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1 Introduction

We shall be somewhat informal in this lecture, but anything not rigorous will
be revisited later.

Algebraic topology is the study of the “connectivity” properties of topolog-
ical spaces.

Recall that a topological space is a set X with a preferred collection of
subsets, the open sets, such that arbitrary unions of opens sets are open, finite

intersections of open sets are open, and ∅,X are open. This gives a notion of
closeness without requiring a notion of distance - points are close if they tend
to be in the same open sets.

A map of spaces f : X → Y is continuous (cts) if f−1(U) ⊂ X is open for
every U ⊂ Y open. We assume the reader knows the meanings of the terms
compact, connected, and Hausdorff.

Recall that X is connected if we cannot write X = U ∪ V for U,V disjoint,
open, and both nonempty. For exampleR is connected, butR\ {0} is not (R and
any similar spaces have the usual Euclidean topology unless otherwise stated).

Corollary: Intermediate Value Theorem: if f : R → R is continuous and
f (x) > 0, f (y) < 0 then f vanishes somewhere: otherwise f−1(−∞, 0)∪ f−1(0,∞)
would disconnect R.

In this course we will concentrate on “reasonable” spaces; there is a subject,
analytic topology, which works by finding spaces which are counterexamples
to any obvious nice property a topological space should have, but this is a pev-
ersion and will not be discussed here. For reasonable spaces, connectedness is
equivalent to path-connectedness; X is path-connected if ∀x, y ∈ X∃ a contin-
uous γ : [0, 1]→ X with γ(0) = x, γ(1) = y. An equivalent, but philisophically
important, way to see this, is that every two continuous maps from a point into
X can be continuously deformed into one another.

To generalize this, we consider maps from other spaces into X.
Definition: X is simply connected if any two maps S1 → X can be continu-

ously deformed into one another.
Example: R2 is simply connected, butR2 \ {0} is not. A map γ : S1 → R2 \ {0}

has a winding number deg(γ) ∈ Z, which we can define e.g. using complex

analysis as deg(γ) = 1
2πi

∫
γ

dz
z . This is invariant under continuous deformation

of γ, and the loop γn : t 7→ (cos 2πnt, sin 2πnt) = e2πint has deg(γn) = n ∈ Z.
Corollary (Fundamental Theorem of Algebra)
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If f (z) = zn + a1zn−1 + · · · + an is a non-constant polynomial, then it has a
root: suppose in fact f (z) , 0∀z. Then let γR(t) = f (Re2πit) : S1 → R2 \ {0}.
γ0 is a constant map, deg(γ0) = 0. Now taking R >> |a1| + · · · + |an|, consider
γR,s(t) = (zn+ s(a1zn−1+ · · ·+an)) |z=Re2πit for 0 ≤ s ≤ 1. The condition on R implies
γR,s(t) ∈ R

2 \ {0}∀s, t. The original map γR(t) = γR,1(t), so we have deg(γR) =
deg(γ0) = 0 but also deg(γR) = deg(γR,1) = deg(γR,0) = det(t 7→ e2πint) = n, a
contradiction.

Generalizing further, we have: Fact: All maps Sn → Rn+1 can be continu-
ously deformed into one another, but maps Sn → Rn+1 \ {0} have an integer-
valued degree, with the degree of the constant map being 0 and that of the
standard inclusion being 1.

Corollary (Brouwer fixed point theorem): If Dn = {x ∈ Rn : ‖x‖ < 1} is the
closed disc, every continuous f : Dn → Dn has a fixed point, i.e. an x such that
f (x) = x: suppose not (for contradiction). If 0 ≤ R ≤ 1, let γR : Sn−1 → Sn−1 be

defined by v 7→
Rv− f (Rv)

‖Rv− f (Rv)‖ ; this is well defined. By construction, γ0 is constant

so of degree 0.

Also consider γ1,s(v) =
v−s f (v)

‖v−s f (v)‖ , for 0 ≤ s ≤ 1. This makes sense, since if

s < 1, |v| = 1 > |s f (v)|. For 0 ≤ s ≤ 1 this is again a continuous family of maps
Sn−1 → Sn−1. But now at s = 0 we get v 7→ v

‖v‖ i.e. the inclusion Sn−1 ֒→ Rn, of
degree 1, a contradiction.

This next is the key definition of the course: Definition: two continuous
maps f , g : X → Y are homotopic if ∃ continuous F : X × [0, 1] → Y s.t.

F(x, 0) = f (x), F(x, 1) = g(x). This is a formal way of saying f can be continuously
deformed into g; we write f ≃ g.

Definition: Topological spaces X,Y are homotopy equivalent (or htpy equiv-

alent) if there exist continuous maps f : X → Y, g : Y → X such that f ◦ g ≃
idY, g ◦ f ≃ idX; this is a weakening of the notion of homeomorphism, where
we would require f ◦ g = idY, g ◦ f = idX

Example: Sn−1 ≃ Rn \ {0} (but these spaces are clearly not homeomorphic
e.g. by compactness). Explicitly, take ι : Sn−1 ֒→ Rn \ {0}, g : Rn−1 \ {0} → Sn−1 :
v 7→ v

‖v‖ . g ◦ ι = idSn−1 , ι ◦ g ≃ id by (x, t) 7→ tx + (1 − t) x
‖x‖ .

Algebraic topology is the study of the correspondence from topological
spaces up to homotopy equivalence to groups and homomorphisms. As men-
tioned before, we’ll concentrate on “nice” spaces, including manifolds.

Definition: A (topological) manifold is a Hausdorff topological space lo-
cally homeomorphic toRn for some fixed n, the dimension of the manifold. For
example, the torus or two-holed torus are 2-manifolds, but the double cone or
pinched torus are not manifolds (since they have special points no neighbour-
hood of which looks likeRn). Manifolds have been something of a 20th century
obsession that the lecturer hasn’t quite grown out of, but they’re also popular
because algebraic topology works well on them - by contrast there is e.g. no
good algebraic topology of fractal sets (most of the invariants from this course
come out as 0 or large infinities). We will want to generalize a bit, e.g. to general
algebraic varieties (manifolds are the same as smooth algebraic varieties over
C.

Finally, something this course is not about: the first attempt to algebraize
spaces. Loops in a space with a fixed (distinguished) base point can be concate-
nated; this defines (with some work) a group structure on the set of homotopy
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classes of maps S1 → X sending 0 7→ our distinguished point x. Analagously,
there is a group structure on homotopy classes of maps Sn → X, 0 7→ x. This is
the nth homotopy group, πn(X); π1(X) is the fundamental group.

The problem with this that is even e.g. πn(S2) is not known for all n; in fact
the groups πn(X) are not all know n for any simply-connected manifold (and
calculating them all for S2 is probably a good candidate problem for a Fields
medal).

2 (Co)chain Complexes

Recall: our aim is to “algebraise” topology, notions of connectivity, and in partic-
ular the idea of higher-dimensional “holes”. We take a clue from electromagnetism:

if you pass a current through a wire we get a magnetic field ~v. Moving a pole

through the field along a path, the work done is
∫
γ

v · ds.

Fact: If γ is closed, this is quantised, and computes a linking number.
Moreover, this is unchanged by deformations: given two paths γ1, γ2 with a

surfaceΣ between them,
∫
γ1

v ·ds−
∫
γ2

v ·ds =
∫
Σ
∇×u ·dS = 0, since ∇ × v = 0 by

Maxwell. Note that this is better than being unchanged by small deformations;
the surface Σ need not just be a rectangle, but may be some topologically
interesting surface (e.g. γ1, γ2 may be the boundaries of small holes in a torus
Σ). Thus this is a promising definition.

Analagously, an electric charge generates a field and we measure a flux

across a bounding surface. The flux
∫

S
e·ds is quantised, and

∫
S1

e·dS−
∫

S2e·dS =∫
V
∇ · edV = 0.

With the benefit of hindsight, we formulate this as follows: let X ⊂ R3 be
an open set, and defineΩi(X) to be the space of (smooth) maps from X to R for
i = 0, 3, and from X to R3 for i = 1, 2.

We have (linear) maps of these vector spaces: Ω0(X) → Ω1(X) by f 7→ ∇ f ,
Ω1(X) → Ω2(X) by u 7→ ∇ × u, and Ω2(X) → Ω3(X) by v 7→ ∇ · v. The key
observation here is that the composite of any two successive maps vanishes:
∇ × ∇ = 0 = ∇ · ∇×.

Now, algebraically, we can define: H0
dR

(X) = ker(∇),H1
dR

(X) =
ker(∇×)
im(∇) ,H

2
dR

(X) =
ker(∇·)
im(∇×) (note that in this setting ∇· : Ω2 → Ω3 is surjective, so there is nothing

more we can sensibly write). These are called the de Rham (the dR distinguish-
ing them from other varieties of cohomology groups) cohomology groups of

X ⊂ R3. Think of Hi
dR

(X) as “invariants of closed i-dimensional regions of X”,

e.g. for i = 1, an element of H1
dR

is (an equivalence class of) vector-valued
functions which could be magnetic fields in X. Given a closed 1D subspace of
X, i.e. just a curve, the invariant we get is the work done by moving a magnetic
pole/charge along the curve in the given field. By Maxwell’s equations, this is
a quite robust invariant.

Example: H0
dR

(X) is the set of locally constant functions on X, so = Rk where

k is the number of connected components of X. These Hi
dR

are (for reasonable
X) finite-dimensional, so we should not be scared by the superficial complexity
of introducing the infinite-dimensional Ωis.

We associate invariants to topological spaces in two steps: first we map the
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space X to a chain complex or cochain complex, then we take the (co) homology
of this complex; it is important to distinguish these steps, because in cases of
confusion or to make definitions we often need to return to the chain/cochain
complex. In a third course in topology (where this is still intended as a first
course), we would avoid the homology entirely and work directly with the
chain complices.

Definition: A chain complex (C⋆, d) is a sequence of abelian groups and

homomorphisms · · · → Cn
dn
→ Cn−1

dn−1
→ Cn−2 → . . . such that d2 = 0, i.e. dn−1 ◦

dn = 0∀n. The indexing set ⋆ may be [a subset of] Z, but we will always take
it to be ⊂N. We will usually drop the indices on the di, and refer to all of them
as d.

The homology H(C⋆, d) has nth-graded piece Hn(C⋆) =
ker(d:Cn→Cn−1)
im(d:Cn−1→Cn

; since

d2 = 0 the denominator is a subset of the numerator and so this is well defined.
Elements of ker(d : Cn → Cn−1) are called (n-)cycles and elements of im(d :

Cn+1 → Cn) are called boundaries (the lecturer will avoid the controversial topic
of whether these are n- or n + 1-boundaries and call them simply boundaries).

Definition: A cochain complex is a collection of abelian groups and homo-

morphisms · · · → Cn d
→ Cn+1 d

→ Cn+2 → . . . such that d2 = 0. Note that for chain
complexes d lowers degree, while for cochain complexes d raises degree. The

cohomology of the complex D(C⋆, d) has graded pieces Hn(C⋆) =
ker(d:Cn→Cn+1)
im(d:Cn−1→Cn)

;

we have cocycles and coboundaries with the obvious definitions.
Our aim is to associate to X some theories: H⋆(X) should have Hi buildt out

of closed i-dimensional pieces of X, and H⋆(X) should have Hi which associate
numbers to closed i-dimensional regions in X. We want to do this for fairly
general (in particular, not necessarily smooth, so not just subsets of R3) X; this
means we have to use a rather abstract definition, the downside to which is that
it’s not immediately clear that it actually means this. We shall “build spaces
out of lego”.

Definition: an n-simplex is the convex hull of (n+1) orderef points inRn, say

v0, . . . , vn, such that the vectors vi − v0 are all linearly independent (1 ≤ i ≤ n).

The standard n-simplex ∆n is defined as {t ∈ Rn+1 :
∑n+1

i=1 ti = 1, ti ≥ 0}.
Exercise: any n-simplex is canonically the image of ∆n under a linear home-

omorphism t 7→
∑

tivi from ∆n to [v0 . . . vn].
Suppose we have e.g. γ, a loop going once around a torus. We aim to see γ

as a sum of 1D simplices.
Definition: note first that we can orient the edges of a simplex canonically,

since the {vi} are ordered; say vi → v j if i < j. The ith face ∆n−1 ⊂ ∆n is the
image of the subset of ∆n where ti = 0; we denote the ith face of [v0 . . . vn] by
[v0 . . . v̂i . . .vn]; this is an (n − 1) simplex and the orientations of its edges are
consistent with those of the larger simplex.

Definition: the singular chain complex C⋆(X) of a topological space X has

Cn(X) = {
∑N

i=1 hiσi : hi ∈ Z, σi : ∆n
continuous
→ X are “n-simplices in X”} (i.e. the

free abelian group on the set of continuous maps ∆n → X). The boundary map

d is defined on simplices in X and then extended linearly: on σ : ∆n → X,
dσ =

∑n
i=0(−1)iσ |[v0...v̂i ...vn], for ∆n = [v0 . . . vn].
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3 Singular (Co)homology

Recall the singular chain complex C⋆(X, d): Cn(X) = {
∑N

i=1 hiσi : hi ∈ Z, σi : ∆n →

X an n-simplex in X}. d : Cn(X)→ Cn−1(X) is given by d(σ) =
∑n

i=0(−1)iσ |[v0...v̂i...vn]

for σ = [v0 . . . vn], extended by linearity to Cn(X).
Lemma: d2 = 0 (i.e. d ◦ d : Cn → Cn−1 → Cn−2 = 0 [∀n]): d ◦ d(σ) =

d(
∑n

i=0(−1)iσ |[v0...v̂i ...vn]) =
∑

j<i(−1)i(−1) jσ |[v0...v̂ j ...v̂i ...vn] +
∑

i< j(−1)i(−1) j−1σ |[v0...v̂i ...v̂ j ...vn],
which is 0 by symmetry under exchange of i, j.

Remark: in the first lecture we mentioned that for U ⊂ R3 open and H⋆
dR

,

“d2 = 0” held since partial derivatives commute:
∂2 f

∂xi∂x j
=

∂2 f

∂x j∂xi
. This is a local

property of space, rather than the purely formal, global algebraic result we
have here. Almost all results we will cover (essentially, all results that do not
depend on torsion properties) are also provable in the de Rahm setting, some
being harder and some being easier to prove.

Informally, d2 = 0 since d takes the boundary of some region made up of
simplices, and boundaries have no boundary; this is “obvious” when using an
informal notion of a boundary.

Similarly, C⋆(X) the singular cochain complex has nth term Cn(X) = Hom(Cn(X),Z).

d⋆ : Cn → Cn+1 (which we will call just d except for the next few lines) is de-
fined by: ψ 7→ d⋆ψ where d⋆ψ(σ) := ψ(dσ), for σ a (n + 1)-simplex. Obviously
d⋆ ◦ d⋆ = 0, since d⋆d⋆ψ(σ) = d⋆(ψ(dσ)) = ψ(d ◦ dσ) = ψ(0) = 0.

Definition: H⋆(X,Z) = H(C⋆, d) is the singular homology, H⋆(X,Z) =
H(C⋆, d⋆) is the singular cohomology. Z here is called the coefficient ring,
which we shall usually omit when it is Z.

Trivial observation: H⋆(X),H⋆(X) are homeomorphism-invariant. Sub-
observation: (Co) homology are functorial under continuous maps of spaces.
If f : X → Y is continuous and σ : ∆n → X is continuous, f ◦ σ : ∆n → Y is
continuous so f induces a group homomorphism f⋆ : Cn(X) → Cn(Y). Note
d f⋆ = f⋆d; the reader should think through why this is manifest.

This note implies f induces a map f⋆ : H⋆(X) → H⋆(Y) i.e. maps Hn(X) →
Hn(Y)∀n. To see this, note: d f⋆ = f⋆d. Let ψ =

∑
i hiσi ∈ ker(d : Cn(X) →

Cn−1(X)), i.e. ψ is a representative of a class in Hn(X). Then we want to
write “[ f⋆(ψ)] = [

∑
i hi( f ◦ σi)] ∈ Hn(Y)”, but to make this definition we need

that
∑

hi( f ◦ σi) is a cycle (i.e. ∈ ker(d : Cn(Y) → Cn−1(Y)). d(
∑

hi( f ◦ σi)) =
d(
∑

hi f⋆(σi)) =
∑

hi(d f⋆σi) =
∑

hi( f⋆d)σ = f⋆(d(
∑

hiσi)) = 0 as dψ = 0, i.e.
f⋆ maps cycles to cycles; by the same argument it also maps boundaries to
boundaries. So if we change the representative of a H⋆-class in X, [ψ]→ [ψ+dα],
then [ f⋆ψ] is unchanged in H⋆(Y).

Corollary: if f : X→ Y is continuous then it induces a homomorphism f⋆ :
H⋆(X) → H⋆(Y). Analagously, f induces a pullback map f⋆ : H⋆(Y) → H⋆(X)
(note the direction of this).

Lemma: For f : X→ Y, g : Y→ Z, (g ◦ f )⋆ = g⋆ ◦ f⋆, (g ◦ f )⋆ = f⋆ ◦ g⋆, and
moreover id : X → X induces identity on the homotopic and cohomology; the
proofs of these are straightforward. So we have functoriality.

This lemma implies our above “observation”: if x � Y, say f : X → Y, g :

Y → X are such that f ◦ g = idY, g ◦ f = idX, then consider H⋆(X)
f⋆
→ H⋆(Y)

g⋆
→

H⋆(X)
f⋆
→ H⋆(Y); the maps between the first and third and second and fourth
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terms are identities, so we have H⋆(X) � H⋆(Y) via f⋆, g⋆.
Caveat: there is a natural map Hn(X)→ Hom(Hn(X),Z), as seen in the first

example sheet for this course, but this is not in general an isomorphism (and in
some sense “the world would be a lot less interesting” if it were).

First computations:
1. H⋆(pt) = Z for⋆ = 0, 0 otherwise: consider the chain groups Ck(X); these

are free abelian on the spaces of continuous maps ∆k → X, but there is only one
such map, so Ck(X) = Z∀k. The chain complex is then Z→ Z→ · · · → Z→0.
The map d : Ck → Ck−1 is multiplication by the signed number of faces of ∆k,
which we can see by looking alternates between being 1 and 0 (e.g. d(∆1) =
1 − 1 = 0, d(∆2) = 1 + 1 − 1 = 1 since the edge [v0v2] is taken in the negative
direction. So the maps always have image either 0 or all space, and the Hi(pt)
[other than H0] are ker

im where each time either ker = {0} or im = all space, so
we have the result Unfortunately, this is the only connected space for which we
can compute all the H⋆s.

2. H0(X) = Z# path-components: note first that if X is a union of different path-
components, X =

⋃
α Xα, the entire singular chain complex breaks up into

pieces indexed by α, C⋆(X, d) =
⊕

α C⋆(Xα, d) ⇒ H⋆(X) =
⊕

α H⋆(Xα). So we
really only need that H0(X) � Z if X is path-connected. Define φ : C0(X) → Z

by
∑N

i=1 hiσi 7→
∑

hi, where σi : {pt} → X. Note (if X , ∅; we shall generally omit
such caveats) this is surjective C0(X)→ Z. For any 1-simplex τ, τ : [v0, v1]→ X,
∂τ = v1 − v0 lies in kerφ. So im(d : C1 → C0) ⊂ kerφ. If

∑
niσi ∈ kerφ, then we

claim
∑

niσi ∈ im(d); if we have this, then φ : H0(X)→ Z descends to homology
and we are done.

For each i, choose τi linking σi to a base point p ∈ X. Now d(
∑

niτi) =∑
niσi −

∑
nip, which =

∑
niσi since

∑
ni = 0. So we’re done.

4 First Computations

Recall that we saw from the definition H⋆(pt) = Z if ⋆ = 0, 0 otherwise, and
H0(X) = Z# path-components. To make it possible to effectively compute homology
in general, we need further tools, including predominently the following two
theorems:

Recall we know that H⋆ is functorial: f : X → Y ⇒ f⋆ : H⋆(X) → H⋆(Y)
preserving degree.

Theorem (Homotopy Invariance)

If f , g : X → Y with f ≃ g homotopic, then f⋆ = g⋆ : H⋆(X) → H⋆(Y), and
similarly f⋆ = g⋆ : H⋆(Y) → H⋆(X) (so if X ≃ Y are homotopic spaces then
H⋆(X) � H⋆(Y),H⋆(X) � H⋆(Y)). The proof of this is similar to that for our
earlier result about isomorphic spaces.

Definition: An exact sequence is a chain complex with vanishing (co)homology

groups, i.e. a sequence of abelian groups and homomorphisms · · · → An
d
→

An−1
dn−1
→ An−2 → . . . such that ker(dn−1) = im(dn) (for a chain complex, where

we only require d2 = 0, we have the same definition with a “⊂” in place of this
last “=”). Then Mayer-Vietoris lets us cut up spaces:
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Theorem (Mayer-Vietoris)

Suppose X = A∪B is a union of two open sets. Then there is an exact sequence

· · · → Hi(X)
dMV
→ Hi−1(A∩B)

(iA,iB)
→ Hi−1(A)⊕Hi−1(B)

jA− jB
→ Hi−1(X)

dMV
→ Hi−2(A∩B)→

. . . , where the maps are as follows: iA : A ∩ B ֒→ A, iB : A ∩ B ֒→ B, jA : A ֒→
X, jB : B ֒→ X are the obvious inclusions, and the remaining Mayer-Vietoris
boundary map Hi(X) → Hi−1(A ∩ B) has the following interpretation: take an
i-cycle in X and write it as the union of a chain (with boundary) in A and a
chain in B, with cancelling boundaries in A ∩ B. Then dMV takes this common
boundary. For example, suppose we have a double-holed torus with A and B
each being a punctured torus, and γ a loop passing through both holes; we can
write this as the sum of two half-loops with two points as the boundary of each,
one in A and one in B; then dMV(γ) is these two points, considered as a 0-cycle
in A ∩ B.

Moreover, the Mayer-Vietoris sequence is natural: if f : X = A ∪ B →
Y = A′ ∪ B′ and f (A) ⊂ A′, f (B) ⊂ B′ then there is an induced map of Mayer-
Vietoris sequences f⋆ : Hi(X) → Hi(Y), f⋆ : Hi−1(A ∩ B) → Hi−1(A′,∩B′), f⋆ :
Hi−1(A) ⊕ Hi−1(B) → Hi−1(A′) ⊕ Hi−1(B′), . . . , where all the squares commute
(E.g. f⋆ ◦ dMV = dMV ◦ f⋆).

Remark: Note that in H⋆ the analagous boundary map is ∂⋆
MV

: Hi(A∩B)→

Hi+1(X).
We shall use these two theorems for a bit before proving them.
Example: The circle S1 = I ∪ I can be written as a union of two intervals

A = I,B = I meeting in two [disjoint] intervals. By homotopy equivalence, may
consider A = ⋆ [a point], B = ⋆,A ∩ B = ⋆ y ⋆. The Mayer-Vietoris sequence
reads H1(A ∩ B) → H1(A) ⊕ H1(X) → H1(S1) → H0(A ∩ B) → H0(A) ⊕ H0(B) →

H0(S1); this is 0 → 0 ⊕ 0
α
→ H1(S1)

φ
→ Z ⊕Z

β
→ Z ⊕Z → Z. The last map

here is (u, v) 7→ u − v) and β is given by (a, b) 7→ (a + b, a + b) (by considering
their “geometric” definitions). Now exactness tells us kerφ = imα = 0, i.e. φ is
injective. Imφ = ker β = Z spanned by (1,−1), so H1(S1) = Z.

Example: Spheres: H⋆(Sn,Z) = Z for ⋆ = 0, n, 0 otherwise (Considering
n > 0, since S0 is two points). We induct on n, and have just done n = 1:
∀n ≥ 2, Sn = A ∪ B the union of two overlapping open hemispheres. A,B are
contractible, i.e. homotopic to points A ≃ ⋆,B ≃ ⋆ and A∩B ≃ Sn−1. Then in the
Mayer-Vietoris sequence Hi(S

n−1) → Hi(⋆) ⊕ Hi(⋆) → Hi(S
n) → Hi−1(Sn−1) →

Hi−1(⋆) ⊕Hi−1(⋆)→ . . . . If i − 1 > 0 we see 0→ Hi(S
n)→ Hi−1(Sn−1); the result

that if we have 0→ P→ Q→ 0 exact then P � Q is left as an exercise. This tells

us that Hi(S
n) � Hi−1(Sn−1)∀i > 1. If i = 1 we have 0 → H1(Sn) → H0(Sn−1)

r
→

H0(⋆)⊕H0(⋆) as a piece of the Mayer-Vietoris sequence, but as before the map
[which I have labelled r] is a 7→ (a, a) so injective, so H1(Sn) = 0.

Corollary: IfRm � Rn then m = n: ifφ : Rm → Rn is a homeomorphism, then
φmust mapRm \ {0} → Rn \φ(0) homeomorphicly. But these are Sm−1 and Sn−1

respectively, so we haveφ⋆ : H⋆(Rm\0) = H⋆(Sm−1)→ H⋆(Rn\φ(0)) = H⋆(Ss−1),
but the two sides are equal iff m = n.

Remark: There are continuous maps from I = [0, 1] to [0, 1]× [0, 1] which are
surjective (the “space-filling curves”), so this result was not quite as obvious as
it might initially appear.

Remark: if f : Sn → Sn is any map, it induces f⋆ : Hn(Sn) � Z→ Hn(Sn) � Z,
which must be multiplication by some integer, which is the degree deg( f ). Note
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that the degree of the identity is 1, while the degree of the constant map is 0 since
we can factorize a constant map Sn → Sn as Sn → pt ֒→ Sn, so our induced map
is Hn(Sn) → Hn(pt) � 0 → Hn(Sn). This rigorises our account of the Brouwer
fixed point theorem in the first lecture.

Example: The Klein bottle K has H⋆(K,Z) = Z for ⋆ = 0, Z + Z2 if ⋆ = 1,
and 0 if ⋆ ≥ 2. Some of the essential information here is torsion, i.e. of shape
Z
p for some p , 0. This would be invisible if we took our coefficients from R

rather than Z (as is done in the de Rahm case).
Proof: K is the quotient space of the square with opposite pairs of edges

identified, the sides in the same direction, the top and bottom edges in opposite
direction. Cut this via letting A be a “strip” down the middle of the square, B the
strips down the left and right sides (which is a connected space because of the
identification). We see K = A∪ B where A,B are Möbius strips, and A∩ B ≃ S1.

In the Mayer-Vietoris sequence we see 0 → H2(A ∪ B) → H1(A ∩ B) = Z
ψ
→

H1(A)⊕H1(B) = Z⊕Z→ H1(A∪B)→ H0(A∩B)→ H0(A)⊕H0(B) and this last
map is injective. We almost (but not quite) know enough; once we know the
map ψ we can determine everything else. We claim ψ is given by 1 7→ (2, 2),
because A∩B is the boundary of each Möbius band A,B, but A,B are generated
by the equatorial circles of the bands [which the bands retract onto]. So (easily

by algebra) ψ is injective so H2(K) = 0, φ is surjective so H1(K) = Z⊕Zimψ = Z ⊕
Z
2 .

5 Degree

Recall that f : Sk → Sk induces a map f⋆ : Hk(Sk) � Z→ Hk(S
k) � Z; this must

be multiplication by some integer deg( f ) or d( f ) ∈ Z.
Properties: d( f ◦ g) = d( f )d(g), d(id) = 1, d(constant) = 0. Indeed, if f : Sk →

Sk is not surjective then it has degree 0, since in that case f factorizes as a map
Sk → Rk → Sk.

Lemma: Let G ∈ O(n+ 1), the group of orthogonal (n+ 1)× (n+ 1) matrices.
Then G acts on Sn and hence on Hn(Sn,Z), and acts with degree det(G). (Note
that if G < O(n + 1), i.e. G is a non-orthogonal matrix, it is not obvious that it
acts on Sn). O(n+ 1) has two connected components distinguished by det = ±1.
So by homotopy invariance of degree, it suffices to see that reflection in a
hyperplane H has degree -1.

Divide Sn into two hemispheres each preserved by the reflection - i.e. by

a hyperplane H′ orthogonal to H. Pieces of the relevant Mayer-Vietoris se-

quences give a square: we have 0 → Hn(Sn)
dMV
→ Hn−1(Sn−1) → 0 and 0 →

Hn(Sn)
dMV
→ Hn−1(Sn−1) → 0, with maps reflection in H from Hn(Sn) → Hn(Sn)

and reflection in H′∩H from Hn−1(Sn−1) to Hn−1(Sn−1). We used when stating the
Mayer-Vietoris theorem that the Mayer-Vietoris maps are natural, so this does
commute. The dMV maps are isomorphisms (indeed, the same isomorphism),
so we reduce to the case n = 1 (the two reflections’ induced maps must always
be either both +1 or both -1).

For the circle, S1, we computed H⋆(S1) using Mayer-Vietoris: split the circle
into segments A,B with intersection two points p, q, then sequence is 0 →

H1(S1) → H0(p y q) → H0(A) ⊕ H0(B) → . . . , with the map H0(p y q)
φ
→

H0(A)⊕H0(B) which are isomorphic toZ < p > ⊕Z < q >→ Z < pt > ⊕Z < pt >
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being given by (u, v) 7→ (u + v, u + v). We saw H1(S1) � Z by exactness, and
explicitly H1(S1) � ker(φ) � Z < (1,−1) >⊂ S2 = H0(p y q). Reflection in the
line H perpendicular to pq swaps p and q, so it acts on Z2 by (u, v) 7→ (v, u), so
it maps on Z < 1,−1 > by multiplication by -1. Note that we have not been
“clever” in our choice of the orientation of H relative to p and q; reflection in H
must preserve the Mayer-Vietoris decomposition, so this was the only possible
choice.

Corollary: The antipodal map on Sn has degree (−1)n+2, as it’s a composite
of n + 1 reflections.

Corollary: The sphere Sn has a nowhere zero vector field if and only if n is
odd (Definition: a vector field on a smooth manifold is an assignment p 7→ Xp

of a tangent vector Xp ∈ TpM for each p ∈ M, i.e. it’s an infinitesimal flow.
Explicitly on Sn ⊂ Rn+1, a vector field is an assignment v : Sn → Rn+1 such that
〈x, v(x)〉 = 0∀x (under the usual inner product 〈, 〉)).

If n = 2k−1 odd, take (x1, y1, . . . , xk, yk) ∈ S2k−1 ⊂ R2k 7→ (−y1, x1,−y2, x2, . . . ,−yk, xk)
and this is a nowhere zero vector field.

Now suppose we have a nowhere zero vector field v. Take wlog v(x) always
of length 1, by v 7→ v

‖v‖ . Consider the family of maps vt : x 7→ (cos t)x+(sin t)v(x);
observe that ∀t, x, |vt(x)| = 1, since 〈x, v(x)〉 = 0 (orthogonality). At t = 0,
v0 = id, and at t = π, vπ = −id, i.e. id ∼ −id, the antipodal map on Sn. So
deg(id) = 1 = deg(antipodal) = (−1)n+1, and n is odd.

Special case: the “hairy ball theorem”: “you can’t comb a dog flat”.
The antipodal map has no fixed points.
Lemma: if f : Sn → Sn has no fixed points, f ≃ the antipodal map. The only

possible way we can use the fact that f has no fixed points in a proof is to divide
by something that we could not otherwise do because it might be 0, so we’ll do
that; we shall actually prove something slightly stronger: if f (x) , g(x)∀x, for
f , g : Sn → Sn, then f ≃ a ◦ g where a : Sn → Sn is the antipodal map. Consider

the maps x 7→
t f (x)−(1−t)g(x)

‖t f (x)−(1−t)g(x)‖ for x ∈ Sn, 0 ≤ t ≤ 1. Note that if t f (x) = (1 − t)g(x),

taking the norm t = 1 − t = 1
2 so then f (x) = g(x), a contradiction; thus this is

valid. At t = 0 this map is a ◦ g and at t = 1 it is f , so we have the result.
Corollary: if the group G acts freely on S2k, then G ≤ Z2 .

Remark: S2k−1 ⊂ Ck is preserved by multiplication by eiθ, so S2k−1 has a free
action of Zm for every m ≥ 2.

Proof: If f : Sn → Sn has no fixed point, then f ≃ the antipodal map, so f
has degree (−1)n+1. But if G acts on Sn, deg : G→ Z

2 has all nontrivial elemnts

going to −1, so ker(deg) = {e}, but deg is a homomorphism so G ≤ Z2 .
Note that Mayer-Vietoris can be used to compute a number of other things,

which we will need to use but only have time to summarize here: H⋆(Σg) = Z
if ⋆ = 0, Z2g for ⋆ = 1, Z for ⋆ = 2 and 0 otherwise (Σg is the surface of genus
g).

Think about X∨Y =
(XyY)
⋆X=⋆Y

where each⋆ is a single base-point, and M1#M2:
for M1,M2 n-manifolds, we cut out balls from each and glue the boundaries.
We have T2#T2 = Σ2, etc.

Observe that every map of (closed) oriented surfaces has a degree, since the
only thing we needed for the existence of degrees was that the “top” homology
group wasZ, e.g. this is true for maps T2 → S2.s

Example: Let S1 y S1 ⊂ R3 be a link of two circles, i.e. an embedding of
two disjoint circles into R3; they may be distinct, looped around each other
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like two links in a chain, or in some more complicated arrangement. Define

φ : T2 → S2, the Gauss map of the link, by (x, y) ∈ S1 × S1 7→
x−y

‖x−y‖ Definition:

deg(φ) = lk(L1, L − 2) is the linking number of the two components.
Note: If lk(L1, L2) , 0, you can’t separate the two links spatially - to be more

precise, no embedded S2 in R3 separates the two components. Otherwise,
deform this by moving one of the two loops away to infinity: φ is clearly not
onto (since only a small portion of the sphere is available as directions between
the two widely separated loops), so φ is of degree 0.

6 Local Degree

Intuitively, Hn(Sn) � Z and H2(oriented surface) = Z because “there’s a unique
closed top-dimensional lump” to these spaces. E.g. for S2 H2 = Z, but for
S2 ∨S2, H2 = Z ⊕Z, since the two spheres only meet in a point so there are two

two-dimensional lumps. H2( S2

p∼q ), the sphere where we identify two points (so

it looks like the pinched torus), = Z. For an “open” surface e.g. a surface of
genus 3 with a disc cut out, H2 = 0 - there is no single lump.

The degree deg( f ) measures how many times the domain “wraps onto” the
range.

For example, consider the map S2 → T2 obtained by projecting down and
up onto a flat disc, then taking a homeomorphism from this to the square and
identifying the edges appropriately to make it a torus. This has degree 0, since
it factors through the disc and H2(disc) = 0. Now consider the inverse image of
a general point p on the torus; it will be a single point in the square (of course
some points in the torus have preimage two points on the boundary of the
square, but we are considering a general point), so a single point in the disc, so
two points p+, p− on the sphere.

Locally near p+, p−, the maps S2 → T2 is a homeomorphism, and these two
homeomorphisms differ by reflection in the equator. So, informally, one of these
has degree 1, the other degree -1, and these add together to give the overall
degree 0.

Example: S1 → S1 z 7→ zk has degree k: H1(S1) � Z, a generating 1-cycle
is a sum of k simplicies each going 2π

k around the circle. Under the map, each
of these 1-simplices maps to a 1-simplex which is now a cycle, and represents
the generator of H1(S1). So f⋆ : H1(S1) = Z→ Z is multiplication by k. Again
consider the inverse image of a general point p, which is k points pi. The map
near each pi is again a homeomorphism, but this time the different such local
homeomorphisms differ by rotations of the domain - thus the k 1s add together
to give the total degree k.s

Remark: If f : X → Y is a smooth map of closed smooth manifolds,
Sard’s Theorem says that for a dense set of regular values y ∈ Y, f−1(y) =
{x1, . . . , xk} is finite, and there are neighbourhoods Ui ∋ xi,V ∋ y such that
f |Ui

: Ui → V is a diffeomorphism.
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Algebraic Digression

An exact sequence 0→ A→ B→ C→ 0 is called a short exact sequence. A SES

of chain complexes is a diagram:

0 0 0
↓ ↓ ↓

. . . → An+1 → An → An−1 → . . .
↓ α ↓ α ↓ α

. . . → Bn+1 → Bn → Bn−1 → . . .
↓ β ↓ β ↓ β

. . . → Cn+1 → Cn → Cn−1 → . . .
↓ ↓ ↓

0 0 0

.

The rows are chain complexes, with d2 = 0 but not necessarily exact. The
columns are all SES: imα = ker β always. Note that β is always surjective and α
always injective. When we draw a diagram like this in this course, it is implicit
that it commutes, unless otherwise stated.

Proposition: The SES of chain complexes defines or gives rise to an associ-
ated long exact sequence in homology: 0→ A⋆ → B⋆ → C⋆ → 0⇒ Hk(A⋆)→

Hk(B⋆)→ Hk(C⋆)
∂
→ Hk−1(A⋆)→ Hk−1(B⋆)→ Hk−1(C⋆)

∂
→ Hk−2(A⋆)→ . . . . The

unlabelled maps are those naturally induced from the maps A⋆ → B⋆ → C⋆
(there are maps on homology since all the squares in the diagram commute).
To define the connecting homomorphism ∂ : Hk(C⋆) → Hk−1(A⋆): pick a cycle

σ ∈ Ck representing a homology class [σ] ∈ Hk(C⋆). There is b ∈ Bk such that
β(b) = σ. Note β(db) = d(βb) = d(σ) = 0 since σ is a cycle, so db ∈ ker β = imα. So
there is a ∈ Ak−1 such thatα(a) = db. Note da = 0 since α(da) = d(α(a)) = d(db) = 0
since d2 = 0, and α is injective. So a is itself a cycle and defines [a] ∈ Hk−1(A⋆);
define ∂[σ] = [α]. Warning: we have made choices to get from one to another:
we chose a representing cycle σ, and we chose b. So to prove this we need to
check (as on the first example sheet for the course) i) ∂ is well defined ii) ∂ is
linear and a homomorphism iii) the resulting sequence of groups really is exact.

Examples: 1. If A ⊂ X is a subspace, C⋆(A) → C⋆(X) is the inclusion of
singular chains from A to X. This is valid since if σ : ∆n → X lies in A, then
all the faces of σ lie in A, so d : C⋆(X) → C⋆−1(X) preserves C⋆(A) → C⋆−1(A).

We get “for free” an induced d on the quotient, so define Cn(X,A) =
Cn(X)
Cn(A) ;

we get d : Cn(X,A) → Cn−1(X,A) from d on C⋆(X). 0 → C⋆(A) → C⋆(X) →
C⋆(X,A)→ 0 is a SES of chain complexes; the associated LES Hk(A)→ Hk(X)→
Hk(X,A) → Hk−1(A) → Hk−1(X) → . . . is called the “LES of the pair”. A cycle
for C⋆(X,A) is a chain in X all of whose boundary lies in A; the boundary map
∂ : Hk(X,A)→ Hk−1(A) just takes the boundary of such a “relative cycle”.

2. Let U = {Ui}i∈I be an open cover of a space X. Let C⋆(X,U) be the
subcomplex of C⋆(X) comprising sums of simplices each of which lies in some

set in U, i.e. {
∑N

i=1 niσi}, where each σi : ∆n → X has imσi ⊂ Uαi
, and ni ∈ Z.

Again, d : C⋆(X)→ C⋆(X) preserves C⋆(X,U).
Theorem: C⋆(X,U) ֒→ C⋆(X) induces an isomorphism on homology, i.e.

H(C⋆(X,U)) � H⋆(X).
Corollary (Mayer-Vietoris): If X = A ∪ B,U = {A,B}, then we have a SES

0 → C⋆(A ∩ B) → C⋆(A ∩ B) → C⋆(A) ⊕ C⋆(B)
β
→ C⋆(X,U) → 0, where the

two nontrivial maps are respectively σ 7→ (σ, σ) and (u, v) 7→ u − v. C⋆(X,U)
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is defined to make β surjective. So we have a LES in homology, Hk(A ∩ B) →
Hk(A) ⊕Hk(B)→ Hk(X,U) � Hk(X)→ Hk−1(A ∩ B)→ . . . .

Corollary (Excision): If Z,A ⊂ X, cl(Z) ⊂ int(A), then H⋆(X,A) � H⋆(X \
Z,A\Z) - “you can excise Z”. For the intuition, note that at the level of spaces X

A

and X\Z
A\Z are the same. For the proof, if B = X\Z then X = A∪B and the theorem

says
Cn(B)

Cn(A∩B) �
Cn(X,U)

Cn(A) ֒→ Cn(X)
Cn(A) induces isomorphism on homology; we do need

the method of proof of the above theorem rather than just the theorem itself to
know that passing to the quotient is ok. Both these quotients are free groups in
the set of simplices in B not wholly lying in A. H⋆(X,A) � H⋆(B,A ∩ B).

Go back to a map f : Sn → Sn. Suppose f−1(y) = {x1, . . . , xk} and f : Ui ∋

xi → V ∋ y. Excision lets us relate H⋆(Sn, Sn \ xi) � H⋆(Ui,Ui \ xi), excising
Sn \Ui whose closure does lie in Sn \ xi. (TBC)

7 Axioms

Recall we are discussing local degree. Given f : Sn → Sn (or more generally a
map of manifolds) and given f−1(y) = {x1, . . . , xk}, we aim to find deg( f ) from
the geometry near the xis.

We’ve added to our arsenal of results, the Excision Theorem: if A ⊂ X,Cl(z) ⊂
int(A) then inclusion (X \ Z,A \ Z) ֒→ (X,A) induces an isomorphism H⋆(X \

Z,A \ Z)
�
→ H⋆(X,A) (recall H⋆(X,A) = H(

C⋆(X)
C⋆(A) ) and cycles measure “lumps of

X with boundary in A”).
Example: If M is a manifold and x ∈M has a neighbourhood U � Rn, U ∋ x,

we can excise all of M\U to give H⋆(M,M\x)
�
← H⋆(M\(M\U), (M\x)\(M\U)) =

H⋆(U,U \ x).

The LES for relative homology (X,A) is Hi(A) → Hi(X) → Hi(X,A)
∂
→

Hi−1(A) → . . . ; in particular, Hi(U \ x) → Hi(U) = 0 → Hi(U,U \ x)
∂
→ Hi−1(U \

x) → Hi−1(U) = 0 where the groups labelled = 0 are usually =0 because U �
Rn ≃ ⋆. So ∂ becomes an isomorphism and H⋆(U,U \ x) = Z for ⋆ = n, 0
otherwise.

Given f : Sn → Sn, f−1(y) = {x1, . . . , xk}, suppose Ui ∋ xi,V ∋ y such
that f : Ui → V has xi 7→ y. Choose the Ui disjoint, so f induces [maps]
(Ui,Ui \ xi)→ (V,V \ y) and hence Hn(Ui,Ui \ xi) � Z→ Hn(V,V \ y) � Z, which
will be multiplication by the local degree of f , degxi

( f ).

Note we can also use excision to identify Hn(Sn, Sn \
⋃

xi) �
⊕

Hn(Ui,Ui \xi)
by excising Sn \

⋃
i Ui.

Consider the diagram

ւ Hn(Ui,Ui \ xi) → Hn(V,V \ y)
↓ ↓

Hn(Sn, Sn \ xi) ← Hn(Sn, Sn \
⋃

xi) → Hn(Sn, Sn \ y)
↑ ↑

տ Hn(Sn) → Hn(Sn)
The lower arrow in the middle column is the obvious inclusion; the upper

one is inclusion as a summand, since the group in the middle is isomorphic to a
direct sum of groups. The bottom horizontal map is induced from f i.e. is deg f ;
the top horizontal map is degxi

f , and we’ll call the middle rightwards-pointing

map f̃ . The top left diagonal map and the downward map in the top right
are isomorphisms by excision; the bottom left diagonal map and the upward
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map in the bottom right are isomorphisms by the LES Hn(Sn \ y) → Hn(Sn)
iso
→

Hn(Sn, Sn \ y) → Hn−1(Sn \ y) = Hn−1(Rn) = 0 → Hn−1(Sn). The triangle is the
bottom left commutes, so the upwards injection at the bottom of the middle
column is actually the diagonal inclusion Z → Z#Ui 1 7→ (1, 1, . . . , 1). deg f is
defined as f⋆(1) for 1 ∈ Hn(Sn); by commutativity this is f̃⋆(1, 1, . . . , 1), which
=
∑

i f̃⋆(0, 0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the ith place. We can lift this up to
the top row as

∑
i degxi

( f ) by the definition of local degree and commutativity
of the top right square.

Example: Note that if f |Ui
is a homeomorphism it has local degree ±1

(with the sign depending on orientation, a subject to which we shall return).
ConsiderC→ C: let p be a complex polynomial (in one variable) which extends
to a map p : S2 = C∪ {∞} → S2. The degree of p really is the same as the degree
of p: if p(z) = zk + a1zk−1 + · · · + az, this is homotopic as a map S2 → S2 to
φ : z 7→ zk. φ−1(1) is a set of kth roots of unity; near a root of unity φ is locally a
homeomorphism (by the open mapping theorem) so say it is of degree +1 at 1.
Then it is of the same degree locally at other roots, since the local maps differ
by global rotations of S2 (which are of degree 1).

Warning: The map z 7→ az + 1 as a varies from 1 to 0 is continuous as a
family of polynomials, but not as a family of maps S2 → S2: S2 × [0, 1] → S2

(z, a) 7→ az + 1 is not continuous at (∞, 0).
The theory as developed so far has the following features: Given (X,A),A ⊂

X, we associate to it a family of groups {H⋆(X,A)}⋆∈Z and these satisfy: there
is a LES Hi(A) → Hi(X) → Hi(X,A) → Hi−1(A) → . . . , we have functoriality
f : (X,A) → (Y,B) induces f⋆ : H⋆(X,A) → H⋆(Y,B), homotopy invariance: if
f ≃ g through maps of pairs then f⋆ = g⋆ : H⋆(X,A) → H⋆(Y,B). Excision:

if cl(Z) ⊂ int(A), H⋆(X,A)
�
← H⋆(X \ Z,A \ Z), and unions: H⋆(yα Xα) ≃⊕

α H⋆(Xα).
Remark: In fact, these imply that the Mayer-Vietoris sequence holds.
An assignment (X,A) → h⋆(X,A) of pairs of spaces to graded abelian

groups (h⋆(X) is shorthand for h⋆(X, ∅)) which satisfies these axioms is called a
generalized homology theory

Roughly, any generalized homology theory that arises as the homology
groups of a chain complex is our theory (tensored with something).

Example: in the first example sheet we saw the notion of the suspension

of a space ΣX. In the first lecture, we briefly mentioned the existence of πi(X),
defined as homotopy classes of maps (Si, ⋆) → (X, x). Fact: there are natural
maps πi(X) → πi+1(ΣX) → πi+2(Σ2X) → . . . which eventually become isomor-
phisms. The limit limn→∞ πi+n(ΣnX) = πst

i
(X), the stable homotopy group, is

a generalized homology theory. There is a million dollar prize available for
computing the stable homotopy groups of a point.

Definition: A cell complex is a space X built by: X0 is a finite set, X1 =

U0 ∪ D1
1
∪ D1

2 ∪ · · · ∪ D1
n where D1

i
is a 1-disk (i.e. [0, 1]) attached to X0 by a

map ∂D1
i
→ X0, and more generally Xk = Xk−1 ∪Dk

1
∪ · · · ∪Dk

nk
where Dk

i
is the

closed k-disk and attached by a map ∂Dk
i
→ Xk−1. Then X =

⋃
k Xk with the

weak topology. Xk is called the k-skeleton; the Di are i-cells.

Remarks: 1. Xk is a quotient space, Xk =
Xk−1yDk

1
y···yDk

nk

∼
where ∼ identifies

each p ∈ ∂Dk
i

with its image in Xk−1 2. The weak topology is that U ⊂ X is open
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if U ∩ Xk is open in Xk∀k.
Examples: Sn is a point union an n-cell: X0 is a point, Xk is a point ∀k < n,

and Xn = Sn = pt ∪ Dn
1
. T2 has a cell structure with one 0-cell, a corner of the

square it is a quotient of, 2 1-cells, the two edges of the square, and one 2-cell,
the face of the square.

Theorem (seen on the second example sheet): if h⋆, k⋆ are GHTs defined on
pairs (X,A) with X a cell complex and A ⊂ X a subcomplex, then if h⋆(pt) �
k⋆(pt), any natural transformation h⋆ → k⋆ induces an isomorphism h⋆(X,A) �
k⋆(X,A) for all (X,A). Informally, this means the theory is completely defined
by the groups of a single point. The proof of this result requires all our axioms
but nothing more, hence why we choose that set of axioms.

8 Homotopy Invariance

Homology and cohomology are useful since they are insensitive to “inessential”
deformations of maps and spaces. Recall spaces X,Y are homotopy equivalent
X ≃ Y if ∃ f : X → Y, g : Y → X such that f ◦ g ≃ idY, g ◦ f ≃ idX; recall
further that p, q : X → Y are homotopic p ≃ q if ∃F : X × [0, 1] → Y with
F(x, 0) = p(x), F(x, 1) = q(x)∀x ∈ X.

Theorem: If f ≃ g : X → Y then f⋆ = g⋆ : H⋆(X) → H⋆(Y) (and by a minor
variation of the proof, f⋆ = g⋆ : H⋆(Y)→ H⋆(X).

The algebraic way to show two maps of chain complexes coincide is to
introduce an algebraic version of homotopy.

Definition: Given chain complexes A⋆,B⋆ and mapsφ,ψ of these chain com-
plexes (these are chain maps, dφ = φd, ψd = dψ), then φ,ψ are chain homotopic

if ∃P : An−1 → Bn (∀n) such that φ − ψ = ∂P ± P∂.
Lemma: chain homotopic chain maps induce the same maps on homology:

if σ is a cycle, say σ ∈ ker(d : An → An−1), φσ − ψσ = (∂P ± P∂)σ = ∂(Pσ) is a
boundary, so [φ(σ)] = [ψ(σ)] as elements of H(B⋆).

Proof of the homotopy invariance theorem: given f , g : X → Y, f
F
≃ g,

let i0 : X ֒→ X × I be the map x 7→ (x, 0), i1 : X ֒→ X × I x 7→ (x, 1). Then
f = F ◦ i0 ⇒ f⋆ = F⋆ ◦ (i0)⋆, g = F ◦ ii ⇒ g⋆ = F⋆ ◦ (i1)⋆, so it suffices to prove
(i0)⋆ = (i1)⋆; thus it is sufficient to show (i0)⋆ and (i1)⋆ are chain homotopic.

Our key ingredient for seeing this is a certain universal decomposition of
∆n × [0, 1] into (n + 1)-simplices ∆n+1. (This is an important technique - for this
theorem “anything will work”, we just need some way to decompose, because
the result is one which is very true, but when proving excision we will need to
carefully choose a decomposition with certain properties).

We cut ∆n × [0, 1] into the (n + 1)-simplices [v0 . . .viwi . . .wn] for 0 ≤ i ≤ n.
Claim: these are (n + 1)-simplices and they exactly fill ∆n × [0, 1]: let φi : ∆n →

[0, 1] be given by (t0, . . . , tn) 7→ ti+1 + · · · + tn. Observe 0 = φn ≤ φn−1 ≤ · · · ≤

φ0 ≤ φ−1 = 1. The vertices v0, . . . , vi,wi+1, . . . ,wn all lie on the graph (i.e. plot)
of φi, and wi does not lie on this graph. The graphs of the φi are copies of ∆n

in ∆n × [0, 1] which project homeomorphicly to [v0 . . . vn]. The region between
two successive such graphs is exactly one of the [v0 . . .viwi . . .wn], and since wi

is not in the graph of φi, the linear independence condition holds and we have
our claim.
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Define a prism operator P : Cn(X) → Cn+1(X × [0, 1]) by σ 7→
∑n

i=0(−1)i(σ ×

1) |[v0...viwi ...wn], for σ : ∆n → X ∴ σ × 1 : ∆n × I→ X × I.
Claim: ∂Pσ + P∂σ = i0⋆σ − i1⋆σ¡ i.e. P defines our chain homotopy. This is

just the fact that the boundary of the prism minus the prism of the boundary
is the bottom minus the top; explicitly, ∂Pσ =

∑
j≤i(−1)i(−1) jσ × 1 |[v0...̂v j ...viwi ...wn]

+
∑

j≥i(−1)i(−1) j+1σ × 1 |[v0...viwi...ŵ j ...wn]. This is
∑

i> j(−1)i(−1) jσ × 1 |[v0...̂v j ...viwi ...wn]

+
∑

i< j(−1)i(−1) j+1σ × 1 |[v0...viwi ...ŵ j ...wn] +σ × 1 |[̂v0w0...wn] −σ× 1 |[v0...vnŵn]; the reader

should check and convince himselves that the first two terms are −P(∂σ), while
the third is the top and the fourth the bottom, so we are done; P is a chain
homotopy between (i0)⋆ and (i1)⋆. (In many ways this proof is simply practice
for the far more painful matter of proving excision).

The following result is proved using homotopy theory, but the proof will
not be given in this course:

Whitehead Theorem: Let X,Y be simply connected cell complexes (recall
a simply connected space X has π1(X, x) = 0, or equivalently every continu-

ous map S1 → X extends to a map D2 → X). Suppose f : X → Y induces

f⋆ : H⋆(X,Z)
�
→ H⋆(Y,Z) which is an isomorphism. Then f is a homotopy

equivalence X
≃
→ Y.

Warning: This does not mean that if we have H⋆(X) ≃ H⋆(Y) for simply
connected cell complexes X,Y then X ≃ Y, because the isomorphism may not
be induced by any map f .

Remark: Let X = {
(xz+1)2−(yz+1)2

z } ⊂ C3 be the given affine surface; then X ≃ pt
but X � C2; indeed X ∩ S5 for S5 a large sphere in C3 gives a 3-manifold which
is not S3; it is not even simply connected. So detecting homotopy equivalence
is “not the be all and end all”.

In the next few lectures, we shall cover the unpleasant matter of prooving
the excision theorem. This is not something the reader will ever be asked to
reproduce in an examination, but the lecturer feels compelled to provide a proof
as a matter of honesty.

9 Excision

Theorem (Excision): If Z ⊂ A ⊂ X, cl(Z) ⊂ int(A), then H⋆(X,A)
�
←inclusion

H⋆(X \ Z,A \ Z). The key, as with homotopy invariance, will be a method for
dividing simplices. We saw that excision follows from:

Theorem: If X is a space and U = {Uα}α∈I is a cover of X by sets whose
interiors cover X, then C⋆(X,U) ֒→ C⋆(X) is an isomorphism on homology.
Recall Cn(X,U) = {

∑n
i=1 aiσi : ai ∈ Z, σi : ∆n → X, im(σi) ⊂ Uα(i) some α(i) ∈ I}.

Strategy of proof: we have ι : C⋆(X,U) ֒→ C⋆(X). We will construct
ρ : C⋆(X)→ C⋆(X,U) (these are both chain maps dι = ιd, dρ = ρd) and construct
D : Cn(X) → Cn+1(X) such that (A) ∂D + D∂ = 1 − ιρ and (B) ρι = id. Then
(A) implies ι⋆ρ⋆ is the identity on homology, (B) implies ρ⋆ι⋆ is the identity on

homology, and together these imply ι⋆ : H(C⋆(X,U))
�
→ H(C⋆(X)) = H(X) is an

isomorphism as required.
Construction of D, step i: Divide ∆n into smaller n-simplices by a chain map

σ 7→ S(σ), ∂S = S∂. Our S is barycentric subdivision: the barycentre of the

simplex ∆n is the point 1
n+1 (1, 1, . . . , 1), the “centre of mass”. Let S(∆n) be the
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union of [bw0 . . .wn−1] where [w0 . . .wn−1] lies in some subdivided face S(∆n−1
i

)

where ∆n−1
i

is the ith face (so the definition is inductive over n). Explicitly, the
vertices of simplices in S(∆n) are all barycentres of all k-faces (0 ≤ k ≤ n) of ∆n.
If [vi0 . . .vik ] ⊂ [v0 . . . vn] is a k-face, its barycentre is (t0 . . . tn) where ti =

1
k+1 if

i = i j for some j, 0 if i , any i j.
Technical lemma: ifσ is one of the n-simplices in S(∆n ), diam(σ) ≤ n

n+1 diam(∆n),
independently of the shape of ∆n (i.e. ∀[v0 . . . vn] ∈ Rn); we’ll prove this next
lecture. Note that we do need this result for a general simplex, not just for ∆n,
as we want to iterate, and the canonical homeomorphism from ∆n to a general
n-simplex does not preserve length.

Construction of D, step ii: divide δn × [0, 1] into (n + 1)-simplices such that
on the lower boundary, we just get∆n, but on the upper boundary we see S(∆n).
Our aim for building (this division), T, is to join simplices in∆n×{0}∪∂∆n×[0, 1]
to the barycentre of ∆n × {1}. Explicitly, T is constructed inductively in n so as
to satisfy ∂T + T∂ = 1 − S.

For an n-simplex λ, Tλ = bλ(λ − T∂λ), where bλ : [v0 . . . vn] 7→ [bv0 . . . vn]
where b in the marycentre of the simplex λ. Assuming ∂T + T∂ = 1 − S for
simplices of smaller dimension, ∂Tλ = ∂(bλ(λ − T∂λ)). Note ∂bλ = 1 − bλ∂ (by
considering the definition of bλ: ∂[bv0 . . . vn] = [v0 . . . vn] − [bv1 . . . vn] + . . . ; this
is valid since bλ uses its own fixed value λ, it doesn’t just take the barycentre
of the simplex it’s applied to) so this is = λ − T∂λ − bλ∂(λ − T∂λ) and we see
[∂T(∂λ) and - don’t understand this] ∂T + T∂ = 1 − S inductively, so this is
λ− T∂λ− bλ(S∂λ+ T∂∂λ); ∂∂ = 0 so this is λ− T∂λ− Sλ. Noting bλ(S∂λ) = Sλ,
this implies ∂T + T∂ = 1− S on n-simplices λ, so inductively this always holds.

Construction of D, step iii): X may not be a nice space, but the open cover

{σ−1(intUα)}α∈I of ∆n σ
→ X has a Lebesque number δ > 0. So ∃m(σ) such that

every simplex in Sm(σ)(σ) lies in Uα for some α ∈ I (this is where we use the
technical “shrinking” lemma) (Recall a Lebesque number δ for a cover Uα of a
metric space (Z, d) is some δ > 0 such that every set of diameter < δ (i.e. every
Bδ(x) for x ∈ Z) lies completely inside some set of the cover). Define D : Cn(X)→

Cn+1(X) by σ 7→ Dm(σ)(σ) where Dm =
∑

i = 0m−1TSi (and note D0 ≡ 0). Here we
take m(σ) to be the least possible value such that all subsimplices of Sm(σ)(σ) lie
in elements ofU (recall it is important that ρι is just the identity). Note that for

each m, ∂Dm+Dm∂ =
∑m−1

0 ∂TSi+TSi∂ =
∑
∂TSi+T∂Si (since ∂S = S∂)=

∑
(∂T+

T∂)Si =
∑

(1− S)Si) = 1 − Sm. So ∂Dσ +D∂σ = σ − (Sm(σ)(σ) +Dm(σ)(∂σ)−D(∂σ))
(noting ∂Dσ is defined as ∂(Dm(σ)(σ))m (in C⋆(X,U)); we cannot do with with
the other term because m(∂σ) , m(σ). We define ρ(σ) to be this large bracket, so
that this = σ − ρ(σ).

Key fact: ρ(σ) lies in Cn(X,U). Why? Let σ j = σ | jth face of σ. Then certainly

m(σ j) ≤ m(σ). The terms TSi(σ j) which occur in D(∂σ) are all terms in Dm(σ)(∂σ).

So the difference Dm(σ)(∂σ)−D(∂σ) is a sum of terms TSiσ j, for i > m(σ j). So Siσ j

is small and T preserves C⋆(X,U). Clearly Sm(σ)(σ) ∈ Cn(X,U).

10 Excision, Continued

Recall we have S : Cn(X)→ Cn(X) the subdivision operator, T : Cn(X)→ Cn+1(X)
subdivision of ∆n × [0, 1]; ∂T + T∂ = 1 − S. D : Cn(X)→ Cn+1(X) σ 7→ Dm(σ)(σ) =∑m(σ)−1

i=1
TSiσ, taking m(σ) minimal such that Sm(σ)(σ) all lie in elements of the
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cover {Uα}α∈I. We saw last time ∂Dσ +D∂σ = σ − (Sm(σ)(σ) +Dm(σ)(∂σ)−D(∂σ));
difining this large bracket to be ρ(σ) we see ρ(σ) ∈ Cn(X,U) (Note Dm(σ)(σ) does
not lie there - it is a sum whose early terms are not much smaller than σ).

We have ∂Dσ+D∂σ = σ− ιρ(σ), ρ : Cn(X)→ Cn(X,U), ι : Cn(X,U)→ Cn(X).
We need these to be chain maps; ι clearly is, but what about ρ? ∂(ρ(σ)) =
∂σ− ∂(D∂σ). ∂D(∂σ)+D(∂∂σ) = ∂σ− ρ(∂σ) and D(∂∂σ) = 0, so this is ρ(∂σ) and
ρ is a chain map as required.

Finally, if σ ∈ Cn(X,U) then m(σ) = 0, but D0 � 0 so ρ ◦ ι : Cn(X,U) →
Cn(X,U) is the identity, and ρ is a chain inverse for ι, via a chain homotopy D.

So ρ⋆, ι⋆ are isomorphisms on homology H(C⋆(X,U))
�
→ H(C⋆(X)).

It remains to prove the technical lemma from lecture 9: Let [v0 . . . vn] ∈ RN

be any simplex. Then each σ ∈ S[v0 . . . vn] has diameter ≤ n
n+1 taht of [v0 . . . vn]

(where by the diameter of a simplex we mean the diameter of the underly-
ing geometric object in RN). Recall that points of the simplex have canoni-
cal coordinates (t0 . . . tn),

∑
ti = 1. Observe ‖v −

∑
tivi‖ = ‖(

∑
ti)v −

∑
tivi‖ ≤∑

i ti max ‖v − vi‖ = max ‖v − vi‖; the distance from a fixed point to any point
in the simplex is maximised by the distance to some vertex. So the diam-
eter of a simplex is the maximal separation of two vertices. We’ll proove
the lemma inductively: suppose it is valid for all k-simplices for k < n. Let
σ ∈ S[v0 . . . vn]. The case we have to consider is σ = [bvi1 . . . vin ] for some
{i1, . . . , in} ⊂ the set of indices of new vertices; otherwise all the vertices lie in
some face of [v0 . . . vn], meaning this is actually a smaller-dimensional sim-
plex. The diameter diam(σ) = ‖b − vi‖ for some i; otherwise use the in-
ductive hypothesis to bound ‖vi j

− vik‖. Consider the face [v0 . . . v̂i . . . vn] of
the original simylex. The barycentre bi of this face has coordinates (t0 . . . tn)
where t j =

1
n for j , 0, ti = 0. By contrast b has coordinates (t0 . . . tn) where

t j =
1

n+1∀ j. Observe b = n
n+1 bi +

1
n+1 vi. So b lies on the line between vi and bi,

and diameter([b, vi1 , . . . , vik]) = ‖b − vi‖ =
n

n+1‖bi − vi‖ ≤
n

n+1 diam[v0 . . . vn].
Remarks: When we deduced the Mayer-Vietoris Theorem (and indeed exci-

sion) from the statement that C⋆(X,U) ֒→ C⋆(X) is a homology isomorphism,
the lecturer stated that the homology isomorphism induced a homology iso-

morphism
C⋆(X,U)

C⋆(A) ֒→ C⋆(X)
C⋆(A) for U = A ∪ B. This is true since the equation

∂D + D∂ = 1 − ιρ descends to the quotient group by C⋆(A), since all of our
operators S,T,D, . . . preserve the property of lying in A. Alternatively, one
could use the 5-lemma.

Remark: The theorems we’ve proved all hold in cohomology, e.g. H⋆(X,A)
�
֒→

H⋆(X \ Z,A \ Z) if cl(Z) ⊂ int(A). In the axioms for a generalized cohomology
theory, we have functoriality, homotopy invariance, LES for pairs and excision
just as for homology, but the “unions” axiom changes: h⋆(y Xα) �

∏
α H⋆(Xα)

(so H⋆(y Xα) =
∏

α H⋆(Xα)) - direct product, not direct sum.
Recall we are studying cell complexes: X =

⋃
k≥0 Xk, Xk is the k-skeleton,

Xk = Xk−1∪ finitely many k-cells Dk. Define: reduced homology H̃⋆(X) :=
H⋆(X,pt). So H̃⋆(X) = H⋆(X) for ⋆ > 0, H̃0(X) ⊕Z = H0(X).

Lemma: If X is a cell complex and A ⊂ X a subcomplex, H⋆(X,A) � H̃⋆( X
A ).

Think: a “SES of spaces” A ֒→ X ֒→ X
A gives rise to a LES in homology

· · · → H̃i(A) → H̃i(X) → H̃i(
X
A ) → H̃i−1(A) → . . . . (Exercise: this is the LES

of the pair). To prove this we use the technical fact that if A ⊂ X is a sub-
complex of a cell complex, there are open neighbourhoods V ⊃ A in X which
are homotopy equivalent to A and such that A ֒→ V is a deformation retract.
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Then (by the 5-lemma; see example sheet 2) H⋆(X,A) � H⋆(X,V). So consider:
Hk(X,A) → Hk(X,V) ← Hk(X \ A,V \ A)
↓ ↓

Hk( X
A ,

A
A → Hk( X

A ,
V
A ) ← Hk( X

A \
A
A ,

V
A \

A
A )

. The top left and bottom left

maps are isomorphisms by the 5-lemma, the top right and bottom right are
isomorphisms by excision, and the right hand side is an isomorphism since the
quotient map X→ X

A is a homeomorphism on the complement of A. So the left
hand side must also be an isomorphism.

Observe, if X is a cell complex, X ⊃ Xk ⊃ Xk−1 ⊃ · · · ⊃ X1 ⊃ X0 and
Xk

Xk−1
=
∨ik

i=1
Sk

i
is a wedge of k-spheres, since Xk = Xk−1 ∪Dk ∪ · · · ∪Dk glued by

maps ∂Dk → Xk−1.

11 Cellular Homology

Let X =
⋃

k≥0 Xk be a cell complex.
Lemma: i) Hk(Xk,Xk−1) � Znk , the free abelian group on the set of k-cells,

Hi(Xk,Xk−1) = 0 for i , k ii) Hi(Xk) = 0 if i > k; inclusion Xk ֒→ X induces

an isomorphism Hi(Xk)
�
→ Hi(X)∀i < k: Recall if A ⊂ X is a subcomplex,

H⋆(X,A) � H̃⋆( X
A ) (where X

A is the quotient collapsing A to a point). Xk

Xk−1
=∨nk

i=1
Sk and Mayer-Vietoris implies H⋆(

∨nk

i=1
Sk) = Znk for⋆ = k,Z for⋆ = 0 and

0 otherwise. This proves i). For ii) we consider the LES of the pair (Xk,Xk−1) (we
will use Xk and Xk at random to denote the same thing; note that for homology
groups H⋆,H⋆ are different) · · · → Hi+1(Xk,Xk−1) → Hi(Xk−1) → Hi(Xk) →
Hi(Xk,Xk−1) → Hi−1(Xk−1) → . . . . If i > k, we get 0 → Hi(Xk−1) → Hi(Xk) → 0,
so this is an isomorphism and inductively Hi(Xk) � Hi(Xk−1) � · · · � Hi(X0) = 0
(for i > 0). If i < k, Hi(X

k) � Hi(X
k+1) � · · · � Hi(X

k+n) for any finite n > 0.
If X is compact then X = XN for N sufficiently large and this proves ii); for a
general, perhaps infinite cell complex X, we complete the argument by: any
simplex σ : ∆n → X has compact image, so a simplex lies in some Xn. Similarly
therefore finite sums of simplexes also lie in some Xn, so if α ∈ Hi(X), ∃n
such that α ∈ Hi(X

n) ֒→ Hi(X). With a little more thought, this says that
for large enough n, Hi(X

n) → Hi(X) is onto. Similarly, a chain between two
cycles representing a relation or identity at the level of homology is a finite
sum of simplices, so actually the finite Xn also see relations between cycles.
So Hi(X

n) → Hi(X) is an isomorphism for n large enough, and then the finite
induction proves ii).

Example: 1. For a sequence (n1, n2, . . . ) ∈ NN, there is a connected cell
complex such that Hi(X) � Zni∀i > 0, namely X =

∨n1

i=1
S1

i
∨
∨n2

j=1
S2

j
∨ . . . . This

was not immediately obvious, and tells us that we will not be able to obtain any
arithmetic restrictions on homology groups for general spaces - though finding
such restrictions for particular types of spaces is still a very important area of
topology. 2. D2 has one 0-cell, one 1-cell and one 2-cell. H⋆ = Z for ⋆ = 0, 0
otherwise. (3.) T2 has one 0-cell, 2 1-cells and one 2-cell; H⋆ = Z for ⋆ = 0, Z2

for ⋆ = 1, Z for ⋆ = 2 and 0 otherwise. 4. The Klein bottle has one 0-cell, two
1-cells and a 2-cell; H⋆ = Z for ⋆ = 0, Z ⊕ Z2 for ⋆ = 1 and 0 otherwise. 5. Σ2

has one 0-cell, four 1-cells and one 2-cell; H⋆ = Z for ⋆ = 0,Z4 for ⋆ = 1,Z for
⋆ = 2 and 0 otherwise. 6. S2 ∨ S2 has one 0-cell and two 2-cells; H⋆ = Z for
⋆ = 0, 2.
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Observe that the rank of Hk(X) is ≤ the number of k-cells. This suggests that
the homology could be induced from some chain complex where this would
hold - but our current chain groups are infinite-dimensional.

Definition: The cellular chain group Ccell
k

(X) = Znk = Hk(Xk,Xk−1) is free

abelian on k-cells of X. The cellular boundary operator dcell : Hk(Xk,Xk−1) →
Hk−1(Xk−1,Xk−2) is defined as the map Hk(Xk,Xk−1)→ Hk(Xk−1)→ Hk−1(Xk−1,Xk−2) =
inclLES ◦∂LES, where inclLES is the inclusion from the LES of the pair (Xk−1,Xk−2)
and ∂LES is the boundary map from the LES of the pair (Xk,Xk−1).

Lemma: dcell ◦ dcell = 0 (so (Ccell
⋆ , dcell) is a valid chain complex): dcell ◦ dcell =

ι ◦ ∂ ◦ ι ◦ ∂, but the central ∂ and ι are successive maps in the LES of the pair
(Xk−1,Xk−2) so compose to 0.

Theorem: Hcell
⋆ (X) � H⋆(X); in particular Hcell

⋆ (X) = H(Ccell
⋆ , dcell) is a topo-

logical invariant of X. Note that Ccell
⋆ (X) is certainly not a topological invariant

- it depends on the skeleton i.e. the choice of cell decomposition.

We have pieces of LES of pairs: 0 → Hk(Xk)
ι
→ Hk(Xk,Xk−1) so ι is an

injection, and Hk+1(Xk+1,Xk)
∂
→ Hk(Xk)→ Hk(Xk+1) � Hk(X)→ 0 � Hk(X

k+1,Xk),

the two �s being by the earlier lemma. So H(X) =
Hk(Xk)

im(∂:Hk+1(Xk+1,Xk)→Hk(XK)
which

composing both with the injection ι = ι(Hk(Xk)

im(dcell)
. This =

ker(∂:Hk(Xk ,Xk−1)→Hk−1(Xk−1))

im(dcell :Ccell
k+1
→Ccell

k
)

=

ker(dcell :Ccell
k
→Ccell

k−1
)

im(dcell :Ccell
k+1
→Ccell

k
)

since ι : Hk−1(Xk−1)→ Hk−1(Xk−1,Xk−2) is injective.

Corollary: If X is a cell complex 1. Hq(X) is a finitely generated abelian
group of range ≤ nq the number of q-cells 2. If Hq(X) , 0, every cell structure on

X has q-cells 3. If X is compact, H⋆(X,Q) is a finite dimensional Q-vector space
(and similarly for any other coefficient ring) 4. If X has only even-dimensional
cells, H⋆(X) � Ccell

⋆ (X) for this cell decomposition.
Remark: 4. is worth noting, since various spaces of importance in algebraic

geometry have such cell structures, e.g. CPn or Grk(Cn) (the Graussmanion of
k-planes in Cn).

12 Time for Change

(Ohio: nice touch)
Recall dcell : Ccell

k
→ CCell

k−1
where the groups are free abelian on k-cells and

(k−1)-cells respectively. Computational recipe: dcell
k

([Dk
α]) =

∑
β dαβ[D

k−1
β ] where

dαβ is the degree of the map of spheres Sk−1 = ∂Dk
α

φ
→ Xk−1 → Xk−1

Xk−2 =
∨
β Sk−1

β →

Sk−1
β , where φ is the attaching map gluing the boundary of the α k-cell to the

(k − 1)-skeleton and the final map is a quotient. Here α indexes k-cells and β
indexes (k − 1)-cells; proving this result is a good exercise in the definitions.

Example: Real projective spaceRPn is the space of unoriented lines inRn+1,

= Sn

±1 . RP2 = S2

±1 = D2∪
equator

±1 = D2∪RP1; more generallyRPn = Dn∪RPn−1 =

· · · = Dn ∪ · · · ∪ D1 ∪ pt, so RPn has a natural cell structure with one cell of
each dimension 0 ≤ ⋆ ≤ n. Ccell

⋆ = 0 → Z → Z → · · · → Z → 0, where
the first Z has degree ⋆ = n and the last ⋆ = 0. What are the maps? In

forming RPk, Dk → RPk−1 (= Xk−1 the (k − 1)-skeleton) is attached via the

map Sk−1 → RPk−1 which is the natural quotient map. This gives a map
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Sk−1 → RPk−1 → RPk−1

RPk−2 = Sk−1, which is 2:1, and if x ∈ Sk−1, it has two preimages

where the map is locally a homeomorphism. The two local maps differ by
the antipodal map, so the degree is 1 + degree(antipodal) = 1 + (−1)k, i.e.
dcell

k
: Z→ Z is multiplication by 1 + (−1)k.

So Ccell
⋆ is, for n even, 0 → Z

2
→ Z → · · · → Z

2
→ Z

0
→ Z → 0, and for n

odd, 0 → Z
0
→ Z

2
→ Z → · · · → Z

2
→ Z

0
→ Z → 0. So H⋆(RPn,Z) = Z for

⋆ = 0 or ⋆ = n and n odd, Z2 for 0 < ⋆ < n and ⋆ odd, and 0 otherwise.
Remark: One can define homology using chain complexes with other coef-

ficient groups than Z; any abelian group works. I.e. we look at C⋆(X,G) =
{
∑

i αiσi : αi ∈ G, σi : ∆⋆ → X}. For example, it can be very useful to
take G = Z

p . For G = Z
2 , there is still the cellular homology, with Ccell

⋆

the Z
2 -vector space generated by ⋆-cells. For RPn the complex decomes

0 → Z
2

0
→ Z

2

0
→ Z

2 → · · · →
Z
2 → 0, since dcell(Dα) =

∑
dαβ(mod 2)[Dβ], so

H⋆(RPn, Z2 ) = Z
2 for 0 ≤ ⋆ ≤ n, 0 otherwise. (This kind of thing will be very

important later, when we are doing cohomology, since we will want to add a
ring structure to our groups. For now, just note that this can be done, it can
change the groups, and this change is sometimes to simplify them).

Definition: A covering space p : X→ B is a fibre bundle with discrete fibres,
i.e. its a map such that ∀b ∈ B∃ open U ∋ b such that p−1(U) =yα∈A Vα and
p |Vα : Vα → U is a homeomorphism (and p is onto).

Examples: 1. R → S1 t 7→ e2πit 2. S1 → S1 z 7→ z2 for S1 viewed as ⊂ C 3.
cutting the surface of genus 3 “down the middle”, so its left and right halves
look like tori with two open tubes protuding from each, then mapping 2:1 by
rotation about a central axis onto a single such surface, and finally identifying
the two cut ends of tubes, resulting in a surface of genus 2. 4. Sn → RPn.

Fact: If σ : Z→ B is a map from a contractible nice (locally path-connected)
space, then σ lifts to X, and the lift is uniquely determined by its value at a

point:

X
∃σ̃
ր ↓ p

Z
σ
→ B

. We are interested in the case where σ is a simplex (hence

the notation).
Lemma: If p : X → B is a double cover, i.e. every point has two preim-

ages, there is a LES · · · → Hr(B, Z2 ) → Hr(X, Z2
p⋆
→ Hr(B, Z2 ) → Hr−1(B, Z2 ) →

Hr−1(X, Z2 )
p⋆
→ . . . : this is the LES associated to a SES of chain complexes given

by 0 → C⋆(B, Z2 ) → C⋆(X, Z2 ) → C⋆(B, Z2 ) → 0, where the first nontrivial map
is σ 7→ σ̃1 + σ̃2 (where the σ̃i are the two lifts of σ, by the lemma) and the other
is τ 7→ p(τ). Note the composite σ 7→ p(σ̃1) + p(σ̃2) = 2σ ≡ 0 since we are
considering coefficients in Z

2 . Surjectivity on the right follows by the fact again
and exactness, then the rest is straightforward.

Remark: We will build this LES another way later, cf Gysin sequences, at
least for Sn → RPn.

Theorem (Borsuk-Ulam): If f : Sn → Sn is odd, f (−x) = − f (x)∀x, then

f has odd degree: f induces a map RPn f
→ RPn, since f is odd. We have:
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0 → Ci(RP
n, Z2 ) → Ci(S

n, Z2 )
p
→ Ci(RP

n, Z2 ) → 0

↓ f ↓ f ↓ f

0 → Ci(RP
n, Z2 ) → Ci(S

n, Z2 )
p
→ Ci(RP

n, Z2 ) → 0

. The squares in

this diagram commute, since p f = f p. In the LES (with all coefficient rings
being Z

2 ), 0 → Hn(RPn) → Hn(Sn) → Hn(RPn) → Hn−1(RPn) → 0 → · · · →
0 → Hi(RP

n) → Hi−1(RPn) → 0 → · · · → H1(RPn) → H0(RPn) → H0(Sn) →
H0(RPn)→ 0, where the 0s in the middle come from Hi(S

n) = 0 if 0 < i < n; the

initial zero is Hn+1(RPn). f , f obviously induce isomorphisms on H0; using

pieces like

0 → Hi(RP
n) → Hi−1(RPn) → 0

↓ f ↓ f
0 → Hi(RP

n) → Hi−1(RPn) → 0

we induct;

for the top case, the second nontrivial map in the LES is multiplication by
2 (i.e. 0), so the first is an isomorphism. So f is an isomorphism on Hn(Sn, Z2 )
and so the degree of f is odd.

Corollary: 1. If g : Sn → Rn is continuous, ∃x ∈ Sn such that g(x) = g(−x)
(e.g. if n = 2, there are always antipodal points on the Earth’s surface at the
same temperature and pressure). 2. Cheese-and-pickle sandwich theorem: if
A1 . . .An are bounded measurable sets in Rn, there exists a hyperplane cutting
each of them into equal volumes (thus we can share the sandwich each getting
even amounts of bread, cheese and pickle).

13 Euler Characteristic

Definition: Let X be a cell complex. 1. The jth Betti number b j(X) = rkQH j(X,Q)

2. The Euler characteristic χ(X) (or e(X) is
∑

j≥0(−1) jb j(X), which makes sense
for X compact. (Similarly for more general spaces; these are the definitions
when they make sense).

Proposition: Let X be a compact cell complex. Thenχ(X) =
∑

j≥0(−1) j(# j-cells);
in particular the RHS is independent of choice of cell decomposition: in fact,
if (C⋆, d) is any chain complex for which each Ci is finitely generated and only
finitely many are nonzero, then

∑
j≥0(−1) jrk(H j(C⋆, d)) =

∑
j≥0(−1) jrk(C j). To

see this, we split up the chain complex into a collection of short exact sequences

0 → ker(dk) =: Zk → Ck
dk
→ im(dk) =: Bk−1 → 0, where C⋆ = · · · → Ck

dk
→

Ck−1
dk−1
→ Ck−2 → . . . and Hk(C⋆) = Zk

Bk+1
. So if Zk = rk(Zk) and bk = rk(Bk), then

rk = rk(Ck) = zk + bk−1, for instance since all the terms in the SES are free (so
non-canonically Ck � Zk ⊕ Bk−1, by choosing a splitting ρ : Bk−1 → Ck such that
dk ◦ ρ = id. So r0 − r1 + r2 − r3 + · · · = z0 − (z1 + b0) + (z2 + b1) − (z3 + b2) + · · · =
(z0 − b0) − (z1 − b1) + · · · = rkH0 − rkH1 + · · · =

∑
j≥0(−1) jrk(H j) (being sloppy

about what happens at the top, but the lecturer assures us that this comes out
in the wash; the reader may check if he likes).

Soχ(X) is often very easy to compute, and sometimes sufficies to distinguish
spaces.

Remark: Later, we’ll see that for M a (closed) manifold, χ(X) is equivalent
data to a distinguished element of H⋆(M). But in general, and for now, we
know nothing about how e.g. maps act on χ.

Examples and properties: 1. χ(Sn) = 2 for n even, 0 for n odd. 2. χ(Σg) =
2−2g 3. χ(A∪B) = χ(A)+χ(B)−χ(A∩B) if X = A∪B is a union of subcomplexes
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(or more generally of open sets).
Aside: χ is the unique homotopy-invariant Z-valued function on cell com-

plexes such that 3. holds and χ(pt) = 1, χ(∅) = 0. Compare with volume (in fact,
there are many possible volume functions, and in some sense it is an accident
that a particular one has come to be known as volume. However, χ is the only
integer-valued one).

4. χ(X× Y) = χ(X)× χ(Y) since X ×Y has a cell complex structure such that
k-cells of X × Y are products (i-cell of X) × ((k − i)-cell of Y). 5. A fibre bundle
π : X → B is a map which is locally trivial, i.e. ∀b ∈ B∃U ∋ b open such

that π−1U
�
→ U × F by a map taking π−1(q)

φq

7→ {q} × F∀q ∈ U; F is the fibre of

the bundle. Examples: S3 h
→ S2 the Hopf map, taking (z1, z2) ∈ S3 ⊂ C2 to

[z1 : Z2] ∈ CP1 is a fibre bundle with fibre S1. A covering space p : X → B is a
fibre bundle with discrete fibres. A vector bundle is a fibre bundle with F � Rn

and the local trivialisations φ being linear on the fibres, φq linear.
3. and 4. imply χ(X) = χ()χ(F). Exercise: if X̃ → X is a d-sheeted cover,

χ(X̃) = dχ(X) (cf the “lifting” results for cells).

Theorem: Let X be a finite cell complex. Then H0(X,Z) �
H j(X,Z)

Torsion⊕Torsion(H j−1(X,Z));

to get H⋆ from H⋆ we “keep the same Z-summands and shift the torsion Z
k

summands up one degree”. E.g. H⋆(Klein) = Z for ⋆ = 0,Z⊕ Z2 for ⋆ = 1, and

0 for ⋆ ≥ 2, so H⋆(Klein) = Z for ⋆ = 0, 1, Z2 for ⋆ = 2, and 0 otherwise.
Remark: The Universal Coefficient Theorem says that this is true for any

space such that H j(X) is fintely generated for each j. We use the stronger

assumption that ∃ finitely generated chain groups e.g. Ccell
⋆ . (This is in some

sense not the right proof for this result; however, we don’t have time for
the homological algebra required for the “good” proof. Therefore, the reader
should not worry about this proof (however, it is of course a perfectly valid,
rigorous proof)). As before, we take the (finitely generated) chain complex
and split the associated SES 0 → Zn → Cn → Bn−1 → 0 (Zn is the group of
cycles, Bn−1 that of boundaries), writing (non-canonically) Cn � Zn ⊕ Kn where
Kn � Bn−1 (so the subscripts record the degree in which we live in the chain
complex). Homology is the quotient: 0 → Bn → Zn → Hn → 0. So the
homology groups are actually the homology groups of a collection of many
very short chain complexes 0 → Kn+1 → Zn → 0 (note: this map has cokernel,
so contributes homology in only one degree, namely n). So it suffices to proove
the theorem for a chain complex of the shap 0 → Za → Zb → 0 (“that’s what
we have after taking bases”).

The Smith normal form theorem says that we can choose aZ-basis such that

the matrix has shap




d1

d2

. . .
dk

0
. . .

0




with d1 | d2, d2 | d3, . . . , dk−1 |

dk. So the map 0 → Za matrix
→ Zb → 0 breaks into subcomplexes of shape

0 → Z(i)
×d
→ Z(i−1) → 0 and 0 → Z(i)

0
→ Z(i−1) → 0 for (i), (i − 1) some

degrees. The cohomology groups are given by dualising these complexes,
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0 ← Z(i)
d
← Z(i−1) ← 0, 0 ← Z(i)

0
← 0. These have cohomology and homology

related as in the theorem.

Digression (Morse theory)

Let M be a shooth closed manifold. Let f : M → R be a function with

non-degenerate critical points, i.e. if in local coordinates (xi) (
∂ f

∂xi
) ≡ 0 (x is

critical) then det(
∂2 f

∂xi∂x j
) , 0 (the reader should check this is independent of the

choice of coordinates). Such a function is called a Morse function, and they
exist in abundence (they are dense in C∞(M,R)). Pick a Riemannian metric
g on M. Then every point of M (other than critical points) lies on a unique
flow-line of f , i.e. a solution of ẋ(t) = ∇ f (x(t)) where ∇ is the gradient wrt
metric g. Let index(p) for p critical be the number of negative eigenvalues of

Hessp( f ) = (
∂2 f

∂xi∂x j
) |p.

Fact (Morse) (Gass’ Law): the subset of M swept out by the gradient flow
lines descending from a critical point of index k form a k-cell (if the metric g is
generic). So M admits the structure of a cell complex (and things will be finite
since M is closed, unless f or g is silly).

Remark: In fact, Morse homology has CMorse
k

(M) = free abelian on index k

critical points of a Morse function and dMorse
k

counting isolated gradient flow
lines. (This is a useful formulation since it can give valid answers for infinite
spaces where other homology theories would give ∞

∞
or similar useless non-

sense). One key use of homology in geometry is to estimate numbers of critical
points of smooth functions.

14 Cup-product

From now on we focus our attention on H⋆(X), which turns out to be a ring.
Definition: Let φ ∈ Ck(X), ψ ∈ Cl(X) be cochains. Then φ ∪ ψ ∈ Ck+l(X), the

cup-product (of φ and ψ), is defined via, for σ : ∆k+l → X, say σ = [v0 . . . vk+l],

(φ ∪ ψ)(σ) := φ([v0 . . . vk]) · ψ([vk . . . vk+l]), where the product on the right hand
side is the ordinary product in Z (or more generally, in the coefficient ring).

Lemma: ∂(φ · ψ) = ∂φ · ψ + (−1)kφ · ∂ψ (the φ · ψ being the cup-product;
we shall generally omit the ∪ and may even simply write it as φψ), where
k = deg(φ): (∂φ · ψ)[v0 . . . vk + l + 1] = (∂φ)([v0 . . . vk+1])ψ([vk+1 . . .vk+l+1]) =∑k+1

i=0 (−1)iφ([v0 . . . v̂i . . . vk+1])ψ([vk+1 . . . vk+l+1]). (−1)k(φ·∂ψ)[v0 . . . vk+l+1] = φ([v0 . . . vk])
∑k+l+1

k (−1)iψ[vk . . . v̂i . . .
Modulo errors introduced by the lecturer, the last term of the first of these re-
sults cancels with the first term of the second, and the rest of the sum gives the

LHS of our result: ∂(φψ)(σ) = (φ ∪ ψ)(
∑k+l+1

i=0 (−1)i[v0 . . . v̂i . . . vk+l+1]).
Corollary: The cup-product descends to cohomology, inducing Hk(X) ∪

Hl(X) → Hk+l(X): the product of cycles is a cycle, and the product with a
boundary is a boundary.

Remarks: 1. f : X → Y induces a map of cohomology rings f⋆ : H⋆(Y) →

H⋆(X). 2. If X is path-connected, H⋆(X) has a unit 1 ∈ H0(X) � Z, the generator
φ ∈ C0(X) takes the value +1 on a point σ : ∆0 → X (in general, H⋆(X,R) is a
unital ring if R has a unit).
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Proposition: The product is graded commutative, φ · ψ = (−1)klψ · φ in
cohomology (note we are now working in the cohomology; φ,ψ now refer to
the equivalence classes in H⋆ they represent, rather than directly to the maps
in C⋆), i.e. H⋆(X) is a graded commutative ring.

Corollary: Therefore, if deg(φ) is odd, φ · φ is a 2-torsion element. E.g. for
the torus (S1)n, we computed that H j(Tn) has rank

(n
j

)
and H⋆ is torsion-free. So

for every φ ∈ H1(Tn) � Zn, φ · φ = 0.
The proof of the above proposition “imitates” the proof of homotopy in-

variance; we use a prism-type operator but this time with “order-reversal of
vertices”, so that the top face is equal to the bottom face but with order of
vertices reversed. Define ρ : Cn(X)→ Cn(X) by [v0 . . . vn] 7→ [vn . . . v0]ǫn, where

ǫn = (−1)
n(n+1)

2 (this is the sign of this permutation of vertices, or the number of
transpositions made). We claim ρ is a chain map, chain homotopic to the iden-
tity (via a prism operator). If we take the claim on trust (ha!) (sic) for a moment,
then we will have ρ⋆φ · ρ⋆ψ(σ) = φ(ǫk · [vk . . . v0])ψ(ǫl[vk+l . . . vk]), ρ⋆(ψφ)(σ) =
ǫk+lψ([vk+l . . .vk])φ([vk . . .v0]) (⋆). The reader may check ǫk+l = (−1)klǫkǫl, so
(⋆) says ǫkǫlρ⋆φρ⋆ψ = ǫk+lρ⋆(ψφ), which implies ρ⋆φ · ρ⋆ψ = (−1)klρ⋆(ψφ), on
chains, so φ · ψ = (−1)klψ · φ on cohomology (since ρ⋆ ≡ id on cohomology).

Claim 1: ρ is a chain map. (∂ρ)(σ) = ǫn

∑
i(−1)iσ |[vn...̂vn−i ...v0], ρ(∂σ) = ρ(

∑
i(−1)iσ |[v0...̂vi ...vn]

) = ǫn−1

∑
i(−1)n−iσ |[vn...̂vn−i...v0] and (the reader should check) ǫn = (−1)nǫn−1.

Thus ∂ρ = ρ∂ and ρ is a chain map.
Claim 2: ρ is chain homotopic to the identity (and hence induces the

identity on H⋆, as we used above): i.e. we will construct P : Cn(X) →
Cn+1(X) such that ∂P + P∂ = ρ − 1. Let π : ∆n × [0, 1] → ∆n be projec-
tion, and let Pσ =

∑
i(−1)iǫn−i(σπ) |[v0...viwn...wi] (these are the same (n + 1)-

simplicies in ∆n × [0, 1] as those used for P in the homotopy invariance proof,
except that we have re-ordered the top. Again, ∂P + P∂ = ρ − 1 will be
the statement that “the boundary of the prism = the prism on the bound-
ary + the top - the base”). ∂Pσ =

∑
j≤i(−1)i(−1) jǫn−i[v0 . . . v̂ j . . . viwn . . .wi] +∑

j≥i(−1)i(−1)i+1+n− jǫn−i[v0 . . .wiwn . . . ŵ j . . .wi]. P∂σ =
∑

i< j(−1)i(−1) jǫn−i−1[v0 . . . viwn . . . ŵ j . . .wi]+∑
i> j(−1)i−1(−1) jǫn−i[v0 . . . v̂ j . . .viwn . . .wi].

Explicitly evaluating these terms would only serve to confuse the lec-
turer, so instead the reader should check the following: a) the j = i terms
in the first sums give ǫn[wn . . .w0] − [v0 . . . vn] +

∑
i>0(ǫn−i)[v0 . . . vi−1wn . . .wi] +∑

i<n(−1)n+i+1ǫn−i[v0 . . . viwn . . .wi+1] and here the last two terms cancel via−ǫn−i =

(−1)n−iǫn+i+1, and b) the terms with j , i in the expression for ∂Pσ give P∂σusing
ǫn−i = (−1)n−iǫn−i−1.

Remarks: Given spaces X,Y we have natural maps πX : X × Y→ X, πY. We
can define a product Hi(X) × H j(Y) → Hi+ j(X × Y) by (c1, c2) 7→ π⋆

X
c1 ∪ π⋆Yc2.

There is a relative cup-product Hi(X)×H j(X,A)→ Hi+ j(X,A) since ψ ∈ C j(X,A)
by definition vanishes on chains lying in A, so (φ · ψ)(σ) = 0 if all of σ lies in A,

since its “back face” - which we “feed into” ψ - does. See the second example
sheet for a more general relative cup-product.

15 Unknown

The first set of examples for which we can compute cohomology rings are
product spaces:

24



Theorem (Kunneth): If X is a cell complex and Y a cell complex such that
H⋆(Y) is finitely generated free (as an abelian group), then H⋆(X×Y) ≃ H⋆(X)⊗
H⋆(Y) so H⋆(X × Y)

⊕
i+ j=n Hi(X) ⊗H j(Y).

Remarks: So bn(X × Y) =
∑

bi(X)bn−i(Y), which refines χ(X ×Y) = χ(X)χ(Y).
Contrast: χ(Z) = χ(Y)χ(B) if Z is a fibre bundle over B with fibre F, but not

H⋆(Z) = H⋆(F)H⋆(B), e.g. S1 → S3 Hopf
→ S2.

Proof of Kunneth: Consider the two associations (X,A) 7→ h⋆(X,A) =
H⋆(X,A)⊗H⋆(Y), k⋆(X,A)(= H⋆(X×Y,A×Y). Cross-product H⋆(X)⊗H⋆(Y)→
H⋆(X × Y) (α, β) 7→ π⋆

1
(α) ∪ π⋆

2
(β) induces a map Φ : H⋆(X,A) ⊗ H⋆(Y) →

H⋆(X ×Y,A×Y) since if φ ∈ Ck(X) vanishes on chains in A, and ψ ∈ Ci(Y), then
φ · ψ ∈ Ck+i(X,Y) will vanish on chains in A × Y. Note also h⋆(pt, φ) ≃ k⋆(pt, φ)
induced by Φ : h⋆ → k⋆. So general theory implies that on all complexes,
h⋆(∗X,A) ≃ k⋆(X,A), provided these are cohomology theory. For k⋆ the proofs
of the axioms carry over; for h⋆, most things are easy. The existence of LES (and
tensoring) is not trivial, but holds because tensoring with a free, finitely gener-
ated thing does preserve exactness (cf: ⊗Z2 does not preserve exact sequences,

e.g. 0→ Z
×2
→ Z and 0→ Z

2

×2
→ Z

2 ).

Corollary: H⋆(S2 × S2) =
Z[x,y]

x2=y2=0
,deg x = deg y = 2 (the degree-4 element is

xy). H⋆(Tn) = H⋆(S1 × · · · × S1) = Λ(x1, . . . , xn), |xi| = 1.
Definition: The cuplength cl(x) = max{N : ∃α1 . . . αn ∈ H⋆(X) such that α1α2 . . . αN ,

0 ∈ H⋆(X)}.
Theorem: LetM be a closed smooth manifold. Any smooth f :M→ R has

> cl(M) critical points.
Remark: Morse theory implies that if critical points are nondegenerate then

there are ≥
∑

j b j(M) critical points.
Remark: If f :M→ R has only two critical points thenM ≃ the sphere.
Proof of theorem: we’ll show the number of critical points is bounded below

by a “category”.
Definition: We say X has category k (LS-category or Lyusternik-Schnirelman)

if k is minimal such that X =
⋃k

j=1 U j with Ui contractible.
Observe: M has finite category.
In example sheet 2 we’ll see ν(X) > cl(X) for ν a category. ν(X) satisfies the

following: to each U ∈ X assign an integer (where U are the minimal number of
contractibles to cover) such that i) A ⊂ X⇒ ∃ open U ⊃ A such that ν(A) = ν(B)
ii) ν(A∪B) ≤ ν(A)+ ν(B) iii) A ⊂ B⇒ ν(A) ≤ ν(B) iv) ν is homotopy invariant v)
ν(∅) = 0, ν(pt) = 1. Any such function from subsets(X)→ Z is called a category.

Take f :M→ R; for c ∈ R letMc = f−1(−∞, c]. Pick a metric onM, then f
defines a gradient flow (of −∇ f ) by homeomorphisms φt :M→M. If c is not
critical, i.e. if f−1(c) contains no critical points, then the flow is nontrivial on
the level set, so ∃t, δ > 0 such that φt(Mc+δ) ⊂Mc−δ. Let c j = sup{c : ν(Mc) < j},
so c1 = min( f ), cν(M) = max( f ). Observe c j is a critical value of f ∀ j.

Claim: c j < c j+1 or f−1(c j) contains infinitely many critical points. Note a
finite set in a manifold always lies in an open set U of category 1. Suppose
f (c j) has < ∞ critical points. ConsidreMc j+δ ≤ ν(Mc j+δ − U) + 1 ≤ ν(Mc j−δ) + 1

since φt(Mc j+δ − U) ⊂ Mc j−δ. But ν(Mc j−δ) < j by the definition of c j, so
c j+1 ≥ c j + δ > c j; this clearly suffices.

Example: cl(Tn) = n (if x1, . . . , xn are generators of degree 1 cohomology
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coming from factors, then x1∧· · ·∧xn generates Hn(Tn) ≃ Z). So any f : Tn → R

has ≥ (nH) critical points (since the no. of critical points is ≥ the category > the
cup length).

16 Vector Bundles

Recall a vector bundle E → X is a fibre bundle with linear fibres and with
fibrewise-linear local trivialisations, i.e. a family {Ex}x∈X of real vector spaces
paramaterised by X and a topology on

⋃
x∈X Ex = E such that ∀x ∈ X∃ open

U ∋ x such that E |U� U ×Rn,Ey 7→ {y} ×R
n is linear isomorphism. A section

S : X → E is a map such that π ◦ S = idX. The zero-section is the map
x 7→ 0 ∈ Ex∀x. So if X ≡ the 0-section is the real line and E the plane, with each
Ex being a vertical line, then the plot of a smooth function is a section, but a line
which “curves back on itself” crossing one of the vertical lines more than once
is not.

Examples: 1. Let X = GrkR
n the set of k-dimension real subspaces in Rn

(Gr1(Rn) = RPn−1). There’s a tautological vector bundle E → X where fibre at

x is the subspaces 〈x〉 ⊂ Rn, so E = {(x, v) : v ∈ 〈x〉} ⊂ X × Rn. If 〈, 〉 is an inner
product on Rn, for x ∈ X, U := {y ∈ X : Ey ∩ E⊥x = {0}} (where ⊥ is orthogonal
subspace wrt this inner product), then E |U→ U × Ex by (y, ξ) 7→ (y,pr

〈x〉ξ),
where pr : Ey = 〈y〉 → Ex = 〈x〉 is orthogonal projection. This map is a linear
isomorphism on y ∈ U.

2. If M is a smooth manifold, the tangent bundle TM is a naturally associated

vector bundle over M. If M ⊂ RN, TM ⊂ RN × RN can be defined as {(m, v) :
m ∈M, v ∈ TmM}where TmM is the vector subspace ofRN generated by tangent
vectors to curves in M at m: for γ : (−ǫ, ǫ) → M ⊂ RN with 0 7→ m, the
vector γ′(0) ∈ RN. So TmM is 〈γ′(0) : γ varies〉. This is a vector space of
dimension dimRM; it is not obvious that this depends only on M and not
on its embedding in RN, but this is in fact true. Example: M = Sn ⊂ Rn+1,
TM = {(x, v) : ‖x‖ = 1, 〈v, x〉 = 0} ⊂ Rn+1 ×Rn+1.

3. If M is a manifold and Y ⊂ M a smooth submanifold, say closed, the

normal bundle ν Y
M

has fibre at y ∈ Y
TyM

TyY . If M has a metric we could (non-

canonically) identify (νM
Y

)y = (TyY)⊥ ⊂ TyM. It is a basic fact of differential

topology that TM, ν Y
M

are vector bundles.

Our aim is to associate cohomology classes to submanifolds, at least in nice
cases.

Definition: the vector bundle E is oriented if for each x ∈ X we have a
generator ǫx ∈ Hn(Ex,Ex\0) � Z (where n = rk(E) = dimR(Ex)) and these choices

are coherent, in the sense that if U is a trivialising open set, for E |X
�
→ U × Ex

by Ey 7→ {y} × Ex (which is linear so has Ey \ 0 → Ex \ 0), the induced map
Hn(Ex,Ex \ 0)→ Hn(Ey,Ey \ 0) takes ǫx → ǫy.

Definition: A smooth manifold M is oriented if TM is oriented. A subman-
ifold Y ⊂M is co-oriented if ν Y

M
is oriented.

Excercise: If M and Y are oriented then Y is co-oriented; we will in fact
prove everything one needs to show this, but will not come back and point out
that we have done so.

Further fact from differential topology: Tubular neighbourhood theorem:
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if M is a smooth manifold, Y ⊂ M a smooth closed submanifold, then ∃ a

diffeomorphism of an open neighbourhood UY of Y in M UY → ν Y
M

Y
id
7→

0 − section. Moreover, if Y,Z ⊂ M are smooth closed submanifolds meeting
transversely (∀x ∈ Y ∩ Z,TxY + TxZ = TxM, which by dimension count implies

(ν Y∩Z
M

)x = (ν Y
M

)x⊕(ν Z
M

)x) then∃ tubular neighbourhoods such that UY∩Z � UY∩UZ

such that (UY∩Z)x � (UY)x × (UZ)x∀x ∈ Y ∩ Z.

Theorem (Thom isomorphism theorem): Let X be any space and E
π
→ X

an oriented vector bundle of rank n (dim Ex = n). Let E♯ = E \ 0 − section. i)
Hk(E,E♯) = 0 for k < n ii) ∃ a unique class UE ∈ Hn(E,E♯) such that UE |Ex

=

ǫx∀x ∈ X, where Ue |Ex
means the pullback under inclusion, i.e. restriction, iii)

α 7→ π⋆α · UE is an isomorphism Hk(X) → Hk+n(E,E♯)∀k. This UE is the Thom
class.

Under the map Hn(E,E♯)→ Hn(E)
�
→ Hn(X) (this last an isomorphism since

E ≃ X via linear retraction in fibres - the 0-section ⊂ E is a deformation retract),
UE → eE ∈ Hn(X), the Euler class of E.

Now let Y ⊂ M be a closed oriented submanifold of a closed oriented
manifold (so Y is co-oriented; in fact this is all we shall use). Then under
Hk(ν, ν♯) � Hk(UY,UY\Y) by the tubular neighbourhood theorem,� Hk(M,M\Y)
by excising M \ UY from M,→ Hk(M) by the LES of the pair, Uν Y

M

→ ǫY. ǫY is

the cohomology class associated to the submanifold Y.

Theorem: If Y,Z are closed oriented submanifolds of an oriented manifold M
and if Y,Z intersect transversely, then ǫY∩Z = ǫY·ǫZ where this is the cup-product,
i.e. “cup-product reflects transverse intersection”: the Thom isomorphism
theorem says UE is unique, so it’s represented by any cocycle c (taking E =
νY) such that i) c vanishes on M \ UY and ǫY ∈ Hk(M) and ii) c |(UY)y

is the

distinguished generator ǫY ∈ Hcodim(νy, ν
♯
y). Now UY∩Z

�
→ UY ∩ UZ and ǫY · ǫZ

does vanish on M\UY∩Z, and it does restrict properly since (νY∩Z)x = (νY)x⊕(νZ)x

and Hk+l(Rk+l,Rk+l \ 0)
cross-product
← Hk(Rk,Rk \ 0) ⊗ Hl(Rl,Rl \ 0) (where k =

rk(νY), l = rk(νZ) and so k+ l = rk(νY∩Z)); this cross-product is an isomorphism,

so indeed ǫY · ǫZ is a fibrewise generator for Hk+l(νY∩Z, ν
♯
Y∩Z

).

17 Orientations

Recall: A vector bundle E→ X is oriented if we can coherently choose genera-
tors ǫx ∈ Hn(Ex,Ex \ 0)∀x ∈ X where n = rkE = dimR Ex.

Examples and remarks: 1. In linear algebra, an orientation of a vector space
V is a choice of ordered basis {v1, . . . , vn} for V; two choices define the same
orientation if the change of basis matrix from one to the other has determinant
> 0; up to equivalence there are two possible orientations.

A choice of basis for V defines a linear map V → Rn (which we “keep
at home in a box”; we fix one orientation on it for all time). For a fixed
generator ǫn of Hn(Rn,Rn \ 0) the isomorphism V → Rn yields an isomorphism
Hn(V,V \ 0) � Hn(Rn,Rn \ 0) and we take ǫV to be the element corresponding
to ǫn.

Corollary: A complex vector space is canonically oriented: we choose a

(complex) basis for VC and take real and imaginary parts to give a basis of VR.
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Different choices are related by elements of GLnC ≤ GL2nR, and the determinant
of all of these is ¿0. So a complex vector bundle (e.g. the tangent bundle of a
smooth complex variety) carries a canonical orientation.

2. Example: If M is a simply connected manifold, M is orientable i.e.
TM admits an orientation (There are then two such, and in general neither is
distinguished). Sketch of the proof: consider {(m, ǫm) : m ∈M, ǫm a generator ∈
Hn(TmM,TmM\0)} =: M′. There are two such generators corresponding to each
point, as we always have Hn(. . . ) � Z (non-canonically). The natural topology
on M′ is such that the 2 : 1 map M′ → M is a covering map (i.e. open sets are
defined to be each of the two preimages of each open set in M). An orientation
of M is a section of the cover, i.e. a map M → M′ such that the composite

M→ M′
π
→ M′ = id. If π1(M) = 0 there are no nontrivial covers (i.e. all covers

are M × F for fibre F) so M′ = M y M and there are two sections. (This result
tells us slightly more; M is oriented if there is no [surjective?] homomorphism
π1(M)→ Z).

3. If Y ⊂M is a closed smooth submanifold, orientations of Y and M define
a co-orientation of Y: at each y ∈ Y, TyY ⊕ (ν Y

M
)Y � TyM. Such a splitting is

given by choosing a metric on M, which is a contractible choice (i.e. the space
of such metrics is contractible - so we have still made “essentially no” choices).
We declare that an ordered basis of (ν Y

M
)y to define the positive orientation if

[the ordered basis formed by some fixed ordered basis of TyY followed by this
ordered basis] is in the equivalence class of a positive ordered basis of TyM (So
in fact, orientations of any two of these three bundles define an orientation of
the third).

Remark: Hk(TyY,TyY \ 0)⊗Hl((ν Y
M

)y, (ν Y
M

)y \ 0)
cross product
→ Hk+l(TyM,TyM \ 0)

For ǫy ∈ the last of these [and some fixed ǫ in the first], there is a unique
generator ǫν of the second such that ǫ ⊗ ǫν 7→ ǫy (and not −ǫy).

4. If Y,Z ⊂ M are closed submanifolds and all three are oriented and
Y and Z intersect transversely (notation: Y ⋔ Z) then an ordering of (Y,Z)
defines a co-orientation on Y ∩ Z: νY∩Z � νY ⊕ νZ, where we use an ordering of
(Y,Z) on the RHS. We know the “positive” equivalence class of bases in both
of the right hand operands, and this defines the “positive” equivalence class
of ordered bases on νY∩Z. Observe: if we change the order of Y,Z and view
νY∩Z � νZ⊕νY, then an ordered basis on the LHS has changed from the previous
situation by a factor of (−1)rkνY·rkνZ = (−1)codim(Y)codim(Z), since we have done
that many transpositions in (v

y

1
, . . . , vy

n,w
z
1
, . . . ,wz

k
) 7→ (wz

1
, . . . ,wz

k
, vy

1
, . . . , vy

n). Cf

ǫY∩Z = ǫY · ǫZ = (−1)|ǫY|·|ǫZ |ǫZ · ǫY, so our formula for ǫY∩Z in the previous lecture
is consistent.

5. Observe that the tubular neighbourhood theorem applied to a point

p ∈ M says TpM
�
→ U ∋ p an open neighbourhood of p (an explicit map is

given by the exponential map of a metric - ignore this if you haven’t done
differential geometry). Then Hn(TpM,TpM\0) � Hn(U,U\0), which by excision
is � Hn(M,M \ p). So an orientation on M is a coherent choice of generators for
Hn(M,M\p) as p varies M, coherent meaning constant in local open sets relative
to homeomorphisms to Rn and preserved by transition maps of an atlas. This
makes good sense for a general topological manifold, not necessarily smooth
(we are used to thinking of e.g. the cube which although not smooth can be
smoothly deformed into the sphere. But as may be seen in the 4-manifolds
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course next term, there are 4-manifolds which cannot be made smooth by any
such deformations).

Example: H⋆(CPn,Z) = Z[x]
(xn+1)

for |x| = deg x = 2 (recall Hi(CPn) = Z

for i = 0, 2, . . . , 2n, 0 otherwise. Pf: CPn is oriented and the submanifolds
CPi ⊂ CPn are oriented (since they are all complex manifolds). Moreover,

generically, the submanifoldsCPi andCPn−i meet transversely in a single point
(i.e. transverse linear subspaces ofCn+1 meet only at the origin, andCi+1,Cn−i+1

generically meet in a complex line). But [then] ǫCPi ·ǫCPn−i = ǫpt ∈ Hn(CPn) � Z.
Recall ǫpt came from the map H2n(CPn,CPn \ pt) = Z → H2n(CPn) = Z in the

LES; the next part of this LES is→ H2n(Pn \ pt), which = 0 as CPn \ pt � CPn−1.
So the map Z→ Z was a surjection so an isomorphism, so ǫpt really is the
generator of H2n(CPn) � Z; in particular it is certainly , 0. So ǫ

CP
i , 0∀i,

since ǫCPi · ǫCPn−i , 0. Now using the fact that CPn−i ∩ CPn−1 = CPn−2 (for two
general copies of Pn−1 in Pn) iteratively, we see that if x = ǫCPn−1 ∈ H2(CPn),
then xi = ǫCPn−i and have result.

Remark: The power of the argument here is that ǫpt , 0⇒ ǫX , 0 for many
X ⊂ M; specifically if ∃Y such that X ⋔ Y = pt. In fact, for all our examples

(spheres, surfaces, RPi, products), there is a cell decomposition with a unique
top dimensional cell, so M =Mn−1∪Dn where Mn−1 is the (n−1)-skeleton, glued
via ∂Dn →Mn−1. In that case, M \pt ≃Mn−1, so then ǫpt , 0; in fact it generates
a Z-summand (assuming M orientable). In fact, M \ pt ≃ (n − 1)-dimensional
cell complex ∀ closed smooth M, but the proof of this is beyond this course,
requiring e.g. Morse theory.

Example: H⋆(S2 × S4;Z) =
Z[x,y]

x2=y2=0
, |x| = 2, |y| = 4. CP3

�≃S2 × S4 even though

both are closed, simply connected, orientable and have the same Hi(X,Z)∀i.

Why? We just saw the natural cup-product map H2(CP3)⊗H2(CP3)→ H4(CP3)
is x ⊗ x 7→ x2, non-zero, but H2(S2 × S4) ⊗ H2(S2 × S4) → H4(S2 × S4) will have
ǫS4 ⊗ ǫS4 7→ ǫS4∩S4 . But, by viewing S2 × S4 as a “square” with S2 along the
side and S4 along the bottom, we see that two general copies of S4 meeting

transversely do not intersect at all, so this is ǫ∅ = 0. So H⋆(CP3) � H⋆(S2 × S4)
as rings.

18 Thom Isomorphism

Theorem: Let E
π
→ X be an oriented vector bundle of (real) rank n. Recall

E♯ := E\ the 0-section. i) Hk(E,E♯) = 0∀k < n ii) ∃! class UE ∈ Hn(E,E♯) such that
UE |Ex

= ǫx the orientation class of the fibre ∀x ∈ X (then UE is the Thom class

of E) iii) α 7→ π⋆α · UE Hk(X)
·UE
→ Hk+n(E,E♯) is an isomorphism ∀k: we’ll only

prove the special case where X has a finite trivialising cover for E (this is always
true if X is compact, or if X is a manifold “of finite type”, i.e. one with a finite
trivialising cover). Induct on the number of sets in such a cover: the base
case is where E → X is a product E = X × Rn. The Künneth theorem gives

H⋆(X) ⊗ H⋆(Y)
�
→ H⋆(X × Y,X × Z). Take (Y,Z) = (Rn,Rn \ 0), then all three

results are straightforward.

Inductive step: look at the LES for the pair (E,E♯): 0→ Hn(E,E♯)→ Hn(E |A
,E♯ |A) ⊕ Hn(E |B,E♯ |B) → Hn(E |A∩B,E♯ |A∩B) → . . . , where A,B are sets in
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the base covered by < k trivialising sets and A ∪ B is covered by k such. E |U

is the restriction, i.e. for U
i
֒→ X, i⋆E → U is the bundle over U with fibre

(i⋆E)x := Ei(x)∀x ∈ U. (Remark: this “pullback bundle” makes sense for any
map f : Y → X, not just inclusion of an open set). The first 0 is the group

Hn−1(E |A∩B,E♯ |A∩B, which =0 by the inductive hypothesis.
By induction we know UE|A ,UE|B ,UE|A∩B

all exist. By uniqueness of UE|A∩B
,

each of UE|A and UE|B do restrict to UE|A∩B
under the inclusions A ∩ B ֒→ A,A ∩

B ֒→ B. So (UE|A ,UE|B) 7→ 0 ∈ Hn(E |A∩B,E♯ |A∩B) in the LES. So by exactness,

∃UE ∈ Hn(E,E♯) such that UE 7→ (UE|A ,UE|B), unique by injectivity of the map

Hn(E,E♯)→ Hn(E |A,E♯ |A) ⊕Hn(E |B,E♯ |B).
At this stave we have ii) from the statement; for i), use the LES for k < n. We

want iii): look at

Hk+n(E |A,E♯ |A) ⊕Hk+n(E |B,E♯ |B) → Hk+n(E |A∩B,E♯ |A∩B) → Hk+n+1(E,E♯) → Hk+n+1(E |A,E♯ |A) ⊕H
↑ ⋆ ↑ ×UE|A∩B

† ↑ ×UE ↑ ×UE|A ⊕ ×

Hk(A) ⊕Hk(B) → Hk(A ∩ B) → Hk+1(A ∪ B) → Hk+1(A) ⊕H

. The vertical maps are as in the statement of the theorem (in part iii)); the first
two and fourth (and fifth, not present in the diagram due to space reasons) are
isomorphisms by induction, so if the diagram commutes we are done by the
5-lemma.

Commutativity of the square⋆, or any of the equivalent unlabelled squares,
is just that cup-product is respected by maps of spaces. But we need to check
commutativity of † (note the Mayer-Vietoris (boundary) map cannot be com-
patible with cup-product in a naive way, because cup product followed by
boundary acting on two simplicies would have degree the sum of their degrees
- 1, while boundary followed by cup product would have degree the sum of
their degrees - 2).

Let φ be a cocycle representing UE (on X = A ∪ B). The restrictions of φ
to E |A,E |B,E |A∩B are cocycles representing the relevant Thom classes. Let
[c] ∈ Hk(A ∩ B). Then dMV(c) is obtained as follows: write c = c1 − c2 for
c1 ∈ Ck(A), c2 ∈ Ck(B); these are cochains rather than cocycles. Then [a] :=
dMV(c) ∈ Hk+1(A ∪ B) is given by patching ∂c1, ∂c2 where ∂ is the differential in
the singular cochain complex C⋆. So dMV(π⋆c · UE|A∩B

) is obtained by patching
∂(π⋆c1 · φ |E|A ) and ∂(π⋆c2 · φ |E|B). Since φ |• is a cocycle, use the Leibnitz
rule: these are ∂(π⋆c1) · φ |E|A and ∂(π⋆c2) · φ |E|B and ∂π⋆ = π⋆∂: i.e. patching
π⋆(∂c1) · φ |E|A and π⋆(∂c2)φ |E|B gives exactly such a patching of chains.

Remark: Recall the Euler class eE = uE |X∈ Hn(X,Z), where n = rkR(E). This
satisfies the following naturality property: for f : Y → X a map of spaces and

E
π
→ X a vector bundle, f⋆E→ Y the pullback bundle has e f⋆E = f⋆eE ∈ HrkE(Y).

A rule E 7→ c(E) ∈ H⋆(X) for bundles E → X with this property is called a
characteristic class; we shall see another one in the 4-manifolds course.

Example: Gysin sequence:

Hk+n(E,E♯) → Hk+n(E) → Hk+n(E♯) → Hk+n+1(E,E♯) → . . .
↑ Thom ↑� homotopy ↑� ↑ Thom

Hk(x) → Hk+n(X) → Hk+n(S(E)) → Hk+1(X) → . . .

, where S(E) is the fibre bundle over Xwith fibre Sn+1, made of the unit spheres in
fibres of E (wrt some metric, or alternatively the [spaces of] lines in fibres of E).
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The lower line · · · → Hk(X) → Hk+n(X) → Hk+n(S(E)) → Hk+1(X) → . . . (where
the first map here is cup-product with the Euler class eE) is the Gysin sequence.

This gives us another way to find out information on H⋆(X) as a ring, since the

cup-product enters the exact sequence - this is the first time we’ve seen this (Of
course this is only useful if we can understand H⋆(S(E)), but we often can).

For instance, if E → CPn is the tautological line bundle (a complex rank 1
bundle, so a real rank 2 bundle) then S(E) = S2n+1 ⊂ Cn+1 the sphere. Similarly,
the tautological real line bundle over RPn has S(E) = Sn. On example sheet
2 we will see that H⋆(CPn;Z),H⋆(RPn; Z2 ) can be obtained from the Gysin
sequence (This is “strictly simpler” than our earlier computation, in that here
we are using only classical algebraic topology, wheras before we needed some
differential topology).

Remark: If E is a real line bundle, the Gysin sequence becomes (with Z
2

coefficients) the sequence we saw before for double covers of spaces.

19 Compact Supports

In studying cohomology of manifolds, we observe empirically:
Theorem: Let M be a closed connected manifold of dimension n (over R),

then i) Hn(M,Z) � Z iffM is orientable, ii) Hn(M,Z � Z2 iffM not orientable (cf
Sn, RPn, σg, Klein bottle, products etc.)

Remark: This is not true for [general] n-dimensional cell complexes, e.g.
Hn(Sn ∨ Sn) � Z ⊕Z.

As with the Thom isomorphism, we might hope to prove this inductively
over sets in an open cover over M. But Hn(Rn) = 0, so the base case fails.
Our solution is to introduce a theory where this is not so: cohomology with
compact supports (but note that this will not satisfy the axioms of a generalized
homology theory; nevertheless it is useful).

Definition: The cochain complex of singular cochains with compat supports

C⋆ct(X) has groups Ck
ct(X) = {φ ∈ Ck(X) : ∃ compact K = Kφ such that φ |X\K≡ 0}

(i.e. φ(σ) = 0 for σ : ∆k → X with image(σ) ⊂ X \ K). The usual ∂-operator
preserves C⋆ct(X) (∂φ |X\K= 0 if φ |X\K= 0).

The cohomology groups of this complex, H⋆
ct(X), are the “cohomology with

compact supports”.
Remarks: 1. If X is compact, C⋆ct = C⋆ (by taking K = X) 2. Usually, we’d

say a function has compact supports if supp( f ) = {x : f (x) , 0} is compact. The
naive analogue of this would be: φ has compact support if φ(σ) , 0 only for σ
landing in a compact set Kφ. But e.g. if σ ∈ C0(R) vanishes on simplices not
lying in {0} ∈ R, then ∂φ |[0,N]= φ(0)−φ(N) , 0∀N, so this definition would not
be respected by the boundary operator. (By contrast, in de Rham cohomology
theory Ωk

ct(M) = {ω ∈ ΛkT⋆M : supp(ω) is compact} is preserved by ddR).
Alternative definition for C⋆ct,H

⋆
ct: H⋆

ct(X) = lim
−−→K compact, ordered by inclusion

H⋆(X,X\

K). If K1 ⊂ K2 are compact sets in X, X\K1 ⊃ X\K2 and there is a natural map of
pairs (X,X\K2)→ (X,X\K1), so there is a pullback H⋆(X,X\K1)→ H⋆(X,X\K2).
Now if I have many compact sets K1 ⊂ K2 ⊂ . . . or {K}a∈A, A has a partial or-
der corresponding to inclusions of Ka, {H⋆(X,X \ Ka) → H⋆(X,X \ Kb) if a < b},
H⋆(X,X \ K1)→ H⋆(X,X \ K2)→ . . . .
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Definition: Let {Ga}a∈A be a collection of abelian groups indexed by a partially
ordered set A¿ Suppose ∀a, b ∈ A∃c ∈ A sucht that a < c, b < c. Suppase I
have group homomorphisms ρab : Ga → Gb whenever a < b, satisfying the

composition law that if a < b < c then ρbc ◦ ρab = ρac. Then define lim
−−→

Ga =
yaGa

∼

where x ∈ Ga ∼ ρab(x) for a < b, =
⊕

Ga

〈x−ρab(x)〉a<b
. So two elements in a Ga are

identified if they become “eventually equal”.
For x ∈ Ga, y ∈ Gb, ∃c such that a < c, b < c, and then x ∼ ρac(x) ∈ Gc, y ∼

ρbc(y) ∈ Gc. Define [x] + [y] = [ρac(x) + ρbc(y)].
Exercise: The definition of C⋆ct(X) given originally, at the level of groups,

exactly had Ck
ct =

⋃
K⊂X compact Ck(X,X \ K). So the original definition of H⋆

ct

agrees with this direct definition (In practice, this is the more useful definition).
Note: If in the set A there’s a subset A′ such that every a ∈ A is < some

a′ ∈ A′, then lim
−−→A

Ga = lim
−−→A′

Ga, since everything on the LHS gets identified

with something on the RHS.
Example: H⋆

ct(R
n) = Z for ⋆ = n, 0 otherwise: compact sets in Rn can be

ugly, but any one lies in some BR(0) the closed ball of radius R. So we want:
lim
−−→R

H⋆(Rn,Rn \ BR(0)), but by homotopy invariance H⋆(|mathbbRn,Rn \ BR) =

H⋆(Rn,Rn \ 0) = H⋆(Sn−1), so we get lim
−−→
Z, with all the maps in the sequence

of groups being the identity (if ⋆ = n), 0 otherwise.
Remark: H⋆

ct(pt) = H⋆(pt) = Z for ⋆ = 0, 0 otherwise, so H⋆
ct is not a

homotopy invariant. It’s not even functorial under general maps of spaces: for

f : X
cts
→ Y there is no guarantee of anything H⋆

ct ⇆ H⋆
ct(Y). But, obviously, H⋆

ct is
a homeomorphism invariant. Suppose i : U ֒→ X is inclusion of an open set (or
a homeomorphism onto an open set). Then there is a map, extension by zero,

from H⋆
ct(U)→ H⋆

ct(X). If K ⊂ U is compact, then we can always write K = K′∩U
for K′ ⊂ X compact. If K1 ⊂ K2 ⊂ U andKi = K′i∩U for Ki ∈ X, excision of X \U
shows H⋆(X,X \ K′

i
) � H⋆(U,U \ Ki). Now vary over all K ⊂ U and all K′ ⊂ X,

and there are more compact sets in X than in U, so we have the natural map
lim
−−→K

H⋆(U,U \ K)→ lim
−−→K′

H⋆(X,X \ K′). This is extension by zero.

Example: If U ֒→ Rn is the inclusion of an open disk, then i⋆ : H⋆
ct(U) →

H⋆
ct(R

n) is an isomorphism.
Remark: If M is a manifold, we observed that M is orientable iff we can co-

herently choose generators ǫU (for small open sets U in M). Again equivalently,
we could ask for generators of Hn

ct(U) for open disks U ⊂M; Hn
ct � Hn(U,U \pt)

by our computation, � Hn(M,M \ p) by excision.
We should now prove an M-V theorem for this theorem, but doing so is

fiddly; we may return to it later.

20 Cohomology of Manifolds

Recgall H⋆
ct(X) = lim

−−→K⊂X compact
H⋆(X,X \ K). This is functiorial (covariantly,

which is unusual for cohomology) under open embeddings: U ֒→ V ⇒

H⋆
ct(U)→ H⋆

ct(V).
Proposition: If X = U∪V is a union of two open sets, there is a M-V sequence

· · · → Hi−1
ct (X)→ Hi

ct(U ∩V)→ Hi
ct(U)⊕Hi

ct(V)→ Hi
ct(X)→ Hi+1

ct (U∩V)→ . . . ;
we’ll prove this later.
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Remark: Note that the maps here are covariant maps of spaces as in ho-
mology, but the boundary map raises the degree, as in cohomology. So this
sequence does not look the same as either of those.

Recall also that in this language, M (not necessarily smooth) is oriented if
M admits a coherent system of generators ǫU ∈ Hn

ct(U) for small open disks
U ⊂M. Exercise: Reformulate this in terms of the existence of an “orientation-
preserving” atlas.

Theorem: Let M be a connected manifold. a) If M is oriented, there is a

unique map
∫

M
: Hn

ct(M)
�
→ Z such that for U

i
֒→ M an open disk,

∫
M

i⋆ǫU = 1.

b) If M is not orientable, Hn
ct(M) � Z2 . Although the theorem is true in its stated

generality, we’ll only prove the case where M has finite type i.e. admits a cover

by finitely many sets Ui such that all Ui are disks and the iterated intersections
of Ui are disks or empty (e.g. this is true for M closed). We’ll induct on “type k”,
i.e. the minimal number of such sets needed to cover. The base step M = Rn:
Hn

ct(R
n) � Z, and a choice of generator ǫRn proves the theorem in this case.

Choose a nice cover M = U1 ∪ · · · ∪ UN such that WSi = U1 ∪ · · · ∪ Ui is
connected ∀i. Suppose Wi is orientable and Wi ∩ Ui+1 is connected, then we
have MV: Hn

ct(Wi ∩ Ui+1) → Hn
ct(Wi) ⊕ Hn

ct(Ui+1) → Hn
ct(Wi+1) → 0 (the 0 since

the M-V sequence immediately implies: if M is a manifold of finite type, then
Hi

ct(M) is non-zero for at most 0 ≤ i ≤ n). By induction, and assuming Wi is
orientable and of lower type than M, Wi+1 and Ui+1 � R

n, so the start of this
sequence is Z→ Z ⊕Z.

Let V ֒→ Wi ∩ Vi+1 be an embedding of an open disk (which exists by
connectedness). Then Hn

ct(V) → Hn
ct(Ui+1) is an isomorphism, so Hn

ct(Wi ∩

Ui+1)→ Hn
ct(Ui+1) is an isomorphism (the above map factors through the LHS),

so Hn
ct(Wi) → Hn

ct(Wi+1) is an isomorphism by exactness of the M-V sequence,
so Hn

ct(Wi+1) � Z.

We define
∫

Wi+1
i⋆ǫV = 1, where V ⊂ Ui+1 is oriented via Ui+1 (This does

define
∫

Wi+1
: Hn

ct(Wi+1)→ Z coherently for all open disks in Wi+1.

More generally: For Wi orientable and Wi ∩Ui+1 = V1 y · · · y Vp a union of
disks (so each Vi is connected orientable), we have MV: Hn

ct(V1)⊕· · ·⊕Hn
ct(Vp)→

Hn
ct(Wi) ⊕Hn

ct(Ui+1)→ Hn
ct(Wi+1)→ 0, and all the groups in the first and second

term are Z. Again we embed open disks U ֒→ V j ֒→ Ui+1. Then under the
extension-by-zero maps (0, . . . , 0, 1, 0, . . . , 0) 7→ (±1, 1), where we orient V j (the
1 being in the jth place) via its inclusion in Ui+1, there are two cases:

If all the images of the (0, . . . , 0, 1, 0, . . . , 0) are equal, wlog (1, 1), then Hn
ct(Wi+1) �

Z by exactess of the sequence, and again we can orient Wi+1 by declaring that∫
Wi+1

i⋆ǫU = 1 for the small disks as before. If this always happens (i.e. is the

case ∀i), then we get case a) of the theorem.
Otherwise, there is some i such that Wi∩Ui+1 is disconnected, and images of

the map include both (±1, 1). Then by exactness Hn
ct(Wi+1 �

Z⊕Z
〈(1,1),(−1,1)〉 �

Z
2 . Now

if j > i+ 1 and W j+1 =W j ∪U j+1, where inductively Hn
ct(W j) �

Z
2 ,W j ∩U j+1 =y

Vα, the sequence
⊕

α Hn
ct(Vα) → Hn

ctW j) ⊕ Hn
ct(U j+1) → Hn

ct(W j + 1) → 0 is
⊕

αZ
ψ
→ Z

2 ⊕ Z→? → 0. Inductively, the map Vα ֒→ W j induces a surjection

Hn
ct(Vα)→ Hn

ct(W j), since we also got this from exactness at the previous stage.
So orienting the Vα ֒→ U j+1 as usual, all generators on the LHS map by ψ to

(1, 1), which by exactness implies Hn
ct(W j+1) � Z2 , proving b).
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Remark: For either manifolds or vector bundles, this means everything is
orientable if we take Z2 coefficients.

Corollary: For oriented closed manifolds, maps have a well-defined degree,
i.e. their action on Hn(M,Z) � Z.

Corollary: Let Mn,Yn−k be closed oriented manifolds, Y ⊂M of codimension

k. Let α ∈ Hn−k(Y). Then
∫

M
α · ǫY =

∫
Y
α |Y, i.e. we may think of ǫY as a “delta-

function along Y”: the LHS is
∫

UY
φ⋆α · Uν Y

M

where UY � ν Y
M

φ
֒→ M, Uν is the

Thom class (the equality follows from the definition/characterization of ǫY). If
ι : Y ֒→M, π : νY ֒→ Y then ι ◦ π ≃ φ (tubular neighbourhood theorem). So we

must prove
∫

UY
π⋆β ·Uν =

∫
Y
β for β ∈ Hn−k(Y) � Z. If V

j
֒→ Y is the inclusion

of a disk, Hn
ct(Y) is generated by j⋆ǫV, so it suffices to prove the result for this

β. If V is small, ν Y
M
|V� V × Rk will be trivial. Then Uν Y

M

|V×Rk� pr⋆
2
ǫk by the

definition of the Thom class, where ǫk generates Hk
ct(R

k). So we have reduced

to Hk
ct(R

k)(⊗Hn−k
ct (Rn−k)

�
→ Hn

ct(R
n), which we know.

21 Cohomology of Manifolds II

Recall we used a M-V sequence for H⋆
ct: if X = U∪V is a union of open sets, we

have · · · → Hi
ct(U ∩ V)→ Hi

ct(U) ⊕Hi
ct(V)→ Hi

ct(X)→ Hi+1
ct (U ∩ V)→ . . . . The

first step in proving this is to establish a relative M-V sequence:
Lemma: Let (X,Y) = (A ∪ B,C ∪ D) with C ⊂ A,D ⊂ B. Then ∃ a LES

· · · → Hn(X,Y) → Hn(A,C) ⊕Hn(B,D)→ Hn(A ∩ B,C ∩D)→ Hn+1(X,Y)→ . . .
(this reduces to the M-V sequence if Y = ∅). Recall first that C⋆(A+B), the group
of cochains defined on simplicies lying in A or B, has a natural restriction map
C⋆(A + B) ← C⋆(X = A ∪ B), and the proof of excision says this is an isomor-
phism in cohomology (dual statement: the inclusion C⋆(A + B) → C⋆(X) was
an isomorphism in homology). We now consider the following large diagram:

0 0 0
↓ ↓ ↓

0 → Cn(A + B,C +D)
φ
→ Cn(A,C) ⊕ Cn(B,D)

ψ
→ Cn(A ∩ B,C∩D) → 0

↓ ↓ ↓

0 → Cn(A + B)
φ
→ Cn(A) ⊕ Cn(B)

ψ
→ Cn(A ∩ B) → 0

↓ ↓ ↓

0 → Cn(C +D)
φ
→ Cn(C) ⊕ Cn(D)

ψ
→ Cn(C ∩D) → 0

↓ ↓ ↓

0 0 0

.

The top left entry is defined to make the left hand column exact (explicitly, it
is dual to: Cn(A + B,C + D) = free on simplices lying in either A or B and not
contained in C or D).

Theorem: i) All three columns are exact (in fact by definition of their first
terms) ii) the second and third rows are also exact, in particular ψ ◦ φ = 0.
ψ ◦ φ = 0 in row 2⇒ ψ ◦ φ = 0 in row 1, as the groups in row 1 are subgroups
of those in row 2.

So we have a SES of cochain complexes where the SES is vertically and the
chain complexes are the rows. So there is a LES in cohomology, where two of
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every three terms vanish by ii). This implies the third term also vanishes, so all
three rows are exact.

Now we know the top row is exact, we can take the associated LES in
cohomology. Claim: this is the LES of the lemma. We have a natural map to
the first column from 0→ C⋆(X,Y)→ C⋆(X)→ C⋆(Y)→ 0, so we get a map of
associated LES but in two out of every three places this is an isomorphism, by
our initial comment on excision. So by the 5-lemma C⋆(A+B,C+D) computes
H⋆(X,Y) and we have the result.

Corollary: The M-V sequence for compact supports · · · → Hi−1
ct (X)→ Hi

ct(U∩
V)→ Hi

ct(U) ⊕ Hi
ct(V)→ Hi

ct(X)→ Hi+1
ct (U ∩ V)→ . . . is exact: let K ⊂ U, L ⊂ V

be compact. Then using the previous lemma we have a LES Hi(X,X \K ∩ L)→
Hi(X,X \ K) ⊕ Hi(X,X \ L) → Hi(X,X \ K ∪ L) → Hi+1(X,X \ K ∩ L) → . . .
(here A = B = X,C = X \ K,D = X \ L so Y = C ∪ D = X \ (K ∪ L)). Excise
X \U∩V, X \U and X \V as appropriate; we obtain: Hi(U∩V,U∩V \K∩L)→
Hi(U,U \ K) ⊕ Hi(V,V \ L) → Hi(X,X \ K ∪ L) → Hi+1(U ∩ V,U ∩ V \ K ∩ L) →
. . . . Observe: every compact set in X is of the form K ∪ L for some compact
K ⊂ U, L ⊂ V and every compact set in U ∩ V is of the form K ∩ L for some
compact K ⊂ U, L ⊂ V. Now take lim

−−→K⊂U,L⊂V compact
: we have a sequence

Hi
ct(U ∩ V) → Hi

ct(U) ⊕ Hi
ct(V) → Hi

ct(X) → Hi+1
ct (U ∩ V) → . . . . And the direct

limit of exact sequences is exact (this is an exercise in homological algebra, or
the reader may take it on trust).

Remark: the inverse limit of exact sequences need not be exact.
Now we return to thinking about cohomology of manifolds. Hn

ct(M) � Z if
M is orientable.

Some examples of Betti numbers b j(M), 0 ≤ j ≤ n: for Sn these are 1, 0, . . . , 0, 1,
for Tn, 1,

(n
1

)
,
(n

2

)
, . . . ,

(n
n

)
= 1, for σg, 1, 2g, 1, for CPn, 1, 0, 1, 0, . . . , 1, 0, 1, and for

RPodd, 1, 0, . . . , 0, 1. One observes that for orientable n-manifolds, bk(M) =
kn−k(M).

Poincaré Duality Theorem (version 1): If M is an oriented manifold (always
assuming it’s closed and connected), the pairing Hk(M,Q) × Hn−k(M,Q) → Q

(α, β) 7→
∫

M
α · β is non-degenerate, i.e. ∀α , 0∃β such that

∫
M
αβ = 1. Then

Hk(M,Q) � Hn−k(M,Q)⋆ are dual Q-vector spaces (so in particular they have
the same rank).

Remark: OverZ, ifα is primitive i.e. α , k·α′ forα′ ∈ Hk(M,Z), |k| > 1, k ∈ Z,

then ∃β ∈ Hn−k(M,Z) such that
∫

M
αβ = 1 (Note that primitive elements are

always non-torsion, but the converse does not hold).
Note: Poincaré duality gives another way of computing cohomology rings,

e.g. H⋆(CPn): Hk = Z for k even, 0 ≤ k ≤ 2n. Then inductively CPn−1 ֒→ CPn

is an isomorphism on cohomology up to degree 2n − 2 (by MV, or cellular
cohomology). Assume Hi(CPn) = Zαi, α ∈ H2(CPn), for i < 2n. Well, H2 ×

Hn−2 → Z is non-degenerate, α ∈ H2 so ∃β ∈ Hn−2 with
∫
α · β = 1. And

inductively β = kαn−1 for some k ∈ Z ⇒ k = ±1. So αn , 0 and we can choose

that it generates H2n(CPn). So H⋆(CPn) = Z[α]
αn+1 . (This is basically the same as

our first proof using ǫCPi · ǫCPn−i = δpt , 0).
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22 Poincaé Duality

Recall the key theorem on the cohomology of manifolds: Poincaré Duality

(Version 1): The pairing Hi(M,F) × Hn−i(M,F) → F (α, β) 7→
∫

M
αβ is non-

degenerate, where i) M is a closed connected F-oriented manifold and ii) F is a
field (e.g. F = Q, or F = Z2 for cases where M is not Q-orientable). In fact, there
is a more refined statement valid overZ.

Definition: On any space X, the cap-product Cl(X) ∩ Ck(X) → Cl−k(X) is

given by σ = [v0 . . .vl] ∩ φ 7→ φ(v0 . . . vk)[vk . . . vl].
Lemma: ∂(σ ∩ φ) = (−1)k(∂σ ∩ φ − σ ∩ ∂φ), by computation.
As usual, such a formula implies that the cap product descends to ho-

mology/cohomology, Hl(X)∩Hk(X)→ Hl−k(X). If M is oriented and closed, we
know Hn(M,Z) � Zwith a distinguished generator [M], the fundamental class.

Therefore, we get a map D : Hk(M;Z)
[M]∩−
→ Hn−k(M;Z).

Poincaré Duality (version 2): D is an isomorphism (overZ).
Relation to version 1: A computational exercise shows that: for a ∈ Ci(X), φ ∈

Ck(X), ψ ∈ Ci−k(X), ψ(a ∩ φ) = (φ ∪ ψ)(a) ∈ Z. Recall also (on the first exam-

ple sheet) that there’s always a natural surjection Hp(X,Z)
Γp

→ Hom(Hp(X),Z).

Suppose ψ ∈ Ci−k defining ψ ∈ Hi−k(M) satisfies
∫

M
φ ∪ ψ = 0∀φ ∈ H−(M) (i.e.

the group of relevant dual degree, in this case Hn−(i−k)), i.e. 0 = 〈φ ∪ ψ, [M]〉 by
definition of [M], i.e. 0 = ψ([M]∩φ). But PD version 2 says M∩− is an isomor-
phism, i.e. if ψ is degenerate for pairing then ψ ∈ ker(Γi−k). But, over Q, Γ is an
isomorphism (e.g. because we know the groups have the same dimension as
rational vector spaces). So in fact ψ must have been a torsion class overZ, and
over Q the pairing is non-degenerate.

Remark: So overZ, if ψ is primitive as a cohomology class, i.e. not equal to
some integer times ψ′ for some ψ′ ∈ H⋆(M,Z), with the absolute value of the

integer > 1, then ∃φ such that
∫

M
φ · ψ , 0 (in fact it =1).

Classical idea for proving PD

Suppose our manifold M can be triangulated (i.e. is homeomorphic to some
simplicial complex). Take the dual decomposition of M: we have a vertex
for the center of each face (i.e. top-dimensional simplex), an edge across each
codimension-1 facet of the original triangulation, and so on. E.g. consider the
icosahedron as a triangulation of S2, then the dual decomposition is the dodeca-
hedron; this is not a triangulation, but it is a cell decomposition. By construction
“if things work”, for each simplex or cell of the initial decomposition of degree
i, there is a unique (n − i)-cell in the dual decomposition such that it hits the
chosen i-cell once and doesn’t hit the other i-cells (counting intersections alge-

braicly with signs). So we get a natural identification

C
original

i
↔ Cn−i

dual
↓ ↓

C
original

i−1
↔ C

n−(i−1)

dual

(note we are taking C⋆ on the right not C⋆, so that ∂ is compatible. So C
cell,original
⋆

and C⋆
cell,dual

(the latter taken “in reverse”, as “Cn−⋆
cell,dual

”) are naturally identified,

so Hi(M) � Hn−i(M).
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Problems: The dual of a triangulation is not always a cell decomposi-
tion. Also, not all topological manifolds admit triangulation. But if we
only care about the case where M is smooth, we remarked that M admits
Morse functions f : M → R. One can compute H⋆(M) from a complex where
Ck( f ) = Z〈critical points of f of index k〉, where the index of x is the number of
negative eigenvalues of the Hessian of f at x. Then d : Ck( f ) → Ck−1( f ) counts
flow lines of f . In this setting, if we replace f → − f , critical points of f of index
k correspond precisely to critical points of − f of index n − k (and flow lines
are the same, just in the other direction). So this gives a much nicer proof of
Poincaré duality than any other known method.

Modern Proof of PD

Generalize the map D : Hk(M,Z)
−∩[M]
→ Hn−k(M,Z) to a map D : Hk

ct(M) →
Hn−k(M), which exists even for M not closed. (Note that this map is not capping
with some fixed chain; it’s the limit over compact K ⊂ M of capping with
something depending on K). Look at the MV sequence, using induction over a
covering of M.

Hk
ct(U ∩ V) → Hk

ct(U) ⊕Hk
ct(V) → Hk

ct(M) → Hk+1
ct (U ∩ V) → . . .

↓� D ↓� D ↓ D ? ↓� D ↓� D
Hn−k(U ∩ V) → Hn−k(U) ⊕Hn−k(V) → Hn−k(M) → Hn−k−1(U ∩V) → . . .

.

In the square ?, one finds that dmv ◦ D = (−1)kD ◦ dmv (checking this is
unilluminating; the reader may consult Hatcher if so desired), where k is the
degree of the Hk

ct term at the top left of the square. The sign doesn’t depend on

which element in Hk
ct(M) you start with, so (lemma) the 5-lemma still applies,

and then we can deduce the theorem by induction.
This result is very easy in de Rham theory, and beautiful in Morse theory.
A key consequence of Poincaré Duality is (example sheet 3):
Corollary: If M,N are oriented n-manifolds and f : M → N has non-zero

degree, then f⋆ : H⋆(N,Q) ֒→ H⋆(M,Q).

23 Fixed Points

Throughout this section we takeQ orR coefficients for cohomology. Let M be a
closed oriented manifold, of (real) dimension n. Let {ai} be a basis of H⋆(M) (i.e.
bases for each group viewed as a vector space, ai ∈ Hdi (M). Poincaré duality

implies there is a dual basis {a⋆
j
}, defined by

∫
M

aia
⋆
j
= δi j. Let ∆ ⊂ M × M

be the diagonal submanifold, ∆ = {(m,m) ∈ M ×M}. A fact from differential
topology: ν ∆

M×M
� TM as real vector bundles, indeed as oriented real vector

bundles (considered as over M). ∆ has a cohomology class ǫ∆ ∈ Hn(M ×M).
H⋆(M ×M) � H⋆(M) ⊗Q H⋆(M).

Proposition: ǫ∆ =
∑

i(−1)diai ⊗ a⋆
i

: Using PD on M ×M it suffices to show∫
M×M

(ξ⊗η) ·ǫ∆ =
∫

M×M
(ξ⊗η) ·(

∑
i(−1)diai⊗a⋆

i
)∀ξ ∈ Hn−p(M), η ∈ Hp(M)∀p. From

a previous result,
∫

X
α · ǫY =

∫
Y
α for Y ֒→ X a closed oriented submanifold of

a closed oriented manifold. So we need:
∫

M
ξ · η =

∫
M×M

(ξ ⊗ η)(
∑

(−1)diai ⊗ a⋆
i

).

For the RHS,
∫

M×M
ξ⊗ η · ai⊗ a⋆

i
= (−1)p2

∫
M
ξ · ai

∫
M
η · ai if di = p, 0 otherwise. So

we need
∫

M
ξ · η =

∑
i

∫
M
ξ · ai

∫
M
η · a⋆

i
((−1)p+p2

= (−1)p(p+1) = 1). We want this
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∀ξ and ∀η, but both sides are linear in ξ and η. The {ai} form a basis for H⋆(M),

so take η = a j. Then the statement becomes
∫

M
ξ · a j =

∑
i

∫
M
ξai

∫
M

a ja
⋆
i

, but this

last integral is δi j by the definition of a⋆
i

¡ so we have the result.

Note: we sometimes see this sum written as
∑

i(−1)n+diai ⊗ a⋆
i

, which is the
same by duality.

Corollary (Gauss-Bonet): If M is smooth, closed and oriented, χ(M) =∫
M

eTM. In particular, if χ(M) , 0 then eTM , 0, which means TM has no
nowhere-zero section, i.e. χ(M) , 0 ⇒ M has no nowhere-vanishing vector
field: recall, if E → X is an oriented vector bundle, eE = uE |X= (zero)⋆uE

where zero : X → E is the 0-section, = s⋆uE for any section s : X → E

(since all sections are homotopic). But uE ∈ H⋆(E,E♯) so if s(X) ⊂ E♯ then
s⋆uE = eE = 0. Returning to the proof, ν ∆

M×M
� TM and so ǫ∆ |∆= eTM. Then∫

M
eTM =

∫
∆
ǫ∆ |∆, which by the formula =

∑
i(−1)di

∫
M

aia
⋆
i

, but the {ai} form a

basis so this =
∑

k(−1)krank(Hk(M)) = χ(M), as required.
A vector field on a smooth manifold generates a flow. The zeroes of the

vector field correspond to the fixed points of the time-ǫ map of the flow. So
Gauss-Bonet is an existence theorem for fixed points of maps. There are more
general existence theorems for fixed points:

Suppose f : M → M is any map of a closed smooth manifold. It is a fact
from differential topology that f is homotopic to a smooth map.

Definition: f has non-degenerate fixed points if Γ f (the graph of f ) and

∆ meet transitively in M × M, i.e. ∀p ∈ Γ f ∩ ∆, p = (a, a) = (a, f (a)),TpΓ f +

Tp∆ = Tp(M ×M) (⋆). If f has non-degenerate fixed points, each fixed point
is necessarily isolated, and each comes with a sign depending on whether the

orientations agree or disagree in (⋆) (Equivalently: for F = id × f : M ×M →
M ×M, does DFx : Tx → TF(x) preserve or reverse orientation?)

Theorem (Lefschetz Fixed Point Theorem): If M is closed oriented and
smooth and f : M → M is smooth, if f has non-degenerate fixed points,
the number of these (counted with sign) is L( f ) :=

∑
k≥0(−1)ktr( f⋆ : Hk(M) →

Hk(M)), the “Lefschetz number”.
Note: If L( f ) , 0 then f has a fixed point (even if f not smooth)
Note: If f ≃ id, L( f ) = χ(M).
Proof of LFPT: The signed count of fixed points, by definition/construction,

is
∫

M
ǫF−1(∆), F−1(∆) being a finite set, the fixed points of f . But ǫF−1(∆) = F⋆ǫ∆ by

uniqueness of cohomology classes associated to submanifolds, = (id × f )⋆ǫ∆,
and ǫ∆ =

∑
i(−1)diaia

⋆
i

, so this is
∑

i(−1)diai · f⋆(a⋆
i

) where ai · f⋆(a⋆
i

) is the (i, i)
matrix entry for f : Hdi(M) → Hdi(M) wrt our chosen basis {ai}. So this is L( f ),
as required.

Remark: LFPT in the form “L( f ) , 0 ⇒ ∃ a fixed point” actually holds for
fairly general spaces.

Corollary: Let f : CP2k → CP2k be any map. Then f has a fixed point; thus

no (nontrivial) finite group acts freely onCP2: f induces a ring homomorphism

f⋆ : H⋆(P2k) 	, and this ring is Q[α]
〈α2k+1=0〉

, |α| = 2. f⋆(α) = ι · α for ι ∈ Z, since

f induces a map on H⋆(CP2k,Z) ⇒ f⋆(α j) = ι j · α j ⇒ L( f ) = 1 + ι + ι2 + · · · =
1−ι2k−1

1−ι , 0 (for ι = 1 we have 1 + ι + ι2 + · · · , 0 at the previous stage). So
Fix( f ) , ∅.

A nonexaminable lecture was also given at the end of this course, but I did
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not take notes.
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