 . . .Cr−1,Cr+1} < A as it is disjoint from
{C−r+1, . . . ,C0} ∈ A). Thus x(C′) = C0.

2 Isoperimetric Inequalities

We ask: for a set of given size, how small can the boundary be? E.g. (some
continuous examples, which we will not cover except in passing) among subsets
of R2 of given area, the disc has the smallest perimiter. Amongst subsets of R3

of given volume, the solid sphere has the smallest surface area. Among subsets
of S2 of a given area, a “circular cap” has the smallest perimiter.

For a graph G and A ⊂ V(G), the boundary of A is b(A) = {x ∈ G : x < A, xy ∈
E some y ∈ A}. An isoperimetric inequality on G is an inequality of the form

|b(A)| ≥ f (|A|)∀A ⊂ V(G).
Based on the above continuous examples, often a good guess is B(x, r) =

{y : d(x, y) ≤ r} (where d is the usual graph distance, length of shortest path).
A sometimes useful trick is to minimise the neighbourhood of A, N(A) = {x :

d(x,A) ≤ 1}.
What happens in Qn? For e.g. |A| = 4 in Q3, the obvious things to try are

B(0, 1), a corner and its three neighbours, which has |b(A)| = 3, or one square
face of the cube, which has |b(A)| = 4. (Note we are emphasising that we are
seeing Qn only as a graph now; thus sets of points in it are A rather than A).
We quess that for general Qn, B(∅, r) = X(≤r) = X(0) ∪ · · · ∪ X(r) are best. What if
|X(≤r)| < |A| < |X(≤r+1)|? We guess we should take X(≤r) ∪ B for some B ⊂ X(r+1).
Then b(A) = (X(r+1) \ B) ∪ ∂+B, so we’ll take B an initial segment of lex (by KK).
Which suggests:

The simplicial ordering on P(X) is defined by: x < y if either |x| < |y| or

|x| = |y|, x < y in lex.
Aim: initial segments of the simplicial order are best.

Let A ⊂ Qn and 1 ≤ i ≤ n. The i-sections of A are the sets A
(i)
+ ,A

(i)
− ⊂ P(X − i)

given by A
(i)
− = {x ∈ A : i < x},A(i)

+ = {x − i : x ∈ A, i ∈ x}. The i-compression

Ci(A) of A is defined by giving its i-sections: (Ci(A))(i)
+

is the initial segment of

8



simplicial onP(x− i) of size |A(i)
+
| and (Ci(A))

(i)
− is the inital segment of simplicial

on P(x − i) of size |A(i)
− |. Note that |Ci(A)| = |A|; note also that Ci(A) “looks

more like” a Hamming ball than A did (A Hamming ball is a set A ⊂ Qn with

X(r) ⊂ A ⊂ X(r+1) for some r). We say A is i-compressed if Ci(A) = A.

2.1 Theorem (Harper’s Theorem)

(This theorem obeys Gauss’ law; it was first proven (correctly) by Katona).
Let A ⊂ Qn and let C be the initial segment of the simplicial order with

|C| = |A|. Then |N(A)| ≥ |N(C)|; in particular |A| ≥
∑r

i=0

(n
i

)⇒ |N(A)| ≥
∑r+1

i=0

(n
i

)

.
Remarks: 1. If we knew A was a Hamming ball, we would be done by

KK. 2. Conversely, theorem 1 implies KK; given B ⊂ X(r), apply theorem 1 to
A = X(<r) ∪ B.

Proof: we induct on n, the n = 1 case is done. Given A ⊂ Qn for n > 1
and 1 ≤ i ≤ n, we claim: N(Ci(A)) ≤ N(A): write B for Ci(A). Note |N(A) =
|N(A−)∪A+|+ |N(A+)∪A−| (the two sets being N(A)−,N(A)+ respectively). And
|N(B)| = |N(B−) ∪ B+| + |N(B+) ∪ B−|. Now |B+| = |A+| and |N(B−)| ≤ |N(A−)|
by the inductive hypothesis. But B+ and N(B−) are both initial segments of
the simplicial ordering (as the neighbourhood of such an initial segment is an
initial segment), so they are nested (one is a subset of the other), and so certainly
|N(B−) ∪ B+| (= max(|N(B−)|, |B+|)) is ≤ |N(A−) ∪ A+|. (Note that this proof only
works because our “winning” sets are “nice”; they are initial segments of a
fixed ordering). Similarly we have |N(B+)∪B−| ≤ |N(A+)∪A−| and we have the
claim.

Define A0,A1, . . . as follows: set A0 = A. Having chosen A0, . . . ,Ak, if Ak is i-
compressed∀i, then stop the sequence with Ak. If not, choose i with Ci(Ak) , Ak,
and set Ak+1 = Ci(Ak); continue. This must terminate; using the “most stupid”
reason possible,

∑

x∈Ak
f (x) is decreasing where f (x) denotes the position of x

in the simplicial ordering. Then B = Ak satisfies: |B| = |A|, |N(B)| = |N(A)|, B is
i-compressed ∀i.

Does B i-compressed ∀i imply B is an initial segment of the simplicial order?
(If so, then we are done, for B = C. The answer is no, e.g. the bottom face of
Q3. However, we have:

2.2 Lemma

Let B ⊂ Qn be i-compressed ∀i, but not an initial segment of the simplicial
ordering. Then for n odd, = 2k + 1, we have B = X(≤k) − {(k + 2)(k + 3) . . . (2k +
1)} ∪ {123 . . . (k + 1)}, and for n even, = 2k, we have B = X(≤k−1) ∪ {x ∈ X(k) : 1 ∈
x} − {1(k+ 2)(k+ 3) . . .2k} ∪ {234 . . . (k+ 1)} (then we are done, as in each of these
cases we have |N(B)| ≥ |N(c)| (in fact it is generally much larger)). We have some
x < y with x < B, y ∈ B. For each i, we cannot have i ∈ x, y (as B is i-compressed)
and we cannot have i < x, y (as again B is i-compressed). Thus x = yc. So for
each x < B we have at most 1 later point y ∈ B (namely xc) and for each y ∈ B we
have at most 1 earlier point x < B (nomely yc). So B = {z : z ≤ y} − {x}, where x
is the predecessor of y and x = yc. So for n odd we must have x the last n−1

2 -set,
as required, and for n even we must have x the last n

2 -set containing 1, again as
required.
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Notes: 1. We can also prove Harper’s Theorem by UV-compressions; the
proof is quite nice, but harder. 2. We can also use these “codimension-1”
compressions to prove KK; this gives a proof which is short, but bad for the
soul as a first proof of KK to see.

For A ⊂ Qn, the t-neighbourhood of A is Nt(A); equivalently this is {x ∈ Qn :

d(x,A) ≤ t}.

2.3 Corollary

Let A ⊂ Qn with |A| ≥
∑r

i=0

(n
r

)

. Then for 1 ≤ t ≤ n− r, we have |Nt(A)| ≥
∑r+t

i=0

(n
i

)

,
by Theorem 1 and induction.

To get a feel for the strength of Corollary 3, we’ll need some numerical
estimates on

∑r
i=0

(n
i

)

and similar quantities.

2.4 Proposition

Let 0 < ǫ < 1
4 (of course we are only interested in ǫ small; the uppper bound

is just for convenience). Then
∑⌊( 1

2
−ǫ)n⌋

i=0

(n
i

) ≤ 1
ǫ
e−ǫ

2 n
2 2n; note that (for ǫ fixed as

n → ∞) this is an exponentially small fraction of 2n. Some readers may have

seen this fact already in the context of binomial or normal distributions; one way
to think about it is that our limit is “∼ ǫ

√
n standard deviations from the mean

n
2 ”. This is a crude estimate (more sophisticated ones exist) and our proof will

be simple, but it suffices for our purposes.
( n

i−1

)

=
(n

i

) i
n−i+1 . So for i ≤ ⌊( 1

2 − ǫ)n⌋,
have

( n
i−1)
(n

i)
=

i
n−i+1 ≤

( 1
2−ǫ)n

( 1
2+ǫ)n

= 1 − 2ǫ
1
2+ǫ
≤ 1 − 2ǫ. So

∑⌊( 1
2−ǫ)n⌋

i=0

(n
i

) ≤ 1
2ǫ

( n
⌊( 1

2−ǫ)n⌋
)

(by

the sum of a geometric progression); similarly
( n
⌊( 1

2−ǫ)n⌋
) ≤ ( n

⌊( 1
2−
ǫ
2 )n⌋
)

(1 − 2 ǫ2 )
ǫn
2 −1

(the −1 in the exponent being because of the ⌊⌋ rubbish), by the same argument

with ǫ replaced by ǫ
2 . Thus

∑⌊( 1
2−ǫ)n⌋

0

(n
i

) ≤ 1
2ǫ2e−

ǫn2

2 2n and we have the result.

2.5 Theorem

Let A ⊂ Qn, 0 < ǫ < 1
4 . Then |A|

2n ≥ 1
2 ⇒

|A(ǫn) |
2n ≥ 1 − 1

ǫ
e−
ǫ2n

2 - “ 1
2 -sized nets have

exponentially large neighbourhoods”: we have |A| ≥
∑⌈ n

2−1⌉
0

(n
i

)

, so by Harper

we have |A(ǫn)| ≥
∑⌈ n

2+ǫn−1⌉
0

(n
i

)

so |Ac
(ǫn)
| ≤
∑n
⌈ n

2+ǫn⌉
(n

i

)

=
∑⌊ n

2−ǫn⌋
0

(n
i

) ≤ 1
ǫ
e−ǫ

2 n
2 .

Remark: the above is concerned with 1
2 -sized sets, but the same argument

would show |A|
2n ≥ 1

ǫ
e−ǫ

n2

2 ⇒ |A2ǫn |
2n ≥ 1 − 1

ǫ
e−
ǫ2 n

2 .

Concentration of Measure

We say f : Qn → R is Lipschitz if | f (x)− f (y)| ≤ 1∀x, y adjacent. A real number M

is a median or Levy mean for f if |{x : f (x) ≤M}| ≥ 2n−1, |{x : f (x) ≥M}| ≥ 2n−1.

We are now ready to show that “every well-behaved function on Qn is
roughly constant nearly everywhere”.
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2.6 Theorem

Let f be a Lipschitz function on Qn with median M. Then
|{x:| f (x)−M|≤ǫn}|

2n ≥
1− 2

ǫ
e−
ǫ2 n

2 (for 0 < ǫ < 1
4 ) (This is the “concentration of measure” phenomenon).

Let A = {x : f (x) ≤ M}, then |A|
2n ≥ 1

2 so
|A(ǫn) |

2n ≥ 1 − 1
ǫ
e−
ǫ2n

2 . But ∀x ∈ A(ǫn) we

have f (x) ≤M + ǫn (as f is Lipschitz) and so
|{x: f (x)≤M+ǫn}|

2n ≥ 1 − 1
ǫ
e−
ǫ2n

2 ; similarly
|{x: f (x)≥M−ǫn}|

2n ≥ 1 − 1
ǫ
e−
ǫ2n

2 and we have the result.
Let G be a graph of diameter D (where diameter is max d(x, y) : x, y ∈ G).

Define α(G, ǫ) = max{1 − |A(ǫD) |
|G| : A ⊂ G, |A||G| ≥

1
2 }. So “α(G, ǫ) small says: 1

2 -sized
sets have big ǫD-neighbourhoods”.

A sequence G1,G2, . . . of graphs is a Levy family if α(Gn, ǫ) → 0 as n → ∞
for each ǫ > 0. So e.g. theorem 5 tells us that (Qn)∞

n=1
is a Levy family.

So we again have concentration of measure (Lipschitz functions on Gn are
almost constant nearly everywhere) for any Levy family.

It turns out that many natural families of graphs - almost anything we could
write down, any “natural” family of graphs - are Levy families; some people
say this is the “concertration of measure phenomenon”. Noone really knows
why this is so. For example, the permutation groups Sn (made into a graph by
σ adjacent to τ if σ−1τ is a trasposition) is a Levy family.

Similary, we can define α(S, ǫ) for any metric measure space S (of finite
diameter and finite measure), so we can again define Levy families, and it turns
out that many natural families of metric spaces form Levy families e.g. the
sphere Sn:

Two ingredients: 1) Isoperimetric inequality in Sn : |A| = |C| ⇒ |A(ǫ)| ≥ |C(ǫ)|
where C is a circular cap. A sketch of the proof: we can use compressions,
e.g. the analogue of i j-compressions are “two-point symmetrisation” where
we “stamp on our set” - fix a direction x, then a general line in this direction
hits the sphere in two places; if the “upper” (in the x direction) is in our set but
the lower is not, replace the upper with the lower. Here we can do this “nicely”
in infinitely many directions, unlike Qn where there were only n directions,
so this works; we can form a sequence and use compactness to say that an
optimal set exists, and then check it’s a circular cap. Or this can also be done
by codimension-1 compressions.

2) Estimate: A 1
2 -sized circular cap has angle π2 , so its ǫ-neighbourhood is a

circular cap of angle π2 + ǫ. But
∫ 1

ǫ
cosn tdt→ 0 as n→∞ for any fixed ǫ.

We deduced concentration of measure from isoperimetric estimates. Con-
versely:

2.7 Proposition

Let G be a graph such that for every Lipschitz f : G → R of median M we

have
|{x∈G:| f (x)−M|>t}|

|G| ≤ α for some fixed t, α. Then |A|
|G| ≥

1
2 ⇒

|A(t)|
|G| ≥ 1 − α: Let

f (x) = d(x,A). Then f is Lipschitz and has 0 as a median (as |A| ≥ 1
2 |G|), so we

have the result.
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Edge-isoperimetric inequalities

For a graph G, A ⊂ V(G) the edge-boundary of A is ∂eA = ∂A = {xy ∈ E : x ∈
A, y < A}. An edge-isoperimetric inequality on G is an inequality of the form:
for A ⊂ G, |A| = m ⇒ |∂A| ≥ f (m). E.g. for |A| = 4 in Q3, a vertex and its three
neighbours has |∂A| = 6, while a face of the cube has |∂A| = 4. This suggests
that subcubes are best.

The binary ordering on Qn is given by: x < y if max(x∆y) ∈ y - equivalently
∑

i∈X 2i <
∑

i∈y 2i, i.e. we “go up in subcubes”. Our aim is to show that initial seg-
ments of binary minimise ∂. For A ⊂ Qn and 1 ≤ i ≤ n, the i-binary-compression

Bi(A) is defined by giving its i-sections: Bi(A)
(i)
+ is the initial segment of P(x− i)

of size |A(i)
+
|, B(A)

(i)
− is the initial segment of binary onP(x− i) of size |A(i)

− |. Clearly
|Bi(A)| = |A|. We say A is binary-compressed if Bi(A) = A (∀i).

2.8 Theorem (Edge-isoperimetric inequality in the cube)

(Sometimes called the “theorem of Harper, Lindsey, Bernstein and Hart”)
Let A ⊂ Qn and let C be the initial segment of binary with |C| = |A|. Then

|∂C| ≤ |∂A|; in particular, |A| = 2k ⇒ |∂A| ≥ (n − k)2k.
We proove by induction on n; n = 1 case done. Given A ⊂ Qn, 1 ≤ i ≤ n, we

claim |∂Bi(A)| ≤ |∂A|: write B for Bi(A). We have |∂A| = |∂(A−)|+|∂(A+)|+|A+∆A−|,
|∂B| = |∂B−| + |∂B+| + |B+∆B−| Now |∂(B−)| ≤ |∂(A−)|, |∂(B+)| ≤ |∂(A+)| by the
inductive hypothesis; also |B+∆B−| ≤ |A+∆A−| because |B+| = |A+|, |B−| = |A−|
and the sets B+,B− are nested (as each is an IS of binary), thus |∂B| ≤ |∂A| and
we have the claim. Define A0,A1, . . . by: set A0 = A. Having chosen A0 . . .Ak, if
Ak is i-binary-compressed ∀i then stop, if not choose i with Bi(Ak) , Ak and set
Ak+1 = Bi(Ak). This must terminate, e.g. because

∑

x∈Ak
(position of x in binary)

is decreasing.
The final set B = Ak satisfies: |B| = |A|, |∂B| ≤ |∂A|, B is i-binary-compressed

∀i. But B need not be an IS, e.g. our corner vertex and three neighbours has
this.

2.9 Lemma

Let B ⊂ Qn be i-binary compressed ∀i, not an initial segment of binary. Then
B = P(n − 1) ∪ {n} − {123 . . .n − 1} (then we are done, as certainly |∂B| ≥ |∂C| in
this case). We have some x < y with x < B, y ∈ B, then for each i we cannot have
i ∈ X,Y or i < X,Y, as B is i-binary-compressed, so x = yc. So for each x < B we
have at most one y > x with y ∈ B (namely y = xc) and for each y ∈ B there is at
most one x < y with x < B, namely x = yc. Thus B = {z : z ≤ y} − {x} where x is
the predecessor of y and x = yc, hence y = [n] and the set must be as described.

Remark: it was vital in the above proof that extremal sets in dimension n−1
were nested, i.e. given by the initial segments of some ordering.

For a graph G, the isoperimetric number of G is i(G) = min{ |∂A||A| : A ⊂ G, |A||G| ≤
1
2 } - represents “how small the average out-degree can be”.
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2.10 Corollary

i(Qn) = 1: the set A = P(n − 1) shows i(Qn) ≤ 1. Let C be any initial segment of
binary of size ≤ 2n−1, then C ⊂ P(n − 1) so certainly |∂C| ≥ |C| ⇒ i(Qn) ≥ 1.

We will now study the grit. This is somewhat of a more “natural” space; it
more closely resembles Rn than does the cube.

Inequalities in the Grid

The grid is the graph on [k]n = {(x1, . . . , xn) : xi ∈ {1, . . . , k}∀i}, in which x =

(x1, . . . , xn) is joined to y = (y1, . . . , yn) if for some i we have |xi = yi| = 1, x j =

y j∀ j , i (i.e. x, y are 1 apart in the L1-norm). Note that for k = 2 this is exactly
the graph Qn. Our main questions are: do theorem 1 and theorem 8 extend to
the grid?

Vertex-isoperimetric inequality: the first obvious thing to try is a “triangle”

in the bottom corner, of side d, which has b(A) ≃ d ≃
√

2|A|; the other obvious
thing is a “square” or cube in the corner of side d, which has b(A) ∼ 2d ∼ 2

√
|A|.

So a “good guess” is that sets of the form {x : |x| ≤ r} are best, where |x| =
x1 + · · · + xn (in fact the triangle should have been obviously the better of the
two approaches, from the result in the Qn special case).

What if |{x : |X| ≤ r}| < |A| < |{x : |x| ≤ r + 1}|? We’d take A of the form
{x : |x| ≤ r} ∪ B for some B ⊂ {x : |x| = r + 1}. We’d want to take the “bottom
corner” of the “sloping face” of our triangle; thinking about it, this is the region
of |x| = r + 1 where x1 is big.

Define the simplicial ordering on [n]r by: x < y if |x| < |y| or |x| = |y| and xi >

yi where i = min{ j : x j , y j}. E.g. on [3]2 this is (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (3, 2), (2, 3), (3, 3);
on [4]3 it is (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1, 1), (2, 2, 1), (2, 1, 2), (1, 3, 1), (1, 2, 2), (1, 1, 3), (4, 1, 1), . . . .
Note that this agrees with our previous definition of simplicial for k = 2.

Our aim is to show that initial segments of simplicial are best for vertex-
iso. Let A ⊂ [k]n. For 1 ≤ i ≤ n, the i-sections of A are the sets A1, . . . ,Ak (or

A
(i)
1
, . . . ,A

(i)

k
) in [k]n−1 given by At = {x = (x1 . . . xn−1) ∈ [k]n−1 : (x1 . . . xi−1txixi+1 . . .xn−1) ∈

A}. The i-compression of A is the set Ci(A) ⊂ [k]n defined by: (Ci(A))t is the IS

of simplicial on [k]n−1 of size |At|. We say A is i-compressed if Ci(A) = A.

2.11 Theorem (“Vertex-isoperimetric inequality in the grid”)

Let A ⊂ [k]n and let C be the initial segment of simplicial with |C| = |A|. Then
|N(C)| ≤ |N(A)|. We induct on n; the n = 1 case is done (for any A ⊂ [k]1, A ,
∅, [k]1 we have |N(A)| ≥ |A|+ 1 = |N(C)|). Given A ⊂ [k]n, fix 1 ≤ i ≤ n. We claim
|N(Ci(A))| ≤ |N(A)|: write B for Ci(A). For any 1 ≤ t ≤ k, we have N(A)t = N(At)∪
At−1∪At+1 (setting A0 = Ak+1 = ∅). So |N(A)| =

∑

t |N(At)∪At−1∪At+1|; the same
expression is true for N(B). But |Bt−1| = |At−1|,ABt+1| = |At+1|, |N(Bt)| ≤ |N(At)|
by the induction hypothesis, and the sets N(Bt),Bt−1,Bt+1 are nested (as each is
an IS of simplicial on [k]n−1). Thus |N(At) ∪ At−1 ∪At+1| ≥ |N(Bt) ∪ Bt−1 ∪ Bt+1|.

Among all B ⊂ [k]n with |B| = |A| and |N(B)| ≤ |N(A)|, choose one with
∑

x∈B(position of x in simplicial) minimal. Then B is i-compressed for all i (else
Ci(B) contradicts minimality of B). It remains to prove |N(B)| ≥ |N(C)|. Note that
e.g. for n = 2 we can have a set B that “looks very different from simplicial”:
if we draw the space as a square, the plot of any (non-strictly) decreasing
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function gives us a possible B. But we will see that this is not possible in higher
dimensions.

Case 1: n = 2. B is i-compressed ∀i iff B is a down-set, i.e. if x ∈ B, y has
yi ≤ xi∀i then y ∈ B. Let s = max{|x| : x ∈ B}, r = min{|x| : x < B}, then r ≤ s (or
else B = C). If r = s, then {x : |x| < r} ⊂ B ⊂ {x : |x| ≤ r}, so certainly N(B) ≥ N(C).
If r < s: we cannot have {x : |X| = s} ⊂ B, since B is a down-set (and we
have some x < B with |x| = r < s). So ∃x, x′ with |x| = |x′| = s, x ∈ B, x′ < B,
and x = x′ ± (e1 − e2) say. Similarly, we cannot have {y : |y| = r} ⊂ Bc, so
∃y, y′ : y ∈ B, y′ < B, |y| = |y′| = r, y = y′± (e1− e2). But now let B′ = B−{x}∪ {y′}.
Then |N(B′)| ≤ |N(B) (we have lost at least one point from the neighbourhood
and gained at most 1 point), contradicting the choice of B.

Case 2: n ≥ 3. For x ∈ B with xn ≥ 2, we have x − en + ei ∈ B∀i with
xi < k¡ as B is j-compressed for any j , n, i (this is where we need n ≥ 3). Thus
N(Bt) ⊂ Bt−1∀t = 2, . . . , k.

We had N(B)t = N(Bt) ∪ Bt+1 ∪ Bt−1, so actually we have N(B)t = Bt−1. So
|N(B)| = |Bk−1| + |Bk−2| + · · · + |B1| + |N(B1)| = |B| − |Bk| + |N(B1)|; similarly for C.
Thus, to complete the proof, it suffices to show that |Bk| ≤ |Ck| and |B1| ≥ |C1|, as
then we will have |N(B1)| ≥ |N(C1)| since these are initial segments of simplicial.

For |Bk| ≤ |Ck|, define a set D ⊂ [k]n by: Dk = Bk,Dt = N(Dt+1) for t =
k1, k− 2, . . . , 1. Then D is clearly an IS of simplicial, and D ⊂ B, so |D| ≤ |B| = |C|¡
so D ⊂ C (as each is an IS of simplicial). So Dk ⊂ Ck and |Dk| ≤ |Ck as required.

For |B1| ≥ |C1, define a set E ⊂ [k]n by E1 = B1,Et = {x ∈ [k]n−1 : N({x}) ⊂ Et−1}
for t = 2, 3, . . .2k. Then E is an IS of simplicial and E ⊃ B so |E| ≥ |B| = |C|, so
E ⊃ C; thus E1 > C1 and |E1| ≥ |C1| as required.

2.12 Corollary

Let A ⊂ [k]n with |A| ≥ |{x : |x| ≤ r}|, then |A(t)| ≥ |{x : |x| ≤ r + t}|.
Remark: We can check from this that for any fixed k, the sequence ([k]n)∞

n=1
is a normal Levy family.

Edge-isoperimetric inequalities in the grid

Unsurprisingly this is our next topic. To minimise |∂A| for |A| given, if we take
a “square” in the bottom left corner [n = 2 for now] of side r this has size r2,
while a triangle of side r has size ∼ 1

2 r2, but both these have the same boundary
2r, suggesting squares are best. But as the size of our set grows, when the
square reaches side length k

2 it is equalled by a “column” - the left hand 1
4 of the

square has the same edge-perimeter, and for increasing size-of-set the column
then wins. This continues until we have a column of width 3k

4 , whose perimiter

equals that of the complement of a square of side k
2 , and after that complements

of gradually smaller squares are best.
Sadly, these extremal sets are not nested; there are “phase transitions” at

size k2

4 and 3k2

4 .
For n = 3, [as the size of the set grows] our optimal sets are at first cubes [a]3,

then square columns [a]2× [k], then half-spaces [a]× [k]2, then the complements
of square columns and finally the complements of cubes - so “things have got
worse” in terms of the number of phase transitions.
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We will aim to show: the best sets are [a]d × [k]n−d or complements of these,
for some d depending on the size of the set. It’s ok not to calculate d exactly,
since given this result, for any given size we can then easily find the “best” set
by exhaustively checking the possible values of d.

Observe that if A = [a]d × [k]n−d then |∂A| = dad−1kn−d = d|A|1− 1
d k

n
d−1.

2.13 Theorem (Edge-isoperimetric inequality in the grid)

Let A ⊂ [k]n with |A| ≤ kn

2 . Then |∂A| ≥ min{d|A|1− 1
d k

n
d−1 : d = 1, . . . , n}. (By

stating the result in this form, we don’t have to “fiddle” with the cases where
|A| is not divisible by some power of k).

This is the hardest of all known isoperimetric inequalities; there are some
fiddly bits to the proof, so this will only be a non-examinable sketch. Wlog take
A a down-set in [k]n (otherwise “stamp” on A with 1-dimensional compres-
sions). For 1 ≤ i ≤ n, define Ci(A) by giving its i-sections: Ci(A)t is extremal (i.e.
“winning” - of the form [a]d × [k]n−1−d or the complement of such) in [k]n−1 with
|Ci(A)t| = |At| (We’re already “cheating” here - the size of At may not divide
neatly to give a set of that precise form. But this can be gotten around with
some fiddling).

Write B for Ci(A). Then |∂A| =
∑

|∂At| + |A1| − |Ak| - the first term gives the
horizontal edges out of A, and the other terms are the vertical edges since A is
a down-set.

However, what is |∂B|? It is
∑

|∂Bt|+ some unknown quantity - B is not a
down-set, as the extremal sets in [k]n−1 are not nested. We might hope that the
reduction in the first term in going from A to B balances any possible increase
in the other terms, but this is not so - if A is on the bottom layer a square slightly
larger than a threshold value and on the next layer a square slightly smaller
than this, B is on the bottom layer a column and the same top layer, and this
really does have a larger boundary.

So we try to introduce a “fake boundary” ∂′; we want ∂′ ≤ ∂ with equality
for our extremal sets, and ∂′Ci(A) ≤ ∂′A∀A .

The obvious guess is ∂′A =
∑

|∂At|+ |A1| − |Ak|; note ∂′ = ∂ on all down-sets.
We do have ∂′B ≤ ∂′A where B = Ci(A), but this fails for C j for j , i (and our

next guess, ∂′′A =
∑n

i=1 |A
(i)
1
| − |A(i)

k
| cannot work e.g. because the “outside shell”

of [k]n ould have ∂′′ = 0.
We know: |∂A| = ∂′A ≥ ∂′B =

∑

|∂Bt|+ |B1|− |Bk| =
∑

f (|Bt|)+ |B1|− |Bk|, where
f is the extremal function in dimension n − 1 [i.e. f (r) is the smallest possible
boundary for a set of size r]. Now f (x) is the minimum of some functions of

the form cx1− 1
d and c(kn−1 − x)1− 1

d , each of which is concanve, so their pointwise
minimum f is also concave [and therefore its minima over any given range
occur at the extremes of the range]. Consider varying |B2|, . . . , |Bk−1| keeping
|B2|+ · · ·+ |Bk−1| fixed and |B1| ≥ |B2| ≥ · · · ≥ |Bk|. Then by concavity of f we have
∂′B ≥ ∂′C where C is given by: for some λ, Ct = B1 if t ≤ λ, Bk if t > λ (again we
are cheating a little).

We have : |∂A| = ∂′A ≥ ∂′B ≥ ∂′C, but C is still not a down-set; ∂′C =
λ f (|B1|) + (k − λ) f (|Bk|) + |B1| − |Bk|. Now consider varying |B1| and |Bk| (with λ
fixed), keeping λ|B1| + (k − λ)|Bk| fixed and keeping |B1| ≥ |Bk. Again this is a
concave function of |B1| (as it is the sum of two concave functions and a linear
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one), so we have ∂′C ≥ ∂′D where either Dt = D1∀t or Dt = D1 for t ≤ λ, ∅ for
t > λ or Dt = [k]n−1 if t ≤ λ, Dk if t > λ.

Thus |∂A| = ∂′A ≥ ∂′B ≥ ∂′C ≥ ∂′D = |∂D| - “miraculously”, D is a down-set.
So we take our i-compression to be A 7→ D, then finish the proof as usual.

Remarks: To make the arguments precise (rather than our “cheats”), work
in the continuous cube [0, 1]n instead (using some funny L1 definition of surface
area), and then pass to the discrete cube at the end.

Very few isoperimetric inequalities are known, even approximately. E.g.
what about r-sets? Consider the graph on X(r) with x and y joined if |x∩y| = r−1
(i.e. d(x, y) = 2 in Qn); there is no good isoperimetric inequality known. The
most interesting case is r = n

2 where the conjecture is that balls, i.e. sets of the

form {x ∈ X(r) : d(x, x0) ≤ d} are best, i.e. sets of the form {x ⊂ [2r] : x ∩ [r] ≥ k}.
But there is no proven result here.

3 Intersecting Families

There are two directions taken in this section; the first is obvious, the second is
less natural, but leads to some very elegant mathematics which also has various
applications.

t-intersecting families

We say A ⊂ P(X) is t-intersecting if |x ∩ y| ≥ t∀x, y ∈ A. E.g. for t = 2, we could
take {x : 1, 2 ∈ x}; this has size 1

4 2n. It is beaten by: {x : |x| ≥ n
2 + 1}, of size ∼ 1

2 2n.
This suggests:

3.1 Theorem (Katona’s t-intersecting theorem)

Let A ⊂ P(X) be t-intersecting, taking n + t even for convenience. Then |A| ≤
|X(≥ n+t

2 )|: for any x, y ∈ A, d(x, yc) ≥ t. Thus, writing A = {xc : x ∈ A}, we have

d(A,A) ≥ t, i.e. A(t−1) is disjoint from A¿ Suppose |A| > |X(≥ n+t
2 )|. Then |At−1| ≥

|X(≥ n+t
2 −(t−1)) | by Harper, but this is |X(≥ n−t

2 +1)| and |A| > |X(≤ n−t
2 )|, contraticting

A(t−1) ∩A = ∅.
What about A ⊂ X(r) t-intersecting (1 ≤ t ≤ r)? We could alsto try e.g. for

1 ≤ α ≤ r − t, Aα = {x ∈ X(r) : |x ∩ {1, 2, . . . , t + 2α}| ≥ t + α}. E.g. t = 2 in

[8](4): |A0| =
(6

2

)

= 15, |A1| = 1 +
(4

3

)(4
1

)

= 17, |A2| =
(6

4

)

= 17. In [7](4), |A0| =
(5

2

)

=

10, |A1| = 1+
(4
3

)(4
1

)

= 13, |A2| =
(6

4

)

= 15. In [9](4), |A0| =
(7

2

)

= 21, |A1| = 1+
(4
3

)(5
1

)

=

21, |A2| =
(6

4

)

= 15. As A0 is quadratic (in n), |A1| linear, and |A2| constant, we
will have A0 winning if n is large.

3.2 Theorem

Let A ⊂ X(r) be t-intersecting, where r, t fixed, 1 ≤ t ≤ r. Then |A| ≤ |A0| =
(n−t

r−t

)

if n sufficiently large.
Remarks: 1. This is sometimes called the “Second Erdős-Ko-Rado Theorem”

2. The bound on n given by our proof is (16r)r; with more care one can make
this 2tr3. However, we “don’t care” what this bound actually is; only that the
result is true for n sufficiently large.
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Proof: The idea here is that A0 has r − t “degrees of freedom”. Wlog
take A maximal t-intersecting, so ∃x, y ∈ A with |x ∩ y| = t (else for every
x ∈ A∀i ∈ x, j < x we have x∪ j−i ∈ A, by maximality, so A = X(r), contradiction).
We cannot have x ∩ y ⊂ z∀z ∈ A (else |A| ≤ |A0| and we are done). So choose
z ∈ A with z + x∩ y. Then for any w ∈ A, we must have |w∩ (x∪ y∪z)| ≥ t+1, so
|A| ≥ 23r(

( n
r−t−1

)

+
( n

r−t−2

)

+ · · ·+ (n0
)

) (the 23r comes from the part of w on x∪ y∪ z,
the other terms from the part off x ∪ y ∪ z). This is a polynomial of degree
r − t − 1, so < |A0| for n sufficiently large.

Remark: The Frankl conjecture was that if A ⊂ X(r) is t-intersecting then

|A| ≤ max(A0,A1, . . . ,Ar−t). This was open for many years, and finally proven
by Ahlswede and Khachatrian in 1998.

Modular Intersection

So far, we have “banned” |x∩ y| = 0. What if instead we ban |x∩ y| ≡ 0, modulo
some number? E.g. suppose r odd, and we want A ⊂ X(r) : |x∩ y| odd ∀x, y ∈ A.

We can achieve |A| = (⌊
n−1

2 ⌋
r−1

2

)

by taking sets x of the form: 1, tegether with r−1
2 of

the pairs: 23, 45, 67, . . . .
What if (still for r odd) we wanted |x ∩ y| even ∀x, y ∈ A (x , y). We can

achieve |A| = n − r + 1 by taking all x containing 1, 2, . . . , r − 1. Amazingly:

3.3 Proposition

Let r be odd and let A ⊂ X(r) have |x ∩ y| even ∀x, y ∈ A (x , y). Then |A| ≤ n.
As a vague approximate motivation for what is mostly an out-of-the-hat proof:
what is the only place n (rather than some

(n
k

)

or similar) appears in Qn? It’s
only the dimension. So we will try to find |A linearly independent vectors in
an n-dimensional vector space: View each point x ∈ Qn as a point x in Zn

2
(e.g.

{1, 3, 4} ↔ (1, 0, 1, 1, 0, . . . , 0)). Consider {x : x ∈ A}. We have 〈x, x〉 = 1∀x ∈ A
(where 〈, 〉 is just the usual dot product). And 〈x, y〉 = 0∀x, y ∈ A, x , y. Hence,
{x : x ∈ A} are orthonormal, so linearly independent (if

∑

λixi = 0 then dotting
with x j we obtain λ j = 0, ∀ j). So |{x : x ∈ A}| ≤ n.

Obviously it is possible to write out the above proof without linear algebra
(by expressing the theorem that any linearly independent set can be extended
to a basis in the language of sets), but this gives a completely incomprehensible
(and several pages long) proof. No good elementary combinatorial proof is
known.

For r even: if |x∩ y| even ∀ distinct x, y ∈ A ⊂ X(r), we can have |A| ≥ (⌊
n
2 ⌋
r
2

)

by

A = {sets of r
2 of the pairs (12), (34), . . . }. If |x ∩ y| odd for all distinct x, y ∈ A ⊂

X(r), then we must have |A| ≤ n+ 1 - otherwise, add the point n+ 1 to each x ∈ A
and we obtain a contradiction to proposition 3. So banning |x∩ y| ≡ r( mod 2)
forces |A| to be small.

Does this generalise? We shall now show: “s allowed intersections mod p⇒
|A| ≤ (ns

)

”:

3.4 Theorem (Frankl-Wilson)

(Unusually, particularly in this course, this is a theorem which does not follow
Gauss’ Law)
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Let p be prime, and let A ⊂ X(r) be such that ∀ distinct x, y ∈ A we have
|x ∩ y| ≡ λi( mod p) for some i, where λ1, . . . , λs (s ≤ r) are integers, none of
which is ≡ r( mod p). Then |A| ≤ (ns

)

.
Remarks: 1. The bound is a polynomial in n, independent of r. This should

be surprising. 2. The boind is essentially the best possible: take A = {x ∈ X(r) :
[r − s] ⊂ x}. This has |A| = (n−r+s

s

) ∼ (ns
)

(i.e. the ratio tends to 1 as n → ∞ with
r, s fixed). 3. There is no polynomial bound if we allow |x ∩ y| ≡ r mod p:
write r = a + λp with 0 ≤ a ≤ p − 1, then we have |x ∩ y| ≡ r mod p∀x, y ∈ A

and |A| = (⌊
n−a

p ⌋
λ

)

by fixing a points, dividing the rest of X into sets of size p, and

then taking sets consisting of the a fixed points and λ of the p-sets. This is not
a polynomial; the degree grows as λ grows.

Proof: The idea is to try to find |A| linearly independent points in a vector
space of dimension

(n
s

)

by in some sense “applying the polynomial (t−λ1) . . . (t−
λs) to the values of |x∩ y|”. For i ≤ j, let M(i, j) be the

(n
i

)× (nj
)

matrix with rows

indexed by X(i), columns indexed by X( j), with M(i, j)xy = 1 if x ⊂ y, 0 otherwise.
The matrix M(s, r) has

(n
s

)

rows; let V be the real vector space (real so that
we may divide by natural numbers rather than having to worry whether they
are 0 modulo some prime) spanned by these rows; we have dim V ≤ (ns

)

.

Consider M(i, s)M(s, r) for i ≤ s. For any x ∈ X(i) and y ∈ X(r), (M(i, s)M(s, r))xy

is the number of z ∈ X(s) with x ⊂ z ⊂ y; this is
(r−i

s−i

)

if x ⊂ y, 0 otherwise, i.e.

= M(i, r)xy
(r−i

s−i

)

, so M(i, s)M(s, r) =
(r−i

s−i

)

M(i, r). So the rows of M(i, r) belong to V
(since they are just linear combinations of the rows of M(s, r)).

Consider M(i) := M(i, r)TM(i, r). Again, this must have all rows lying in V.

For x, y ∈ X(r), M(i)xy is the number of z ∈ X(i) with z ⊂ x, z ⊂ y, i.e.
(|x∩y|

i

)

. Write

the integer polynomial (t − λ1) . . . (t − λs) as
∑s

i=0 ai
(t

i

)

for some integers ai; this

is possible since t(t − 1) . . . (t − i + 1) = i!
(t

i

)

. Let M =
∑s

i=0 aiM(i). All rows of

this are in V. Also, Mxy =
∑s

i=0 ai
(|x∩y|

i

)

= (|x ∩ y| − λ1) . . . (|x ∩ y| − λs) (setting
( j

i

)

= 0 for i > j. So Mxy ≡ 0 mod p if |x ∩ y| ≡ some λi( mod p), . 0( mod p)
otherwise.

Now look at the submatrix whose rows and columns are indexed by A; it
has diagonal entries . 0 mod p and off-diagonal entries ≡ 0 mod p. The rows
are integer-valued (as ai are integers) and linearly independent over Zp, and
therefore overZ, so overQ, so overR. Thus |A| ≤ dim V =

(n
s

)

and we are done.
Remark: We do need p prime: Grolmusz constructed, for each n, a value of

r ≡ 0( mod 6) (or for a more general composite m in place of 6) and A ⊂ X(r)

with |x ∩ y| . 0( mod 6)∀ distinct x, y ∈ A, with |A| > nc
log n

log log n for some c > 0;
this grows faster than any polynomial in n.

3.5 Corollary

Let A ⊂ X(r) with |x ∩ y| . r mod p∀ distinct x, y ∈ A, for some prime p < r.
Then |A| ≤ ( n

p−1

)

: we’ve allowed p − 1 values of |x ∩ y| mod p.

Two n
2 sets from [n] intersect (on average) in about n

4 points. Of course (for
large n), intersection size exactly = n

4 is very unlikely. However, amazingly:
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3.6 Corollary

Let p be prime, and let A ⊂ [4p](2p) be such that |x ∩ y| , p∀x, y ∈ A. Then

|A| ≤ 2
( 4p

p−1

)

; note this is an exponentially small fraction of e.g.
(4p

2p

)

; we have
(n

n
4

) ≤ 2e−
n
32 2n but

(n
n
2

) ∼ c√
2
2n: by halving |A|, we may wlog assume we never

have x, xc ∈ A. Hence for distinct x, y ∈ A, we have |x ∩ y| , 0, p so |x ∩ y| . 0

mod p. Thus |A| ≤ ( 4p
p−1

)

by corollary 5. Note the result is true for general n, it’s

merely simpler to express for n = 4p.

Borsuk’s Conjecture

Suppose S is a bounded set in Rn. How many pieces do we need to break S
into such that each piece has smaller diameter than S? Taking S ⊂ Rn to be a
regular simplex, it is clear that we may need as many as n + 1 pieces. Borsuk’s
conjecture is that n + 1 pieces always suffices. This is known for n = 1 (trivial),
n = 2 (easy), n = 3 (fiddly), and also for special cases e.g. S ⊂ Rn being a smooth
convex body or a symmetric convex body (one for which x ∈ S⇒ −x ∈ S) - and
both these are substantial results. However, in fact, Borsuk’s conjecture is false,
and massively so:

3.7 Theorem (Kan, Kalai)

∀n∃ bounded S ⊂ Rn such that to break S into pieces of smaller diameter

requires ≥ c
√

n pieces, for some constant c > 1.
Notes: 1. Our proof will give that Borsuk is false for n ≥ 2000; with much

effort one can show this for n ≥ 581. It would be nice to have a result for e.g.

n = 4, 5, which remain open. 2. We will proove this for n of the form
(4p

2

)

, where
p prime; then the result follows (with a different c) ∀n, e.g. because ∃p with
n
2 ≤ p ≤ n.

Proof: We consider S ⊂ Qn ⊂ Rn; in fact, S ⊂ [n](r) (this is already a
nonobvious thing to do). For x, y ∈ S, we have ‖x − y‖2 (where ‖‖ is the usual
Euclidean distance) = 2(r − |x ∩ y|). Thus we seek S with | |x ∩ y| = k, say, but
any subset of S with min |x ∩ y| > k is much smaller than S. Now, the very

clever part; let n =
(4p

2

)

where p prime. Identify [n] with E(K4p), the edge-set

of the complete graph on 1, . . . , 4p. For each x ∈ [4p]2p, let Gx be the complete

bipartite graph on vertex classes x, xc. Let S = {Gx : x ∈ [4p]2p}. So S ⊂ [n](4p2),

and |S| = 1
2

(4p
2p

)

. We have |Gx ∩ Gy| = |x ∩ y|2 + (2p − |x ∩ y|)2 = d2 + (2p − d)2,

where d = |x ∩ y|. This is minimised when d = p, i.e. when |x ∩ y| = p.
Now let S′ ⊂ S have smaller diameter than S: say S′ = {Gx : x ∈ A}. Then we

must have |x∩y| , p∀x, y ∈ A (else diameter of S′ =diameter of S). So |A| ≤ 2
( 4p
p−1

)

by Corollary 5. Thus the number of pieces needed is ≥
1
2 (4p

2p)
2( 4p

p−1)
≥

c 24p
√

p

4e−
p
2 24p≥c′p

for

some c′ > 1, ≥ (c′′)
√

n for some c′′ > 1, as required.
This is the end of the course.
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