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Books

There are three books mentioned in the schedules, but none are perfect for
this cours; MacLane’s “Categories for the Working Mathematician” is quite
cheap, Awodey’s “Category Theory” is nice but slow paced and thus very
expensive. Borceux’s “Handbook of Categorical Algebra” is probably the best
choice; volume 1 is the only one which will be needed for this course.

Course Information

There will be 4 examples sheets for this course, hopefully supervised. The
exam will consist of six questions chosen from ten (all of equal weight); the
examples sheets questions should be representative of the exam questions,
since unlike many courses in which one simply memorizes what the lecturer
says, in category theory it is possible to get real work done in the space of an
exam.

The departmental category theory seminar meets at 2:15pm on Tuesdays in
term time in MR9; students here may be interested in attending.

What is category theory?

1) The mathematics of mathematics: where group theory, ring theory, geometry
etc. abstract away from the real world, category theory abstracts away from
mathematics itself.

2) A language for mathematics: notation is important, e.g. writing d
dx

already implies some of the properties a differential should have. Category
theory is a kind of “subject-agnostic notation” for mathematics.

3) A way of making mathematical intuitions precise: e.g. we can formalize
in what sense “the compactification of a topological space”, “the abelianisation
of a group” and “the sheafification of a presheaf” are “the same construction”.

4) Implementation-free mathematics: A set theorist says “the cartesian prod-
uct of two sets A,B is the set {{{a}, {a, b}} : a ∈ A, b ∈ B}”. A category theorist says
“the product of A and B is any set A×B satisfying the properties: there are pro-
jections π1 : A× B,→ A, π2 : A× B→ B, and for any maps f : C→ A, g : C→ B
there is a unique pairing ( f , g) : C→ A×B such thatπ1◦( f , g) = f , π2◦( f , g) = g.”

5) Mathematics in alternate mathematical realities: e.g. in domain theory

we can have an object X satisfying X � XX. Category theory allows us to make
sense of “doing mathematics” in this setting.
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1 Categories, Functors and Natural Transformations

1.1 Definition

A categoryC is given by: a collection obCof objects; for each X,Y ∈ obC, a collec-

tion C(X,Y) of morphisms from X to Y; for each X ∈ obC, an identity morphism

1X ∈ C(X,X), for each X,Y,Z ∈ C, an operation of composition C(Y,Z) ×

C(X,Y) → C(X,Z) (g, f ) 7→ g ◦ f satisfying axioms of: unitality: for every
f ∈ C(X,Y) we have idY ◦ f = f = f ◦ idX (this is really two axioms, left and
right unitality; idX is notation for 1X), and associativity: for f ∈ C(W,X), g ∈
C(X,Y), h ∈ C(Y,Z), h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

1.2 Remarks

a) We write f : X → Y to indicate that f ∈ C(X,Y). We call X the source (or
domain) of f and Y the target (or co-domain).

b) We also call morphisms arrows or maps.

c) We write morC for the disjoint union of theC(X,Y)s and s, t : morC → obC
for the source and target assignations.

d) By associativity we may write e.g. khg f and this is well defined (=
k ◦ (h ◦ (g ◦ f )) etc.)

e) We don’t assume that either of obC or C(X,Y) are sets; we do this because
we want to talk about things like “the category of all sets”.

1.3 Definition

A category C is locally small if each C(X,Y) is a set. It is small if it is locally

small and obC is a set; otherwise it is large. Note that a large category may still

be locally small; in fact this is the most common case.

1.4 Examples

Large, but locally small, categories of mathematical objects:
Set - objects are sets, morphisms X→ Y are functions
Setinj - objects are sets, morphisms X→ Y are injective functions

Setp - objects are sets, morphisms X→ Y are partial functions

Poset - objects are posets, morphisms X→ Y are order-preserving functions
Grp - objects are groups, morphisms are group homomorphisms

Ab - objects are abelian groups, morphisms are group homomorphisms
CRng - objects are commutative rings, morphisms are ring homomorphisms

Vectk - objects are k-vector spaces, morphisms are linear maps
Top - objects are topological spaces, morphisms are continuous maps

H (Top) - objects are topological spaces, morphisms are homotopy equiva-

lence classes of continuous maps
Top

⋆
- objects are topological spaces equipped with a base point, morphisms

are continuous maps preserving the base point.
Small categories, which are themselves mathematical objects:
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A poset (P,≤) can be viewed as a category P with obP = P and there is a
unique morphism x→ y just when x ≤ y.

In particular, any set X can be viewed as a category, with only identity
morphisms.

A monoid (recall a monoid or semigroup is a group without inverse) (M, ·, 1)
can be viweed as a categoryM, with one (formal) object ⋆ andM(⋆,⋆) = M;
the composition law is monoid multiplication. (So any group can be viewed as
a category).

There is a category ∆, the simplicial category: objects are non-empty finite
ordinals [n] = {0 ≤ 1 ≤ · · · ≤ n}, maps are order-preserving functions.

There is a category B: objects are finite cardinals ⋉ = {0, 1, . . . , n − 1}, maps
are bijections between them.

We can present categories by a directed multigraph G. Given such a G, we

can form a category whose objects are the vertices of G and morphisms are
paths through the graph. We can then impose equations identifying certain
paths with the same sources and targets.

Example: the category 0 has no objects and no arrows, and is presented by
the null graph. The category 1 has one object and one arrow; it is presented by
the graph consisting of a single vertex. The category 2 has two objects and three
arrows; it is presented by a graph of two vertices and a directed edge between
them (the other two morphisms are identity morphisms, given by paths of one
vertex).

The category presented by the graph with a single vertex and an edge from
it to itself is isomorphic to the additive monoid (N,+) viewed as a one-object
category. The category generated by a “figure 8” graph with one vertex and two
edges g, f from it to itself subject to the equations f g = id, g f = id is isomorphic
to (Z,+) viewed as a one-object category.

Some constructions which build new categories from old ones:

1.5 Definition

Let C be a category. A subcategory of C is given by a subcollection obD ⊂

obC and subcollections D(X,Y) ⊂ C(X,Y) for X,Y ∈ obD such that idX ∈
D(X,X)∀X ∈ obD and for any f ∈ D(X,Y), g ∈ D(Y,Z), g ◦ f ∈ D(X,Z). Any
subcategory D ⊂ C can be viewed as a category in its own right, under the
induced composition law. E.g. Setinj ⊂ Set.

1.6 Definition

Given C a category and I ∈ C (by which of course we “really” mean I ∈ obC, we
can form the slice category C

I : objects are pairs (X ∈ C, x : X → I), morphisms

(X, x)→ (Y, y) are morphisms f : X→ Y inC such that x = y f . Dually, we define
I
C , the coslice category, with objects pairs (X ∈ C, x : I → X), and morphisms

(X, x)→ (Y, y) being maps f : X→ Y such that f x = y.

1.7 Definition

Given C,D categories, the product category C × D has objects ob(C ×D) =
obC×obD, morphisms (C ×D)((X1,X2), (Y1,Y2)) = C(X1,Y1)×D(X2,Y2); com-
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position and identities are given componentwise.

1.8 Definition

Given C a category, we obtain the dual category Cop by “reversing the arrows
of C”: ob(Cop) = obC,Cop(X,Y) = { f op : f ∈ C(Y,X)} ( f op is just a meaningless
label). Identities are id

op

X
∈ Cop(X,X), composition gop ◦ f op = ( f ◦ g)op.

Morphisms in Categories

1.9 Definition

Let f : X → Y in C. An inverse for f is a morphism g : Y → X such that
g f = idX, f g = idY. We say that f is an isomorphism if it has an inverse; we say

X,Y ∈ C are isomorphic if there is an isomorphism f : X→ Y.

1.10 Examples

The isomorphism in Set are bijective functions, those in Grp are group isomor-
phism and those in Top are homeomorphisms.

1.11 Proposition

If g, g′ are inverses for f : X → Y then g = g′: we have g = g(idY) = g( f g′) =
(g f )g′ = (idX)g′ = g′.

1.12 Proposition

The composition of two isomorphisms is an isomorphism, as are identity maps
and the inverse of an isomorphism (exercise).

1.13 Definition

A morphism f : X → Y in C is said to be an epimorphism if for all Z ∈ C, g, h :

Y → Z, we have g f = h f ⇒ g = h. f is said to be a monomorphism if

f∀W ∈ C, g, h : W → X, f g = f h⇒ g = h.

1.14 Examples

In Set, the epimorphisms are the surjective functions and the monomorphisms
are the injective functions. In Grp, the epimorphisms are the surjective group

homomorphisms and the monomorphisms the injective group homomorphisms.
In Top, the epimorphisms are injective continuous maps and the monomor-

phisms surjective maps. However, beware; it’s not always this simple: e.g. in
CRng, the canonical inclusion Z→ Q is an epimorphism.
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1.15 Proposition

If f : X → Y, g : Y → X have f g = idY, then f is an epimorphism: suppose
Z ∈ C, h, k : Y→ Z with h f = k f , then h = h(idY) = h( f g) = k( f g) = k(idY) = k.

1.16 Proposition

Given f : X → Y, g : Y → X with f g = idY, then g is a monomorphism. We
shall use a longer proof which shows a useful general technique: (1) g is a
monomorphism in C ⇔ gop is an epimorphism in Cop (2), (3) f g = idY in
C ⇔ gop f op = id

op

Y
in Cop (4). Since (4)⇒(2), we deduce also that (3)⇒(1).

1.17 Remark

This is an example of the principle of duality: any definition, proposition or

proof can be dualised by replacing C by Cop. We frequently denote the dual of
a notion by the prefix “co-”.

Functors

1.18 Definition

Let C,D be categories. A functor F : C → D is given by: an assignation
obC → obD X 7→ FX, assignations C(X,Y) → D(FX, FY) f 7→ F f such that:
∀X ∈ obC, F(idX) = idFX, and ∀ f : X→ Y, g : Y→ Z, ∈ C, F(g ◦ f ) = Fg ◦ F f .

A functor F is full, faithful, or full and faithful if each assignation C(X,Y)→
D(FX, FY) is respectively surjective, injective, bijective.

1.19 Definition

The category Cat has as objects small categories, and as morphisms, functors.
The identity functor on C is idC : C → C : X 7→ X, f 7→ f . Composition is
similarly simple. The category CAT is the category of all categories.

1.20 Remark

Cat is a large category, but is locally small; CAT is not even locally small.

1.21 Examples

Forgetful functors, e.g. U : Grp → Set : (G, ·, e) 7→ G, f : (G, ·, e) → (H, ·, e) 7→

f : G → H , or similarly Top → Set, CRng → Ab (mapping to the underlying

addative group), Top
⋆
→ Top

“Free” functors, e.g. F : Set→ Grp X 7→ the free group on X. Or Grp→ Ab

G 7→ G
[G,G] , or Set → Top X 7→ the discrete space on X. (For these last few

examples we have only given the mapping of objects; this is because the map
of morphisms is usually obvious. Where it is not, we will give it explicitly).

Given a commutative ring R, there is a functor Grp→ CRng G 7→ R[G].

There is a functor Top
⋆
→ Grp(X, x) 7→ π1(X, x).
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IfM,N are monoids (or groups) seen as one-object categories, then a functor
M→N is a monoid (or group) homomorphism.

If P,Q are posets, seen as categories, then a functor P → Q is an order-
preserving map.

For any categories C,D and any I ∈ D, we have a constant functor ∆I :
C → D by X 7→ I, f 7→ idI.

For categoriesC,Dwe have the projection functorsπ1 : C ×D → C (X1,X2) 7→
X1, ( f1, f2) 7→ f1, similarly π2.

Any subcategoryD ⊂ C induces an inclusion functorD ֒→ C.

1.22 Definition

A contravariant functor fromC toD is a functor F : Cop →D (i.e. an assignation
obC → obD X 7→ FX and assignations C(X,Y) → D(FY, FX) f 7→ F f such that
F(idX) = idFX, F(g ◦ f ) = F f ◦ Fg.

1.23 Examples

There is a functor Vect
op

k
→ Vectk V 7→ V⋆, f : V →W 7→ f⋆ : W⋆ → V⋆.

There is a functor O : Topop → Set by X 7→ the set of open sets in X, O(X),

and f : X→ Y 7→ O( f ) : O(Y)→ O(X) defined by A ⊂ Y 7→ f−1(A) ⊂ X.
There is a functor Topop → C − Alg: X 7→ the set of continuous functions

X→ C, CX, f : X→ Y 7→ a map CY → CX : g : y→ C 7→ g ◦ f : X→ C

1.24 Remark

A functor F : C → D sends commutative diagrams in C to commutative dia-
grams inD. Consequently, any property defined purely in terms of commuta-
tive diagrams is preserved by functors, e.g. if f : X → Y is an isomorphism in
C then so is F f : FX→ FY inD.

1.25 Definition

Let C be a locally small category (this definition is essentially the reason we’re
interested mostly in locally small categories). Let V ∈ C. We have a functor
C(V,−) : C → Set by X 7→ C(V,X), f : X → Y 7→ C(V, y) : C(V,X) → C(V, y)
g : V → X 7→ f ◦ g : V → Y. We sometimes write HV for C(V,−). Dually,
we have a functor C(V,−) : C → Set by X 7→ C(V,X), f : X → Y 7→ C( f ,V) :
C(Y,V)→ C(X,V) g : Y→ V 7→ g ◦ f : X→ V. We may write HV for C(−,V).

Natural Transformations

We can think of a functor F : C → D as providing an “image of C insideD”. A
natural transformation is a way of “translating” between two such images.

1.26 Definition

Let F,G : C → D be functors. Then a natural transformation α : F⇒ G : C → D
is given by an (obC)-indexed collection of morphisms αX : FX → GX in D,
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called the components of α, such that, for every f : X → Y in C, the obvious

square commutes: G f ◦αX : FX→ GX→ GY = αY ◦ F f : FX→ FY→ GY. This
is called the naturality condition.

1.27 Remark

If we say that some family of maps αX : FX→ GX is natural in X we mean that
they form the components of a natural transformation α : F⇒ G.

1.28 Definition

Let C,D be categories. The functor category [C,D] or DC has objects functors

C → D, morphisms from F to G are natural transformations α : F ⇒ G. The
identity of F ∈ ob[C,D] is idF : F ⇒ F with components (idF)X = idFX : FX →
FX. Composition of α : F ⇒ G, β : G ⇒ H is β ◦ α : F ⇒ H with components
(β ◦ α)X = βX ◦ αX : FX → HX; checking these really are natural is left as an
exercise.

1.29 Remark

If C,D are both small then so is [C,D]; if C is small andD is locally small then
[C,D] is locally small.

1.30 Example

Let G be a group (or monoid) viewed as a one-object category. The functor
category [G,Vectk] has: objects are functors F : G → Vectk. RecallGhas only one
object⋆, so we must have⋆ 7→ F⋆ = some V, and g : ⋆→ ⋆ 7→ Fp = ρg : V → V,
i.e. our objects are linear representations of G. Morphisms F ⇒ H are natural
transformations. So, supposing F⋆ = V,H⋆ =W, such a natural transformation
α : F ⇒ H is given by a component f = α⋆ : F⋆ = V → H⋆ = W such that
∀g : ⋆ → ⋆ in G (i.e. elements of the group), there is a commuting square:
Hg ◦ α⋆ : F⋆ → H⋆ → H⋆ = α⋆ ◦ Fg : F⋆ → F⋆ → H⋆, or ρg ◦ f = f ◦ ρg, i.e.
this is a map of G-representations, or an equvariant map or intertwiner.

More generally, we can think of a functor C → Vectk as a “linear repre-
sentation of C”, and of natural transformations between them as “equivariant
maps”.

1.31 Definition

A natural isomorphism is an invertible natural transformation. F,G : C → D

are naturally isomorphic if there is a natural isomorphism F⇒ G.

1.32 Example

The identity functor idSet : Set → Set is naturally isomorphic to the functor
F : Set→ Set X 7→yx∈X {⋆} (i.e. the disjoint union of copies of a single element
indexed by X).

7



1.33 Proposition

A natural transformation α : F ⇒ G : C → D is invertible iff each component
αX : FX→ GX is invertible inD: If α is invertible with inverse β : G⇒ F, then
for each X ∈ Xwe have αX ◦βX = (α◦β)X = (idG)X = idGX : GX→ GX; similarly
βX ◦ αX = idFX, so αX is invertible. Conversely, suppose each αX is invertible
in D with inverse βX : GX → FX. We claim the βXs are natural in X, i.e. that a
square commutes: F f ◦ βX : GX→ FX→ FY = βY ◦ G f : GX→ GY → FY. But
we have F f ◦ βX = βY ◦αY ◦F f ◦ βX (since αY, βY are inverses) = βy ◦G f ◦αX ◦ βY

(by naturality of α) = βY ◦G f .

1.34 Remark

We showed that if G f ◦ αX = αY ◦ F f (naturality of α) then F f ◦ α−1
X = α

−1
Y
◦ G f ;

in general, if a diagramD commutes, then so does anyD′ obtained from it by
“turning around some isomorphisms”.

1.35 Definition

An equivalence of categories betweenCandD is given by functors F : C → D,G :

D→ C and natural isomorphisms η : idC ⇒ GF, ǫ : FG → idD. Note that any
isomorphism of categories is an equivalence of categories; for more substantia-
tive examples, see the first example sheet.

As well as composing natural transformations with each other, we can also
precompose them with functors - given F : C → D, β : G ⇒ H : D→ E, we
have βF : GF ⇒ HF : C → E with components (βF)X = βFX : GFX → HFX.
Naturality for βF follows from that for β. Dually, we can postcompose a natural
transformation with a functor: given α : F ⇒ G : C → D and H : D→ E, we
have Hα : HF⇒ HG : C → Ewith components (Hα)X = H(αX) : HFX→ HGX.
For naturality we must show that for all f : X → X in C, HG f ◦ HαX : HFX →
HGX → HGY = HαY ◦ HF f : HFX → HFY → HGY, but this is just H(−) of a
naturality square for α, and functors preserve commuting diagrams.

1.36 Proposition

Consider a diagram where we have α : F ⇒ G : C → D, β : H ⇒ K : D→ E.
Then we have a commuting diagram in the functor category [C,E]: βG ◦ Hα :
HF → HG → KG = Kα ◦ βF : HK → KF → KG: it suffices to show that for all
X ∈ C we have a commuting square in E: βGX ◦HαX : HFX→ HGX→ KGX =
KαX ◦ βFX : HFX→ KFX→ KGX. But this is just a naturality square for β at the
map αX : FX→ GX inD. So we are done.

2 Presheaves, Representations and the Yoneda Lemma

This is a section on universal properties - the heart of category theory.
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2.1 Definition

A covariant presheaf on a categoryC is a functorC → Set. A contravariant presheaf

on a category C is a functor Cop → Set.

2.2 Examples

Presheaves on large categories equip each object of the category with a set of
“attributes” which can be “transported” along morphisms.

There is a presheaf ob : Cat→ Set assigning to each C its set of objects
There is a presheaf mor : Cat→ Set assigning to eachC its set of morphisms
There is a presheaf iso : Cat → Set assigning to each C its set of isomor-

phisms
There is a presheaf el : Grp → Set assigning to each group G its set of

elements
There is a presheaf elk : Cat → Set assigning to each group G its set of

elements with order dividing k ∈N
There is a presheaf P : Setop → Set assigning to each set X its set of subsets
There is a presheafO : Topop → Set assigning to each space T its set of open

sets
There is a presheaf Sp : CRngop → Set assigning to each ring R its set prime

ideals
Presheaves on small categories are themselves mathematical objects, e.g. A

presheaf (· ⇉ ·) → Set is a directed multigraph, the two arrows going to the
source and target maps E → V. A presheaf ∆op → Set is a simplicial set. A

presheaf G → Set (where G is as always a group seen as a one-object category)
is a set equipped with a left G-action.

Recall also that for each V ∈ C, C locally small, we have presheaves HV =

C(V,−) : C → Set,Hv = C(−,V) : Cop → Set. In fact V 7→ HV gives a functor
C → [Cop, Set].

2.3 Definition

LetC be locally small. The Yoneda embedding is the functor H• : C → [Cop, Set]

V 7→ HV, f : V → W 7→ H f : HV ⇒ HW where H f has components (H f )X :
HVX → HWX (i.e. C(X,V) → C(X,W)) g 7→ f ◦ g. We must check this is a
well defined natural transformation, i.e. that given g : X → Y in C, (HW g =
(−) ◦ g) ◦ ((H f )Y = f ◦ (−)) : (C(Y,V) = HVY)→ (C(Y,W) = HWY)→ (C(X,W) =
HWX) = ((H f )X = f ◦ (−)) ◦ ((−) ◦ g = Hvg) : (C(Y,V) = HVY) → (C(X,V) =
HVX)→ (C(X,W) = HWX). So on elements we need that h 7→ h ◦ g 7→ f ◦ (h ◦ g)
and h 7→ f ◦h 7→ ( f ◦h)◦ g are equal, but this is just associativity of composition.

Dually we have another Yoneda embedding H• : Cop → [C, Set] V 7→ HV,
f : V →W 7→ H f : HW → HV where (H f )X : HW

X = C(W,X)→ H(V,X) = C(V,X)
is given by g 7→ g ◦ f , and the reader may check that this is valid.

2.4 Definition

A presheaf F : C → Set is representable if it is naturally isomorphic to HV for

some V ∈ C. Dually, G : Cop → Set is representable if it is naturally isomorphic
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to HV for some V ∈ C.
A representation of F : C → Set is a choice of isomorphism θ : HV → F

(similarly, a representation of G : Cop → Set is a choice of isomorphism θ :
HV → G)

2.5 Examples

Recall that presheaves on large categories equip each object with a set of “at-
tributes”. A representation for such a presheaf is an “object containing a generic
example of that attribute”.

The presheaf ob : Cat → Set is represented by the category · = 1 (“the
generic category containing an object”)

The presheaf mor : Cat→ Set is represented by the category · → · = 2 (“the
generic category containing a morphism”)

The presheaf iso : Cat→ Set is represented by the category ·a ⇆ ·b where the
arrows are f , g, subject to f g = idb, g f = ida (“the generic category containing
an isomorphism”)

The presheaf el : Grp → Set is represented by the group Z (“the generic
group containing an element”)

The presheaf elk : Grp → Set is represented by the group Ck (“the generic
group containing an element of order k”)

Suppose F : Cop → Set has a representation θ : HV ⇒ F. This says that
there are bijections θX : C(X,V) � FX natural in X (†). In particular, we have
θV : C(V,V)→ FV, so we have an element u ∈ FV corresponding to the identity
map idV : V → V. In fact, this element u completely determines all the θX.
Why is this? Naturality in (†) says in particular that for f : X → V, F f ◦ θV :
C(V,V) → FV → FX = θX ◦ ((−) ◦ f = C( f ,V)) : C(V,V) → C(X,V) → FX. In
particular, idV 7→ θV(idV) = u 7→ (F f )(u) and idV 7→ idV ◦ f = f 7→ θX( f ) must
be equal, i.e. θX : C(X,V) → FX is given by f 7→ (F f )(u). In fact, if we are
given any element u ∈ FV, this determines a natural transformation û : HV → F

where ûX : C(X,V)→ FX f 7→ (F f )(u).

2.6 Theorem (The Yoneda Lemma)

Let C be a locally small category, F : Cop → Set. Then there is a bijection
[Cop, Set](HX, F) � FX for all X ∈ C. This bijection is natural in X and F, i.e. forα :
F⇒ G : Cop → Set we have αX◦ our bijection: [Cop, Set](HX, F)→ FX → GX =
our bijection ◦ (α ◦ (−)) : [Cop, Set](HX, F)→ [Cop, Set](HX,G)→ GX (naturality

in F), and for f : X → Y, [Cop, Set](HY, F) → FY
F f
→ FX = [Cop, Set](Hy, F)

(−)◦H f

→
[Cop, Set](HX, F)→ FX (naturality in X).

The proof here is notationally complicated, but requires little thought - at
every stage we do “the only thing we can”.

a) Given α : HV ⇒ F, define α̂ ∈ FV by α̂ = αV(idV)
b) Given a ∈ FV define â : HV ⇒ F with components (̂a)X : HVX = C(X,V)→

FX f 7→ (F f )(a). We must check naturality of â: given f : X → Y we need that

C(Y,V)
âY
→ FY

HV f = (−) ◦ f ↓ ↓ F f

C(X,V)
âX
→ FX

commutes. On elements, going right and then
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down we have g 7→ (Fg)(a) 7→ F f (Fg(a)), and going down and then right
g 7→ g◦ f 7→ F(g◦ f )(a). But F f (Fg(a)) = (F f ◦Fg)(a) = F(g◦ f )(a) by functoriality
of F.

c) We must check that
(
̂̂−
)
= (−). Given a ∈ FV, ̂̂a = âV(idV) = (FidV)(a) =

(idFV)(a) = a. Given α : HV ⇒ F, we have ̂̂αX : C(X,V) → FX f 7→ (F f )(α̂) =
(F f )(αV(idV)). So we need to check (F f )(αV(idV)) = αX( f ). By naturality of α the

square
C(V,V)

αV
→ FV

HV f = (−) ◦ f ↓ ↓ F f

C(X,V)
αX
→ FX

commutes. In particular, applying this to

idV, going right and then down idV 7→ αV(idV) 7→ F f (αV(idV)) and going down

then right idV 7→ idV ◦ f = f 7→ αX( f ), i.e. αX =
̂̂αX, so α = ̂̂α as required.

d) Check naturality in F, i.e. that given β : F ⇒ G : Cop → Set, the

square
[Cop, Set] (HV, F)

(̂)
→ FV

β ◦ (−) ↓ ↓ βV

[Cop, Set] (HV,G)
(̂)
→ GV

commutes. On elements these maps are

α 7→ αV(idV) 7→ βV(αV(idV)) and α 7→ β ◦ α 7→ (β ◦ α)V(idV), but βV(αV(idV)) =
(βV ◦ αV)(idV) = (β ◦ α)V(idV) by the definition of β ◦ α.

e) Check naturality in V, i.e. given h : V →W inC, the square
[Cop, Set] (HW, F)

(̂)
→ FW

(−) ◦Hh ↓ ↓ Fh

[Cop, Set] (HV, F)
(̂)
→ FV

commutes. It is easier to work with the square
[Cop, Set] (HW, F)

(̂)
← FW

(−) ◦Hh ↓ ↓ Fh

[Cop, Set] (HV, F)
(̂)
← FV

,

which we may do since we know we can “turn around” isomorphisms in com-
muting diagrams. Applied to elements, going left and then down gives a 7→ â 7→

â◦Hh, while going down and then left gives a 7→ (Fh)(a) 7→ F̂h(a). These natural

transformations have components (̂a ◦ Hh)X : C(X,V)
Hh(X)=h◦(−)
→ C(X,W)

â
→ FX

f 7→ h◦h 7→ F(h◦ f )(a) and (F̂h(a))X : C(X,V)→ FX f 7→ F f (Fh(a)), but as above,
F f (Fh(a)) = F(h ◦ f )(a).

2.6’ Theorem (The dual Yoneda lemma)

For C locally small, F : C → Set, there is an isomorphism [C, Set](HV, F) � FV
naturally in F,V.

2.7 Corollary

The Yoneda embedding H• : C → [Cop, Set] is full and faithful: we need to
show that (⋆) C(V,W)→ [Cop, Set](HV,HW) f 7→ H f are isomorphisms. By the

Yoneda lemma, we have isomorphisms (†) [Cop, Set](HV,H)
(−̂)
→ HWV = C(V,W);

we need to check that (⋆), (†) are inverse to each other (i.e. are the same

isomorphism), i.e. that f̂ = H f or equally well that Ĥ f / f . But Ĥ f = (H f )V(idV)
where (H f )V : C(V,V) → C(V,W) is given by g 7→ f ◦ g. So in particular
(H f )V(idV) = f ◦ idV = f as required.
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2.8 Corollary

We have V � W in C ⇐ C(X,V) � C(X,W) naturally in X ∀X ⇐ C(V,X �
C(W,X) naturally in X ∀X: H• is full and faithful so V � W iff HV � HW (see
question 1 on the first example sheet) i.e. C(X,V) � C(X,W) naturally in X;
likewise H• is full and faithful so V � W iff HV

� HW i.e. C(V,X) � C(W,X)
naturally in X.

Suppose now we are given a functor F : Cop × I → Set. For each I ∈ I
we have a functor F(−, I) : Cop → Set by X 7→ F(X, I), f : X → Y 7→ F( f , idI) :
F(Y, I) → F(X, I). By a paramaterised representation of F, we mean: for each

I ∈ I an object VI ∈ C and an isomorphism θI : HVI
→ F(−, I) (i.e. an ordinary

representation for each F(−, I) such that the assignation I 7→ VI is a functor
I → C in a nice way:

2.9 Proposition (Paramaterised Representability)

Suppose we have C locally small, I a category, F : Cop × I → Set, and are
given a paramaterised representatin for F, i.e. for each I ∈ I a representation

θI : HVI

∼
→ F(−, I) : Cop → Set. Then there is a unique way of extending

the assignation I 7→ VI to a functor V : I → C such that the isomorphisms
(θI)X : C(X,Vi)→ F(X, I) are natural in I as well as X. Naturality means that, for

f : I→ V inI,

HVI

θI
⇒ F(−, I)

HV f ⇓ ⇓ F(−, f )

HVJ

θJ
⇒ F(−, J)

commutes. In fact, this determines what

V f : VI → VJ must be. Note that the horizontal arrows are isomorphisms, so
given the arrow on the right hand side there is a unique map on the left hand side
HVI
→ HVJ

making the square commute. But because the Yoneda embedding
H• is full and faithful, this map is induced by a unique map VI → VJ; call this
map V f . It remains to check that f 7→ V f is functorial: a) V(idI) = idVI

(for I ∈ I):

consider the diagram
HVI

θI
⇒ F(−, I)

id = HidVI
⇓ ⇓ F(−, idI) = id

HVI ⇒ F(−, I)

. This commutes, but

by definition HV(idI) is the unique map which when placed on the left makes
this square commute. So HV(idI) = HidVI

. But because H• is full and faithful
this implies V(idI) = idVI. b) We need to check V(g ◦ f ) = Vg ◦ V f . Consider

the diagram

HVI

θI
→ F(−, I)

HV f ↓ ↓ F(−, f )

HVJ

θJ
→ F(−, J)

HVg ↓ ↓ F(−, g)

HVK

θK
→ F(−,K)

. The two small squares commute, so the

large rectangle commutes. The composite down the right is F(−, g) ◦ F(−, f ) =
F(−, g◦ f ), so by definition HV(g◦ f ) is the unique map down the left which makes
the rectangle commute, i.e. HV(g◦ f ) = HVg ◦ HV f = HVg◦V f . Since H• is full and
faithful, this implies V(g ◦ f ) = Vg ◦ V f as required.
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3 Limits and Colimits

3.1 Definition

Let F : I → C be a functor. A cone over F is given by: an object X ∈ C, and
for every I ∈ I, a map αI : X → FI such that for all f : I → J in I, we have a
commuting triangle F f ◦ αI : X → FI → FJ = αJ : X → FJ. The picture is that
we have arrows from X ∈ C down to all points of the image F(I) in C, hence
the term cone. We call X the vertex of the cone.

3.2 Remark

A cone over F is really a special kind of natural transformation: given X ∈ C,
we have the constant functor ∆X : I → C I 7→ X f 7→ idX. A cone over F with
vertex X is then the same as a natural transformation α : ∆X ⇒ F (exercise).

3.3 Definition

This is the heart of this chapter: Given F : I → C, a limit for F is a “universal cone
over F”, i.e. a cone (pI : V → FI)I∈I such that for any other cone (αI : X→ FI)I∈I,
there is a unique map k : X→ V such that ρIk = αI∀I ∈ I.

3.4 Example

Let I be the discrete category with two objects. A functor F : I → C is a pair of
objects A,B ∈ C. A cone over F is any X and pair of arrows f : X→ A, g : X→ B.
A limit (universal cone overe F) is an object we shall call A × X and a pair of
maps π1 : A × B → A, π2 : A × B → B such that given X and a pair of arrows
f : X → A, g : X → B, there is a unique ( f , g) : X → A × B such that things
commute: f = π1 ◦ ( f , g), g = π2 ◦ ( f , g).

E.g. in Set, the product of sets A,B is their cartesian product. (Our require-
ment that the map is unique is equivalent to the fact that if A×B = C×D as sets
then A = C,B = D or A = D,B = C). In Grp, the product of groups A,B is their

cartesian product with pointwise operations. In Top, the product of spaces A,B

is their cartesian product with product topology.
More generally, let I be any small discrete category. Then a functor I → C

is an (obI)-indexed set of objects of C. A limit for this functor is a product∏
i∈I FI and projections πI, πJ, πK, . . . . In particular, if I is the empty category

there is a unique functor I → C; a cone over this functor is just an object X of
C. A limit is an object 1 ∈ C such that for any other X ∈ C there is a unique map
X→ 1. We call such a 1 a terminal object of C.

E.g. any 1-element set is terminal in Set, any 1-element group is terminal in
Grp, any 1-element space is termital in Top. In the slice category CI , the terminal
object is (I, idI : I → I).

Recall we are studying limits - “universal cones” over functors.
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3.5 Example

SupposeI is the category •⇉ •. A functor F : I → C is a diagram A•⇉
f
g •B in

C; a cone over f is an X with arrows e : X→ A, z : X→ B such that z = f e = ge.
Note that this condition completely determines z, so more simply a cone over

F is X and k : X → A such that f k = gk. A limit for F is Eq( f , g)
e
→ A⇉ B such

that given X and k : X → A, there is a unique map l : X → Eq( f , g) such that
k = el. We call Eq( f , g) the equalizer of f and g. E.g. in Set, the equalizer of

A ⇉
f
g B is the set {a ∈ A : f (a) = g(a)} (with the map e being inclusion into A).

We will only describe what these limits mean in Set, but this should give the
correct intuition to apply to other categories.

3.6 Example

LetI be the category • → • ← •. A functor F : I → C is a diagram A
f
→ C

g
← B.

A cone over F is X and maps h : X → B, k : X → A; really there is also a
map l : X → C, but l = gk = f h so we can omit it. A limit cone is a V and
p1 : V → A, p2 : V → B such that for any other cone there is a unique map
u : X → V such that p1 ◦ u = h, p2 ◦ u = k. We call V the pullback of f along g

(or of course equivalently of g along f ). E.g. in Set, the pullback of A
f
→ C

g
← B

is {(a, b) ∈ A× B : f (a) = g(b) in C}. This is also called the fibre product of A and

B over C - the reason for this terminology will be seen on the second example
sheet.

3.7 Proposition

Let F : I → C. Suppose that (pI : V → FI)I∈I and (qI : W → FI)I∈I are both
limit cones for F, then there is a unique isomorphism φ : V → W which
“commutes with the limit cones”, i.e. qIφ = pI∀I ∈ I: by the universal property
of (qI : W → FI), there is a unique map φ : V → W such that qIφ = pI. But
by the same property of (pI : V → FI) there is a unique map ψ : W → V such
that pIψ = qI. But now by the universal property of (qI : W → FI) there is a
unique map θ : W →W such that qIθ = qI∀I ∈ I. But both θ = idW and θ = φψ
have this property, so by uniqueness φψ = idW; dually ψφ = idV so φ is an
isomorphism as required.

3.8 Notation

Consequently, we speak of the limit of F : I → C rather than a limit. We write

it as (lim F
pI
→ FI) or (

∫
J
FJ

pI
→ FI).

3.9 Definition

Given I,C we say that C has limits of shape I if every functor F : I → C has a

limit. We say thatC is complete if it has limits of shape I for all small categories

I, and finitely complete if it has limits of shape I for all finite categories I.
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Limits as Representations

3.10 Definition

Let F : I → C. The cone functor Cone(−, F) associated to F is Cone(−, F) : Cop →

Set given by X 7→ the set of cones (X
αI
→ FI)I∈I over F with vertex X, f : X→ Y 7→

the map Cone(Y, F)→ Cone(X, F) given by (Y
βI
→ FI) 7→ (X

βI f
→ FI).

3.11 Proposition

Limits for F : I → C are the same as representations for Cone(−, F): recall a
representation for Cone(−, F) is an object V ∈ C and a natural isomorphism

θ : HV ⇒ Cone(−, F). By the Yoneda lemma we have θ̂ ∈ Cone(V, F) (i.e. a cone

(V
pI
→ FI)) such that the natural isomorphism θ has components θX : C(X,V)→

Cone(X, F) f 7→ Cone( f , F)(θ̂) = (X
pI f
→ FI) for a unique f : X → V in C - i.e.,

(V
pI
→ FI) is a limit cone for F. The converse is similar.
Note: we could use this result to show that HV exists even when C is not

necessarily locally small. But it is easier to just assume all categories are locally
small; most of the interesting ones are.

3.12 Corollary (Paramaterised limits)

Suppose we are given F : I ×J → C such that each functor F(−, J) : I → C

has a limit
∫

I
F(I, J) for each J ∈ J . Then there is a unique way of extending

the assignation J 7→
∫

I
F(I, J) to a functor J → C so that the isomorphisms

C)X,
∫

I
F(I, J) � Cone(X, F(−, J)) are natural in both X and J: we just apply

paramaterised representability (Proposition 2.9).

3.13 Application

Suppose C is locally small and has all limits of shape I. Then the assignation
(F : I → C) 7→ limF underlies (i.e. can be extended to) a functor lim : [I,C]→
C: consider the functor ev : I × [I,C]→ C (I, F) 7→ FI. For each F ∈ [I,C], the
functor ev(−, F) = F : I → C has a limit. Now apply Corollary 3.12.

3.14 Proposition

Set is complete (i.e. has all small limits): suppose we are given F : I → C = Set
(for I a small category). Recall that a limit for F is an object lim F ∈ Set and
a bijection Set(X, lim F) � Cone(X, F) natural in X. In particular Set(1, limF) �
Cone(1, F), but our LHS here is just � lim F. So let’s try and make the set
Cone(1, F) into a limit for F: set lim F := Cone(1, F) = {(xI)I∈I : xI ∈ FI∀I ∈
obI, (F f )(xI) = xJ∀ f : I → J in I}. We need a cone from lim F to F: take

(lim F
pJ
→ FJ)J∈I defined by (xI)I∈I 7→ xJ.

We claim this is a cone, i.e. that for any f : J → K in I, the square
pJ

ւ lim F
pK

ց

FJ
F f
→ FK

commutes. On elements, (xI)I∈I 7→ xJ 7→ (F f )(kJ) if we go left
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and right or (xI)I∈I 7→ xK if we go right immediately, but these are equal by the
definition of elements of lim F.

We claim this cone is universal, i.e. given another cone (X
αI
→ FI)I∈I, there

is a unique may X
k
→ lim F such that αI = pIk(⋆). It remains to show that this

gives a well defined map X
k
→ lim F¡ i.e. that for f : I → J in I¡ (F f )(αI(x)) =

αJ(x)∀x ∈ X. But this (just) says that

αI

ւ X
αJ

ց

FI
F f
→ FJ

should commute, which it

does because (αI)I∈I is a cone.

3.15 Proposition

C has all products and equalizers if and only if C is complete; the reverse
implication is trivial. For the forward, suppose we are given F : I → C. We

form the product (P =
∏

I∈obI FI
pI
→ FI)I∈I. Now we form the product (Q =

∏
g∈morI F(codg)

q f

→ F(cod f )) f∈morI (codg being the codomain of g). These are

two families of projections. We’ll construct two maps P ⇉
φ

ψ
Q of which lim F

will be the equalizer.

For φ, we have a family of maps (P =
∏

I∈I FI
pcod f

→ F(cod f )) f∈morI. So by
the universal property of Q, we induce a unique map φ : P → Q such that (1)

q fφ = pJ∀ f : I → J in I. For ψ, we have a family of maps (P =
∏

I∈I FI
pdom f

→

F(dom f )
F f
→ F(cod f )) f∈morI. So by the universal property of Q we induce a

unique map ψ : P → Q such that (2) q f ◦ ψ = F f ◦ pI∀ f : I → J in I. Now

we form the equalizer E
e
→ P ⇉

φ

ψ
Q of φ and ψ. Claim: we can make E into a

limit for F : I → C, i.e. we can find bijections natural in X C(X,E) � Cone(X, F):
note that by the universal property of the equalizer (E, e) we have bijections

C(X,E) → the set of maps X
k
→ P such that φk = ψk, given by f 7→ e f , natural

in X. So it suffices to prove that there are bijections natural in X between the

set of maps X
k
→ P with φk = ψk and Cone(X, F).

By the universal property of P, we have bijections, natural in X, between

sets of maps X
k
→ P and sets of families of maps (X

αI
→ FI)I∈I by k 7→ (pIk)I∈I. So

enough to prove that k : X → P has φk = ψk if and only if the corresponding

(X
pIk
→ FI)I∈I is a cone over F.
Suppose we are given k : X → P. Observe, by the universal property of

Q, there’s a bijection between the set of maps X → Q and the set of families

(X
β f
→ F(cod f )) f∈morI by ι 7→ (q f ι) f∈morI. Therefore φk = ψk : X → Q if and

only if q fφk = q fψk for all f ∈ morI. But by (1), q fφk = pJk and my (2),
q fψk = F f ◦ pIk, i.e. φk = ψk if and only if ∀ f : I → J in I, pJk = F f (pIk), i.e. the

diagram

X
pIk

ւ
pJk

ց

FI
F f
→ FJ

commutes, i.e. if and only if (pIk : X → FI)I∈I

is a cone over F, as required.
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Colimits

Colimits in C are limits in Cop. In place of products we have coproducts
A + B (the disjoint union), in place of a pullback we have a pushout (for maps
C → A,C → B we have D and maps A → D,B → D), and in place of an
equalizer we have a coequalizer (for A ⇉ B, the coequalizer goes B → C).
Corresponding to a terminal object is an initial object, in place of lim F we write

colimF, and rather than
∫

I
FI we write

∫ I
FI

Limits in Functor Categories

Suppose we’re given some F : I → [C,D]. For each X ∈ C, we have a functor
F(−)X : I → D by I 7→ (FI)(X), and for each f : X → Y in C we have a natural
transformation F(−) f : F(−)X⇒ F(−)Y.

3.16 Proposition

Given F : I → [C,D] as above, if each F(−)X : I → D has a limit (
∫

I
(FI)(X)

(pX)I
→

(FI)(X))I∈I for all X ∈ C then also F : I → [C,D] has a limit (
∫

I
FI

φI
⇒ FI)I∈I in

[C,D] and this limit is computed pointwise i.e. (
∫

I
FI)(X) =

∫
I
(FI)(X), (φI)X :∫

I
(FI)(X)→ (FI)(X) = pX

I : by paramaterised limits, the assignation X 7→
∫

I
FI(X)

induces a functor
∫

I
(FI)(): C → D such that the maps pX

I
:
∫

I
(FI)(X) → (FI)(X)

are natural in X, i.e. we have a family of natural transformations in [C,D]

(
∫

I
FI(−)

p(−)
I
⇒ FI)I∈I(⋆). We claim (⋆) is a cone over F in [C,D], i.e. that∫

I
FI(−)

p(−)
I

ւ
p

(−)
J

ց

FI
F f
⇒ FJ

(where all the arrows are natural transformations)

commutes in [C,D]∀ f : I → J in I, i.e. that

∫
I
(FI)(X)

pX
I

ւ
pX

J

ց

FIX
(F f )X
→ FJX

(†)

commutes ∀ f : I → J in I, X ∈ C. But (
∫

I
(FI)(X)

pX
I
→ (FI)X)I∈I is a cone

by assumption, so (†) commutes. We claim further than (⋆) is a universal

cone: suppose we are given another cone (K
αI
⇒ FI)I∈I in [C,D]. Then for

each X ∈ C, we obtain a cone (KX
(αI)X
→ (FI)(X))I∈I in D over F(−)(X). By the

universal property of
∫

I
(FX)(X) we induce a map KX

kX
→
∫

I
(FI)(X) such that

pX
I ◦ kX = (αI)X (1). We claim the maps kX : KX →

∫
I
FI(X) are the compo-

nents of a natural transformation ku : K ⇒
∫

I
FI(−). Note that then we have

p
(−)
I
◦ k = αI : K ⇒ FI (2) by (1), and by the uniqueness of the factorizations

(1), k is necessarily unique such that (2) holds. To prove the claim, we must
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show that squares like

KX
kX
→

∫
I
(FI)(X)

Kg ↓ ↓
∫

I
(FI)(g)

KY
kY
→

∫
I
(FI)(Y)

(‡) commute ∀g : X → Y in C.

Now, (
∫

I
(FI)(Y)

pI
→ (FI)(Y))I∈I is a limit for F(−)Y¡ so two maps KX ⇉

∫
I
(FI)Y

are the same iff their composites with pY
I

are the same for all I ∈ I, i.e. to
check (‡) commutes, it suffices ot show that it does so when postcomposed

with pY
I

:
∫

I
(FI)(X)→ (FI)(Y)∀I ∈ I.

Now consider the diagram

KX
(αI)X
→ (FI)X

kX

ց
pX

I

ր

Kg ↓
∫

I
(FI)(X) ↓ (FI)(g)

KY
(αI)Y
→ (FI)Y

kY

ց ↓
∫

I
(FI)(g)

pY
I

ր∫
I
(FI)(Y)

(visualize

this as a 3d triangular-based prism). The back commutes by naturality of
αI : K ⇒ IF, the top and bottom commute by (1), and the right commutes by

naturality of p
(−)
I

:
∫

I
FI(−)⇒ FI. Hence going southeast, south, northeast gives

the same result as going south, southeast, northeast, as required (southeast,
south, notheast = southeast, northeast, south = east, south = south, east =
south, southeast, northeast).

Interchange of Limits

Suppose we are given F : I ×J → C. For each J ∈ J we have F(−, J) : I → C
and for each f : J → J′ inJ we have a natural transformation F(−, f ) : F(−, J)⇒
F(−, J′), so we have a functor F(−, ?) : J → [I,C] J 7→ F(−, J). By proposition

3.16, if each F(I, ?) : J → C has a limit
∫

J
F(I, J) then so does F(−, ?) given by∫

J
F(−, J) : I → C I 7→

∫
J
F(I, J). If this functor I → C in turn has a limit, then we

have an object
∫

I

∫
J
F(I, J) ∈ C.

3.17 Proposition

With the above notation,
∫

I

∫
J
F(I, J) is a limit for F : I ×J → C: we must exhibit

a bijection Cone(X, F) � C(X,
∫

I

∫
J
F(I, J)) natural in X. We calculate Cone(X, F) =

[I ×J ,C](∆X, F), the set of natural transformations from ∆X : I ×J → C
• 7→ X to F (by remark 3.2). This is � [J , [I,C]](∆∆X

, F(−, ?)) (by calcula-
tion) = Cone(∆X, F(−, ?)) the set of cones over F(−, L) : J → [I,C] (by remark

3.2) � [I,C](∆X,
∫

J
F(−, J)) (universal property of

∫
J
F(−, J)) = Cone(X,

∫
J
F(−, J))

(remark 3.2) = CG(X,
∫

I

∫
J
F(I, J)) (universal property of

∫
I

∫
J
F(I, J)). And every-

thing is natural in X.

Recall proposition 3.17: if f : I ×J → C is such that
∫

J
F(−, J) : I → C exists

and also
∫

I

∫
J
F(i, J) exists, then in fact

∫
I

∫
J
F(I, J) is a limit for F : I ×J → C.
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3.18 Corollary (Fubini)

If F : I ×J → C is such that both
∫

J
F(−, J) : I → C and

∫
I
F(I,−) : J → C then

we have
∫

I

∫
J
F(I, J) ≡

∫
J

∫
I
F(I, J), in the sense that one exists iff the other does

and they have corresponding limit cones.

3.19 Proposition

Every presheaf F : Cop → Set is a colimit of a representable functor: we
define the category of elements of F elF with objects pairs (X ∈ C, x ∈ FX) and

morphisms (X, x)→ (Y, y) maps f : X→ Y in C such that (F f )(y) = x.

Consider the functor elF
U
→ C

H•
→ [Cop, Set] (X, x) 7→ X 7→ HX. We will

show that F is a colimit for H• ◦ U. Recall the Yoneda isomorphisms (⋆)
[Cop, Set](HV, F) � FV naturally in V and F. For every (X ∈ C, x ∈ FX) we have a
map x̂ : HX → F in [Cop, Set]. Claim: (̂x : HX → F)(X,x)∈elF is a cocone from H• ◦U

to F: we need to show that for f : (X, x)→ (Y, y) in elF,

HX

H f

→ Hy

x̂

ց
ŷ

ւ
F

commutes. But ŷ ◦ H f =
̂(F f )(y) (by naturality of (⋆) in V) = x̂ (because

f : (X, x) → (Y, y) is a map in elF). Claim: (̂x : HX → F)(X,x)∈elF is a universal
cocone under H• ◦U: suppose we are given another cocone, i.e. (α(X,x) : HX →

G)(X,x)∈elF such that (‡)

HX

H f

→ HY
α(X,x)

ց
α(Y,y)

ւ
G

commutes ∀ f : (X, x)→ (Y, y)

in elF. By naturality of (⋆) in F, if we are given x̂ : HX → F then k ◦ x̂ :

HX → G = k̂X(x) : HX → G. Hence kX(x) =
̂̂
kX(x) = α̂X(x). So k, if it exists,

must have kX : FX → GX given by x 7→ α̂(X,x) (†). It remains only to check
that this definition works, i.e. that (†) defines a natural transformation, i.e.

FY
kY
→ GY

F f ↓ ↓ G f

FX
kX
→ GX

commutes for all f : X → Y in C. On elements, going

right and then down y 7→ α̂(Y,y) 7→ (G f )(α̂(Y,y)) and going down then right

y 7→ (F f )(y) 7→ ̂α(X,(F f )(y)). But (G f )(α̂(Y,y)) = ̂α(Y,y) ◦H f by naturality of (⋆) in V.
We have a map f : (X, (F f )(y))→ (Y, y) in elF, so by (‡) α(Y,y) ◦ H f = α(X,(F f )(y)) ∴

(G f )(α̂(Y,y)) = ̂α(Y,y) ◦H f = ̂α(X,(F f )(y) as required.

3.20 Definition

Let F : I → C,G : C → D. We say that:

G preserves the limit of F if whenever (V
pI
→ FI)I∈I is a limit for F, also

(GV
GpI
→ GFI)I∈I is a limit for GF; we have the obvious definitions for “G preserves

limits of shape I” and “G preserves (all) limits”.

G reflects the limit of F if, whenever (X
αI
→ FI)I∈I is a cone over F and (GX

GαI
→
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GFI)I∈I is a limit cone for GF, then also (X
αI
→ FI) is a limit for F.

G creates the limit of F if (GF has a limit)⇒ (F has a limit which is preserved
and reflected by G) (previous, uglier definition: it reflects the limit of F and also,

whenever (V
pI
→ GFI)I∈I is a limit cone for GF, we can find a cone (W

qI
→ FI)I∈I

which is a limit cone and an isomorphism φ : GW � V commuting with the

projections, i.e.

GW
GqI

ց
φ ↓ GFI

pI

ր
V

commutes ∀I ∈ I). This definition is weaker

than that in McClean, but that definition is morally wrong.

3.21 Proposition

Representable functors preserve limits: suppose we are given F : I → C,

C(X,−) : C → Set. We need to show that if (
∫

I
FI

pI
→ FI)i∈I is a limit cone

for F, then also (⋆) (C(X,
∫

I
FI)

pI◦(−)
→ C(X, FI))I∈I is a limit for C(X, F−) : I → Set.

We know Set is complete, and so C(X, F−) has a limit (
∫

I
C(X, FI)

qI
→ C(X, FI))I∈I,

and so to show (⋆) is a limit it suffices to find an isomorphism φ : C(X,
∫

I
FI)→

∫
I
C(X, FI) such that (†)

C(X,
∫

I
FI)

φ
→

∫
I
C(X, FI)

pI◦(−)

ց
qI

ւ
C(X, FI)

commutes

∀I ∈ I.
Now

∫
I
C(X, FI) = {(αI)I∈I|αI ∈ C(X, FI)∀I ∈ I,C(X, F f )(αI) = αJ∀ f : I → J ∈

I i.e. F f ◦ αI = αJ} = Cone(X, F), and qI :
∫

I
C(X, FI)→ C(X, IF) (αI)I∈I 7→ αI. So

now, because
∫

I
FI is a limit, the map φ : C(X,

∫
I
FI) →

∫
I
C(X, FI) = Cone(X, F)

k 7→ (pIk)I∈I is an isomorphism, and moreover it makes (†) commute, because
on elements, going right and then down k 7→ (pIk)I∈I 7→ pIk, while going
immediately down we just have k 7→ pIk.

3.22 Corollary

Full and faithful functors reflect limits: let F : I → C, (and let) G : C → D be

full and faithful. Suppose we are given a cone (V
pI
→ FI)I∈I over F such that

(GV
GpI
→ GFI) is a limit cone. We must show that (pI)I∈I is also a limit cone,

i.e. that C(X,V) → Cone(X, F) k 7→ (pIk) is an isomorphism ∀X ∈ C. Consider

C(X,V)
pI◦(−)
→ Cone(X, F)

G ↓ (1) (3) ↓ G

D(GX,GV)
GpI◦(−)
→ (2) Cone(GX,GF)

; this commutes, because on elements,

going right and then down k 7→ (pI ◦ k)I∈I 7→ (G(pI ◦ k))I∈I, while going down
and then right k 7→ Gk 7→ (GpI ◦Gk)I∈I, and these are equal by functoriality of G.
Note (1) is an isomorphism because G is full and faithful, (2) is an isomorphism

because (GV
GpI
→ GFI)I∈I is a limit cone, and (3) is an isomorphism because
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we have C(X, FI) � D(GX,GFI) naturally in I, i.e. C(X, F−) � D(GX,GF−) in

[I, Set] so Cone(X, F) =
∫

I
C(X, FI) �

∫
I
D(GX,GFI) = Cone(GX,GF), and (3) is

an isomorphism as required.

3.23 Corollary

The Yoneda embedding H• : C → [Cop, Set] preserves limits: let F : I → C and

suppose (V
pI
→ FI)I∈I is a limit cone for F. We need to prove that (HV

HpI
→ HFI)I∈I is

a limit cone for HF(−) : I → [Cop, Set]. Because Set is complete, limits in [Cop, Set]

are computed pointwise, so it suffices to show that (HVX
(HpI

)
X

→ HFIX)I∈I is a limit

cone in Set ∀X ∈ C, i.e. that (C(X,V)
pI◦(−)
→ C(X, FI))I∈I is a limit cone. ButC(X,−)

preserves limits, so we have the result.

3.24 Remark

In proposition 3.21, we saw that C(X,−) : C → Set preserves limits. The dual
of this statement is less obvious than dualisations usually are: it says that
C(−,X) : Cop → Set preserves limits, i.e. sends limits in Cop (colimits in C) to

limits in Set, that is C(
∫ I

FI,X) �
∫

I
C(FI,X).

4 Adjunctions

This is the fun part of the course. Where I use “fun” in a particularly specialised
sense.

4.1 Definition

Let F : C → D,G : D→ C. An adjunction F ⊣ G is given by isomorphisms
D(FX,Y) � C(X,GY) natural in X and Y. We say that F is left adjoint to G or

that G is right adjoint to F. A common case is if G forgets some structure and F

freely adds it back in:

4.2 Examples

Free ⊣ Forgetful:
U : Algk → Vectk forgetting the multiplicative structure has a left adjoint

F : Vectk → Algk by V 7→ the tensor algebra on V.
U : Grp→ Set forgetful has a left adjoint X 7→ the free group on X.
U : Ab→ Grp has a left adjoint “abelianisation” G 7→ G

[G,G] .
U : Fld→ Domi from the category of fields to that of integral domains and

injective homomorphisms has a left adjoint R 7→ the field of fractions of R.
U : Algk → Liek has a left adjoint “universal enveloping algebra”.
LetH ⊂ G be groups viewed as one-object categories. Recall that [G,Vectk]

is the category of k-linear representations of G. We have a functor “restriction”
[G,Vectk]→ [H ,Vectk] L 7→ LIH . This has a left adjoint “induction”.

ob : Cat→ Set has a left adjoint Set→ Cat X 7→ the discrete category on X.
U : Top→ Set has a left adjoint Set→ Top X 7→ X with the discrete topology.
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“Forgetful ⊣ cofree”:
(The cofree structure can be seen as the “most restricted” structure we can

put on an object to make it another kind of object, in the same way the free
structure is the “least restricted”)

U : Top → Set has a right adjoint Set → Top by X 7→ X with the indiscrete
topology.

U : Cat → Set has a right adjoint Set → Cat X 7→ the indiscrete category
on X - the object set is X and there is exactly one morphism between any two
objects (This is also called the chaotic category on X).

U : Grp→Mon has a right adjoint Mon→ Grp M 7→ {m ∈M : m invertible}.
“(Tensor) Product ⊣ function space” (we’ll see more of this later)
For A ∈ Set, (−) × A : Set→ Set has a right adjoint (−)A : Set→ Set X 7→ XA

(recall this is the set of functions A→ X) (i.e. Set(X × A,Y) � Set(X,YA)).
For A ∈ Top locally compact, (−) × A ⊣ (−)A : Top → Top X 7→ XA with the

compact open topology (this definition doesn’t work for general A)
For C ∈ Cat, (−) × C ⊣ [C,−] : Cat→ Cat
For V ∈ Vectk, (−) ⊗ V ⊣ Homk(V,−) : Vectk → Vectk.

4.3 Example

Consider C(V,−) : C → Set. Suppose C has coproducts. Then C(V,−) has a
left adjoint Set → C X 7→yx∈X V (where y denotes the coproduct). Indeed,
we have C(yx∈X V,Y) �

∏
x∈X C(V,Y) � C(V,Y)X = Set(X,C(V,Y)). Similarly

C(−,V) : Cop → Set has a left adjoint whenever C has products, given by
Set→ Cop X 7→

∏
x∈X V (this is the product in C, i.e. the coproduct in Cop.

I realised sometime after this lecture that I have in fact not been following
this course for some time; however, the next definition in the course is especially
confusing. Therefore, given that I am no longer attending lectures, this seems
the correct place at which to end these notes. My apologies to any readers
hoping to find out how it ends.
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