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1 Paramater estimation

1.1 What is statistics?

The lecturer defines stasistics as a collection of procedures and principles for
gaining and processing information in order to make decisions when faced with
uncertainty.

It has two branches; estimation and hypothesis testing.

Example 1.1

Say we want to estimate p =proportion of cambridge students who’ve not bathed
or showered within the last 24 hours.

Numbers alone are just numbers; they become data (a plural noun) when
we know what they represent.

1.2 Random Variables with values in R
n or Z

n

X = (X1, . . . , Xn) where Xi takes values in R or Z; data is of the form x =
(x1, . . . , xn).

Recall that an RV is a function X : Ω → Z; Ω is the sample space, e.g. when
tossing two coins Ω = {HH, HT, TH, TT } and X(ω) := no. of heads when the
outcome is ω.

The distribution function FX(x) := P (X ≤ x); for X discrete this is
∑

ω:X(ω)≤x P (ω), for X continuous it is
∫ x

0 f(u)du where f is the probability

density function. EX =
∑

ω X(ω)P (ω) or
∫ ∞
−∞ f(u)udu; Eh(x) =

∫

h(u)f(u)du.

Var(x) = E(X −EX)2 = EX2− (EX)2. We often write EX = µ, Var(x) = σ2.

1.3 Some important RVs

a) X ∼ B(n, p), the binomial distn; P (X = k) =
(

n
k

)

pk(1−p)n−k, 0 ≤ k ≤ n,
EX = np, Var(X) = np(1 − p)

b) X ∼ P (λ), the Poisson distn; P (X = k) = λk e−λ

k! , k = 0, 1, . . . , EX = λ,
Var(X) = λ

Also important are the Normal, Standard Normal and Uniform distributions for
continuous variables; see the printed notes for this course.
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1.6 Notion of a Statistic

Say we have x1, . . . , xn data drawn as IID samples from some dist, e.g. N(µ, σ2).
A statistic is a function T (x), such as max{xi}, x1+x2

x3
, log x3, 2007+10 min{xi}.

Say µ is unknown; 1
n
(x1 + · · ·+ xn) s a good statistic to use to estimate it, but

why is this a better estimate than any of the other statistics?

1.7 Unbiased Estimators

An estimator of an unknown paramater θ [i.e. a statistic used to estimate
θ] is unbiased if ET (X) = θ, e.g. if X1, . . . , Xn are i.i.d. as B(1, p) with p

unknown we define p̂(X) = 1
n

∑

Xi and then Ep̂(X) = E( 1
n
(X1 + · · ·+ Xn)) =

1
n
(EX1 + · · · + EXn) = np

n
= p so p̂ is unbiased.

These are not generally unique; p̃(X) = 1
3X1 + 2

3X2 is also unbiased, but
we intuitively “know” this is a “worse” estimator. One reason for tihs is than
Var(p̂) < Var(p̃).

Some more important RVs are the Geometric, Exponential and Gamma
distributions; new to some readers will be the Beta distribution.

Before proceeding any further, the reader should ensure they are familiar
with the Weak and Strong Laws of Large Numbers, and the Central Limit
Theorem, from last year’s Probability course.

2 Maximum Likelihood estimation

2.1 Estimation

Say X1, . . . , Xn i.i.d. RVs, x1, . . . , xn data. The RVs are N(µ, σ2), B(n, p) or
P (λ) w/ paramaters to be estimated.

Define likelihood(θ) = f(x | θ) for fixed x = (x1, . . . , xn), where f(xi | θ) =
is the pdf at xi [of θ ?], f(x | θ) =

∏n
i=1 f(xi | θ) = like(θ). The maximum

likelihood estimate at θ is the value at θ maximising like(θ), say θ̃(x). It is often
convenient to maximise log like(θ), called log-likelihood.

Example 2.1

a) How many colours do Smarties come in? Suppose k colours, all equally
likely. Suppose we take 3 smarties and these are red, green, red. Let
x = {2nd different from 1st and 3rd same as 1st}. like(k) = P (x | k) =
k−1

k
× 1

k
= k−1

k2 . For k = 2, 3, 4, . . . , like(k) = 1
4 , 2

9 , 3
16 , . . . ; k(x) = 2

maximizes. Suppose the 4th is orange; like(k) = k−1
k2

k−2
k

= (k−1)(k−2)
k3 =

2
27 , 3

32 , 12
125 , 5

54 , . . . ; the max here is at k = 5.

b) X ∼ B(n, p); log p(x | n, p) = log
(

n
x

)

px(1−p)n−x; n is known, p unknown,

so this = · · · + x log p + (n − x) log(1 − p). ∂
∂p

= 0 ⇒ x
p
− n−x

1−p
= 0 ⇒

p̂(x) = x
n
⇒ p̂(X) = X

n
. This is unbiased; E(p̂(X)) = EX

n
= np

n
= p

c) X ∼ B(n, p), p known, n unknown. P (x | n, p) =
(

n
x

)

px(1 − p)n−x, to be

maximised wrt n for n ∈ {x, x+1, x+2, . . . }. P (x|n+1,p

P (x|n,p) =
(n+1

x )px(1−p)n+1−x

(n
x)px(1−p)n−x

=
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(1−p)(n+1)
n+1−x

; if we graph this we see n+1−x ≤ 1 ⇔ n+1 ≥ x
p
. A(x) =

[

x
p

]

;

if x
p
∈ Z then x

p
and x

p−1 are both MLEs

d) X1, . . . , Xn ∼ geometric(p); log p(x1, . . . , xn | p) = log
∏n

i=1(xi | p) =
log

∏n
i=1(1 − p)xi−1p = (

∑

xi − n) log(1 − p) + n log p; ∂
∂p

(. . . ) = 0 ⇒
−(

P

xi−n)
1−p

+ n
p

= 0; MLE p̂ = 1
x̄

(x̂ =
P

xi

n
; E(p̂(x)) = E

(

1
x̄

)

6= E1
Ex̄

; for

the case n = 1 Ep̂(x) = E 1
x1

=
∑∞

1
1
j
(1 − p)j−1p = − p

1−p
log p > p, so

this estimator is biased

2.2 Sufficient Statistics

x̄ =
P

xi

n
. T (x) is said to be sufficient for θ if pθ(x ∈ . | T (X) = t) doesn’t

depend on θ.

Thm 2.2

The statistic T is sufficient for θ iff f(x | θ) = g(T (x), θ)(x); this is called the
factorisation criteria. Suppose the sample space is discrete and f(x | θ) =
pθ(X = x) has the factorisation criteria, then pθ(X = x | T (X) = t) =

pθ(X=x)
pθ(T (X)=t) = g(T (x),θ)h(x)

P

x:T (x)=t g(T (x),θ)h(x) = h(x)
P

x:T(x)=t h(x) which does not depend on θ.

p(x | θ) = pθ(X = x) = pθ(T (X) = t)pθ(X = x | T (X) = t) = g(T (X), θ)h(x).

Example 2.3

a) X1, . . . , Xn ∼ P (λ); f(x | λ) =
∏n

1
λxi e−λ

xi!
= λ

P

xie−nλ
∏ 1

xi!
= g(

∑

xi, λ)h(x),
so

∑

xi is sufficient for λ. Note MLE of λ must depend on
∑

xi = T (X);

λ̃MLE(X) = T (X)
n

= X̄

b) X1, . . . , Xn ∼ N(µ, σ2); θ = (µ, σ2) to be estimated. f(x | µσ2) =
∏n

1
1√

2πσ2
e−

1
2σ2 (xi−µ)2 = 1

(2πσ2)
n
2

e−
1

2σ2

P

(xi−µ)2 = 1

(2πσ2)
n
2

e−
1

2σ2 [
P

(xi−x̄)2+n(x̄−µ)2] =

s(
∑

(xi− x̄)2, x̄, µ, σ2)h(x); T (X) = (x̄,
∑

(xi− x̄)2), µ̂ = x̄, σ̂2 =
P

(xi−x̄)2

n

c) X1, . . . , Xn ∼ U [0, θ], f(x | θ) =
∏n

i=1 I[0 ≤ xi ≤ θ] 1
θ

= 1
θn I[maxi xi ≤ θ].

We want this to = g(T (x), θ)h(x) so T (x) = maxxi is sufficient for θ; the

MLE is θ̂(x) = maxxi. Eθ̂(X) = E maxxi; P (max Xi ≤ t) = F (t) =
P (X1 ≤ t, . . . , Xn ≤ t) = P (X1 ≤ t) . . . P (Xn ≤ t) =

(

t
θ

)n
, f(t) =

F ′(t) = ntn−i

θn , so E max Xi =
∫ θ

0 tf(t)dt =
∫ θ

0
tntn−1

θn dt = n
n+1θ 6= θ so the

MLE is biased, however notice it is asymtotically unbiased, i.e. Eθ̂ → θ

as n → ∞

3 The Rao-Blackwell Theorem

3.1 Mean square error

A good estimator should make small E((θ̂(X) − θ)2) (which is of course the

variance of θ̂ for the case when θ̂ is unbiased), the mean square error.
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Example 3.1

X1, . . . , Xn ∼ B(1, p), p to be estimated. p̂ = X̄ = X1+···+Xn

n
, p̃ = X1+2X2

3 ;
these are both unbiased so we compare variance; Var(p̂) = 1

n2

∑

Var(xi) =
p(1−p)

n
, Var(p̃) = 1

9 (Var(x1) + 4 Var(x2) = 5
9p(1 − p). There are also unbiased

estimators for which the variance decreases with increasing n but not as rapidly
as for p̂, e.g. p⋆ = X1+2X2+···+nXn

n(n+1)
2

has Ep⋆ = p and we can find Var(p⋆) =

2(2n+1)
3n(n+1)p(1 − p) and Var(p̂)

Var(p⋆) → 3
4 as n → ∞.

Example 3.2

X1, . . . , Xn ∼ N(µ, σ2), both paramaters unknown. log(f(x)µσ2) = log
∏n

1
1√

2πσ2
e−

1
2σ2 (xi−µ)2 =

−n
2 log(2πσ2)− 1

2σ2

∑n
1 (xi −µ)2; for unbiased estimators the partial derivatives

of this wrt µ, σ2 must be both 0 i.e. 1
σ̂2

∑

(Xi−µ̂) = 0 = − n
2σ̂2 + 1

2σ̂2

∑

(Xi−µ̂)2.

So µ̂ =
P

Xi

n
= X̄, σ̂2 = 1

n

∑

(Xi − µ̂)2 = 1
n

∑

(Xi − X̄)2; Eµ̂ = µ so this is
unbiased but E

∑n
1 (Xi − X̄) = (n − 1)σ2 so Eσ̂2 = n−1

n
σ2 so this is biased.

We might prefer to have an unbiased estimator; we see we can just multiply
by a constant, σ̃2 = 1

n−1

∑

(Xi − X̄)2 is unbiased. However, neither the MLE
nor this unbiased estimator minimizes the mean square error; for an estimator
of the form λ

∑

(Xi − X̄)2 := SXX , the MSE is E((λSXX −σ2)2) = λ2ES2
XX −

2λσ2ESXX +σ4; we already know ESXX = (n−1)σ2 and will later find ES2
XX ,

which gives that this is λ2(2(n−1)σ4+(n−1)2σ4)−2λσ2(n−1)σ2+σ4 minimised
by λ = 1

n+1 .

3.2 Rao-Blackwell Theorem

Thm 3.3

Let θ̂ be an estimator at θ w/ Eθ̂2 < ∞∀θ. Suppose T is a sufficient statistic

for θ, and let θ⋆ = E(θ̂ | T ), then E(θ⋆ − θ)2 ≤ E(θ̂ − θ)2, w/ equality only if θ̂

is a function of T .
The proof is just a few lines, but conceptually somewhat difficult: E(θ⋆ −

θ)2 = E(E(θ̂ | T ) − θ)2 = E(E(θ̂ − θ | T ))2 ≤ E(E((θ̂ − θ)2 | T )) = E(θ̂ − θ)2

(∀w, (Ew)2 ≤ Ew2 since Var(w) = Ew2 − (Ew)2 ≥ 0, with equality only when

Var(w) = 0 i.e. w constant) with equality only when θ̂ − θ | T is a constant i.e.

θ̂ is a function of T .
If θ̂ is unbiased, E(θ⋆) = E(E(θ̂ | T )) = Eθ̂ = θ so θ⋆ is also unbiased.

Examples 3.4

a) X1, . . . , Xn ∼ P (λ); a sufficient statistic for λ is
∑

Xi. We start with a
trivial estimator λ̃ = X1. λ⋆ = E(λ̃ | T ) = E(X1 | ∑n

1 Xi = t). Now
E(

∑n
1 Xi |

∑

Xi = t) = t =
∑n

j=1 E(Xj | ∑

i Xi = t), so this is t
n

b) X1, . . . , Xn ∼ P (λ), θ = e−λ to be estimated. θ = P (X1 = 0) ∴ θ̂ =

I[X1 = 0] is unbiased. θ⋆(t) = E(θ̂ | T = t) = P (X1 = 0 | ∑n
1 Xi =

t) =
P (X1=0 and

Pn
1 Xi=t)

P (
P

n
1 Xi=t) =

e−λ(λ(n−1))te−λ(n−1)

t!
(λn)te−λn

t!

=
(

n−1
n

)t
, so θ⋆(X) =

(

n−1
n

)

P

Xi
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c) X1, . . . , Xn ∼ U [0, θ]; EX1 = θ
2 so 2X1 is unbiased; θ⋆ = E(θ̂ | T = t);

T = maxxi is sufficient for θ so this is E(2X1 | maxXi = t) = 1
n
2t +

n−1
n

2 t
2 = n+1

n
t

3.3 Consistency and asymtotically efficient

MLEs are always asymtotically unbiased, though we will not proove this in this
course: E(θ̂MLE) → θ as n → ∞. In fact, we have a stronger property, called

consistency, which is that P (|θ̂MLE − θ| > t) → 0 as n → ∞. We also have that

limn→∞
Var(θ̂MLE)

1
nI(θ)

→ 1 as n → ∞, with the denominator being the Crawer-Rao

lower bound on the variance of an estimator; the MLE is asymtotically efficent.

4 Confidence intervals

4.1 Interval estimates

Say X1, . . . , Xn ∼ N(θ, 1) and we have an unbiased estimator θ̂. Even if

E(θ̂(X) − θ)2 is small, we will often have θ̂ 6= θ. We can instead consider
the probability that θ ∈ an interval estimate [a(x), b(x)]; [−∞,∞] is correct w/
prob 1. We define an interval estimator [a(X), b(X)]; if P ([a(X), b(X)] ∋ θ) = γ

this defines a γ × 100% confidence interval for θ.

Example 4.1

a) X1, . . . , Xn ∼ N(µ, σ2), µ unknown. X̄ ∼ N(µ, σ2

n
∴ X̄ − µ ∼ N(0, σ2

n
⇒√

n(X̄−µ)
σ

∼ N(0, 1). We want P (ξ ≤
√

n(X̄−µ)
σ

≤ η) = 0.5 = P (X̄ −
ησ√

n
≤ µ ≤ X̄ + ξσ√

n
; X̄ − ησ√

n
= a(X), X̄ + ξσ√

n
= b(X). We want to

minimize b(X)− a(X), which we do by choosing a symetrical interval; for
W ∼ N(0, 1), P (−1.96 ≤ W ≤ 1.96) = 0.95, P (−2.58 ≤ W ≤ 2.58) = 0.99

b) X1, . . . , Xn ∼ N(µ, σ2) with both unknown.
√

n(X̄−µ)
q

SXX
n−1

∼ tn−1 where the

RHS is the students’ t-distribution and SXX =
∑

(Xi − X̄)2. γ = 0.95 =

P (ξ ≤
√

n(X̄−µ)
q

SXX
n−1

≤ η) = P (X̄ − η
√

SXX

n(n−1) ≤ µ ≤ X̄ + ξ
√

SXX

n(n−1) ; notice

t∞ = N(0, 1)

4.2 Opinion Polls

Let p = probability someone supports Labour; Xi ∼ B(1, p) are 1 if a person
supports Labour, 0 otherwise. p̂ = 1

n
(X1+· · ·+Xn). X1+· · ·+Xn ∼ B(n, p) ≈∼

N(np, np(1− p)), so X̄ ≈∼ N(p,
p(1−p)

n
. EX̄ = p, Var X̄ = p(1−p)

n
≤ 1

n
(p is un-

known, but the variance is maximised by p = 1
2 ), so (X̄−p)

√
n√

p(1−p)
∼ N(0, 1). P (p̂−

0.03 ≤ p ≤ p̂ + 0.03) = P ( −0.03
q

p(1−p)
n

≤ p̂−p
q

p(1−p)
n

≤ 0.03
q

p(1−p)
n

. p̂−p
q

p(1−p)
n

∼ N(0, 1) so

this is Φ(0.03
√

n
p(1−p) − Φ(−0.03

√

n
p(1−p) ≥ Φ(0.03

√
4n − Φ(−0.03

√
4n, which

is ≥ 0.95 if 0.03
√

4n ≥ 1.96 ⇔ n ≥ 1068; for real opinion polls n = 1100 is used,
regardless of the population size.

5



Example 4.2

Of 1000 Americans, 59% believe the world will end, and of those, 33% believe
it will within a decade, therefore this is 19.5% of the population.

Rule of 39

[I found this section incomprehensible]

Opinion Polls

Var(p̂) = N−n
N−1

p(1−p)
n

, where N is the total population.

Rk

µ, p location
σ scale

Example 4.3

X1, . . . , Xn ∼ Exp(θ). f(x1, . . . , xn | θ) =
∏n

1 θ̂e−θxi = θne−θ
P

xi , so T (X) =
∑

Xi is sufficient for θ.
∑

Xi ∼ Γ(n, θ), fT (t) = θntn−1e−θt

(n−1)! , t ≥ 0. S = 2θT ∼

Γ(n, 1
2 ). P (S ≤ s) = P (2θT ≤ s). fS(s) = fT ( s

2θ
) 1
2θ

=
θn( S

2θ
)n−1e

−θ S
2θ

(n−1)! =

( S
2 )n−1e

−
S
2

(n−1)! . P (ξ ≤ 2Tθ ≤ 2η) = P (2T
η

≤ 1
θ
≤ 2T

ξ
) = F2n(ξ) − F2n(η) where F2n

is the cdf of a χ2
2n random variable.

4.3 Shortcomings of CI

X1, X2 ∼ U [θ− 1
2 , θ+ 1

2 ]. P (min Xi ≤ θ ≤ max Xi) = P (X2 ≤ θ ≤ X1)+P (X1 ≤
θ ≤ X2) = 1

2
1
2 + 1

2
1
2 = 1

2 , so [min xi, max xi] is 50% CI. But if e.g. X = (7.4, 8.0)
then θ ≤ 7.4 + 1

2 = 7.9 and similarly θ ≥ 7.5 so [7.4, 8.0] is a 100% CI, not 50%.

5 Bayesian Estimation

5.1 Prior and Posterior Distributions

In Bayesian statistics we take the view that a probability represents our level
of belief in a given proposition, and requires us to incorporate our prior beliefs,
in the form of a prior distribution for θ. We then combine data with this to get
posterior beliefs - the beliefs we hold after seeing the data.

P (θ | action) = P (θ | x1 . . . xn) = f(x1...xn|θ)p(θ)
R

f(x1...xn|θ)p(θ)dθ
∝ f(x1 . . . xn | θ)p(θ).

Example 5.1

Take our prior distribution for the number of colours of smarties to be 5,6,7,8
with respective probabilities 1

10 , 3
10 , 3

10 , 3
10 . If our data is x =red, green, red, let

θ = k be the no. of colours. f(x | k) = k−1
k2 so we have:
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k f(x | k) f(x | k)p(k) Posterior p(k | x)
5 0.160 0.016 0.13
6 0.139 0.042 0.33
7 0.122 0.037 0.29
8 0.109 0.033 0.26

total 0.127

Similarly, if our data is red, green, orange, we have:

k f(x | k) f(x | k)p(k) Posterior p(k | x)
5 0.096 0.010 0.11
6 0.093 0.028 0.31
7 0.087 0.026 0.30
8 0.082 0.025 0.28

total 0.088

5.2 Conditional PDFs

Discrete case

The key idea here is that P (A | B) = P (A∩B)
P (B) (or 0 if P (B) = 0); write

fXY (x, y) = P (X = x, Y = y), fX|Y (x | y) = P (X = x | Y = y) =
P (X=x,Y =y

P (Y =y) = fXY (x,y)
fY (y) , or 0 if fY (y) = 0.

Example 5.2

X ∼ Poisson(λ), R ∼ Poisson(µ) independent, Y = X + R ∼ Poisson(λ +

µ). fX|Y (x, y) =
λxe−λ

x!
µy−xe−µ

(y−x)!

(λ+µ)y

y! e−(λ+µ)
=

(

y
x

)

(

λ
λ+µ

)x (

1 − λ
λ+µ

)y−x

, i.e. X | Y is

distributed as B(y, λ
λ+µ

).

Continuous case

Z = (X, Y ), fZ(x, y) = fX,Y (x, y), fY (t) =
∫

fX,Y (x, y)dx, fX|Y (x, y) =
fX,Y (x,y)

fY (y) ,

or 0 if fY (y) = 0.

Example 5.3

a) θ = prob. of heads on a biased coin. Let x1, . . . , xn each be 1 for heads, 0
for tails, and

∑

xi = t. Let our prior distribution be p(θ) = 1∀0 ≤ θ ≤ 1;
P (θ | x1 . . . xn) ∝ θt(1 − θ)n−t (only the parts in terms of θ are relevant

[lulz]. p(θ | x1 . . . xn) = θt(1−θ)n−t

R

1
0

θt(1−θ)n−tdθ
; this is the Beta(t + 1, n − t + 1)

distribution. We find the peak of this distribution is the MLE, which
is unsurprising since we started with a uniform distribution, so this new
distribution is simply the likelihood function [I think]

b) X1, . . . , Xn ∼ N(µ, 1). Prior distribution for µ given by p(µ) ∼ N(0, τ−2).

P (µ | x1 . . . xn) ∝ f(x1 . . . xn)p(µ) ∝ e−
1
2

P

(xi−µ)2e−
1
2 τ2µ2

; we could
integrate at this stage but it would be very messy; instead we rear-

range this as being ∝ e
− 1

2 (n+τ2)(µ−
P

xi
n+τ2 )2

which we can then recognise

as p(µ | x1 . . . xn) ∼ N(
P

xi

n+τ2 , 1
µ+τ2 )
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c) X1, . . . , Xn ∼ exp(λ) i.i.d; prior λ ∼ exp(µ). P (λ | x1 . . . xn) ∝ (
∏n

1 λe−λxi)µe−λµ =∝
λne−λ(µ+

P

xi); we recognise this as being ∝ gamma(n+1, µ+
∑

xi) since

Γ(n, θ) has θntn−1e−t

(n−1)! , so p(λ | x1 . . . xn) = λn(µ+
P

xi)
n+1e−λ(µ+

P

xi)

n!

All these give us distributions for P (θ | data). Rather than simply taking

the peak value, we might like to choose θ̂ to minimize some loss function.

5.3 Estimation within Bayesian Statistics

a) Say we have some loss function L(θ, a) between the true value θ and our
estimate a, e.g. (a − θ)2. We want ti minimise EL(θ) (the expectation
being taken wrt the posterior distribution) over a; it is

∫

L(θ, a)p(θ |
x1 . . . xn)dθ =

∫

(θ−a)2p(θ | x1 . . . xn)dθ; to minimize we differentiate wrt
a and put 0 = 2

∫

(a− θ)p(θ | x1 . . . xn)dθ, so a =
∫

θp(θ | x1 . . . xn)dθ, the

posterior mean, so we take θ̂ to be this

b) L(θ, a) = |a − θ| has EL(θ, a) =
∫ a

−∞(a − θ)p(θ | x1 . . . xn)dθ +
∫ ∞

a
p(θ |

x1 . . . xn)dθ; differentiating and putting = 0 we have 0 =
∫ a

−∞ p(θ | x)dθ−
∫ ∞

a
p(θ | x)dθ, so a should be the median of the posterior distribution of

θ

Example 5.4

X1, . . . , Xn ∼ P (λ), λ ∼ exp(1) i.e. p(λ) = e−λ, λ ≥ 0. P (λ | x1 . . . xn) ∝
(
∏n

1
e−λλxi

xi!
)e−λ ∝ e−λ(n+1)λ

P

xI , the distribution of Γ(
∑

xi + 1, n + 1). The

mean of this is
P

xi+1
n+1 , so this is our Bayes estimate for λ under quadratic loss

(with this particular prior distribution). There is no neat expression for our esti-

mate under absolute error loss; λ̃ is simply the value such that
∫ λ̃

0
e−λ(n+1)λ

P

xi (n+1)
P

xi+1

(
P

xi)!
dλ =

1
2 .

6 Hypothesis Testing

6.1 The Neyman-Dearson framework

Say we have X1 . . .Xn ∼ f(| θ) i.i.d. For estimation we use some θ̂(x), for
hypothesis testing we test H0 : θ = θ0 against H1 : θ = θ1. H0 is called the
null hypothesis, H1 is the alternate hypothesis. We could also have hpyotheses
like H0 : f = f0, H1 : f = f1 or H0 : θ ∈ Θ0, H1 : θ ∈ Θ1 with Θ0 ∩ Θ1 =
∅, Θ0 ∪ Θ0 = Θ the entire paramater space. For now we consider H0 : f =
f0, H1 : f 6= f0, a goodness-of-fit test.

6.2 Terminology

A simple hypothesis specifies f completely, e.g. θ = θ0, wheras θ > θ0 or θ ∈ Θ0

would be a composite hypothesis. We will have some critical region C; we reject
H0 iff our data x = (x1 . . . xn) ∈ C ⊂ R

n. There are two types of errors: a type
I error is rejecting H0 when it is true, a type II error is not rejecting (which
we may wish to distinguish from accepting) H0 when it is false. Generally
type I errors are “worse”, e.g. H0 = defendant is innocent in a murder case.
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P (type I error) = α should be small; we generally set α = 0.01 or 0.05. Let
P (type II error) = β; we then have an optimization problem, to minimize β

subject to fixed α. This α is called the size or significance level.
α = P (x ∈ C | H0); for a simple H0 : θ = θ0, α = P (x ∈ C | θ = θ0, while

for a composite H0 : θ ∈ Θ0, the size is supθ0∈Θ0
P (x ∈ C | θ = θ0).

We considered likelihood f(x1 . . . xn | θ) as a function of θ; when testing

H0 : θ = θ0 against H1 : θ = θ1 we consider the likelihood ratio f(x1...xn|θ=θ1)
f(x1...xn|θ=θ0)

and reject H0 when this is large. For composite hypotheses we use Lx(H0, H1) =
Lx(H1)
Lx(H0)

where Lx(Hi) = supθ∈Θi
f(x1 . . . xn | θ).

6.3 Likelihood ratio tests

C = {x : Lx(H0, H1) ≥ k} say. This gives us a likelihood ratio test.

Lemma 6.3 (Neyman-Pearson Lemma)

Say we have H0 : f = f0 to be tested against H1 : f = f1. Assume f1, f0 > 0
on the same regions and are continuous. Then amongst all test of size ≤ α

the test with the smallest probability of a type II error is given by C = {x :
f1(x)
f0(x) ≥ k} where k is chosen such that α = P (X ∈ C | H0) =

∫

x∈C
f0(x)dx

[=
∫

Rn φC(x)f0(x)dx; see below]. This is a popular tripos question.
Consider any test with size ≤ α; let its critical region be D. Let φD(x) be

the indicator that x ∈ D. Then 0 ≤ (φC(x) − φD(x))(f1(x) − kf0(x)) by the
definition of φC(x). Integrating over R

n, 0 ≤ P (X ∈ C | H1) − kP (X ∈ C |
H0) − P (X ∈ D | H1) + kP (X ∈ D | H0) ≤ P (X ∈ C | H1) − P (X ∈ D |
H1 +α−α so 1−P (X ∈ C | H1) ≤ 1−P (X ∈ D | H1) i.e. PC(type II error) ≤
PD(type II error).

6.4 Single sample test mean with simple alternate, normal
distribution with known variance

x1 . . . xn ∼ N(µ, σ2), σ2 known. H0 : µ = µ0 against H1 : µ = µ1.
f(x|µ1 σ2

f(x|µ0,σ2 =

1√
2πσ2

e
−

1
2σ2

P

(xi−µ1)2

1√
2πσ2

e
−

1
2σ2

P

(xi−µ0)2
= e

P

(xi−µ0)2−

P

(xi−µ1)2

2σ2 . Assume µ1 > µ0, then this is

monotone increasing in x̄, so ≥ k iff x̄ ≥ some c. There is no need to com-
pute the relationship between k and c and doing so would waste a lot of
time; from now on we work purely with c; C = {x : x̄ ≥ c} some c. Recall

x̄ ∼ N(µ0,
σ2

n
) if H0 true. Let Z =

√
n X̄−µ0

σ
∼ N(0, 1). If α = 0.05 then

PH0(x̄ ≥ c) ≡ PH0(Z ≥ c′) = 0.05 ⇒ c′ = 1.645 ⇒ c = µ0 + σ1.645√
n

.

Say we were testing H0 : µ = 5 against H1 : µ = 6 with σ2 = 1 and have

data x = (5.1, 5.5, 4.9, 5.3). X̄ = 5.2 ∴ Z = 2(5.2−5)
1 = 0.4 < 1.645 so we don’t

reject H0. However, notice that if we were testing H0 : µ = 6 against H1 : µ = 5

we have Z = 2(5.2−6)
1 = −1.6 > −1.645, so we don’t reject H0 in this case either.
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7 Further aspects of Hypothesis Testing

α =size=significance level=P (reject H0 | H0) = P (type I error). Z = 0.4 in the
example above. Rather than fixing α = supθ∈Θ0

P (X ∈ C | θ) and then testing
H0 against this, we can define the p-value p⋆ = supθ∈Θ0

Pθ(LX(H0, H1) ≥
Lx(H0, H1)), the probability of obtaining a more extreme result - this is the
smallest α such that we would reject H0 if we were conducting a test of size α.

7.1 The power of a test

A type II error is not rejecting H0 when it is false. For θ ∈ Θ we define the
power function w(θ) = P (X ∈ C | θ); for H0 : θ = θ0 against H1 : θ = θ1 this
is 1 − β. This is generally an increasing curve passing through α at θ = θ0; of
course it is easier to make the test if θ1 is larger.

w(θ) = 1 − P (type II error | θ) for θ 6= θ0.

7.2 Uniformly most powerful test

This is a difficult section: for H0 : µ = µ0 against H1 : µ = µ1 we know the best
test is to reject H0 if Z ≥ c some c (i.e. X̄ ≥ c′). We notice that c is independent
of the value of µ1, so in fact we have the same test for any µ1 > µ0. We say this
test is uniformly most powerful for testing H0 : µ = µ0 against H1 : µ > µ0; α

is now supµ≤µ0
P (x ∈ C | µ) which we find = P (X ∈ C | µ = µ0) as before.

Example

X1 . . . Xn ∼ N(µ, σ2), µ known. Test H0 : σ2 ≤ 1 against H1 : σ2 > 1;
to do this we first consider H0 : σ2 = σ2

0 against H1 : σ2 = σ2
1 , σ2

0 ≤ 1 <

σ2
1 .

f(x|µσ2
1)

f(x|µσ2
0)

=

√
2πσ2

1e
−

1
2σ2

1

P

(Xi−µ)2

√
2πσ2

0e
−

1
2σ2

0

P

(Xi−µ)2
=

(

σ1

σ0

)n

e
( 1

2σ2
0
− 1

2σ2
1
)

P

(Xi−µ)2

, an increasing

function of
∑

(Xi − µ)2. So we should reject H0 if
∑

(Xi − µ) ≥ c for some c.
Xi − µ ∼ N(0, σ2) so supσ2

0≤1 P (
∑

(Xi − µ)2 ≥ c | σ2 = σ2
0) = P (

∑

(Xi −
µ)2 ≥ c | σ2

0 = 1) and (if H0 true) Xi − µ ∼ N(0, 1). The sum of n such
Xi is defined to be distributed as χ2

n, the chi-squared distribution. We reject

H0 if
∑

(Xi − µ)2 ≥ F
(n)
α where F

(n)
α is the value at which the area above it

under a χ2
n distribution is α; this does not depend on σ2

1 so is our best test for
H0 : σ2 ≤ 1 against H1 : σ2 > 1.

7.3 Confidence intervals and hypothesis tests

Theorem 7.3

Suppose that for every θ0 there is a test of size α of H0 : θ = θ0 against some
H1. Denote the acceptance region (i.e. complement of the critical region) of
this by A(θ0). Let I(X) = {θ : X ∈ A | θ}. This is a 100(1− α)% CI for θ, and
conversely (i.e. if we have a CI we can form such a test for any θ). [lol θ, θ0], as
P (X ∈ A(θ0) | θ = θ0) = P (θ ∈ I(X) | θ = θ0) = 1−α, X ∈ A(θ0) ⇔ θ ∈ I(X).
So finding a 95% CI for µ and testing whether or not µ0 is in this interval is
equivalent to testing H0 against H1 at α = 0.05.
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Until now we have mostly covered one-tailed tests. We have a two-tailed
test if we test a hypothesis such as H1 : θ 6= θ0; there are two possibile ways
this can be true, namely θ < θ0 and θ > θ0. We generally arrange things such
that if H0 is true there is a probability α

2 of a result in each tail.

7.4 The Bayesian perspective on hypothesis testing

Say we are tosing a coin and testing H0 : p = 1
2 against H1 : p > 1

2 . One possible
experiment is to toss it 5 times and count the number of heads; say we get
HHHHT, then our p-value is P (number of heads ≥ 4 | H0) = (1

2 )5 + 5 1
2 (1

2 )4 =
0.1875. An alternative experiment is to toss the coin until we get our first tail;
say we get HHHHT, then our p-value is the probability our first tail is on the

fifth or later test, i.e. the probability of four heads, so (1
2

4
) = 0.625. Thus if

our α were 0.10, we would accept H0 for the first experiment but reject it for
the second. This is rather odd, since “the coin didn’t know” which experiment
we were doing. The Bayesian approach would give us the same answer in both

cases, since P (H1|x)
P (H0|x) = P (x|H1)P (H1)

P (x|H0)P (H0) = Lx(H0H1)
P (H1)
P (H0) and Lx(H0H1),

p4(1−p)

( 1
2 )5

in this case, is independent of the choice of experiment.

8 Generalized likelihood ratio tests

8.1 χ2 distribution

X2
1+· · ·+X2

n has χ2
n distribution when the Xi are i.i.d. N(0, 1) random variables.

χ2
n ≡ Γ(1

2n, 1
2 ) [or possibly 1

2n
, lol lecturer]. The p.d.f. is f(t) =

( 1
2 )

n
2 t

n
2

−1
e
−

t
2

Γ( n
2 ) ,

for t > 0.
∫ ∞
0

(1
2 )

n
2 t

n
2 −1e−

t
2 dt = Γ(n

2 ), so this is correctly normalized. See the
fact (from IA probability) that for X1, X2 ∼ N(0, 1), if we let r2 = X2

1 + X2
2

then r ∼ exp.

8.2 Generalized likelihood ratio tests

C = {x : Lx(H0, H1) > k}. We generally test whether some T (X) is > some
c; we need to find PH0(T (X) > c). This is easy for e.g. the normal case with

T = X̄ ∼ N(µ, σ2

n
), but how do we find it for more complicated distributions?

Say we are testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 with the Θi ⊂ Θ =
{θ = (θ1, . . . , θk)}. If we have H0 of the form θi1 = α1, . . . , θip

= αp for
fixed α1, . . . , αp, or Aθ = b for some fixed p × k matrix A and p-vector b, or
θi = θi(φi, . . . , φk−p)∀i. In all of these cases there are k − p degrees of freedom.

Theorem 8.1

Suppose Θ0 ⊂ Θ1 and |Θ1|−|Θ0| = p (where |Θi| denotes the number of degrees
of freedom). Under certain conditions (which will not be stated for here, but
hold for all usual cases) for X1, . . . , Xn i.i.d. [and possibly only in the limit as
n → ∞ - lol lecturer] 2 log LX(H0H1) ∼ χ2

p if H0 is true, and 2 log LX is larger
if H0 is not true. So we reject H0 if 2 logLX(H0H1) > c where α = P (ω > c)
for ω ∼ χ2

p. We shall not proove this here.
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Lemma 8.2

For X1, . . . , Xn i.i.e. as N(µ, σ2):

maxµ f(x | µσ2) = (2πσ2)−
n
2 e

P

(Xi−X̄)2

2σ2

maxσ2 f(x | µσ2) = (2π
P

(Xi−µ)2

n
)−

n
2 e−

n
2

maxµ,σ2 f(x | µσ2) = (2π
P

(Xi−X̄)2

n
)−

n
2 e−

n
2

8.3 Single sample, known variance

Test H0 : µ = µ0 against H1 : µ arbitrary (in practice, µ 6= µ0) [I think, lol

lecturer]. LX(H0H1) =
supµ f(x|µσ2)

f(x|µ0σ2) = e
1

2σ2 n(X̄−µ)2
∴ 2 logLx = 1

σ2 n(X̄−µ)2 =

z2 where z =
√

n(X̄−µ)
σ

∼ χ2
1 if H0 is true. The one-tailed χ2 test we perform is

equivalent to a two-tailed test for a normal distribution.

8.4 Single sample, test variance, known mean

Say X1, . . . , Xn ∼ N(µ, σ2) and test H0 : σ2 = σ2
0 against H1 : σ2 6= σ2

0 .

LX(H0H1) =
supσ2 f(x|µσ2)

f(x|µσ2
0)

; we find 2 log LX [LX is short for LX(H0H1)] is

n(t − 1 − log t) where t =
P

(X1−µ)2

nσ0
. If H0 is true then

P

(Xi−µ)2

nσ2
0

∼ χ2
n; this

is unsurprising since each Xi−µ
σ

∼ N(0, 1) [I think; lecturer was on really bad
form this lecture]

8.5 Two samples, test equality of means, known common
variance

Say X1, . . . , Xm i.i.d as N(µ1, σ
2), Y1, . . . , Yn i.i.d. as N(µ2, σ

2). We test H0 :

µ1 = µ2 against H1 : µ1 6= µ2; LX(H0H1) =
supµ1,µ2

f(X|µ1σ2)f(Y |µ2σ2)

supµ f(X|µσ2)f(Y |
P

σ2) , which

we can find to be e
1

2σ2
mn

m+n
(X̄−Ȳ )2 ; 2 logLX ∼ χ2

1 since X̄ ∼ N(µ1,
σ2

m
), Ȳ ∼

N(µ2,
σ2

n
) so if H0 true X̄ − Ȳ ∼ N(0, σ2( 1

m
+ 1

n
)) so Z = (X̄ − Ȳ ) 1

σ
√

1
m

+ 1
n

∼

N(0, 1) and so Z2 = (X̄−Ȳ )2

σ2
mn

m+n
∼ χ2

1.

8.6 Goodness of fit test

Say we have k categories of possible results with respective probabilities pi, and
obtain a result of xi in each category with

∑

xi = n (of course
∑

pi = 1). We
test H0 : pi = pi(θ) some θ ∈ Θ0 against H1 : pi unrestricted, e.g. H0 : pi =
(

k
i

)

θi(1−θ)k−i. P (X1 . . . Xk | p1 . . . pk) = n!
x1!...xk!p

x1
1 . . . pxk

k , so supH1
log f(x) =

some constant + sup{∑xi log pi | 0 ≤ pi ≤ 1,
∑

pi = 1}. Using Lagrangian
multipliers as per the Optimisation course we find p̂i = Xi

n
. supH0

log f(x) =
constant + supθ{

∑

xi log pi(θ)}; we reject H0 if 2 logLx(H0, H1) is large. H0 :
pi = pi(θ), θ ∈ Θ0 has |Θ0| = p degrees of freedom, while H1 : pi arbitrary has

k − 1 degrees of freedom (since we still have the constraint that
∑k

1 pi = 1), so
we test against χ2

k=1−p, the number of degrees of freedom being the number of
boxes - the number of paramaters estimated (for H0) - 1.

[Note: I have sometimes used lX(H0H1) above for the likelihood ratio; in
lectures LX(H0H1) was always used]
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9 Chi-squared tests of categorical data

9.1 Pearson’s chi-squared test

We saw for H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 with Θ0 ⊂ Θ1, 2 log LX(H0H1) ∼
χ2
|Θ1|−|Θ0| [if H0 true]; if there are k possible outcomes with probability pi

of each and we obtain xi outcomes of type i from
∑

xi = n trials, and test
H1 : p1, . . . , pk anything,

∑

pi = 1, 0 ≤ pi ≤ 1 against H0 : pi = pi(θ) e.g. pi =
(

n
i

)

θi(1 − θ)n−i or θie−θ

i! : For supH1
P (X1 . . . XK | p1 . . . pk) = supH1

n!
X1!...Xn!

we use Lagrangian multipliers and maximise L = log P (. . . )+λ(1−∑

pi);
∂L
∂pi

=
xi

pi
− λ = 0 ∴ p̂i ∝ xi ∴ p̂i = xi

n
. supH0

p(X1 . . . Xn | p1(θ) . . . pn(θ)) is really a

sup over θ. Then 2 logLX(H0H1) = 2 supp1...pk
log P (X | H1)−2 supθ log P (X |

H0) = 2
∑

xi log(
xi
n

pi(θ̂)
. Pearson wanted to simplify this; let oi = xi the observed

number in the ith cell, ei = np1(θ̂), the expected number in the ith cell if H0

is true, and δi = oi − ei. Then the above becomes 2
∑

oi log oi

ei
= 2

∑

i(ei +

δi) log(1+ δi

ei
) = 2

∑

i(ei+δi)(
δi

ei
− δ2

i

2e2
i

+. . . ) (δi will be small if H0 is true) which is

2(
∑

δi +
∑ δ2

i

ei
−∑ δ2

i

2ei
+ . . . ) = 2

∑ δ2
i

2ei
since

∑

δi =
∑

oi −
∑

ei = n− n = 0,

and this is
∑k

i=1
(oi−ei)

2

ei
, Pearson’s chi-squared statistic. This is ∼ χ2

k−1−p

where p = |Θ0| or equivalently the number of paramaters we estimate to fit the
null hypothesis to the data.

Observe that
∑ (oi−ei)

2

ei
=

∑ o2
i

ei
− 2

∑

oi +
∑

ei =
∑ o2

i

ei
− n (since

∑

ei =
n =

∑

oi).

9.2 χ2 test of homogeneity

Say we have a table of results, e.g. columns of whether a patient survived against
rows of whether they were male or female, and we want to test H0 : pij = pj , i.e.
the distribution of each row is the same, agaists H1 that the pij (the probability
of getting result j for a result in the ith row) are arbitrary (such that the
∑

j pij = 1 for each i); the details are in the printed notes for this course.

For H0, p̂j =
x
·j

x
··

where x·j =
∑

i xij and similarly, and for H1, p̂ij =
xij

xi·
, so

2 logLx(H0H1) = 2
∑

i

∑

j xij log(
xijx

··

x
·jxi·

); oij = xij , eij = xi·p̂j =
xi·x·j

x
··

so this

is 2
∑

i

∑

j oij log(
oij

eij
), which as before is approximately

∑

ij
(oij−eij)

2

eij
. This

approximation is in general valid for eij ≥ 5∀i, j; this is useful for e.g. knowing
where to “truncate” the cells for a poisson distribution (since we must have a
cell ≥ n for some n if we want to have a finite number of cells). H0 : pij = pj

has n − 1 degrees of freedom where n is the number of columns, and H1 has
m(n − 1) degrees of freedom where m is the number of rows, so the number of
degrees of freedom to use in the test is m(n − 1) − (n − 1) = (m − 1)(n − 1).

9.3 χ2 test of row column independence, contingency ta-
bles

Say we have a similar table of results, but this time want to test H0 : pij = piqj

i.e. rows and columns are independent, against H1 that the pij are arbitrary.
|Θ1| = mn − 1 [O RLY] and |Θ0| = m − 1 + n − 1 so the number of degrees
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of freedom for the test is mn − 1 − m + 1 − n + 1 = (m − 1)(n − 1); p̂i =
xi·

x
··

, q̂j =
x
·j

x
··

, p̂ij =
xij

x
··

, eij = p̂iq̂jx··; we find ourselves considering log(
p̂ij

p̂i q̂j
) =

log(
xijx

··

x
·jxi·

) = log
oij

eij
and we have the exact same analysis as in 9.2; we test

T =
∑ (oij−eij)2

eij
against a χ2

(m−1)(n−1) distribution, and the eij are exactly the

same for both analyses; the above xi·p̂j =
xi·x·j

x
··

= x··p̂ip̂j in this test. This is
interesting, since the origins of the two tests are philisophically quite different.

10 Distributions of the sample mean and vari-

ance

10.1 Simpson’s paradox

Lulz. Like the one you won 10 for explaining.

10.2 Transformations of variables

For X1 . . .Xn i.i.d. as N(µ, σ2), let
∑

(Xi−X̄)2 = SXX . Say Xi = xi(Y1, . . . , Yn)∀i,

then fY (y1, . . . , yn) = fX(x1(y), . . . , xn(y))

∣

∣

∣

∣

∣

∣

∂x1

∂y1
. . . ∂x1

∂yn

. . . . . .
∂xn

∂y1
. . . ∂xn

∂yn

∣

∣

∣

∣

∣

∣

, where the ma-

trix is the Jacobian; compare this with a change of variables in integration when
e.g. dxdy = rdrdθ.

Example 10.2

Suppose X1 ∼ Γ(n1, λ), X2 ∼ Γ(n2λ) independent and let Y1 = X1

X1+X2
, Y2 =

X1 + X2. fX(x1x2) =
λn1e−λx1x

n1−1
1

(n1−1)!

λn2e−λx2x
n2−1
2

(n2−1)! ; x1 = y1y2, x2 = y2 − y1y2 so

J(y1y2) =

∣

∣

∣

∣

y2 y1

−y2 1 − y1

∣

∣

∣

∣

= y2 so fY (y1y2 = λn1+n2(y1y2)
n1−1(y2−y1y2)

n2−1e−λy2

(n1−1)!(n2−1)! ×

y2 = (n1+n2−1)!
(n1−1)!(n2−1)!y

n1−1
1 (1 − y1)

n2−1 × γn1+n2e−λγ2y
n1+n2−1
2

(n1+n2−1)! so Y1, Y2 are inde-

pendent and distributed as β(n1, n2), Γ(n1 + n2, λ) respectively.

10.3 Orthogonal transformations of normal random vari-
ables [section 10.2 in lectures]

Lemma 10.3

Let X1, . . . , Xn be independent random variables, distributed as N(µi, σ
2) re-

spectively, A = (aij) an orthogonal matrix and Y = AX ; this is a vector of inde-
pendently distributed components with each Yi ∼ N((Aµ)i, σ

2): fX(x1, . . . , xn |
µσ2) =

∏

f(xi | µiσ
2) = 1

(2πσ2)
n
2

e−
1

2σ2 (X−µ)T (X−µ) = 1

(2πσ2)
n
2

e−
1

2σ2

P

(Xi−µ)2 .

Now Y = AX ∴ X = AT Y ∴
∂Xi

∂Yj
= aji ∴ J(y1, . . . , yn) = | detAT | = 1, so

fY (y1 . . . yn | µσ2) = 1

(2πσ2)
n
2

e−
(AT y−µ)T (AT y−µ)

2σ2 ×1 = 1

(2πσ2)
n
2

e−
(AT y−AT Aµ)T (AT y−AT Aµ)

2σ2 =

1

(2πσ2)
n
2

e−
(y−Aµ)T (y−Aµ)

2σ2 ⇒ Y1, . . . , Yn ∼ N(Aµ, σ2I) a multivariate normal dis-
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tribution, or equivalently the Yi ∼ N((Aµ)i, σ
2) independently; we can also

proove this result via moment generating functions.

10.4 The distributions of X̄, SXX

Lemma 10.4

Let X1, . . . , Xn be i.i.d. as N(µσ2) and X̄ = 1
n

∑n
1 Xi, SXX =

∑

(Xi − X̄)2.
Then:

i) X̄ ∼ N(µ, σ2

n
), n(X̄ − µ)2 ∼ σ2χ2

1

ii) Xi − µ ∼ N(0, σ2),
∑

(Xi − µ)2 ∼ σ2χ2
n

iii)
∑

(Xi − µ)2 = SXX + nX̄ − µ)2

iv) SXX

n−1 is an unbiased estimator for σ2

v) X̄, SXX are independent random variables

vi) SXX ∼ σ2χ2
n−1

i) and ii) are immediate, iii) comes from consideration of
∑

(Xi−X̄+X̄−µ)2

(the cross product terms of which are 0 since
∑

Xi = nX̄); iv) we have already
prooven.

For v), let Y = A(X − µ) = (Y1 =
√

n(X̄ − µ), Y2, . . . , Yn); we can choose

A =

( 1√
n

1√
n

. . . 1√
n

. . . . . .

)

to be orthogonal. We know Y1, . . . , Yn are in-

dependent normal random variables, so Y1 =
√

n(X̄ − µ) ∼ N(0, σ2) and
is independent of Y2, . . . , Yn.

∑n
2 Y 2

i =
∑n

1 (Xi − µ)2 − Y 2
1 since Y T Y =

(X − µ)T AT A(X − µ) = (X − µ)T (X − µ) so
∑n

1 Y 2
i =

∑n
1 (Xi − µ)2 and

so since y2
1 = n(X̄ − µ)2 this is SXX so SXX , Y1 are independent, i.e. SXX , X̄

are independent. Yi ∼ N(0, σ2) for i = 2, . . . , n and these are independent so
Y 2

2 + · · · + Y 2
n ∼ σ2χ2

n−1 (and we have vi)).

10.5 Student’s t-distribution

To test H0 : µ = µ0 for X1, . . . , Xn i.i.d. as N(µ, σ2) for σ2 known we would

reject H0 if
∣

∣

∣

√
n(X̄−µ0)

σ

∣

∣

∣ is large. To perform this test for unknown σ2 we use

σ̂2 = SXX

n−1 ; we discover
√

n(X̄−µ)
q

SXX
n−1

has the tn−1 distribution independent of the

true value of σ2; informally tn−1 ≡ N(0,1)
r

χ2
n−1

n−1

. We could calculate the distribution

function but it is messy; it “looks like a spread out normal”, and tn → N(0, 1)
as n → ∞. For X ∼ N(0, 1) and W ∼ tn−1, P (X > t) < P (w > t)∀t; the RHS
is decreasing in increasing n [???].

11 The t-test

Take X1, . . . , Xn i.i.d. as N(µσ2) unless otherwise stated.
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11.1 Confidence interval for mean, unknown variance

X̄ ∼ N(µ, σ2

n
) or equivalently (X̄−µ)

√
n

σ2 ∼ N(0, 1); we saw above this is inde-

pendent of SXX =
∑

(Xi − X̄)2 ∼ σ2χ2
n−1 or equivalently SXX

σ2 ∼ χ2
n−1. σ is a

“nuisance paramater”; we are not interested in its value but nevertheless have
to consider it in our test.

We saw (X̄−µ)
√

n
q

SXX
n−1

∼ tn−1, so a CI of size (1 − a)100% is is given by 1 − α =

P (−t
(n−1)
α
2

≤
√

n(X̄−µ)
q

SXX
n−1

≤ t
(n−1)
α
2

) [Yes, notation did just change at random with

no explanation], i.e. P (X̄ − tα
2

σ̂√
n
≤ µ ≤ X̄ + tα

2

σ̂√
n
) where σ̂2 = SXX

n−1 ; compare

this with the X̄ ± Nα
2

σ√
n

we would use when working with known σ.

11.2 Single sample, test mean, unknown variance

Test H0 : µ = µ0 against H1 : µ 6= µ0. Then LX(H0H1) =
supµσ2 f(x|µσ2)

supσ2 f(x|µ0σ2 =
„

2π
P (Xi−µ0)2

n

«

−
n
2

e
−

n
2

“

2π
P (Xi−X̄)2

n

”

−
n
2

e
−

n
2

=
(

P

(Xi−X̄)2+n(X̄−µ0)
2

P

(Xi−X̄)2

)
n
2

since Xi − µ0 = Xi − X̄ +

X̄−µ0; this is
(

1 + n(X̄−µ0)
2

P

(Xi−X̄)2

)
n
2

; n(X̄−µ0)2
P

(Xi−X̄)2
= T 2(n+1) where T =

√
n(X̄−µ0)
q

SXX
n−1

,

and this is large when T is large. This makes sense, since if H0 is true then
T ∼ tn−1.

11.3 Two samples, test equality of means, unknown com-
mon variance

X1 . . . Xm ∼ N(µ1σ
2), Y1 . . . Yn ∼ N(µ2σ

2), test H0 : µ1 = µ2 against H1 : µ1 6=
µ2. LX(H0H1) =

supµ1µ2σ2 f(x,|µ1µ2σ2)

supµσ2 f(x,y|µµσ2) ; we find that we reject H0 if (X̄−Ȳ )2

SXX+SY Y

is large. We can find this more “intuitively” by X̄ ∼ N(µ1,
σ2

m
), Ȳ ∼ N(µ2,

σ2

n
)

so X̄ − Ȳ ∼ N(µ1 − µ2, σ
2( 1

m
+ 1

n
)); if H0 is true then X̄−Ȳ

σ
√

1
n

+ 1
m

∼ N(0, 1).

SXX ∼ σ2χ2
m−1, SY Y ∼ σ2χ2

n−1 so T = X̄−Ȳ√
1
m

+ 1
n

q

SXX+SY Y
m+n−2

∼ tm+n−2 So we

reject if |T | > t
(n+m−2)
α
2

.

11.4 Single sample, test variance, mean unknown

We test H0 : σ2 = σ2
0 against H1 : σ2 6= σ2

0 ; this time µ is our nuisance

paramater. LX(H0H1) =
supµσ2 f(x|µσ2)

supµ f(x|µσ2
0)

which we eventually find is large when

T =
P

(Xi−X̄)2

nσ2
0

differs substantially from 1. We know SXX ∼ σ2
0χ

2
n−1 if H0 is

true; we want P(
SXX

σ2
0

< a1 | H0) + P (SXX

σ2
0

> a2 | H0) = α.
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12 The F-test and analysis of variance

12.1 F-distribution

For X ∼ χ2
m we can see this as X = ω2

1 + · · · + ω2
m for ωi i.i.d. as N(0, 1).

EX = m, Var(X) we find to be 2m. If Y ∼ χ2
n independently of X we say

Z =
X
m
Y
n

∼ Fm,n; we clearly have 1
Z
∼ Fn,m.

12.2 Two samples, compare variance

Say X1, . . . , Xn i.i.d. as N(µ1, σ
2
1), Y1, . . . , Yn independently i.i.d. as N(µ2, σ

2
2),

and we want to test H0 : σ2
1 = σ2

2 against H1 : σ2
1 6= σ2

2 . As always we use

a LRT; LX(H0H1) =
supσ1,σ2,µ1,µ2

f(x,y|µ1,σ2
1 ,µ2,σ2

2

supσ,µ1,µ2
f(x,y|µ1,σ2,µ2,σ2 ; we find we want to consider

SXX

SY Y
. SXX

m−1 = σ̂1 and similarly for Y ; SXX =
∑m

i=1(Xi − X̄)2 ∼ σ2
1χ2

m−1, so

T =
SXX
m−1
SY Y
n−1

∼ σ2
1

σ2
2
Fm−1,n−1; if H0 is true this is ∼ Fm−1,n−1 so we should reject

H0 if T lies in the lower or upper tail of such a distribution.

12.3 Non-central χ2

For Xi ∼ N(µi, σ
2), X2

1 + · · · + X2
n ∼ χ2

n(λ), a non-central χ2
n distribution,

where λ = µ2
1 + · · · + µ2

n.

12.4 One-way analysis of variance (ANOVA)

This is used to test H0 : µ1 = µ2 = · · · = µk against H1 that the µi are general,
where we have ni samples from each of k different populations; Xij = µi+ǫij for
j = 1, . . . , ni, i = 1, . . . , k. Assume the ǫij are IID as N(0, σ2) for σ2 unknown.

Then set X̄·· =
P

ij Xij
P

i ni
= µ̂ the “overall mean”, X̄i· =

P

j Xij

ni
= µ̂i the “sample

mean”. Then for N =
∑

i ni, LX(H0H1) =
supµ1,...,µk,σ2 (2πσ2)−

N
2 e

−

P

ij

(Xij−µi)
2

2σ2

supµ,σ2 (2πσ2)−
N
2 e

−

P

ij

(Xij−µ)2

2σ2

which we find is
(

S0

S1

)
N
2

where S0 =
∑

ij(xij − x̄··)2, S1 =
∑

ij(Xij − X̄i·)2; we

have clearly S0 > S1, and S0 =
∑

(xij − x̄i· + x̄i· − x̄··)2 =
∑

(xij − x̄i·)2 +
∑

i ni(x̄i· − x̄··)2 (the cross terms are zero by summing over j before i); this is
S1 + S2 where S2 =

∑

i ni(x̄i· − x̄··)2 =
∑

i ni(µ̂i − µ̂)2, so S0

S1
is large when S2

S1

is large; if H0 is true we can find S2 ∼ σ2χ2
k−1, S1 ∼ σ2χ2

N−k independently;
the distribution of S1 coming from the fact that

∑

j(Xij − X̄i·)2 ∼ σ2χ2
ni−1

independent of the µi. So we reject H0 if T =
S2

k−1
S1

N−k

is large compared to the

Fk−1,N−k distribution which it takes if H0 is true.

13 Linear regression

[This lecture was missed]
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14 Hypothesis tests in regression models

Say we have data Y1, . . . , Yn and assume Yi = α + βwi + ǫi for unknown para-
maters α, β with the ǫi i.i.d. as N(0, σ2) and the wi known with

∑

wi = 0. We

saw in the previous lecture than the MLEs are α̂ = Ȳ , β̂ =
P

Yiwi
P

w2
i

; we can write

~Y =





Y1

. . .

Yn



 ∼ N(α~1 + β ~w, σ2I) a “multivariate normal” distribution.

14.1 Theorem

i) α̂ = Ȳ ∼ N(α, σ2

n
)

ii) β̂ = SwY

Sww
∼ N(β, σ2

~wT ~w
) independent of α̂

iii) We say S =
∑

(Yi − α − βwi)
2 is minimised [by the above α̂, β̂]by R, the

residual sum of squares, which is ∼ σ2χ2
n−2 independent of α̂, β̂. We can

find R =
∑

Y 2
i − nŶ 2 − (~wT ~w)β̂2.

iv) Therefore, σ̂2 = R
n−2

Recall the proof that SXX , X̄ are independent. Let A =





1√
n

1√
n

. . . 1√
n√

~wT ~ww1

√
~wT ~ww2 . . .

√
~wT ~wwn

. . . . . . . . . . . .



.

We can choose the remainder of the matrix such that AAT = I since we have
that the inner product of the first row with itself is 1, likewise the second row,
and the inner product of the first and second rows is 0 since

∑

wi = 0. So

since ~Y ∼ N(α~1 + β ~w, σ2I), ~Z = A~Y ∼ N(A(α~1 + β ~w), σ2I) i.e. the compo-
nents of Z are independent normal random variables with variance σ2. We have
Z1 =

√
nα̂ =

√
nȲ ∼ N(

√
nα, σ2) so i) holds, Z2 =

√
~wT ~wβ̂ ∼ N(

√
~wT ~wβ, σ2)

so ii) holds. Z3, . . . , Zn are all N(0, σ2) independent - they have mean 0 since
these are vectors orthogonal to ~1, ~w so the relevant columns of A(α~1+β ~w) = 0.

So
∑n

1 Z2
i = nȲ 2 + (~wT ~w)β̂2 +

∑n
3 Z2

i =
∑

Y 2
i since ZT Z = Y T Y .

∑

Y 2
i =

‖Y − −α̂~1 − β̂ ~w + α̂~1 + β̂ ~w‖2 and the cross product terms can be found to

be 0 so this = ‖Y − α̂~1 − β̂ ~w‖2 + nα̂2 + β̂2‖w‖2 = R + nȲ 2 + (~wT ~w)β̂2 so
R +

∑n
3 Z2

i ∼ χ2
n−2 and we have iii) (and hence iv)).

14.2 Tests and CIs

To test H0 : β = β0 against H1 : β 6= β0: if H0 is true β̂ ∼ N(β0,
σ2

~wT ~w
and so

(β̂−β0)
√

wT w

σ
∼ N(0, 1), and R

(n−2)σ2 ∼ χ2
n−2

n−2 so T = (β̂−β0)
√

wT w
q

R
n−2

∼ tn−2 and we

reject H0 if |T | > t
(n−2)
α
2

.

To find a (1 − α)100% confidence interval for β we have (β̂−β)
√

wT w
q

R
n−2

∼ tn−2

so P (β̂ − t
(n−2)
α
2

σ̂√
wT w

≤ β ≤ β̂ + t
(n−2)
α
2

σ̂√
wT w

) = 1 − α where θ̂ =
√

R
n−2 .

A confidence interval for the value of Y that would be observed at a given
w0: Y = α + βw0 + ǫ0 ∼ N(α + βw0, σ

2). Let Ŷ = α̂ + β̂w0. Then Y − Ŷ ∼
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N(0, σ2(1 + 1
n

+
w2

0

wT w
)) (since Var(α̂) = σ2

n
, Var(w0β̂) =

w2
0σ2

wT w
; note this is a

“predictive confidence interval”; it is a CI for the value that would be measured
at w0 rather than the “true” value α+βw0 (to get one for that, we would remove
the σ2 × 1 term from the variance)). So our (1−α)100% confidence interval for

Y is

[

Ŷ − t
(n−2)
α
2

σ̂

√

1 + 1
n

+
w2

0

wT w
, Y + t

(n−2)
α
2

σ̂

√

1 + 1
n

+
w2

0

wT w

]

.

14.3 The correlation coefficient

The sample correlation coefficient of (X1, . . . , Xn), (Y1, . . . , Yn) is defined to be

R = SXY√
SXXSY Y

=
P

(Xi−X̄)(Yi−Ȳ )√
P

(Xi−X̄)2
P

(Yi−Ȳ )2
(this is the commonly published corre-

lation coefficient; 0 for no correlation, 1 for a perfect positive correlation, -1 for
a perfect negative correlation). To test for a correlation between the two sets
of data we let wi = Xi − X̄ and test H0 : β = 0 against H1 : β 6= 0. We have

Yi = α + ǫi and T = β̂
√

SXX
q

R
n−2

which we find =
SXY
SXX

√
SXX

√
n−2

r

S2
Y Y

− S2
XY

SXX

=
√

n−2r√
1−r2

. So as

we would expect we reject H0 when r is far away from 0, i.e. close to ±1 (since
we always have |r| ≤ 1.

SY Y =
∑

(Yi − Ȳ )2; Ŷi = α̂ + β̂Xi has
∑

(Ŷi − Ŷ )2 =
S2

XY

SXX

P

(Ŷi−Ŷ )2
P

(Yi−Ŷ )2
= r2.

14.4 Testing linearity

Say we have data Yij = α + βXi + ǫij , j = 1, . . . , m, i = 1, . . . , n, i.e. we
have made m observations at each distinct point, for n different points. Let

Ȳi = 1
n

∑

j Yij , then Ȳi = a + bXi + ηi = α + β(Xi − X̄)+ ηi with ηi ∼ N(0, σ2

m
)

independent of
∑

(Yij − Ȳi)
2 ∼ σ2χ2

m−1 [∼ not in notes but must be there for
sanity]. We could do a linear regression analysis of Ȳi on Xi; we get the residual

sum of squares
∑

(Ȳi − α̂ − β̂(Xi − X̄))2 ∼ σ2

m
χ2

n−2. F =
m

P

(Ȳi−α̂−β̂(Xi−α̂)2)

n−2
P

ij (Yij−Ȳi)
2

n(m−1)

,

the ratio of variation explained by the linear regression to total variation, is
∼ Fn−2,n(m−1) and

∑

(Yij − Ȳ )2 ∼ σ2χ2
nm−2.

14.5 Analysis of variance in regression models

Consider e.g. comparing rows k, l; Yij = αi + βxij where i is which population
the sample is taken from, j is the number of the sample; say the sample size
is n from each population. Define ᾱ in the obvious way and test H0 : αk = αl

against H1 : αk 6= αl:
Minimize S =

∑n
j=1(Ykj − αk − βxkj)

2 +
∑n

j=1(ylj − αl − βxlj)
2 under

H1, H0 to get R1, R0. We can reason that we should reject H0 if R1 − R0 is
large; R0 = (R0 − R1) + R1. We find R1 ∼ σ2χ2n−3 whether or not H0 is true
while R0 − R1 ∼ σ2χ2

3−2 (the degrees of freedom being those of H1 - those of

H0) if H0 is true. So we perform a one-tailled test of T =
R0−R1

3−2
R1

50−3

against the

F1,47 distribution.
The remainder of the lectures for this course is non-examinable.
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