
Addative Combinatorics

March 20, 2009

Books: There is really only one book in this field, Addative Combinatorics
by T. Tao and V. H. Vu. This is very expensive, and while it makes a good
reference work, is not ideal for first-time learning of the material; it is therefore
recommended only for the reader who is considering a PhD in the field. Printed
notes for the course will be made available on the lecturer’s website following
the lectures they relate to; also, the lecturer intends to write a book of the course,
in collaboration with Gowers, though this will probably differ substantially
from the lectures.

Notation: We use the “Big Oh, little oh” notation used throughout analysis.
Suppose we have two functions, f , g : N→ C (say; sometimes R). We say
f (n) = O(g(n)) to mean there is an absolute constant C such that | f (n)| ≤ Cg(n)
for n sufficiently large. We say f (n) = o(g(n)) if, for any ǫ > 0, we have
| f (n)| ≤ ǫg(n) provided n ≥ N0(ǫ). Occasionally the absolute constant C, or
N0(ǫ), may depend on some other parameters k1, k2, . . . ; this will be indicated
using subscripts, e.g. kn2 = Ok(n2).

C, c always denote absolute positive constants, whose value could be worked
out explicitly if one wished; we always have 0 < c < 1 < C [this seems to be
false in the case of c]. Different instances of this notation can and frequently
will denote different absolute constants, even on the same line. Again there
will sometimes be subscripts indicating dependence on other parameters.

If X is a finite set and f : X→ C is a function, write Ex∈X f (x) = 1
|X|
∑

x∈X f (x)
(it is traditional to use this rather than summing in this field; it tends to require
fewer junk constants in our expressions). e(θ) always means e2πiθ. Finally ‖x‖ R

Z

denotes the absolute value of the fractional part of x, e.g. ‖0.9‖ R
Z

= 0.1.

1 Roth’s Theorem on Progressions of Length 3

Theorem (Roth, 1953): Suppose N is sufficiently large and A ⊂ {1, . . . ,N} has
|A| ≥ cN

(log log N)
1
5

. Then A contains a non-trivial 3-term arithmetic progression

(AP), i.e. a triple x, x + d, x + 2d with d , 0.

Remark: The key point of this is that (log log N)
1
5 →∞, hence e.g. if |A| ≥ N

100
then, provided N is sufficiently large, A contains a 3-term AP. Also, the original

proof of this theorem gives log log N where this proof has (log log N)
1
5 , but we

wish to use an argument which generalizes more smoothly to longer APs.
The overall proof strategy is the dentsity increment strategy; the key is the

following proposition:
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Proposition (Density increment step): Suppose 0 < α < 1 and N > Cα−c.
Suppose that P is a [arithmetic] progression of length N. Suppose that A ⊂ P has
cardinality at least αN. Then at least one of the following holds: i) A contains at
least 1

10α
3N2 nontrivial 3-term APs (and hence at least one), ii) There is another

progression (actually a subprogression) P′ with |P′| ≥ N
1
3 such that, writing

A′ = A ∩ P′, we have |A
′ |
|P′ | = α

′ ≥ α + cα6.
Deduction of Roth’s Theorem from this: Suppose A ⊂ {1, . . . ,N}, |A| = α|N|

and that A contains no nontrivial 3APs. (Try to) apply the preceding proposition
repeatedly, obtaining a sequence P0,P1, . . . of progressions (P0 = {1, . . . ,N})
together with sets Ai := A ∩ Pi such that, writing αi =

|Ai |
|Pi| , we have |Pi| ≥

N( 1
3 )i

and αi+1 ≥ αi + cα6
i
. Note that after c

α5 steps of this iteration, α has
already doubled; after another c

(2α)5 steps we’ve reached 4α and so on. The

density becomes > 1 after c
α5 steps, which is clearly nonsense. So it can’t

have been valid to keep applying the proposition; the condition |Pi| > Cα−c
i

must be violated for some i ≤ C
α5 . Note however that αi ≥ α and |Pi| ≥ N( 1

3 )
C
α5

.

Therefore N( 1
3 )

C
α5 ≤ Cα−c. Taking logs, ( 1

3 )
C

α5 log N ≤ log(Cα−c); taking logs again,

− C
α5 + log log N ≤ log log(Cα−c). Hence log log N ≤ log log(Cα−c) + c

α5 ≤ c′

α5 and

thus α ≤ C(log log N)−
1
5 as claimed.

An interpretation of the proposition: there are essentially two types of sets
A ⊂ {1, . . . ,N}: “random” sets, which are essentially a random scattering of
points and will by chance include many 3APs, and “structured” sets, which are
essentially unions of some series of intervals. These may not contain (many)
3APs, but they will contain these interval subsets where the density is much
higher than that of A. The proposition draws a formal distinction between
these two types of set.

Proof of the density increment proposition: By rescaling P, we may wlog
take P = {1, . . . ,N}. (This affects neither the density of A nor the count of 3APs
in A.) First, an ugly technical manouver: let N′ be a prime (actually, we only
need an odd number) of size ∼ 10N (actually, we only need larger than 2N) and
consider A as a subset of Z

N′Z , which we shall call G. Write Ã for the copy of A

inside G. Observe that the number of 3APs in Ã is the same as the number in
A since there are no “wraparound” issues. Henceforth we shall drop the tildes
and think of A as a subset of Z

N′Z = G.
Notation: Let f1, f2, f3 : G→ Cbe functions. Write AP3( f1, f2, f3) = Ex,d∈G f1(x) f2(x+

d) f3(x + 2d). In particular, AP3(1A, 1A, 1A) (1A being the characteristic function
of A, 1A(x) = 1 if x ∈ A, 0 otherwise) = 1

(N′)2 times the number of 3APs in A,

including the trivial ones (x, x, x).
Define the balanced function f = 1A −α1[n] (where [n] = {1, . . . ,N} ⊂ G). We

can see α1[n] as in some sense representing a “random set of size |A|”, though
of course it is not the characteristic function of any specific set. We’ll compare
AP3(1A, 1A, 1A) with AP3(α1[n], α1[n], α1[n]).

Lemma: Suppose 0 < α < 1 and N > Cα−c. Suppose that A ⊂ {1, . . . ,N} ⊂ G
has cardinality αN and at most 1

10α
3N2 non-trivial 3-term APs. Then there are 1-

bounded functions (i.e. functions whose absolute value is always≤ 1) g1, g2, g3,
at least one of which is the balanced function f of A, such that |AP3(g1, g2, g3)| ≥
cα3: Write 1A = f +α1[N]. Now AP3 is trilinear, so we can expand AP3(1A, 1A, 1A)
as a sum of eight terms - a main term AP3(α1[N], α1[n], α1[n]) and seven terms of
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the form AP3(g1, g2, g3) with at least one of the gi being f . The main term is α3

(N′)2

times the number of 3-term APs in {1, . . . ,N}; this is easy to calculate but we only
need a crude bound: if we choose x, d ≤ N

3 then x, x+d, x+2d all lie in {1, . . . ,N},
and so the number of 3-term APs in {1, . . . ,N} si at least N2

9 . Thus the main term

is ≥ α3

0 ( N
N′ )

2. On the other hand, by assumption AP3(1A, 1A, 1A) ≤ α3

10 ( N
N′ )

2 + ( N
N′ )

2

(the second term here being for the trivial 3APs); if c is chosen appropriately

this is certainly at most 10α2

99 ( N
N′ )

2. By the triangle inequality, at least one of the

other seven terms is then at least 1
7 ( 1

9 −
10
99 )α3( N

N′ )
2 ≥ cα3, as required.

The Gowers u2-norm

There is a family of norms, the Gowers uk-norms, defined for functions f : G→
C, where G is any (finite) abelian group. (Generally, the Gowers uk norm is
useful when studying (k + 1)APs).

Definition: Let f : G→ Cbe a function. Then we define ‖ f ‖u2 = (Ex,h1,h2∈G f (x) f (x + h1) f (x + h2) f (x+

h1 + h2))
1
4 .

Remarks: i) The quantity whose fourth root is being taken is real and
nonnegative; we shall see this as a byproduct of the proof of the next lemma.
2) This is a valid norm; in particular ‖ f + g‖u2 ≤ ‖ f ‖u2 + ‖g‖u2 . We shall not use
this fact in the course; it may be proven on the example sheet.

The relation between Gowers norms and 3APs is given by a so-called “gen-
eralised von Neumann theorem”:

Lemma (Generalised VN): Let f1, f2, f3 : G → C be 1-bounded functions.
Then |AP3( f1, f2, f3)| ≤ ‖ fi‖u2 for i = 1, 2, 3.

Observation (Cauchy-Schwartz inequality): Let b : G → C be a 1-bounded
function and let F : G × G → C be another function. Then |Ex,y∈Gb(x)F(x, y)| ≤
(Ex,y,y′∈GF(x, y)F(x, y′))

1
2 : Apply C-S in its usual form (Exαxβx ≤ (Ex|αx|2)

1
2 (Ex|βx|2)

1
2 )

with αx = b(x), βx = EyF(x, y).
Proof of generalised von Neumann theorem: The key is to rewite AP3( f1, f2, f3)

so that Cauchy-Schwartz can be used. We shall do the case i = 1; the other two
are very similar. Note that AP3( f1, f2, f3) = Ex,y∈G f1(2x − y) f2(x) f3(y): since N′

is odd, the triple 2x − y, x, y ranges over all 3-term APs once each. Applying

C-S once we get |AP3( f1, f2, f3)|2 ≤ Ex,y,y′ f1(2x − y) f1(2x − y′) f3(y) f3(x′) (since

| f2(x)| ≤ 1); applying C-S once more, observing that | f3(y) f3(y′)| ≤ 1, we ob-

tain |AP3( f1, f2, f3)|4 ≤ Ex,x′ ,y,y′ f1(2x − y) f1(2x − y′) f1(2x′ − y) f1(2x′ − y′). But as
x, x′, y, y′ range over G, the quadruple 2x− y, 2x− y′, 2x′− y, 2x′− y′ ranges over
parallelograms, covering each precisely N′ times. So the RHS here is precisely

‖ f1‖4u2 = Ex,h1,h2 f1(x) f1(x + h1) f1(x + h2) f1(x + h1 + h2) (⋆).
Remark: It has come to our attention that (⋆) is real and nonnegative.
Corollary: Suppose 0 < α < 1,A ⊂ {1, . . . ,N}, |A| = αN and A has at most

1
10α

3N2 non-trivial 3APs. Suppose also N > Cα−c and let f = 1A − α1[N] be the

balanced function of A (recall this is defined on G = Z

N′Z . Then the Gowers
u2-norm ‖ f ‖u2 ≥ cα3.

3



An inverse theorem for the u2-norm

So far we have been “shifting the hard part”: we have some property of A
which we don’t really understand, but can use it to prove that A has some other
property - but we don’t really understand this, either. What can we say about
f if ‖ f ‖u2 ≥ δ?

The discrete fourier transform: Suppose f : G → C is a function (G = Z

N′Z ,
though some of our comments apply to general abelian groups). Then we

define, for r ∈ Z

N′Z , f̂ (r) := Ex∈G f (x)e(−rx
N′ ) (recall e(y) = e2πiy).

Lemma (Basic properties of the FT): Let f , g : G → C. Then i) ‖ f̂ ‖2 = ‖ f ‖2
where ‖ f ‖2 := (Ex∈G| f (x)|2)

1
2 , ‖ f̂ ‖2 := (

∑
r∈G | f̂ (r)|2)

1
2 . (For now, the reader may

simply view these as definitions. The difference comes from the fact that one

of our copies of G here is actually Ĝ, the dual group; an abelian group is
always isomorphic to its dual, but this does not carry over to the [measure?]
on the group. More on this later). ii) If we define the convolution f ⋆ g(x) :=

Ey∈G f (y)g(x − y) then f̂ ⋆ g = f̂ ĝ. (If f = 1A, g = 1B then supp( f ⋆ G) = A + B =
{a+ b : a ∈ A, b ∈ B}; this is part of “what convolutions are for”, which is poorly

explained in the tripos). iii) ‖ f ‖u2 = ‖ f̂ ‖4 := (
∑

r∈G | f̂ (r)|4)
1
4 . i) is a very easy

consequence of the identity Ex∈Ge(
(r−s)x

N′ ) = δr,s (i.e. 1 if r = s, 0 otherwise); this
is “orthogonality of characters”, or this case can be verified quite directly by
summing the GP; making this a complete proof is an exercise, as is the even
easier part ii). For iii), one could check this directly by computation, but this
would not give us a good sense of “why” it is true. Note that ‖ f ‖4

u2 = ‖ f ⋆ f ‖2
2
:

the RHS here is ‖ f ⋆ f ‖2
2
= Ex|Ey f (y) f (x− y)|2 = Ex,y,y′ f (y) f (x− y) f (y′) f (x − y′).

But as x, y, y′ range over G, the quadruple y, x − y, y′, x − y′ ranges over the
parallelograms used to define u2.

Proposition (inverse theorem for the u2 norm): Let 0 < δ < 1 and suppose
f : G→ C is a 1-bounded function (| f (x)| ≤ 1). Suppose ‖ f ‖u2 > δ. Then there is
some r ∈ Z

N′Z such that |Ex∈ Z

N′Z
f (x)e(− rx

N′ )| ≥ δ2 (Exercise: show the “converse”;

one cannot prove an exact converse to this, we will “lose a little in the powers

of δ”. See the firstexample sheet). The conclusions correspond to ‖ f̂ ‖∞ ≥ δ2.
The assumption that ‖ f ‖u2 > δ implies, by part iii) of the above lemma, that

‖ f̂ ‖4 ≥ δ. But ‖ f̂ ‖4
4
≤ ‖ f̂ ‖2

2
‖ f̂ ‖2∞ (an instance of

∑m
i=1 a2

i
≤ (maxi ai)

∑m
i=1 ai, which

is valid for real nonnegative ai: take ar = | f̂ (r)|2). But ‖ f̂ ‖2 = ‖ f ‖2 ≤ 1. Therefore

‖ f̂ ‖∞ ≥ δ2, as required.
Combining this with the above corollary we get:
Corollary: Suppose 0 < α < 1,A ⊂ {1, . . . ,N}, |A| = αN and A has at

most 1
10α

3N2 nontrivial 3APs. Let f = 1A − α (yes, this is different from
the balanced function we had before). Then there is some θ ∈ R such that
|
∑

x∈{1,...,N} f (x)e(−θx)| ≥ cα6N.

Note: Z

N′Z has disappeared; it has served its purpose.
Remark: Applying the inverse theorem for u2 to the corollary at the start

of the lecture gives some r ∈ Z

N′Z such that |Ex∈ Z

N′Z
f (x)e(− rx

N′ | ≥ cα6. Now take

θ = r
N′ , note that Supp( f ) ⊂ {1, . . . ,N} and change the E into a

∑
.

This looks a bit like the required “density increment” proposition: recall we

wanted a progression P ⊂ {1, . . . ,N} with |P| ≥ N
1
3 such that

∑
x∈P f (x) ≥ cα6|P|

(trivially equivalent to |A ∩ P| ≥ (α + cα6)|P|.
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Lemma (Dirichlet) (This is the lemma for which the pigeonhole principle
was invented) Let θ ∈ R and let 0 < δ < 1. Then there is a positive integer
d, 1 ≤ d ≤ 1

δ such that ‖θd‖ R
Z

≤ δ: let L = ⌊ 1
δ ⌋ and consider the numbers

0, θ, 2θ, . . . , Lθ (mod 1). By Dirichlet’s Principle of the Pigeons, some two of
these, say jθ, j′θ, differ by at most 1

L+1 ≤ δ. Then d := | j − j′| gives the lemma.
Lemma: Suppose 0 < η < 1 and N > Cη−6. Then we can partition {1, . . . ,N}

into progressions P1, . . . ,Pk, each of length at least N
1
3 , such that supx,x′∈P |e(θx)−

e(θx′)| ≤ η∀i: take δ = 1
20ηN−

1
3 in the previous lemma. We can find a d ≤ 1

δ
,

thus in particular d ≤
√

N, such that ‖θd‖ R
Z

≤ δ. Let P be any progression

with common difference d and length ≤ 2N
1
3 . Then supx,x′∈P |e(θx) − e(θx′)| ≤

2N
1
3 |e(θd) − 1| (by the triangle inequality). But it is easy to see that |e(t) − 1| =

2| sinπt| ≤ 2π‖t‖ R
Z

. Hence supx,x′∈P |e(θx) − e(θx′)| ≤ 4πN
1
3 δ ≤ η (since 4π < 20).

It is quite easy to see (if fiddly to prove) that, if N is large, we may partition

{1, . . . ,N} into progressions with common difference d and lengths between N
1
3

and 2N
1
3 .

Now recall that |
∑N

x=1 f (x)e(θx)| ≥ cα6N. For the rest of the proof, we

shall fix this value of c. Apply the preceding lemma with η = cα6

2 (this is
valid so long as N > C′α−36), to get progressions P1, . . . ,Pk. We certainly

have
∑k

i=1 |
∑

x∈Pi
f (x)e(θx)| ≥ cα6

∑k
i=1 |Pi| (= cα6N) (†). On the other hand,

by the triangle inequality the LHS
∑k

i=1 |
∑

x∈Pi
f (x)e(θx)| ≤

∑k
i=1 |
∑

x∈Pi
f (x)| +

cα6

2

∑k
i=1 |Pi|. Comparing with (†) we see that

∑k
i=1 |
∑

x∈Pi
f (x)| ≥ cα6

2

∑k
i=1 |Pi|.

How do we get rid of the mod signs? We use a cute trick, likely due to Gowers:

Note
∑k

i=1

∑
x∈Pi

f (x) = 0. Adding, we obtain
∑k

i=1(|
∑

x∈Pi
f (x)| +

∑
x∈Pi

f (x)) ≥
cα6

2

∑k
i=1 |Pi|. By the pigeonhole principle there is some P = Pi such that

|
∑

x∈P f (x)| +
∑

x∈P f (x) ≥ cα6

2 |P|, so
∑

x∈P f (x) ≥ cα6

4 |P|. It is easy to see that

this implies (in fact, is equivalent to) |A ∩ P| ≥ (α + cα6

4 )|P|. But by construction

|P| ≥ N
1
3 and hence we have completed the proof of the density increment

proposition, and hence of Roth’s Theorem.

2 Sumsets

Suppose that A,B,C, . . . are sets in some ambient abelian group. Then we define
A + B = {a+ b : a ∈ A, b ∈ B},A− B = {a− b : a ∈ A, b ∈ B},A+ B +C = {a + b+ c :
a ∈ A, b ∈ B, c ∈ C} etc. We can express various famous results and conjectures
of number theory in this form, e.g. if S = {0, 1, 4, 9, 16, . . .} then Lagrange is
4S = S+S+S+S =N (4S is obvious notation). The Goldbach conjecture is that
ifP = {3, 5, 7, 11, . . .} thenP+P = {even numbers ≥ 6}. Fermat’s Last Theorem
can also be written this way.

We write σ[A,B] = |A+B|
|A|

1
2 |B|

1
2

, a normalized version of the cardinality of A +

B. σ[A] := σ[A,A] = |A+A
|A| , the doubling constant of A. We can see this as

measuring “how close A is to being a group”; the reader may verify σ[A] ≥ 1
with equality iff A is a coset of a (finite) subgroup [of the ambient group].

Proposition (Ruzsa triangle inequality): Let U,V,W be finite sets in some
ambient abelian group. Then |U||V −W| ≤ |U −V||U−W|. This is an inequality
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without a constant on either side, which are often (but not always) easy to prove;
we’ll exhibit an injectionψ : U×(V−W)→ (U−V)×(U−W). For each d ∈ V−W
choose elements α(d) ∈ V, β(d) ∈ W such that α(d) − β(d) = d. Define ψ(u, d) =
(u−α(d), u−β(d); ifψ(u, d) = ψ(u′, d′) then u−α(d) = u′−α(d′), u−β(d)−u′−β(d′);
subtracting, α(d) − β(d) = α(d′) − β(d′) i.e. d = d′, and hence u = u′.

One may rearrange the Ruzsa triangle inequality in the form log |V−W|
|V|

1
2 |W|

1
2
≤

log |U−V|
|U|

1
2 |V|

1
2
+ log |U−W|

|U|
1
2 |W|

1
2

; if we define the “Ruzsa distance” between A and B

to be d(A,B) := log |A−B|
|A|

1
2 |B|

1
2

then this becomes a “genuine” triangle inequality:

d(V,W) ≤ d(U,V) + d(U,W). However, note that this is not a valid metric; in
particular, d(A,A) is not usually 0; while it is possible to form a metric space by
“quotienting out” this, doing so only serves to obfuscate matters.

Often it is useful to supplement the Ruzsa triangle inequality with the
following estimate:

Proposition (We shall call this Ruzsa’s second inequality): d(U,−V) ≤ 3d(U,V)

(Written out explicitly, |U + V| ≤ |U−V|3
|U||V| ): if x ∈ U − V, write r(x) = #{(u, v) :

u − v = x}; similarly for x ∈ U + V, s(x) = #{(u, v) : u + v = x}. Supposing
that |U − V| is small, we shall find an x such that s(x) is large: observe that∑

x r(x) =
∑

x s(x) = |U||V|. Furthermore,
∑

x r(x)2 =
∑

x s(x)2, since both quanti-
ties are equal to the number of solutions to u1 + v1 = u2 + v2 or equivalently
u1 − v2 = u2 − v1 for u1, u2 ∈ U, v1, v2 ∈ V (cf “additive energy”, seen later in
this course). But by the Cauchy-Schwartz inequality,

∑
x r(x)2 ≥ 1

|U−V| (
∑

x r(x))2

(To see this, we have
∑

x r(x) =
∑

x r(x)1U−V(x) ≤ (
∑

x r(x)2)
1
2 (
∑

x 1U−V(x)2)
1
2 ),

≥ |U|2 |V|2|U−V| . Therefore
∑

x s(x)2 ≥ |U|2 |V|2|U−V| . Since
∑

x s(x) = |U||V| there is some x such

that s(x) ≥ |U||V|
|U−V| .

Let S = {(u, v) ∈ U × V : u + v = x}; thus |S| ≥ |U||V|
|U−V| (⋆). Consider the map

φ : S × (U + V) → (U − V) × (U − V) defined by: for each w ∈ U + V select
α(w) ∈ U, β(w) ∈ V such that w = α(w)+β(w) and defineφ(u, v,w) = φ((u, v),w) =
(u−β(w), α(w)−v). We claim thatφ is injective: supposeφ(u, v,w) = φ(u′, v′,w′).
Then u + v = u′ + v′ = x. Hence w = (u + v) − (u − β(w)) + (α(w) − v) =
(u′ + v′)− (u′ − β(w′))+ (α(w′)− v′) = w′; it is now easy to show u = u′, v = v′ as

well. It follows that |S||U+V| ≤ |U −V|2; by (⋆), it follows that |U +V| ≤ |U−V|3
|U||V| ,

as required.
Remark: also d(U,V) ≤ 3d(U,−V) by replacing V with −V := {−v : v ∈ V}.
Ruzsa calculus: Suppose K is a parameter and X,Y are real quantities. We

will use “rough notation at scale K”: X . Y means X ≤ CKCY for some absolute
constant C; X ≈ Y means X . Y and Y . X; they are “the same up to powers of
K”. If A,B are sets in some ambient abelian group then we write A ∼ B to mean

|A − B| ≈ |A| 12 |B| 12 ; note that we do not generally have A ∼ A.
Proposition (Ruzsa Calculus): Let U,V < W be sets in some ambient abelian

group. Let K be a scale; we use rough notation at scale K. i) If U ∼ V then
|U − V| ≈ |U| ≈ |V|; also σ[U], σ[V] ≈ 1 and U ∼ −V. ii) If U ∼ V and V ∼ W
then U ∼ W. iii) Suppose (∃V :) U ∼ V and σ[W] ≈ 1. Suppose also that
there is an x such that |U ∩ (x + W)| ≈ |U| ≈ |W|. Then U ∼ W (of course
x +W = {x+w : w ∈W}. iv) Suppose σ[U], σ[W] ≈ 1 and that there is an x such
that |U ∩ (x +W)| ≈ |U| ≈ |W|. Then U ∼W

For i), note that if |U − V| ≤ K|U| 12 |V| 12 then, since |U − V| ≤ |U||V|, we get
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|U| ≤ K2|V| and |V| ≤ K2|U|. Hence if U ∼ V then |U| ≈ |V| ≈ |U − V|. The rest
of i) and ii) follow immediately from the Ruzsa triangle inequality and Ruzsa’s
second inequality. For iii), wlog take x = 0 (otherwise just translate W; this will
still be equivalent to U as U- a translated W is just a translated U−W). Further
W ∼ W since σ[W] ≈ 1 means W ∼ −W and acigarettespply i). Now by the
Ruzsa triangle inequality once more, together with the inclusions U∩W ⊂ U,W,
we obtain |U ∩W||U −W| ≤ |(U ∩W) −U||(U ∩W) −W| ≤ |U −U||W −W|. But
|U ∩W| ≈ |U − U| ≈ |W −W| ≈ |U| ≈ |W| and hence |U −W| . |U|, |W|. iv) is
immediate from iii), since σ[U] ≈ 1 ⇔ U ∼ (−U) (we will need both versions
iii),iv) of the assumptions, so include both separately).

Ruzsa’s Third Inequality: Proposition: Let U,V,W be finite sets in some
ambient abelian group. Suppose that d(U,V), d(V,W) ≤ log K (i.e. |U − V| ≤
K|U| 12 |V| 12 etc.) (then d(U,W) is also small). Then |U+V+W| ≤ CKC|U| 13 |V| 13 |W| 13 .
Remark: In the “Ruzsa” calculus notation, this is the result that if U ∼ V ∼ W
then U + V ∼ W (and permutations therof). Proof: We shall use the Ruzsa
calculus notation (fairly sparingly). We claim there is a set S such that U +V ∼
S; once this is established, Ruzsa calculus implies σ[U + V] ≈ 1 (⋆). For
x ∈ U −W, write r(x) for the number of pairs u ∈ U,w ∈ W with x = u − w.
Then

∑
x r(x) = |U||W| and |U −W| ≈ |U| ≈ |W|. Hence there is some x with

r(x) & |U| ≈ |W|. But r(x) = |U∩ (W + x)|; indeed, if t = u = w+ x then x = u−w.
Therefore there is some x such that |U ∩ (W + x)| & |U|. Adding an arbitrary
v ∈ V we get |(U+ v)∩ (W+ x+ v)| ≥ |U| hence certainly |(U+V)∩ (W+ x̃)| & |U|
(where x̃ = x + v). Finally note that U ∼ W ⇒ σ[W] ≈ 1 and hence by part iv)
of the Ruzsa calculus we have U +V ∼W as required.

It remains to prove the claim. Suppose |U+V|
|U|

1
2 |V|

1
2
= L. Then certainly L ≈ 1 (in

fact L ≤ K3) by Ruzsa’s second inequality. Define S to be the set of “popular

sums” in U + V: S = {x ∈ U + V : s(x) ≥ |U|
1
2 |V|

1
2

2L }, with s(x) being the number of
pairs u, v with u + v = x as before.

We claim S is quite large. By the same application of C-S we used in the

proof of Ruzsa II, we have
∑

x s(x)2 ≥ |U|
3
2 |V|

3
2

L . Also
∑

x s(x) = |U|V|. Therefore
∑

x<S s(x)2 ≤ maxx<S s(x)
∑

x s(x) ≤ |U|
1
2 |V|

1
2

2L |U||V|. Thus
∑

x∈S s(x)2 ≥ |U|
3
2 |V|

3
2

2L . But

manifestly s(x) ≤ min(|U|, |V|) ≤ |U| 12 |V| 12 and therefore |S| ≥ |U|
1
2 |V|

1
2

2L (†); there
are “lots of popular sums”.

We claim that U + V ∼ (−S), i.e. that |U + S + V| is small. Suppose that

x = u + s + v ∈ U + S +V. Then s can be written in ≥ 1
2L |U|

1
2 |V| 12 ways as u′ + v′;

for each, x = u+ u′ + v′ + v = (u+ v′)+ (u′ + v). Thus x is a sum of two elements

of U + V is ≥ 1
2L |U|

1
2 |V| 12 ways. It follows that |U|

1
2 |V|

1
2

2L |U + S + V| ≤ |U + V|2,

which implies that |U + S + V| ≤ 2L|U+V|2

|U|
1
2 |V|

1
2
= 2L3|U| 12 |V| 12 . Since L ≈ 1 it follows

that U + V ∼ (−S), as claimed.
Remarks: One can iterate Ruzsa III to “get control over” sums of more than

three sets.
Corollary: Suppose A is a subset of some abelian group with σ[A] = |A+A|

|A| ≤
K. Then for any nonnegative integers r, s, not both zero, there is some constant
γ(r, s) such that |rA − sA| ≤ (CK)γ(r,s)|A|.

(Later in the course, we shall need a slightly stronger version of this:
Corollary: If σ(A) ≤ K and k, l are nonnegative integers not both zero, then
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|kA − lA| ≤ KC(k+l) |A|: By Ruzsa 3 and Ruzsa calculus we have |2A − A| ≤ KC|A|.
Applying the Ruzsa triangle inequality with U = A,V = (k − 1)A,W = A − A
we obtain |A||kA − A| ≤ |(k − 1)A − A||2A − A| and hence by induction on k,
|kA − A| ≤ kCk|A|. Applying the Ruzsa triangle inequality once more, with
U = A,V = kA,W = lA we have |A||kA − lA| ≤ |kA − A||lA − A| ≤ KC(k+l)|A|2, as
required.)

Before these cunning arguments were found, it was necessary in this course
to spend around three lectures proving: Theorem (Plünecker-Ruzsa Inequali-
ties): If σ[A] ≤ K then |rA− sA| ≤ Kr+s|A|. The proof is given in Nathanson’s sec-
ond book on additive number theory; it is long, involves a substantial amount
of graph theory, and unlike everything else we have seen so far in this course,
is hard to adapt to general (nonabelian) groups.

3 Structure theory of set addition

What can we say about the structure of “approximate groups”? Let K ≥ 1
be a fixed parameter (e.g. 100) and suppose A ⊂ G is a finite set in some
ambient abelian group G such that σ[A] ≤ K (i.e. |A + A| ≤ K|A|. Can we
say anything more specific/precise about A? Even as described here this is
an ongoing research area; for G nonabelian this is essentially a field made up
entirely of open problems. The answer is simpler in some groups G than in
others, and turns out to be relatively hard for G = Z.

3.1 The finite field model

We take G = Fω
2

, the vector space of countably infinite sequences over F2 (i.e.
sequences of 0s and 1s, with addition taken modulo 2). Many results of this
subject are easier in this or similar settings.

Theorem (Ruzsa): Suppose A ⊂ Fω
2

is a finite set with σ[A] ≤ K. Then there

is a vector subspace V ≤ Fω
2

with A ⊂ V and |V| ≤ exp(CKC)|A|.
Rk: If V ≤ Fω

2
is a finite (or finite-dimensional) subspace and A ⊂ V with

|A| = α|V| then A + A ⊂ V + V = V, whence σ[A] ≤ 1
α

. Hence, apart from the
dependence on the parameters, being “economically contained in a subspace”
is a precise characterisation of those sets with small doubling.

Proof: Let X ⊂ 3A be such that the translates A + x : x ∈ X are disjoint, and
which is maximal with this property. Now the disjoint union

⋃
x∈X(A + x) is

contained in 4A, a set of cardinality≤ CKC|A| by Ruzsa III (≤ K4|A| if you believe
Plunnecke-Ruzsa). Suppose y ∈ 3A; since X was chosen maximal we must have
(A + y) ∩ (A + x) , ∅ for some x ∈ X, which implies y ∈ 2A + x. Since y was
arbitrary, 3A ⊂ 2A+X. Repeatedly adding A to both sides, 4A ⊂ 3A+X ⊂ 2A+2X
etc.; 〈A〉 ⊂ 2A + 〈X〉 (where 〈S〉 means the subspace of Fω

2
spanned by S). The

set on the right has size ≤ |2A|2|X| (here we use the 2-torsion extensively; there

is no way we could do anything like this inZ), ≤ K|A|2CKC
, so 〈A〉 is a subspace

as required.
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3.2 Approximate subgroups of Z and the Freiman-Ruzsa the-
orem

There is a substantial catalogue of approximate subgroups of Z. Example 1:
A = {a, a + d, . . . , a + (n − 1)d} an arithmetic progression has |A + A| = 2n − 1.
This is the smallest possible size of |A + A| for |A| = n: write A = {a1, . . . , an}
with a1 < · · · < an, then A + A contains the strictly increasing sequence a1 +

a1, a1 + a2, . . . , a1 + an, a2 + an, . . . , an + an. Exercise: APs are the only sets A for
which this is exact. Example 2: If σ[A] = K and A′ ⊂ A with |A′| = α|A| then
σ[A′] ≤ K

α
- the notion of approximate groups is weakly hereditary. Combining

this with example 1 gives us many approximate groups inZ, but there are some
genuinely different ones:

Definition: Suppose x0, . . . , xd ∈ Z and L1, . . . , Ld ≥ 1 are positive integers.
Then the set P := {x0+l1x1+· · ·+ldxd : 0 ≤ li < Li} is a generalized arithmetic progression

(GAP) or dimension d and size L1 . . .Ld. If the sums x0 + l1x1 + · · · + ldxd are all
distinct (in which case the size really is |P|) we say P is Proper. This should be

thought of as the projection of a “box” or “grid” down onto a 1D line.
Example 3: If P is a proper GAP of dimension d then σ[P] ≤ 2d. Example 4:

combine examples 2 and 3.
Theorem (Freiman-Ruzsa) (Usually known as Freiman) (these bounds due to

Chang): Suppose A ⊂ Zhasσ[A] ≤ K. Then there is a GAP P with dim(P) ≤ CKC

and size(P) ≤ exp(CKC)|A|, such that A ⊂ P (one can guarantee that P is proper,
though the proof is somewhat tedious; with that, this result becomes an if and
only if).

3.3 Freiman homomorphisms

Let s ≥ 2 be an integer, G an abelian group and A a subset therof. Let H
be another abelian group and φ : A → H a map. We say φ is a Freiman s-
homomorphism if a1+· · ·+as = a′

1
+· · ·+a′s ⇒ φ(a1)+· · ·+φ(ans) = φ(a′

1
)+· · ·+φ(a′s).

We say φ is a Freiman s-isomorphism (onto its image) if there is an inverse φ−1 :
φ(A)→ A which is also a Freiman s-homomorphism. Example 1: Ifφ : G→ H is
a group homomorphism thenφ induces a Freiman s-homomorphism on any set
A, for any s. Example 2: A = {1, 10, 100, 1000},B = {1, 100, 10000, 1000000}: any
bijection between A,B is a Freiman 2-isomorphism (Freiman isomorphisms tell
us that in some sense “the addative structures are the same”; here it is because
“there is no additive structure”). Example 3: φ : {0, 1}n ⊂ Zn → Fn

2
is a bijection

and a Freiman 2-homomorphism, but not a Freiman isomorphism.
Lemma (Basic Properties of Freiman Homomorphisms) (Some parts may

be left as exercises): i) If φ : A → H is a Freiman s-homomorphism and
s′ ≤ s then φ is also a s′-homomorphism ii) If φ : A → H is a Freiman s-
homomorphism and k, l non-negative integers, not both 0, with s ≥ k+ l, then φ
induces a well-defined map φ̃ : kA − lA→ H via φ̃(a1 + · · ·+ ak − a′

1
− · · · − a′

l
) =

φ(a1)+ · · ·+φ(ak)−φ(a′
1
)− · · ·−φ(a′

l
). Further φ̃ is a Freiman s′-homomorphism

for any s′ ≤ s
k+l . iii) i) and ii) remain true if we replace “homomorphism” with

“isomorphism” iv) Suppose P is a GAP of dimension d and π : P → π(P) is a
Freiman 2-homomorphism. Then π(P) is a GAP of dimension d. v) Suppose
A ⊂ Z

mZ is contained inside a subinterval of {1, . . . ,m} ֒→ Z

mZ of length at most m
s .

Then the “unfolding map” ψ : ZmZ → {1, . . . ,m} is a Freiman s-homomorphism.
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vi) The composition of two Freiman s-homomorphisms is another Freiman
s-homomorphism; likewise for isomorphisms. Most parts of this are trivial
exercises; for iv), suppose P = {x0 + l1x1 + · · · + ldxd : 0 ≤ li < Li}. Let π(x0) =
y0, π(xi + x0) = yi + y0 for i = 1, . . . , d. Then we claim π(x0 + l1x1 + · · · + ldxd) =
y0 + l1y1 + · · · + ldyd∀0 ≤ li < Li; clearly this gives the result. We prove this
claim by induction on l1 + · · · + ld; the claim is trivial when this is [0 or] 1.
Then for the inductive step note that we can find (l′

1
, . . . , l′

d
), (l′′

1
, . . . , l′′

d
) in Zd

such that (0, . . . , 0) + (l1, . . . , ld) = (l′
1
, . . . , l′

d
) + (l′′

1
, . . . , l′′

d
). Then induct using

x0, x0 +
∑

lixi, x0 +
∑

l′
i
xi and x0 +

∑
l′′
i

xi.
Proposition (Ruzsa’s “model” lemma): Let s ≥ 2 be an integer, A ⊂ Z finite,

p > |sA − sA| prime. Then there is A′ ⊂ A with |A′| ≥ |A|
s which is Freiman

s-isomorphic to a subset of ZpZ .

Corollary: Suppose A ⊂ Z has σ[A] ≤ K. Then there is a prime p ≤ KC|A|
and a set A′ ⊂ A, |A′| ≥ 1

8 |A|, which is Freiman 8-isomorphic to a subset of ZpZ :

by Ruzsa calculus, |8A−8A| ≤ Kc|A|. By Bertrand’s postulate there is at least one
prime p with |8A−8A| < p ≤ 2|8A−8A|. (We could easily have stated this with s
in place of 8, but 8 is the version we shall need in the proof of Freiman-Ruzsa).

Proof of Proposition: By translating A if necessary, we may wlog assume all
its elements are positive integers. Take a huge prime q >>> max(A) and con-

sider the chain of mapsZ
πq→ Z

qZ

λ→ Z

qZ

ψ
֒→ Z

πp→ Z

pZ , whereπp, πq are projections,

ψ is the unwrapping map and λ is dilation (i.e. multiplication) by λ ∈ ( ZqZ )×.

Note taht πq, πp, λ are group homomorphisms, and hence Freiman homomor-
phisms at any order. ψ is a Freiman s-homomorphism when restricted to any

subinterval I j ⊂ Z

qZ of the form [
j

s q,
j+1

s q), by v) of the previous proposition. By

the pigeonhole principle there is a set A′ ⊂ A, |A′| ≥ |A|
s such that λ ◦ πq(A′)

is contained inside some I j, so the composition ϕ := πp ◦ ψ ◦ λ ◦ πq is then
a Freiman s-homomorphism when restricted to A′ (which is actually depen-
dent on λ, A′(λ), but this is irrelevant). If it is not a Freiman s-isomorphism,
there must be some a1, . . . , as, a

′
1
, . . . , a′s such that a1 + · · · + as , a′

1
+ · · · + a′s

but ϕ(a1) + · · · + ϕ(as) = ϕ(a′
1
) + · · · + ϕ(a′s), a condition that can be written as

(λ(a1 + · · ·+ as − a1 − · · · − as) mod q) mod p = 0, i.e. (λd mod q) mod p = 0,
for some d ∈ (sA − sA) \ {0}. For any fixed such d, λd mod q ranges over

[1, . . . , q − 1] ⊂ Z

qZ as λ ranges over ( ZqZ )×. Of these numbers, at most
q−1

p are

divisible by p; hence, provided that p > |sA − sA|, there is at least one λ such
that none of the λd mod q, d ∈ sA − sA, is divisible by p; choose that λ and we
are done.

Bogolyubov’s Lemma

Suppose r1, . . . , rk ∈ Z

pZ , p prime; we want to “think of these as frequencies”.

Let R = {r1, . . . , rk}.
Definition: The Bohr set B(R, ǫ) = {x ∈ Z

pZ : ‖ rx
p ‖ RZ ≤ ǫ∀r ∈ R}. (The lecturer

likes to think of this as: each r defines a character χr : ZpZ → C⋆ via χr(x) = e( rx
p ).

Then B(R, ǫ) is the pullback under (χr1
, . . . , χrk

) of a small “cube” in the torus
(S1)k ⊂ Ck. This definition makes sense for an arbitrary G, not just ZpZ ). We say

k = |R| is the dimension of the Bohr set and ǫ > 0 is the width.
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Proposition (Bogolyubov’s Lemma): Let S ⊂ Z

pZ be of size αp, where 0 < α <

1. Then there is a Bohr set B(R, ǫ), of dimension ≤ 4
α2 and width ≥ 1

10 , contained

in 2S− 2S: Recall the (discrete) Fourier transform: if f : ZpZ → C is a function an

r ∈ Z

pZ a “frequency”, f̂ (r) := Ex∈ ZpZ
f (x)e(−rx

p ). We’ve shown Parseval’s identity:

‖ f ‖2 = (Ex| f (x)|2)
1
2 = ‖ f̂ ‖2 = (

∑
r | f̂ (r)|2)

1
2 . Recall f ⋆ g(x) = Ey f (y)g(x − y) and

f̂ ⋆ g = f̂ ĝ. Note that if f = 1U, g = 1V then the support of f ⋆ g is precisely
U + V. We shall also need the inversion formula, which allows us to recover f

from f̂ : f (x) =
∑

r f̂ (r)e( rx
p ), as can be proven very easily using the orthogonality

relations.
To prove the lemma, define f (x) = 1S ⋆ 1S ⋆ 1−S ⋆ 1−S(x) (where of course

−S = {−s : s ∈ S}). Noting that 1̂−S(r) = 1̂S(r), we have f̂ (r) = |̂1S(r)|4. Hence, by

the inversion formula, f (r) =
∑

r |̂1S(r)|4e( rx
p ) (⋆).

Let R be the set of all r , 0 such that |̂1S(r)| ≥ σ
3
2

2 . It follows from Parseval’s

identity, together with teh observation taht ‖1S‖2 = σ
1
2 , than |R| ≤ 4

σ2 . We claim

f (x) > 0 whenever x ∈ B(R, 1
10 ); this suffices to complete the argument, since

the support of f is precisely 2S − 2S.

To prove the claim, first take real parts of (⋆), obtaining f (x) =
∑

r |̂1S(r)|4 cos 2πrx
p .

We split this sum into three parts: the term r = 0 contributes σ4. If x ∈ B(R, 1
10 )

and r ∈ R then cos 2πrx
p ≥ 0, and so the sum of terms with r ∈ R is ≥ 0. Finally,

∑
r<R∪{0} |̂1S(r)|4 cos 2πrx

p ≥ −
∑

r<R∪{0} |̂1S(r)|4 ≥ − σ3

4

∑
r<R∪{0} |̂1S(r)|2 (as |̂1S(r)| < σ

3
2

2

on this set) ≤ − σ4

4 by Parseval’s identity. So for x ∈ B(R, 1
10 ), f (x) ≥ σ4+0− σ4

4 > 0
as required.

Geometry of Numbers

This is a much-hated part of the course; it has been described as a subject
which went out of fashion in England in the 1950s, and elsewhere considerably
earlier. We will be interested in centrally symmetric convex bodies K ⊂ Rd, i.e.

for which if x, y ∈ K then
x+y

2 ,−x ∈ K. Note these are precisely the unit balls of

norms onRd. A lattice is a discrete subgroup ofRd, i.e. any B(x, r) contains only
finitely many points of it. We say a lattice Λ is nondegenerate if it generatesRd

as a vector space over R.
This is a somewhat abstract definition. It turns out that any non-degenerate

latticeΛ has an integral basis v1, . . . , vd, meaning thatΛ = Zv1⊕ · · ·⊕Zvd; some
prefer to use this as a definition. The determinant detΛ is defined to be the
determinant of the column matrix (v1 . . . vd), or equivalently the volume of the
“fundamental parallelepiped” spanned by v1, . . . , vd; this is independent of the
choice of v1, . . . , vd. (Note: If (v1, . . . , vd), (v′

1
, . . . , v′

d
) are two integral bases, there

will be a M ∈ SLd(Z) such that (vi) =M(v′
i
).

Lemma (Blichfeldt’s Lemma): Let K be any measurable subset ofRd andΛ a
non-degenerate lattice. Suppose vol(K) > detΛ. Then there are distinct x, y ∈ K
with x − y ∈ Λ. The proof is by a “volume-packing” argument. By considering
K ∩ B(0,R) for suitably large R, we may assume K is bounded. Suppose the
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conclusion is false; then for every t ∈ Rd,
∑

x 1K(x + t)1Λ(x) ≤ 1. Let R′ >>> R

and average this over t ∈ B(0,R′):
∑

x 1Λ(x) 1
vol(B(0,R′))

∫
B(0,R′)

1K(x + t)dt ≤ 1 (⋆).

If x ∈ B(0,R′ − R) then the integral here is simply vol(K) (also, although we
shall not need this, it is 0 for x < B(0,R′ + R). Hence the LHS is at least

vol(K)
vol(B(0,R′))

∑
x 1Λ(x)1B(0,R′−R)(x). However, as r → ∞, 1

vol(B(0,r))

∑
x 1Λ(x)1B(0,r)(x) →

1
detΛ (although “obvious”, this result is fiddly to prove; we do so by tiling using

fundamental parallelepipeds for Λ). Also limR′→∞
vol(B(0,R′−R))

vol(B(0,R′)) = 1. Combining

all these observations with (⋆) we have
vol(K)
det(Λ) ≤ 1, a contradiction, and so the

result.

Minkowski’s Second Theorem

Let K ⊂ Rd be a centrally symmetric convex body and Λ a non-degenerate lat-
tice. For k = 1, . . . , d, letλk be the infinum of allλ such that the dilateλK contains
k linearly independent elements of Λ. The λk are called the successive minima
of K wrt Λ. Note that if K is closed then λkK itself will contain k linearly
independent vectors in Λ.

Pick an arbitrary b1 , 0 ∈ Λ1K ∩ Λ, then pick b2 ∈ λ2K ∩ Λ such that
dimR span(b1, b2) = 2, and so on; we obtain a basis for Rd consisting of vectors
b1, . . . , bd ∈ Λ. This is called a directional basis (for K wrt Λ).

Remark: b1, . . . , bd need not form an integral basis for Λ: consider d =
5,Λ = Zd ⊕ ( 1

2 , . . . ,
1
2 ),K = B(0, 1) the Euclidean ball of radius 1 about the origin.

(The directional basis will simply be the standard basis for R5, which does not
include the “half”-points of the lattice ( 1

2 , . . . ,
1
2 ), ( 3

2 ,
1
2 , . . . ,

1
2 ) etc.).

Theorem (Minkowski’s Second Theorem): λ1, . . . , λdvol(K) ≤ 2d detΛ: wlog
take K open (this is simply a convenience for later on). Let b1, . . . , bd be a
dorectional basis. Define maps ϕ j : K → K by setting ϕ j(x) to be the centre of
gravity of the j − 1-dimensional slice of K parallel to b1, . . . , b j−1 and containing

x. Define ϕ : K → Rd by ϕ(x) :=
∑d

j=1(λ j − λ j−1)ϕ j(x) where λ0 is taken to be 0
(the lecturer freely admits to not understanding what is really going on here).

For a given x ∈ Rd write x = x1b1 + · · · + xdbd. Writing ϕ j(x) =
∑d

i=1 ci j(x)bi we
see that ci j(x) = xi if i ≥ j and depends only on x j, . . . , xd if j > i. It follows
from this that (ϕ(x))i = λixi+ψi(xi+1, . . . , xd), from which it follows immediately
that vol(ϕ(K)) = λ1 . . . λdvol(K), since the Jacobian of ϕ is upper-triangular with
λ1, . . . , λd along the diagonal, so has determinant λ1 . . . λd.

Suppose that λ1 . . . λdvol(K) > 2d detΛ. Then vol(ϕ(K)) > det(2Λ) (where
2Λ = {2λ : λ ∈ Λ}) and hence by Blichfeldt there are distinct x, y ∈ K such that
ϕ(x)−ϕ(y)

2 ∈ Λ. Let k be maximal such that xk , yk. Then
ϕ(x)−ϕ(y)

2 =
∑d

i=1(λi −
λi−1)

ϕi(x)−ϕi(y)

2 =
∑k

i=1(λi − λi−1)
ϕi(x)−ϕi(y)

2 by considering the expressions for ϕi

relative to our basis b1, . . . , bd. HOwever, ϕi(x), ϕi(y) ∈ K by convexity of K,

whence
ϕi(x)−ϕi(y)

2 ∈ K by central symmetry and convexity, and so
∑k

i=1(λi −
λi−1)

ϕi(x)−ϕi(y)

2 ∈ λkK by convexity. Hence
ϕ(x)−ϕ(y)

2 ∈ λkK∩Λ. But by assumption,

the kth coordinate relative to b1, . . . , bd is
xk−yk

2 , 0 and so λkK ∩ Λ contains k

independent elements of Rk. Hence so does (λk − ǫ)K ∩ Λ, since K is open, but
this contradicts the definition of λk.

For a more conceptually clear proof which sadly yields a looser inequality:
by an Affine transformation we may wlog consider the lattice to be Zd. By
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John’s Theorem K contains an ellipsoid with a large proportion of its volume;
then finding many points of Zd inside an ellipsoid is easy.

We will use Minkowski’s Second Theorem to locate a large GAP inside a
Bohr set.

Proposition: Let p be a prime and let R ⊂ Z

pZ be a set of k “frequencies”

(elements). Let ǫ < 1
2 . Then the Bohr set B(R, ǫ) contains a (proper) GAP of

dimension k and size at least ( ǫk )kp: Suppose R = {r1, . . . , rk}. Consider the

lattice Λ = pZk + Z(r1, . . . , rk); since p is prime, this is equal to the direct sum
pZk ⊕ {0, . . . , p − 1}(r1, . . . , rk), and hence it is not hard to convince oneself (if,
again, fiddly to actually prove) that detΛ = pk−1.

Let K ⊂ Rk be the l∞-ball {x : ‖x‖∞ ≤ ǫ} i.e. {x : |x1|, . . . , |xk| ≤ ǫ}. Let b1, . . . , bk

be a directional basis (for Λ wrt K) and let λ1, . . . , λk be the successive minima.
We have ‖bi‖∞ ≤ ǫλi. Set Li := ⌈ p

λik
⌉. Then for 0 ≤ li < Li, ‖l1k1 + · · · + lkbk‖∞ ≤∑k

i=1
p

λik
× λiǫ = ǫp (⋆).

Since bi lies in Λ, we have bi = xi(r1, . . . , rk) mod p, where 0 ≤ xi < p;
by slight abuse of notation we consider xi ∈ Z

pZ . Then (⋆) implies that

‖ (l1x1+···+lkxk)r j

p ‖ R
Z

≤ ǫwhenever 0 ≤ li < Li; that is, l1x1+· · ·+lkxk ∈ B(R, ǫ). The size

of this progression is L1 . . .Lk ≥ 1
kk

pk

λ1...λk
. But by Minkowski II λ1 . . . λk(2ǫ)k ≤

2kpk−1 and so this is ≥ ( ǫk )kp, as claimed.
We also claimed that this progression P is proper: suppose l1x1 + · · ·+ lkxk =

l′
1
x1+ · · ·+ l′

k
xk mod p. Then b := (l1− l′

1
)b1+ · · ·+ (lk− l′

k
)bk lies in pZk. However

‖b‖∞ ≤
∑k

i=1
p

λik
λiǫ ≤ ǫp. But ǫ < 1

2 and so b = 0, and hence li = l′
i
∀i = 1, . . . , k.

Chang’s Covering Lemma

Lemma: Suppose that A ⊂ Z and σ[A] ≤ K. Suppose also that 2A− 2A contains
a proper GAP P, of dimension d and size η|A|. Then A is contained in a GAP of

dimension at most d+CKC log 1
η

and size at most 2dη−CKC |A|: Let L be a quantity

to be chosen later (of the form CKC). Set P0 = P; pick a maximal R0 ⊂ A such
that the translates P0 + r0, r0 ∈ R0 are disjoint. If |R0| ≤ L then stop, otherwise
pick S0 ⊂ R0, |S0| = L, and define P1 := P0 + S0. Pick R1 ⊂ A maximal such that
the translates P1 + r1, r1 ∈ R1 are all disjoint. If |R1| ≤ L, stop; otherwise pick
S1 ⊂ R1, |S1| = L and set P2 := P1 + S1, and so on.

We claim that this algorithm terminates in good time for an appropriately
chosen L. Suppose it runs for t steps, then |Pt| = |P0||S0| . . . |St−1| ≥ η|A|Lt. On the
other hand, since P0 ⊂ 2A − 2A and each S is a subset of A, Pt ⊂ (t + 2)A − 2A,
hence |Pt| ≤ KC(t+4)|A|. Choosing L = K2C, say, it is easy to see that t ≤ C log 1

η
.

Suppose the algorithm stops at the tth step (and we now have t ≤ C log 1
η ).

This means there is a set Rt ⊂ A such that |Rt| ≤ L, the translates Pt + rt are
disjoint for rt ∈ Rt, and Rt is maximal wrt this property. Hence if x ∈ A then
(Pt + x) ∩ (Pt + rt) , ∅ for some rt ∈ Rt, which means that A ⊂ Pt − Pt + Rt ⊂
P − P + (S0 − S0) + · · · + (St−1 − St−1) + Rt (†).

Now given a set S, we may place S − S very crudely inside a progression

by S := {
∑

s∈S ǫss : ǫs ∈ {−1, 0, 1}}with sidelength 3 and dimension |S|. Similarly
Rt lies inside a GAP of dimension |Rt| and size 2|Rt |. Returning to (†), A has

been placed inside a GAP of dimension ≤ d +
∑t−1

i=0 |Si| + |Rt| ≤ d + CKC log 1
η
.
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The size of this GAP is at most |P− P|(
∏t−1

i=0 3|Si|)2|Rt|. Noting that P is proper we
have |P − P| ≤ 2d|P|; also, since P ⊂ 2A − 2A, we have |P| ≤ CKC|A|. Putting this
together with the bounds |Si|, |Rt| ≤ L and t ≤ C log 1

η , we get that the size of this

GAP is ≤ 2dη−CkC |A|, as required.
Conclusion of proof of Freiman-Ruzsa: 1) Suppose σ(A) ≤ K. By Ruzsa’s

model lemma, ∃A′ ⊂ A, |A′| ≥ 1
8 |A|, such that A′ is 8-isomorphic to a set S ⊂

Z

pZ , |S| ≥ cK−cp. 2) 2S− 2S contains a Bohr set of dimension ≤ CKC and width 1
10

(Bogolyubov). 3) That Bohr set contains a proper GAP P of dimension ≤ CKC

and size ≥ exp(−cKc)|A|. 4) By “basic properties of Freiman isomorphisms”,
2A′−2A′ is Freiman 2-isomorphic to 2S−2S. So 2A−2A contains a progression
P̃, dim P̃ ≤ CKC, of size ≥ exp(−cKc)|A|. 5) Chang’s covering lemma implies A

is contained in a GAP Q with dim Q ≤ CKC and |Q| ≤ eCKC |A|.

Additive Energy and the Bolog-Szeverédi-Gowers The-

orem

(The name of this theorem is a bit unwieldy; a similar result was first proven
by Bolog-Szererédi, but gave impractically large bounds; the first polynomial
bounds were given by Gowers).

Definition: Suppose A,B are finite sets in some abelian group. Then the
(normalized) additive energy ω+(A,B) (the notation is original to this course)
is the number of solutions to a1 + b1 = a2 + b2 with a1, a2 ∈ A, b1, b2 ∈ B, divided
by |A| 32 |B| 32 .

Remark: 0 ≤ ω+(A,B) ≤ 1: to see the latter, note that the number of solutions
to a1 + b1 = a2 + b2 is ≤ |A|2|B| since there is at most one solution for each
(a1, a2, b1) ∈ A × A × B; similarly it is ≤ |A||B|2 and thus ≤ the geometric mean

|A| 32 |B| 32 .
Recall we wrote σ[A,B] = |A+B|

|A|
1
2 |B|

1
2

. There is a close connection between

having small sumset and large additive energy. One direction of this connection
is very easy: if the sumset is small then the additive energy is large:

Lemma: Suppose σ[A,B] ≤ K. Thenω+(A,B) ≥ 1
K : Write r(x) for the number

of pairs (a, b) ∈ A × b with a + b = x. Then
∑

x r(x) = |A||B| and
∑

x r(x)2 is the

number of solutions to a1 + b1 = a2 + b2, i.e. |A| 32 |B| 32ω+(A,B). Note further that
r(x) is supported on A+B and so, by Cauchy-Schwartz,

∑
x r(x)2 ≥ 1

|A+B| (
∑

x r(x))2;
this quickly leads to the result.

The most obvious attempt to form a converse fails: for example, let A =
A1 ∪ A2 where A1 = {1, . . . , n

2 } and A2 = {x1, . . . , x n
2
} is arbitrary (and sparse).

Then ω+(A,A) ≥ 1
100 but typically σ[A] ∼ cn. (Informally, if we add some

random points to a set, this won’t affect the additive energy much, but can
greatly increase the doubling).

Theorem (Balog-Szeverédi-Gowers): Suppose A,B are sets in some abelian
group andω+(A,B) ≥ 1

K . Then there exist A′ ⊂ A,B′ ⊂ B with |A′| ≥ cK−C|A|, |B′| ≥
cK−C|B| and with σ[A′,B′] ≤ CKC.
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Paths of length 3

We shall deduce B-S-G (quite straightforwardly) from the following graph-
theoretic lemma:

Lemma: Suppose G is a bipartite graph on vertex sets V,W, |V| = |W| = n,
and suppose G has αn2 edges, 0 < α ≤ 1. Then there are sets V′ ⊂ V,W′ ⊂ W

with |V′ |
|V| ,

|W′ |
|W| ≥ cαC such that there are at least cαCn2 paths of length 3 in G

between any x ∈ V′ and any y ∈ W′ (the lecturer thinks, but is not sure, that
there is a stronger result where we can find paths of length 3 in the induced
graph on V′ ∪W′, but we shall not need that and the proof is doubtless much
harder).

The heart of the proof is the following lemma about paths of length 2:
Lemma: Suppose G is a bipartite graph on V ∪W, |V| = |W| = n with αn2

edges. Let 0 < η < 1 be a further parameter. Then there is a set V′ ⊂ V, |V′| ≥
αn
2 , such that ∀η pairs (v1, v2 ∈ V′ × V′ (where ∀η means for a proportion

(1 − η) - “for all except η many”) there are at least
ηα2

2 n paths of length 2 (in
G) between v1 and v2: For v ∈ V, write N(v) for the set of all vertices in W
adjacent to V, and similarly N(w). By double-counting,

∑
w∈W

∑
v∈V 1vw∈E(G) =

αn2. Hence, by Cauchy-Schwartz,
∑

w∈W

∑
v,v′∈V 1vw∈E(G)1v′w∈E(G) ≥ α2n3, or in

other words
∑

v,v′∈V |N(v)∩N(v′)| ≥ α2n3 (⋆). Call v, v′ very unfriendly if |N(v)∩

N(v′)| ≤ ηα2

2 n, i.e. if there are fewer than
ηα2

2 n paths of length 2 between v
and v′. Let S ⊂ V × V be the set of very unfriendly pairs. Then it follows

from (⋆) that
∑

v,v′∈V(η − 1(v,v′)∈S)|N(v)∩N(v′)| ≥ ηα2n3

2 . This may be rewritten as
∑

w∈W

∑
v,v′∈V(η−1(v,v′)∈S)1vw∈E(G)1v′w∈E(G) ≥ ηα2n3

2 . In particular there is at least one

w such that
∑

v,v′∈V(η − 1(v,v′)∈S)1vw∈E(G)1v′w∈E(G) ≥ ηα2n2

2 . Define V′ := N(w). Just
the fact that the preceding expression is≥ 0 tells us that∀η pairs (v1, v2) ∈ V′×V′,

(v1, v2) < S, so there are
ηα2

2 n paths of length 2 between them. Also, ignoring

the contribution from S completely, we have
∑

v,v′∈V 1vw∈E(G)1v′w∈E(G) ≥ α2n2

2 , i.e.

|N(w)|2 ≥ α2n2

2 . Thus |V′| ≥ αn√
2
≥ αn

2 , as claimed.

Gowers’ original proof of this result was along similar lines; he was using
random selection from w though, and so had to pick 5 elements w1, . . . ,w5 and
then set V′ to be the intersection of their neighbourhoods N(w1) ∩ · · · ∩N(w5).
Here we have been able to pick a “clever” w by “letting linearity of expectation
do all the work for us”.

Proof of the paths of length 3 lemma: The number of edges enmating from

vertices in V with degree ≤ αn
2 is at most αn2

2 ; deleting these, we still have ≥ αn2

2
edges. Henceforth, “edge” shall refer only to those edges which remain after
this deletion. Let η > 0 be a parameter to be chosen later and applythe paths of
length 2 lemma; this gives us V′ ⊂ V, |V′| ≥ αn

4 such that∀η pairs (v1, v2) ∈ V′×V′

there are ≥ ηα2

8 n common neighbours of v1, v2 in W. Now a silly technical point
(we want to just delete all the vertices of degree 0, but we only proved the
lemma on paths of length 2 for vertex sets of equal size): it is conceivable that
there are vertices in V′ of degree 0. If η < 1

4 then there are certainly no more

than 1
2 |V′| such vertices, so deleting them we get a further set V′′ ⊂ V′, |V′′ ≥ αn

8

such that ∀η pairs (v1, v2) ∈ V′′ ×V′′ there are ≥ ηα2

8 n common neighbours in W
and such that deg(v) ≥ αn

2 ∀v ∈ V′′.
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Now we look at W. There are ≥ α2n2

16 edges from V′′ to W; it follows that

there are ≥ α2n
32 vertices in W having at least α2n

32 neighbours in V′′. Let W′ be
the set of such. We now make further refinement of V′′: by another simple
averaging argument, we can pass to V′′′ ⊂ V′′, |V′′′| ≥ 1

2 |V′′| ≥
αn
16 such taht if

x ∈ V′′′, ∀2ηy ∈ V′′, x and y share
ηα2

8 n common neighbours in W.
We claim that for suitably chosen η, V′′′ and W′ have the desired property,

namely many paths of length 3 between each pair of vertices. Suppose we fix

x ∈ V′′′, y ∈W′. By construction, N(y) [in V′′ is of size] ≥ α2n
32 . Also, (1− 2η)|V′′|

vertices share ≥ ηα2

8 n common neighbours with x. Set η = α2

96 , then these two

sets intersect in a set of size ≥ η|V′′|. This gives us at least η|V′′| ηα
2

8 n ≥ η2α3

64 n2

paths of length 3 between x and y, as required.
Proof of Balog-Szeverédi-Gowers: Recall we had sets A,B ⊂ some abelian

group withω+(A,B) ≥ 11
K This implies the number of solutions to a1−b1 = a2−b2

(or equivalently a1 + b2 = a2 + b1) is at least 1
K |A|

3
2 |B| 32 . This implies, by an easy

averaging argument, that there are many popular differences between A and

B: writing s(x) = #{(a, b) ∈ A × B : a − b = x}, there are at least 1
2K |A|

1
2 |B| 12 values

of x such that s(x) ≥ 1
2K |A|

1
2 |B| 12 (cf the proof of Ruzsa 3).

Form a bipartite graph G on A ∪ B by joining a to b iff a − b is a popular
difference. Note that ω+(A,B) ≥ 1

K ⇒ K−2|A| ≤ |B| ≤ K2|A| (this drops out of our
proof that ω+(A,B) ≤ 1). Pad out the smaller of the two vertex classes so that
each has n = max(|A|, |B|) vertices.

It follows from the paths of length 3 lemma that there are A′ ⊂ A,B′ ⊂
B, |A|

′

|A| ,
|B′ |
|B| ≥ cK−C with ≥ cK−Cn2 paths of length 3 between [each pair of vertices

from] them. This means that ∀a′ ∈ A′, b′ ∈ B′ there are ≥ cK−C choices of
b′′ ∈ B, a′′ ∈ A (note these are in B,A, not generally B′,A′) such that all three
of a′ − b′′, a′′ − b′′, a′′ − b′ are popular. But note that a′ − b′ = (a′ − b′′) −
(a′′ − b′′) + (a′′ − b′) = x + y + z where x, y, z are populare differences. Notice
that given x, y, z, a′ − b′ we can easily recover a′′, b′′. Thus we have ≥ cK−Cn2

representations of a′ − b′ as x − y + z with x, y, z popular. However, there

are certainly no more than 2K|A| 12 |B| 12 popular differences (by double-counting
pairs (a, b) with a− b popular), ≤ CKCn. Thus |A′| − |B′|cK−Cn2 ≤ (CKCn)3 which
implies |A′ − B′| ≤ CKCn. Note that |A′|, |B′| ≥ cKCn; thus we have the result.

Chapter 5: Longer progressions and higher Gowers

norms

Recall Roth’s theorem: in qualitative terms, every subset of {1, . . . ,N} of positive
density contains a non-trivial 3AP. The same is true for progressions of length
k > 3 - a famous theorem of Szeverédi. The first quantitative bounds for
Szeverédi’s theorem were obtained by Gowers in 1998:

Theorem (Gowers): Let k ≥ 3 be an integer. Suppose A ⊂ {1, . . . ,N} is a set
of size at least N(log log N)−ck (for fixed ck > 0). Then A contains a nontrivial
k-term AP. We shall prove this only for the case k = 4; it is fair to say that
the mathematical establishment “does not know the correct proof” for k ≥ 5
(and possibly even for k = 4). That said, we shall do much of the proof in full
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generality; the main “hole” is that we will not be able to proove an inverse
theorem for a general Gowers uk-norm.

Recall that in the proof of Roth’s theorem we introduced G = Z

N′Z where N′ =
2N+1; here we’ll need N′ = (k−1)N+1. Recall we looked at the Gowers u2-norm:

if f : G → C we define ‖ f ‖u2 = (Ex,h1,h2∈G f (x) f (x + h1) f (x + h2) f (x + h1 + h2))
1
4 .

This and much of what we say is valid in any abelian G (and probably even for
G nonabelian).

Definition (Gowers uk-norms): Let k ≥ 2 be an integer. Write [here the
lecturer paused for several moments in aparrent disgust]C : C→ C for complex
conjugation. Let G be a finite abelian group, f : G → C a function. Then we

define ‖ f ‖uk
= (Ex,h1,...,hk∈G

∏
ω∈{0,1}k C|ω| f (x + ω · h))

1

2k where h = (h1, . . . , hk), ω ·
h = ω1h1 + · · · + ωkhk, |ω| = |ω1| + · · · + |ωk|. We also introduce the Gowers
inner product, defined for a collection ( fω)ω∈{0,1}k of complex-valued functions,

〈( fω)〉uk = Ex,h1,...,hk

∏
ω∈{0,1}k C|ω| fω(x + ω · h). For example, 〈 f00, f10, f01, f11〉u2 =

Ex,h1,h2
f00(x) f10(x + h1) f01(x + h2) f11(x + h1 + h2).

Proposition: Let k ≥ 2 be an integer. Let ( fω)ω∈{0,1}k , f , g be complex-valued
functions. Then i) (Gowers Cauchy-Schwartz) 〈 fω〉uk ≤

∏
ω∈{0,1}k ‖ fω‖uk

ii) The
Gowers norms are nested: ‖ f ‖u2 ≤ ‖ f ‖u3 ≤ . . . iii) The Gowers norms are
genuine norms (this is nice to know, though we shall never actually need
it in this course); the nontrivial parts of this are ‖ f + g‖uk ≤ ‖ f ‖uk + ‖g‖uk

and ‖ f ‖uk = 0 ⇒ f = 0. Proof: i) is facilitated by a clever rewriting of
〈( fω)〉uk followed by k applications of Cauchy-Schwartz; for example, 〈( fω)〉u2 =

Ex,x′,y,y′∈G f00(x+ y) f10(x′ + y) f01(x + y′) f11(x′+ y′); the more general form is obvi-
ous but horrible to notate. Doing Cauchy-Schwartz “in” the variables x, x′ gives

|〈( fω)〉u2 | ≤ (Ex,x′(Ey f00(x + y) f10(x′ + y))2)
1
2 (Ex,x′(Ey′ f01(x + y′) f11(x′ + y′))2)

1
2 =

〈 f00, f10, f00, f10〉
1
2

u2〈 f01, f11, f01, f11〉
1
2

u2 (i.e. the product of the square roots of those
norms). Applying Cauchy-Schwartz “in the ys” gives e.g. 〈 f00, f10, f00, f10〉u2 ≤
〈 f00, f00, f00, f00〉

1
2

u2〈 f10, f10, f10, f10〉
1
2

u2 = ‖ f00‖2u2‖ f10‖2u2 , and similarly for the other

factor, whence the result. ii) follows from i): ‖ f ‖2k

uk = 〈 f , . . . , f , 1, . . . , 1〉uk+1

where there are 2k f s and 2k 1s; this is at most ‖ f ‖2k

uk+1‖1‖2
k

uk+1 = ‖ f ‖2k

uk+1 by

Gowers-Cauchy-Schwartz. To prove iii) write ‖( f + 2)‖2k

uk
= 〈 f + g, . . . , f + g〉uk

whgich may be expanded using multilinearity as a sum of 22k
terms each of

the form 〈 f , g, f , f , g, . . . 〉uk , where the number of terms with i f s and 2k − i gs

is
(2k

i

)
. By Gowers-Cauchy-Schwartz each such term is ≤ ‖ f ‖i

uk‖g‖2
k−i

uk ; hence

‖ f + g‖2k

uk ≤
∑

i

(2k

i

)‖ f ‖i
uk‖g‖2

k−i
uk = (‖ f ‖uk + ‖g‖uk )2k

. To see that ‖ f ‖uk = 0 ⇒ f = 0
it suffices to deal with k = 2 (because the norms are nested); the easiest way to

do this is to use ‖ f ‖u2 = ‖ f̂ ‖4, hence ‖ f ‖u2 = 0 ⇒ ‖ f̂ ‖4 = 0 ⇒ f̂ = 0 ⇒ f = 0 by
the inversion formula (as an exercise the reader may prove the result directly).

We shall start looking at Gowers’ proof for progressions of length 4. The
proof is by the density increment strategy, as in chapter 1 (of course, our proof
there was deliberately chosen to be as easy as possible to generalize).

Proposition (density increment): Let 0 < α < 1,N > Cα−C. Let P be a
progression of length N, and A ⊂ P a set of size αN. Then at least one of the
following holds: i) A contains ≥ 1

20α
4N2 4APs (this value should be modified

slightly, see below), and in particular at least one ii) There is a progression

P′, |P′| ≥ Nαc
such that |α∩P′ |

|P′ | ≥ α + cαc. With reference to section 1.1, the reader
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should convince theirself that this implies Gowers’ result.
Turning now to the proof of the proposition, take N′ = 6N + 1 and consider

G = Z

N′Z . wlog take P = {1, . . . ,N} and consider A as a subset of G. Introduce
f := 1A − α1[N], the balanced function of A. For f1, f2, f3, f4 : G → C define
AP4( f1, f2, f3, f4) = Ex,d f1(x) f2(x + d) f3(x + 2d) f4(x + 3d).

Lemma: Suppose 0 < α < 1, N > Cα−C and A has fewer than 1
20α

4N2

4APs. Then there are 1-bounded functions g1, . . . , g4 at least one of which is the
balanced function f , such that |AP4(g1, g2, g3, g4)| ≥ cα4. The proof is identical
to that of the corresponding lemma in chapter 1.

Lemma (Generalised von Neumann Theorem): Let f1, f2, f3, f4 : G → C be
1-bounded. Then |AP4( f1, f2, f3, f4)| ≤ ‖ fi‖u3 for i = 1, 2, 3, 4; we’ll sketch the
proof for i = 1 (the other cases are similar): AP4( f1, f2, f3, f4) = Ex,y,z f1(x + y +

z) f2( 1
2 y + 2

3 z) f3(−x + 1
3 z) f4(−2x − 1

2 y) (this paramaterization has been chosen
such that only the f1 term contains all three parameters; we have used that
(6,N′) = 1). Now apply Cauchy-Schwartz to eliminate f2, f3, f4 in turn, much
as in the first chapter; one ends up with |AP4( f1, f2, f3, f4)|8 ≤ Ex,x′,y,y′,z,z′ f1(x +

y + z) f1(x′ + y + z) f1(x + y′ + z) f1(x + y + z′) . . . f1(x′ + y′ + z′) = ‖ f1‖8u3 . Much
the same result holds for general k, but the notation becomes very unwieldy.

Combining the last two lemmas, we have: Corollary: Suppose 0 < α <
1,N > Cα−C, and A has fewer than 1

20α
4N2 4APs. Then ‖ f ‖u3 ≥ cα4, where f is

the balanced function of A. Our task now is to prove the following result of
Gowers, a (consequence of a) “local inverse theorem” for the u3 norm: (At this
point the lecturer became too lazy to write N′s; thus, we freely write N where
we mean N′)

Proposition: Suppose f : {1, . . . ,N} ⊂ Z

N′Z → C is 1-bounded and Ex f (x) =

0, ‖ f ‖u3 ≥ δ. Then there is a progression P of length at least exp( 1
δ2 )NδC

such

that Ex∈P f (x) ≥ cδC (the factor of exp( 1
δ2 ) was forgotten above, but the lecturer

assures us the density incremend argument remains valid).
Proof of the local inverse theorem, I: First, a preliminary observation, in

fact the motivating observation for the whole subject: set f (x) = e( x2

N ), then f is

1-bounded and ‖ f ‖u3 = Ex,h1,h2,h3
e( 1

N (x2− (x+h1)2−· · ·− (x+h1+h2+h3)2)) = 1 (as
the sum in the e(. . . ) is a “3rd difference” (3rd discrete derivative) of squares, so
always 0 (or we can see this directly by expanding out)). It’s possible to verify
that this f does not correlate with any linear phase e( rx

N ).
This example is, with the benefit of hindsight, extremely natural: if f (x) =

e(ψ(x)) then ‖ f ‖u3 is telling us that the third discrete derivative ∆3ψ(x) = ψ(x) −
ψ(x+ h1)− · · · −ψ(x+ h1 + h2 + h3) is “biased”. This at least suggests that f itself
has “quadratic bias”. The true result is not as nice as it might be; it is not the

case that such an f is always correlated with a quadratic phase function e( rx2

N ) -
but something almost as good is true; see later.

The key idea is to study the “derivatives” of f . Define∆( f , h)(x) := f (x) f (x + h).
Suppose that ‖ f ‖u3 ≥ δ. We have ‖ f ‖8

u2 = Eh‖∆( f h)‖42 (this is easy to check; in-
formally it is because “both sides count parallelepipeds”). It follows that there

are ≥ δ8N
2 values of h for which ‖∆( f , h)‖u2 ≥ δ2

2 (a simple averaging argument).
For each such h we apply the inverse theorem for u2 to calculate that there

is some ϕ(h) such that |∆̂( f , h)(ϕ(h))| ≥ δ4

4 . Observe that if f (x) = e( x2

N ) then

∆( f , h)(x) = e(−2hx
N )e(− h2

N ), so we can take ϕ(h) = −2h. In the more general
setting we’ll look for some linearity in ϕ.
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Lemma (Gowers): this was described by Gowers as “the lemma that changed
my life”, and formed the core of his Fields medal. Suppose that f : G =
Z

NZ → C is a 1-bounded function and S ⊂ G, |S| = σ|G| is a set such that

∆̂( f , h)(ϕ(h))| ≥ η∀h ∈ S for some ϕ : S → Z

NZ (for some fixed 0 < η < 1). Let

Γ := {(x, ϕ(x)) : x ∈ S} ⊂ ( ZNZ )2 be the graph ofϕ. Then the additive energyω+(Γ)

is at leastση8: the hypotheses imply thatEh1S(h)|∆̂( f , h)(ϕ(h))2)|2 ≥ ση2. Expand-

ing out, we obtain Eh1S(h)Ex,y f (x) f (x + h) f (y) f (y + h)e(
−ϕ(h)(x−y)

N ) ≥ ση2. Substi-

tuting y = x + k this yields Eh,x,k1S(h) f (x) f (x+ h) f (x + k) f (x + h + k)e(
−ϕ(h)k

N ) ≥
ση2 ⇒ Ex,k|Eh1S(h) f (x + h) f (x + h + k)e(

−ϕ(h)k

N )| ≥ ση2 (by the triangle inequality

and the fact that f is 1-bounded), which in turn impliesEx,k|Eh1S(h) f (x + h) f (x+

h + k)e(
−ϕ(h)k

N )|2 ≥ σ2η4 (⋆) (by Cauchy-Schwartz).

Write Fk(t) := 1S(t)e(
−ϕ(t)k

N ) and Gk(t) := ∆( f , k)(t). Then (⋆) can be rewritten

as Ek‖F0
k
⋆ Gk‖22 ≥ σ2η4, wree F0

k
(t) = Fk(−t). Writing this in Fourier [space] and

using Parseval we obtain Ek

∑
r |F̂k(−r)|2|Ĝk(r)|2 ≥ σ2η4.

Since Gk is 1-bounded, so is Gk⋆Gk and hence by Parseval
∑

r |Ĝk(r)|4 = ‖Gk⋆
Gk‖22 ≤ 1. Applying Cauchy-Schwartz to the preceding inequality therefore

yields Ek(
∑

r |F̂k(r)|4)
1
2 ≥ σ4η8. Expanding this out using the definition of Fk we

getEt1 ,t2,t3,t4
1S(t1)1S(t2)1S(t3)1S(t4)Eke(− k

N (ϕ(t1)+ϕ(t2)−ϕ(t3)−ϕ(t4)))
∑

r e(− r
N (t1+

t2 − t3 − t4)). But this is simply 1
N3 times a count of the number of quadruples

t1, t2, t3, t4 ∈ S with t1+t2 = t3+t4 andϕ(t1)+ϕ(t2) = ϕ(t3)+ϕ(t4), thus completing
the proof.

What do we do with ϕ2?
Proposition: Suppose K ≥ 1 and S ⊂ Z

NZ (N prime) is a set of size at least

exp(KC). Let ϕ : S → Z

NZ be a function and write Γ = {(x, ϕ(x)) : x ∈ S} for its

graph. Suppose that σ[Γ] ≤ K. Then there is a progression P, |P| ≥ exp(−KC)N
1

KC

and a linear mapψ(x) = ax+b such thatϕ(x) = ψ(x) for at least a K−C proportion
of x ∈ P. (This lecture will be technical and unpleasant; as such it is least likely
to be examined).

Proof: Suppose to begin with we have a set A ⊂ Zwith σ(A) ≤ K. During the
proof of Freiman-Ruzsa (follow that proof but omit Chang’s covering lemma)
we obtained a GAP Q with dimension ≤ KC and size ≥ exp(−KC)|A| with
Q ⊂ 2A−2A. We have (by the usual double counting argument)

∑
x |A∩(Q+x)| =

|A||Q|. But this sum has support A−Q = 3A− 2A, which by Ruzsa calculus is a
set of size ≤ KC|A|. Hence there is some x such that |A∩ (Q+ x)| ≥ K−C|Q|. (This
manouver was srs; if we’d just stuck A in a progression as in Freiman-Ruzsa,
we’d lose a whole log in our final bound (getting a result with a log log log in
place of a log log)).

x+Q is a generalizedprogression; suppose it is {x0+l1x1+· · ·+ldxd : 0 ≤ li < Li}
with L1 ≤ · · · ≤ Ld. By fixing l1, . . . , ld−1 and letting ld vary, we may partition
Q into translates of some (one-dimensional, genuine) progression of length at

least |Q| 1d ≥ exp(−KC)N
1

KC (and note that this is a genuine partition, not merely
a covering, since recall Q may be taken proper). By the pigeonhole principle

there is some progression P, |P| ≥ exp(−KC)N
1

KC with |A ∩ P| ≥ K−C|P| (Aside:
we could have obtained this result a bit more quickly, but the “geometry of
numbers” section is to a centain extent worthwhile in its own right).

We can make all this work for A ⊂ Z2: any finite subset of Z2 is Freiman
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8-isomorphic to a subset of Z by some π : A→ Z. Once we have this, a proper
GAP Q ⊂ 2π(A) − 2π(A) may be pulled bay to one in 2A − 2A (the definition
of GAP in Z2 is obvious); the rest of the argument works as before. To see
that A ⊂ Z2 is Freiman 8-isomorphic to a subset of Z, translate A to lie in
[0, . . . ,m − 1]2 for some m and then define π(x, y) = x + 8my; it is an easy check
that this π |A really is a Freiman 8-isomorphism.

Finally, we turn to Γ ⊂ ( ZNZ )2. Let Γ be the image of Γ under the unfolding

map ψ : ( ZNZ )2 ֒→ {0, . . . ,N− 1}2 ⊂ Z2. Clearly |Γ| = |Γ|; Γ+Γmay well be larger
than Γ + Γ, but not by too much: each sum in Γ + Γ gives rise to no more than

four sums in Γ + Γ, whence σ[Γ] ≤ 4K. Applying our earlier remarks, there is a

progression P ⊂ Z2, |P| ≥ exp(−K−C)N
1

KC , such that |Γ ∩ P| ≥ K−C|P|. The lower

bound |Γ| ≥ exp(KC) tells us that |Γ ∩ P| > 1; this implies, since Γ is a graph
(and so has at most one point with any given “x coordinate”) that the common
difference d = (d1, d2) of P has d1 . 0 mod N. It follows that the image of P in

( ZNZ )2 has the same size as P; calling it R, we therefore have |R| ≥ exp(−KC)N
1

Kc

and |Γ ∩ R| ≥ K−C|R|. But R is itself the graph of a linear function x 7→ ax + b, so
we have the result.

Summarizing the results of this section, we have: Corollary: Suppose N is
prime and f : Z

NZ → C is a 1-bounded function with ‖ f ‖u3 > δ. Then there

is a progression P ⊂ Z

NZ , |P| ≥ exp(− 1
δc )Nδc

together with a, b ∈ Z

NZ such that

Eh∈P|∆̂( f , h)(ah + b)|2 ≥ δc: ‖ f ‖u3 large implies many |∆̂( f , h)(ϕ(h))| are large.
Gowers’ magic lemma implies the graph Γ of ϕ has large additive energy;
Balog-Szeverédi-Gowers implies a large subgraph Γ′ has small doubling, now
apply the previous lemma.

Gowers’ Local Inverse Theorem for the U3 norm, part II

Our task now is to “find some weak quadratic behaviour for f ”. We’ll illustrate
first of all with the model case P = Z

NZ , a = 2, b = 0. Suppose then that

Eh∈ ZNZ |∆̂( f , h)(2h)|2 ≥ η. Expanding out, Eh,x,y f (x) f (x + h) f (y) f (y+h)e(
−2h(x−y)

N ) ≥
η. Substituting y = x+k we getEx,h,k f (x) f (x + h) f (x + k) f (x+h+k)e( 2hk

N ) ≥ η. The

LHS is ‖g‖4
u2 where g(x) = f (x)e( x2

N ) (note x2− (x+h)2− (x+k)2+ (x+h+k)2 = 2hk).

By the u2 inverse theorem, there is some θ such that |Exg(x)e(−θx)| ≥ η 1
2 , hence

|Ex f (x)e( x2

N − θx)| ≥ η 1
2 - f correlates with a genuine quadratic.

What if we only have the local informationEh∈PEx,k∈G f (x) f (x + h) f (x + k) f (x+

h + k)e(
(ah+b)k

N ) ≥ η. This equals Eh∈PEx,k∈G f1(x) f2(x + h) f3(x + k) f4(x + h + k)

where f1(x) = f3(x) = f (x)e( ax2

2N ), f2(x) = f3(x) = f (x)e( ax2

2N ±
bx
N ) (the sign on

both is the same, the lecturer simply fails to remember whether it is plus
or minus). Introducing two additional averagings, this may be written as

Ei, j∈GEx,h,k∈P f1,i(x) f2,i(x + h) f3,i, j(x + k) f4,i, j(x+h+k) where f1,i(x) = f1(x+i), f2,i(x) =
f2(x+ i), f3,i, j(x) = f3(x+ i+ j), f4,i, j(x) = f4(x+ i+ j); note these are all 1-bounded
functions.

For the moment, suppose P = {0, . . . , L − 1}.
Lemma: Suppose g1, . . . , g4 : Z

NZ → C are 1-bounded functions and that

Ex,h,k∈Pg1(x)g2(x + h)g3(x + k)g4(x+h+k) ≥ η, where P = {0, . . . , L−1}. Then there
is some θ ∈ R such that |Ex∈Pg1(x)e(θx)| ≥ cηC. The proof illustrates an impor-
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tant technique in harmonic analysis for dealing with “sharp cutoffs”, but is quite
technical and hence probably nonexaminable. Write G′ := Z

3LZ ; we may write

the assumption asEx,h,k∈G′g1(x)g2(x + h)g3(x + k)g4(x+ h+ k)1P(x)1P(h)1P(k) ≥ η

27
(⋆). We want to expand the 1P(h), 1P(k) using Fourier inversion, but were we
to do this immediately it wouldn’t work, because these “cutoff” functions are
“too sharp”; to make it work, we will replace the 1Ps by smoothed variants of
them, 1̃P. If we draw a graph, 1P is a “bar” stretching from 0 to L and then
immediately falling to 0; we replace this immediate drop with a linear slope of
“width” 2ǫL. In a paper, merely drawing the graph would suffice, but as this
is a part III course and the technique will be new to many readers, we shall go
into more detail: 1̃P is the convolution of 1P with 1

2ǫL 1{−ǫL,...,ǫL} (strictly speaking
there should be integer parts here, but to include them would be incredibly
tedious), where ǫ is say

η

1000 .

It is easy to see that Ex|1P(x) − 1̃P(x)| ≤ 2ǫ. Hence, in (⋆), we can replace

1P(h), 1P(k) by their smoothed variants, obtainingEx,h,k∈G′ g1(x)1P(x)g2(x + h)g3(x + k)g4(x+
h + k)1̃P(h)1̃P(k) ≥ η

54 (†). Note that if I ⊂ G′ is an interval and r ∈ Z

3LZ a fre-

quency, taken with |r| ≤ 3L
2 , |̂1I(r)| ≤ C min(1, 1

|r| ) (by the geometric series formula:

|̂1I(r)| = |Ex∈G′1I(x)e(−rx
3L )| ≤ 1

3L
2

|1−e( 2πr
3L )| ≤

C
|r| by the double angle formulae and the

fact that | sin t| ≥ 2
π
|t| for |t| ≤ π

2 ). It follows from this estimate and the fact that

the FT of a convolution is the product of the FTs that | ̂̃1P(r)| ≤ C
η | (1,

1
|r|2 ); it fol-

lows from Fourier inversion and the fact that
∑

n−2 < ∞ that 1̃P(x) =
∑

r are( rx
3L ),

where
∑

r |ar| < C
η (of course ar =

̂̃1P(r)).

Substituting into (†) gives
∑

r,s ararEx,h,k∈G′g1(x)1P(x)g2(x + h)g3(x + k)g4(x +

h+ k)e( rh
3L )e( sk

3L ) ≥ η

54 ⇒
∑

r,s aras

∑
x,h,k∈G′ g1(x)1P(x)g′

2,r
(x + h)g′

3,s
(x + k)g′

4,r,s
(x+ h+

k) ≥ η

54 where g′2,r(x) = g2(x)e(−rx
3L ), g′3,s(x) = g3(x)e(−sx

3L ), g′
4,r,s

(x) = g4(x)e(
(r+s)x

3L ).

Hence there are r, s such thatEx,h,k∈G′g1(x)1P(x)g′
2,r

(x + h)g′
3,s

(x + k)g′
4,r,s

(x+h+k) ≥
cη3.

By Gowers-Cauchy-Schwartz, ‖g1P‖u2 ≥ cη3. Finally, apply the inverse
theorem for the u2-norm to get the result.

Let us return to Ei, j∈GEx,h,k∈P f1,i(x) f2,i(x + h) f3,i, j(x + k) f4,i, j(x + h + k) ≥ cδC.
There exists a j such that the same is true without the expectation over j. For
at least cδCN values of i we have Ex,h,k f1,i(x) . . . f4,i, j(x + h + k) ≥ cδC. By the

preceding lemma, for each such i, |Ex∈P f1,i(x)e(−θix)| ≥ cδC for some θi ∈ R.
Thus Ei|Ex∈P f1,i(x)e(−θix)| ≥ cθC (defining θi arbitrarily for other i). Recall

f1,i(x) = f1(x+ i) and f1(x) = f (x)e(−αx2

2N ) (or possibly f (x)e(−αx2

2N ±
bx
N ), the lecturer

forgets). So this implies the following:
Proposition: Suppose f : Z

NZ → C is a 1-bounded function with ‖ f ‖u3 ≥ δ.

Then there is a progression P of length ≥ exp(− 1
δC )NδC

together with quadratic

polynomials ψ1, . . . , ψN : ZNZ → R such that Ei|Ex∈P+i f (x)e(−ψi(x))| ≥ cδC (Note:
we only did this for P = {0, . . . , L− 1}, but the general case reduces to this by an
affine linear substitution.
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Some diophantime approximation

Proposition: There is an absolute constant c > 0 such that: for any θ ∈ R,N ≥ 2
there is an n ≤ N such that ‖n2θ‖ R

Z

≤ N−c.

Lemma (Weyl’s inequality for quadratics (non-standard form)): Suppose
α, βγ ∈ R, N > δ−C and that 1

N |
∑

n≤N e(αn2+βn+γ)| ≥ δ. Then there is 1 ≤ q ≤ δ−C

such that ‖qα‖ R
Z

≤ δ−C

N2 : Squaring gives 1
N2

∑
n,m≤N e(α(m2 − n2) + β(m − n))| ≥ δ2.

Substituting m = n + h tells us 1
N2

∑
|h|≤N |

∑
n∈Ih

e(2αnh)| ≥ δ2, where the Ih are
subintervals of {1, . . . ,N}.∑

|h|≤N |
∑

n∈In
e(2αhn)| ≥ δ2N2. The inner sum is bounded by min(N, 2

|1−e(2αh)| )

by summing the GP; since | sin t| ≥ 2
π |t| for |t| ≤ π

2 , this easily implies there are

≥ δC0 N values of h ∈ {1, . . . ,N} such that ‖2αh‖ R
Z

≤ δ−C0

N (Unlike C, C0 will take

some fixed value throughout this proof. We are being very lazy by including it
at all; it could undoubtably be calculated and shownto be about 3).

Let Q := δC1 N2, where C1 is to be specified later. Applying Dirichlet’s
argument, there is a q ≤ Q such that |α− a

q | ≤
1

qQ . If q ≤ δ−C1 this already implies

the result; suppose, then, that q > δ −C1 . Wlog a, q are coprime; suppose that
h, h′ are [distinct] integers in some interval of length

q

2 . Then ah . ah′ mod q

and therefore ‖α(h − h′)‖ R
R

≥ 1
q −

1
2Q ≥

1
2q . In other words, the fractional parts

‖αh‖ R
Z

are 1
2q -spaced as h ranges over any interval of length

q

2 .

In particular, the number of h̃ in such an interwal with ‖αh̃‖ R
Z

≤ δ−C0

N is O(1+
δ−C0 q

N ). The interval {1, . . . , 2N} may be subdivided into O(1 + N
q ) subintervals

of length
q

2 . Hence the number of h ∈ {1, . . . ,N} satisfying ‖2αh‖ R
Z

≤ δ−C0

N is

O((1 +
δ−C0 q

N )(1 + N
q )) = O(1 +

δ−C0 q

N + δ−C0 + N
q ) which is less than δC0 N provided

C1 is chosen sufficiently large and also provided N > δ−C.
Proposition: Let θ ∈ R,N ≥ 2. Then there is n ≤ N such that ‖n2θ‖ R

Z

≤ N−C:

suppose not. Then there is some C0 and [small] ǫ such that ‖n2θ‖ R
Z

> ǫwhenever

n ≤ ǫ−C0 . Take a nonnegative function ψ : R
Z
→ R≥0 with ‖ψ‖1 = 1, ψ(x) = 0 if

‖x‖ R
Z

> ǫ and ψ(x) =
∑

r∈Z are(rx) where
∑
|r|>ǫ−C |ar| ≤ 1

2 (the reader may verify

that the function ψ(x) = 0 for x ≤ −ǫ, then slopes linearly up to ψ(0) = 1
ǫ
, then

linearly down to ψ(ǫ) = 0 and 0 therafter, works; this is similar to our previous
“smoothed” functions (we want a cutoff for [−ǫ, ǫ], but a simple ψ(x) = 1

2ǫ I[−ǫ,ǫ]
would not have the Fourier behaviour we want). This function does have the

Fourier behaviour we want; ψ̂(r) is a Fejér kernel, which decays like 1
|r|2 ).

We have
∑

n≤ǫ−C0 ψ(n2θ) = 0. Expandingψ in Fourier gives
∑

r ar

∑
n≤ǫ−C0 e(rn2θ) =

0. But a0 =
∫
ψ(x)dx = 1, so the contribution from that is ǫ−C0 ; hence |

∑
r,0 ar

∑
n≤ǫ−C0 e(rn2θ)| ≥

ǫ−C0 . Hence
∑

r,0,|r|<ǫ−C

∑
n≤ǫ−C0 e(rn2θ)| ≥ 1

2ǫ
−C0 . Hence there is a particular

value of r such that |
∑

n≤ǫ−C0 e(rn2θ)| ≥ 1
2ǫ

C−C0 . Applying Weyl’s inequality,

there is a q ≤ ǫ−C′ such that ‖qrθ‖ R
Z

≤ ǫ2C0−C′ . Multiplying by qr we get

‖q2r2θ‖ R
Z

≤ ǫ2C0−2C′−C, which is < ǫ if C0 is chosen large enough, so we have a

contradiction.
Proposition: Suppose P ⊂ Z is a progression of length L. i) Suppose

ϕ(x) = αx + β is linear. Then we can partition P into O(L
3
4 ) subprogressions on

whichϕ varies by no more than O(L−
1
2 )( mod 1) ii) Supposeψ(x) = αx2+βx+γ.
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Then we can partition P into O(L1−c) subprogressions on which ψ varies by no
more than O(L−C)( mod 1): Wlog P = {1, . . . , L}. For i), by Dirichlet’s theorem

there is d ≤ L
1
2 such that ‖αd‖ R

Z

≤ L−
1
2 . On any progression with common

difference d and length ≤ L
1
4 the variation of ϕ is ≤ L−

1
4 ); clearly {1, . . . , L} can be

partitioned into O(L
3
4 ) such progressions. For ii), by the preceding proposition

there is d ≤ L
1
2 such that ‖d2α‖ R

Z

≤ L−c. Let L′ := L
c
3 (for the same c) and

consider a progression Q = {a, a + d, . . . , a + (L′ − 1)d} [we can partition P into
such]. We have ψ(a + td) = t2(αd2) + d(2αad + bd) + αa2 + βa + γ. Note that the
total variation of t2(αd2)( mod 1) is ≤ L−

c
3 . Now use i) to further subpartition

Q into progressions on which the variation of t(2αad + βd) is small. (The same
argument works inductively for polynomials of degree k, provided we have
Weyl’s inequality for this degree).

Recall: (1) If A ⊂ {1, . . . ,N} has few 4APs then ‖ f ‖u3 ≥ αC (2) If ‖ f ‖u3 ≥ δ
then there is P ⊂ Z

N′Z , |P| ≥ exp(− 1
δc )Nδc

and quadratic phases ψ1, . . . , ψN such
that Ei∈ Z

N′Z
|Ex∈i+P f (x)e(−ψi(x))| ≥ δc. Next we shall perform (3): remove the ψi

and find a progression P̃ such that |
∑

x∈P̃ f (x)| ≥ δc.
Our result so far can be summed up as: Suppose that f : Z

N′Z → C is 1-

bounded and ‖ f ‖u3 ≥ δ. Then there is a progression Q ⊂ Z

N′Z with length L ≥
exp(− 1

δc )Nδc
together with quadraticsψ1, . . . , ψN′ , for which

∑
i∈ Z

N′Z
|
∑

x∈i+Q f (x)e(−ψi(x))| ≥
δCN′L (⋆).

Lemma (Genuine progressions from mod N′ progressions): Suppose P ⊂
Z

N′Z is a progression of length L. Then we can partition P∩{1, . . . ,N} into ≤ 2
√

L
genuine progressions [i.e. arithmetic progressions in Z]: let the common dif-
ference of P be d and δ > 0 a parameter (in fact δ = 1√

L
). Applying Dirichlet’s

lemma, there is r ≤ 1
δ such that ‖ rd

N′ ‖ RZ ≤ δ. Any progression with common dif-

ference rd and length ≤ 1
δ

will then intersect {1, . . . ,N} in a genuine progression

- and we can partition P into ≤ r( Lδ
r + 1) ≤ 2

√
L such progressions.

Applying the lemma to each progression i+Q in (⋆) we get genuine progres-

sions P1, . . . ,PM ⊂ {1, . . . ,N},M ≤ 2
√

LN′ such that
∑M

i=1 |
∑

x∈Pi
f (x)e(−ψi(x))| ≥

δC
∑M

i=1 |Pi| = δCLN (relabelling the ψs so that ψi corresponds to Pi); this holds

because
⋃M

i=1 Pi covers each point of {1, . . . ,N} precisely L times.

The contribution to this from those Pi with |Pi| ≤ δCLN
10M is manifestly ≤ δCLN

10 .

The remaining progressions have size ≥ cδC
√

L. Applying the result from the
previous lecture, we partition each of them into subprogressions P′

i
, at most

O(|Pi|1−c) in number, such that the variation of ψi is ≤ δc

1000 [on any P′
i
]; the

reader may check this is valid provided L is big enough, which it will be for N
sufficiently large.

It is then easy to see that
∑M′

i=1 |
∑

x∈P′
i

f (x)| ≥ δCLN
2 . Furthermore, M′ <<

∑M
i=1 |Pi|1−c ≤ Mc(LN)1−c (by Hölder’s inequality, using

∑
|Pi| = LN), ≤ L1− c

2 N.
Critically, this is appreciably smaller than LN, giving us that the P′

i
are longish

on average.
Lemma: Suppose P1, . . . ,PM′ are progressions in {1, . . . ,N} such that

⋃
P′

i
covers each point L times. Suppose f : {1, . . . ,N} → R is 1-bounded and
that [replacing some of what were Ms in the lecture with M′s, since I believe

this was a matter of mistakes or laziness rather than intent]
∑M′

i=1 |
∑

x∈Pi
f (x)| ≥
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η
∑M′

i=1 |Pi| = ηLN. Suppose also
∑

f (x) = 0 (i.e., precisely the situation we have).

Then there is a progression P of length at least
ηLN

4M′ such that
∑

x∈P f (x) ≥ η

2 |P|:
adding

∑M′

i=1

∑
x∈Pi

f (x) = 0 to both sides gives
∑M′

i=1(
∑

x∈Pi
f (x))+ ≥ η

2 LN, where
(z)+ takes the value z if z > 0, 0 otherwise. The contribution to this from those Pi

with |Pi| ≤ ηLN

4M′ is manifestly ≤ ηLN

4 , whence the
∑

i:|Pi|≥ ηLN

4M′
(
∑

x∈Pi
f (x))+ ≥ et LN

4 ≥
η

4

∑
i:|Pi|≥ ηLN

4M′
|Pi|. The reader may check that the density increment proposition,

and hence Gowers’ theorem, is now proven.

Sum-product phenomena

The lecturer would assert that almost all interesting problems in number theory
deal with the relation between additive and multiplicative phenomena. A
motivating conjecture in this field is that of Erdős-Szeverédi: Suppose A ⊂ Z is
a finite set; as usual we define A+A := {a+ a′ : a, a′ ∈ A},A ·A := {aa′ : a, a′ ∈ A}.
(Note that since Z embeds into a field, we may (to a certain extent) treat it as
a group under multiplication; we can show that all our sumset results (Ruzsa
calculus etc.) also hold for product sets). Suppose |A| = n. The conjecture is
that |A+A|+ |A ·A| ≥ cǫn

2−ǫ∀ǫ > 0; the best known result to date is a theorem of
Solymoshin which states it is ≥ cǫn

4
3−ǫ. This theorem essentially claims that it

is impossible for a set to be “special” (having small doubling) in both additive
and multiplicative ways.

We shall concentrate on two theorems in this section: Theorem (Bourgain,
Katz, Tao): Suppose p is a (large) prime and δ > 0 a parameter. Suppose A ⊂ Z

pZ

has pδ ≤ |A| ≤ p1−δ. Then there is δ′ = δ′(δ) > 0 such that |A+A|+ |A ·A| ≥ |A|1+δ′

(in fact, the lower bound on |A| was shown to be unnecessary in later work of
Bourgain, Glibichuk and Konygin. We shall in historically unsound fashion
follow their method for most of the proof, but only achieve the earlier result).

Our second theorem is usually given as a consequence of the above, but
we shall proove it independently, first: Theorem (Bourgain et al): Suppose
H ≤ ( ZpZ )× is a subgroup of size at least pδ. Then, uniformly in r, we have

1
|H| |
∑

x∈H e( rx
p )| << p−δ

′
for some δ′ = δ′(δ) > 0 [this says informally that mul-

tiplicative progressions are extraordinarily average in terms of their additive
behaviour (they do not correlate with any additive phase)].

Theorem: Suppose A ⊂ Z

pZ . Then there is some ξ , 0 such that |A + ξ · A| ≥
1
2 min(|A|2, p) (here A + ξ · A = {a + ξa′ : a, a′ ∈ A}): we use additive energy.∑
ξ,0ω+(A, ξ ·A) counts 1

|A|3 times the number of solutions to a1 − a2 = ξ(a3 = a4)

with a1, . . . , a4 ∈ A, ξ , 0. Clearly if a1 − a2, a3 − a4 , 0 there is a unique
ξ solving this; if they are both zero, any ξ will do. So the total number of
solutions is ≤ |A|2(|A| − 1)2 + (p − 1)|A|2. Hence there is at least one ξ such that

ω+(A, ξ · A) ≤ 1
|A| +

(|A|−1)2

(p−1)|A| ≤ 2 max( 1
|A| ,

|A|
p ). But recall that if ω+(U,V) ≤ δ then

σ[U,V] ≥ 1
δ
. This completes the proof.

Lemma: Let A ⊂ Z

pZ . Then |3A2 − 3A2| ≥ 1
2 min(|A|2, p) (writing A2 = a · a =

{aa′ : a, a′ ∈ A}): Let ξ ∈ ( ZpZ )×. Observe that |A + ξ · A| = |A|2 unless there

are a1, a2, a3, a4 ∈ A with a1 + ξa2 = a3 + ξa4, i.e. ξ ∈ A−A
A−A (obviously defined as

{ a1−a2

a3−a4
: ai ∈ A∀i}). We consider two possibilities: either A−A

A−A =
Z

pZ (we always
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have 0 ∈ A−A
A−A , so do not need to worry about the difference between Z

pZ and

( ZpZ )×), or it does not.

First consider the case A−A
A−A ,

Z

pZ . Then there is some ξ ∈ A−A
A−A such that

ξ+ 1 < A−A
A−A . By the earlier observation, |A+ (ξ+ 1) ·A| = |A|2. Suppose ξ = a1−a2

a3−a4
.

Then 3A2 − 3A2 ⊃ (a3 − a4) · A + (a1 − a2 + a3 − a4) · A = (a3 − a4)(A + (ξ + 1) · A),
which means |3A2 − 3A2| ≥ |A|2. For the case A−A

A−A =
Z

pZ , by the lemma there is

some ξ ∈ ( ZpZ )× such that |A + ξ · A| ≥ 1
2 min(|A|2, p). Suppose ξ = a1−a2

a3−a4
. Then

3A2 − 3A2 ⊃ 2A2 − 2A2 ⊃ (a3 − a4) ·A+ (a2 − a2) ·A = (a3 − a4) · (A+ ξ ·A). Hence
|3A2 − 3A2| ≥ 1

2 min(|A|2, p), as claimed.

Remark: The Katz-Tao lemma is: Suppose A ⊂ Z

pZ has |A+A|, |A ·A| ≤ K|A|.
Then there is A′ ⊂ A, |A′| ≥ K−C|A| such that |3A′2 − 3A′2| ≤ KC|A′|. Together
with the lemma just proved, this implies the Bourgain-Katz-Tao sum product
theorem, and in fact without needing the assumption that |A| ≥ pδ. The proof
is by clever use of B-S-G (The original proof of Bourgain-Katz-Tao used the
Katz-Tao lemma and a weaker result similar to our lemma above).

Corollary: Let A ⊂ Z

pZ be a set of size ≥ pδ. Then there is a k = k(δ) such that

kAk − kAk = Z

pZ ; if our A is a multiplicative subgroup then Ak = A and so the

result is kA− kA = Z

pZ : iterating the lemma Cδ times gives a k0 = k0(δ) such that

|k0Ak0 − k0Ak0 | > 1
2 p (≥, and hence ¿ since p is assumed odd). But if X ⊂ Z

pZ has

cardinality > 1
2 p then X+X = Z

pZ , since for any t ∈ Z

pZ , the sets X and t−X must

overlap. Thus setting k = 2k0 we have the result.
Let K ≥ 1 be a parameter and let A ⊂ Z

pZ . Define AlgK(A) := {ξ : |A+ ξ ·A| ≤
K|A|} (equivalently we could require d(A, ξ · A) ≤ log K).

Lemma (Basic properties of Alg): (i) 0 ∈ AlgK(A) (ii) If ξ ∈ AlgK(A) then−ξ ∈
AlgKC (A) (iii) If ξ1, ξ2 ∈ AlgK(A) then ξ1 + ξ2 ∈ AlgKC(A) (iv) If ξ1, ξ2 ∈ AlgK(A)
then ξ1ξ2 ∈ AlgKC(A): the proof is mostly immediate from Ruzsa calculus (and
if worked out explicitly, most of the Cs are quite small - 2 or 3). For (iv), note
that d(ξ1 ·A, ξ1ξ2 ·A) = d(A, ξ2 ·A) and so the result is immediate from the Ruzsa
triangle inequality.

Proposition: Let A,B ⊂ Z

pZ be such that pα ≤ |A| ≤ p1−α, |B| ≥ pβ. Then there

is some b ∈ B such that |A + b · A| ≥ |A|1+cα,β : By the corollary there is k = k(β)
such that kBk − kBk = Z

pZ . Suppose |A+ b ·A| ≤ K|A| for some K and for all b ∈ B.

By many applications of the preceding lemma, |A+ξ ·A| ≤ KCβ |A| for all ξ ∈ Z

pZ .

But on the other hand there is some ξ for which |A + ξ · A| ≥ 1
2 min(|A|2, p). By

the assumptions on |A| this is a contradiction if K ≤ |A|cα,β for sufficiently small
cα,β > 0 (Note we have been rather lazy here; c is in fact “not very” dependent
on α. It is “mostly” a function of β).

Bourgain’s Exponential Sum Estimate

Let A ⊂ Z

pZ , and let δ > 0 be a parameters. Then we write Specδ(A) := {ξ :
1
|A| |
∑

x∈A e( ξx
p )| ≥ δ} for “the set of δ-large Fourier coefficients of A”.

A rephrasing of Bourgain’s exponential sum estimate is: if H ≤ ( ZpZ )× is

a multiplicative subgroup with |H| ≥ pδ then Specη(H) = {0} for some η =
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p−δ
′
, δ′ = δ′(δ) > 0. It should be clear that Specη(H) is H-invariant for any η,

i.e. if x ∈ Specη(H) then so is hx for any h ∈ H. It turns out that Spec(H) also

has a certain amount of additive structure (in fact this is true for any set H, not
necessarily a multiplicative subgroup):

Lemma (Additive Structure of Spec): Let A ⊂ Z

pZ , 0 < δ < 1. Then for a

proportion at least δ2

2 of the pairs x, y ∈ Specδ(A) we have x − y ∈ Spec δ2

2

(A):

Suppose that Specδ(A) = {ξ1, . . . , ξk}. For each j we may find a complex number

c j, |c j| = 1 such that c j

∑
x∈A e(

ξ jx

p ) is real and ≥ δ|A| (i.e. c j is just a phase factor).

Summing over j gives
∑k

j=1 c j

∑
x∈A e(

ξ jx

p ) ≥ deltak|A|. Swapping the summations

and applying Cauchy-Schwartz,
∑

x∈A |
∑k

j=1 c je(
ξ jx

p )|2 ≥ δ2k2|A|. Expanding the

sum and exchanging the order once more yields
∑

1≤i, j≤k c jc j

∑
x∈A e(

(ξi−ξ j)x

p ) ≥
δ2k2|A| and hence by the triangle inequality

∑
1≤i, j≤k |

∑
x∈A e(

(ξi−ξ j)x

p )| ≥ δ2k2|A|. If

the inner sum were< δ2 |A|
2 for ≥ 1− δ2k2

2 pairs i, j, we have an easy contradiction.
(In his original paper, the famously terse Bourgain neglected to prove this
lemma at all, merely writing “linearisation gives”).

Corollary: Suppose H ≤ ( ZpZ )× is a multiplicative subgroup. Let 0 < δ < 1.

Write A := Specδ(H),A′ = Spec δ2

2

(H). Write L := |A′ |
|A| . Then for every h ∈ H

we have ω+(A, h · A) ≥ δ4

L : apply the preceding lemma. For each x ∈ A′ write

r(x) = #{(a, a′) ∈ A×A : a−a′ = x}. We showed that
∑

x∈A′ r(x) ≥ δ2

2 |A|2. Applying

Cauchy-Schwartz we get
∑

x∈A′ r(x)2 ≥ 1
|A′ | (
∑

x∈A′ r(x))2 =
δ4 |A|4
4|A|′ =

δ4

4L |A|3. This

means that the number of solutions to a1 + a2 = a3 + a4 is ≥ δ4

4L |A|3. The same is
true of the number of solutions to a1 + ha2 = a3 + ha4 for each fixed h ∈ H, since
A is H-invariant. This implies the result.

Additive-Multiplicative Balog-Szeverédi-Gowers

We use rough notation at some scale K (recall e.g. X & Y means X ≥ cK−CY).
Lemma 25: Suppose X ⊂ Z

pZ (in fact any ring will do) and suppose H ⊂ ( ZpZ )×

is a set such that ω+(X, h · X) & 1∀h ∈ H. Then for each h ∈ H there are sets
Xh,Yh ⊂ X, |Xh|, |Yh| & |X| such that |Xh + h · Yh| . |X|: apply B-S-G for each h.

Our goal is to in some sense “remove the h-dependence of Xh,Yh”.
Proposition: With the same hypotheses, there is a set X′ ⊂ X, |X′| & |X| and

a set H′, |H′| & |H| (note not H′ ⊂ H; in fact we’ll have H′ ⊂ aH − aH for some a,
but this is irrelevant) such that |X′ + h · X′| . |X|∀h ∈ H′.

We begin with yet another consequence/variant of Cauchy-Schwartz:
Lemma: Suppose S is a set. Suppose S1, . . . , Sk ⊂ S are sets with |Si| ≥ δ|S| for

some 0 < δ < 1. Then there is an i such that |Si ∩S j| ≥ δ2

2 |S| for at least δ
2k
2 values

of j: we have
∑k

i=1

∑
x 1Si

(x) ≥ δk|S|. Swapping the order and applying C-S,∑
x

∑
i

∑
j 1Si

(x)1S j
(x) ≥ δ2k2|S|, i.e.

∑
i, j |Si ∩ S j| ≥ δ2k2|S|, and the result follows

by a simple averaging argument.
Proof of the proposition: by Lemma 25 there are Xh,Yh, |Xh|, |Yh| & |X| such

that |Xh+h ·Yh| . |X|. Applying the preceding lemma to the sets Xh×Yh ∈ X×X,
we obtain an h0 such that |Xh0

∩Xh|, |Yh0
∩ Yh| & |X|∀h ∈ H′, and |H′| & |H| (⋆).

Now |Xh0
+h0·Yh0

|, |Xh+h·Yh| . |X|; by Ruzsa calculus we haveσ[Xh0
], σ[Xh], σ[Yh0

], σ[Yh] .
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1 and of course Xh0
∼ h0 · Yh0

,Xh ∼ h · Yh. By one of the rules of Ruzsa calcu-
lus together with (⋆) we obtain Xh ∼ Xh0

,Yh ∼ Yh0
. It therefore follows that

h0 · Yh0
∼ Xh0

∼ Xh ∼ h · Yh ∼ h · Yh0
(this took two pages of the Ruzsa triangle

inequality in Bourgain’s original paper - see the power of Ruzsa calculus and
rough notatin). Therefore Yh0

∼ h
h0
· Yh0
∀h ∈ H′; this proves the proposition:

take X′ := Yh0
and redefine H′ := 1

h0
H′.

Combining this with the earlier corollary gives:
Corollary: Suppose H ≤ ( ZpZ )× is a multiplicative subgroup. Let 0 < δ < 1

and let A = Specδ(H),A′ = Spec δ2

2

(H). Let L := |A′ |
|A| . Using rough notation at

scale L
δ
, there is a set X ⊂ A, |X| & |A| and a set H′ ⊂ ( ZpZ )×, |H′| & |H| such that

|X + h · X| . |X| for all h ∈ H′.
Proof of Bourgain’s exponential sum estimate: Let H ≤ ( ZpZ )× be a subgroup,

|H| ≥ pδ. Suppose for contradiction that Specη(H) , {0} for some η = p−o(1). Let

J = J(δ) be an integer to be specified; set α0 = η and αi+1 :=
α2

i

2 for i ≥ 0. Note
Specα0

(H) ⊂ Specα1
(H) ⊂ · · · ⊂ Specα j

(H). Hence by pigeonhole there is an

α = αi such that |Specαi+1
(H)| ≤ p

1
J |Specα(H)| (this is called a Diadic pigeonhole

argument). Write A = Specαi
(H),A′ = Specαi+1

(H), α′ = αi+1; note α ≥ (
η

2 )2J
=

p−oJ(1). Notice also that |A| ≥ pδ since A is H-invariant.
By previous lemmas we have ω+(A, h · A) & 1∀h ∈ H where the rough

notation is at scale L
α

, where L = |A|
|A′ | ≤ p

1
J . Applying the additive-multiplicative

B-S-G theorem, there is a set X ⊂ A, |X| ≥ ( α

p
1
J
)C|A| and set H′, |H′| ≥ ( α

p
1
J
)C|H|

such that |X + h · X| ≤ (
p

1
J

α
)C|X|∀h ∈ H′. If we choose δ sufficiently large then

|X|, |H′| ≥ p
δ
2 and this will contradict our earlier lemma (the one giving a lower

bound on supb|A + b · A|).
Bourgain-Katz-Tao: For A ⊂ Z

pZ , pα ≤ |A| ≤ p1−α, we have |A + A| + |A · A| ≥
|A|1+cα : suppose |A + A|, |A · A| ≤ K|A|; our task is to prove K ≥ |A|c|alpha. We
use rough notation at scale K. Look at the sets aA for a ∈ A. These all lie in
A · A, so by our variant of Cauchy-Schwartz there is some a0 ∈ A such that
|A ∩ a0

a A| = |aA ∩ a0A| & |A| for & |A| choices of a; call the set of these S.
Fix some a and set A′ = A ∩ a0

a A. Since A′ is so large, and since σ+[A] ≤ K,
we have σ+[A′] . 1. Hence the additive energy ω+(A′) & 1, which means that
ω+(A, a0

a A) & 1. Set B := { a0

a : a ∈ S}. Applying additive-multiplicative B-S-G
gives a set X ⊂ A, |X| & |A| and a set B′ ⊂ B, |B′| & |B| such that X+b ·X| . |X|∀b ∈
B′. If K is a sufficiently small power of p this contradicts our earlier lemma.

Sum-product in C

Theorem (Solymoshin, with a very Hungarian argument): Let A ⊂ C be finite.

Then |A+A|+ |A ·A| ≥ c|A| 54 . The lecturer believes this is the best known result of
this form for complex numbers; for the reals there is an argument which gives

|A| 43 . We believe the “correct” exponent is likely to be 2. The only property of
the complex numbers we’ll use is the “Bersicoritch covering property”.

Definition: Let (X, d) be a metric space. The Besicovitch constant of (X, d), if
it exists, is the largest k for which there are balls Bi = B(xi, ri), i = 1, . . . , k such
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taht xi < B0
j

if i , j, but
⋂k

i=1 Bi , ∅.
Lemma: The Besicovitch constant of C is 6: Suppose not. Then there are

balls Bi = B(xi, ri), i = 1, . . . , 7 with x j < B0
i

and some point z ∈
⋂7

i=1 Bi. Wlog
consider x1, x2, . . . to be in clockwise order around z (the degenerate cases which
actually take up most of the time in a proof are left as an exercise to the reader).
Then xixi+1 is the largest side of the triangle zxixi+1, hence xixi+1 subtends an
angle ≥ π

3 at z [∀i], a contradiction.
Proof of Solymoshin: To each point a ∈ A associate a nearest neighbour

a⋆ ∈ A \ {a} (breaking ties by making an arbitrary choice).
The idea behing this proof is: Take a1, a2, a3 ∈ A. If the nearest neighbour of

a1+a2 was always a⋆
1
+a2 and the nearest neighbour of a1a3 was always a⋆

1
a3 then

we could argue as follows: may ϕ : (a1, a2, a3) 7→ (a1 + a2, a
⋆
1
+ a2, a1a3, a

⋆
1

a3) ∈
(A + A) × (A + A) × (A · A) × (A · A). Then we’d have (if what we said held)
Imϕ ≤ |A+A||A ·A|. But by straightforward algebra ϕ is injective. Hence we’d
have |A|3 ≤ |A + A||A · A|, a stronger result than we need.

This idea is too simplistic, e.g. a⋆
1
+ a2 need not be the nearest neighbour of

a1 + a2 in A + A. Suppose |A + A|, |A · A| ≤ K|A|. We aim to prove K ≥ c|A| 14 . We
say that a triple (a1, a2, a3) ∈ A × A × A is well-behaved if Ua1,a2

:= |{u ∈ A + A :
|u−(a1+a2)| ≤ |(a⋆

1
+a2)−(a1+a2)|}| ≤ 100K (⋆) and Va1,a3

:= |{v ∈ A ·A : |v−a1a3| ≤
|a⋆

1
a3 − a1a3|}| ≤ 100K (⋆⋆). It is not obvious that there are any well-behaved

triples; however, it turns out that at least 50% of all triples (a1, a2, a3) are well
behaved. To prove this calim, first fix a2. Then if u ∈ Ua1,a2

then it lies in the ball
B|a⋆

1
−a1 |(a1 + a2. But by Besicovitch’s property, no u lies in more than 6 of these

balls. Hence
∑

a1
Ua1,a2

≤ 6|A + A| ≤ 6K|A|; similarly
∑

a1
Va1,a3

≤ 6K|A| [for any
a3]. It’s very easy to see from this that more than 50% of triplets (a1, a2, a3) are
well-behaved.

Consider the map ϕ : (a1, a2, a3) 7→ (a1 + a2, a
⋆
1
+ a2, a1a3, a

⋆
1

a3), restricted
to well-behaved triples. A simple algebraic computation confirms that ϕ is

injective. Therefore |Imϕ| ≥ |A|3
2 . OTOH suppose (x, y, z,w) ∈ Imϕ. There

are at most A + A choices for x. Amongst all possible choices for y (given x),
choose one, y, such that |x − y| is as big as possible. Write (a1, a2, a3) for the
corresponding well-behaved triple. Then for all other permissible y we have
|a1 + a2 − y| = |x − y| ≤ |x − y| = |a1 − a1

⋆|. Since (a1, a2, a3) is well-behaved,
there are ≤ 100K choices for w. Hence |Imϕ| ≤ |A+A||A ·A|(100K)2 ≤ 104K4|A|2.

Comparing with |Imϕ| ≥ |A|32 gives the result.
This concludes the examinable section of the course; there was also a brief

section on “Nilmanifolds and higher Gowers norms”, which the lecturer claims
make everything make a lot more sense.
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