Statistics

Weber

July 5, 2008

1 Paramater estimation

1.1 What is statistics?

The lecturer defines stasistics as a collection of procedures and principles for gaining and processing information in order to make decisions when faced with uncertainty.

It has two branches; estimation and hypothesis testing.

Example 1.1

Say we want to estimate $p=$ proportion of cambridge students who've not bathed or showered within the last 24 hours.

Numbers alone are just numbers; they become data (a plural noun) when we know what they represent.

1.2 Random Variables with values in \mathbb{R}^{n} or \mathbb{Z}^{n}

$X=\left(X_{1}, \ldots, X_{n}\right)$ where X_{i} takes values in \mathbb{R} or \mathbb{Z}; data is of the form $x=$ $\left(x_{1}, \ldots, x_{n}\right)$.

Recall that an RV is a function $X: \Omega \rightarrow \mathbb{Z} ; \Omega$ is the sample space, e.g. when tossing two coins $\Omega=\{H H, H T, T H, T T\}$ and $X(\omega):=$ no. of heads when the outcome is ω.

The distribution function $F_{X}(x):=P(X \leq x)$; for X discrete this is $\sum_{\omega: X(\omega) \leq x} P(\omega)$, for X continuous it is $\int_{0}^{x} f(u) d u$ where f is the probability density function. $E X=\sum_{\omega} X(\omega) P(\omega)$ or $\int_{-\infty}^{\infty} f(u) u d u ; E h(x)=\int h(u) f(u) d u$. $\operatorname{Var}(x)=E(X-E X)^{2}=E X^{2}-(E X)^{2}$. We often write $E X=\mu, \operatorname{Var}(x)=\sigma^{2}$.

1.3 Some important RVs

a) $X \sim B(n, p)$, the binomial distn; $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, 0 \leq k \leq n$, $E X=n p, \operatorname{Var}(X)=n p(1-p)$
b) $X \sim P(\lambda)$, the Poisson distn; $P(X=k)=\lambda^{k} \frac{e^{-\lambda}}{k!}, k=0,1, \ldots, E X=\lambda$, $\operatorname{Var}(X)=\lambda$

Also important are the Normal, Standard Normal and Uniform distributions for continuous variables; see the printed notes for this course.

1.6 Notion of a Statistic

Say we have x_{1}, \ldots, x_{n} data drawn as IID samples from some dist, e.g. $N\left(\mu, \sigma^{2}\right)$. A statistic is a function $T(x)$, such as max $\left\{x_{i}\right\}, \frac{x_{1}+x_{2}}{x_{3}}, \log x_{3}, 2007+10 \min \left\{x_{i}\right\}$. Say μ is unknown; $\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)$ s a good statistic to use to estimate it, but why is this a better estimate than any of the other statistics?

1.7 Unbiased Estimators

An estimator of an unknown paramater θ [i.e. a statistic used to estimate θ] is unbiased if $E T(X)=\theta$, e.g. if X_{1}, \ldots, X_{n} are i.i.d. as $B(1, p)$ with p unknown we define $\hat{p}(X)=\frac{1}{n} \sum X_{i}$ and then $E \hat{p}(X)=E\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right)=$ $\frac{1}{n}\left(E X_{1}+\cdots+E X_{n}\right)=\frac{n p}{n}=p$ so \hat{p} is unbiased.

These are not generally unique; $\tilde{p}(X)=\frac{1}{3} X_{1}+\frac{2}{3} X_{2}$ is also unbiased, but we intuitively "know" this is a "worse" estimator. One reason for tihs is than $\operatorname{Var}(\hat{p})<\operatorname{Var}(\tilde{p})$.

Some more important RVs are the Geometric, Exponential and Gamma distributions; new to some readers will be the Beta distribution.

Before proceeding any further, the reader should ensure they are familiar with the Weak and Strong Laws of Large Numbers, and the Central Limit Theorem, from last year's Probability course.

2 Maximum Likelihood estimation

2.1 Estimation

Say X_{1}, \ldots, X_{n} i.i.d. RVs, x_{1}, \ldots, x_{n} data. The RVs are $N\left(\mu, \sigma^{2}\right), B(n, p)$ or $P(\lambda) \mathrm{w} /$ paramaters to be estimated.

Define likelihood $(\theta)=f(x \mid \theta)$ for fixed $x=\left(x_{1}, \ldots, x_{n}\right)$, where $f\left(x_{i} \mid \theta\right)=$ is the pdf at x_{i} [of θ ?], $f(x \mid \theta)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\operatorname{like}(\theta)$. The maximum likelihood estimate at θ is the value at θ maximising like (θ), say $\tilde{\theta}(x)$. It is often convenient to maximise log like(θ), called log-likelihood.

Example 2.1

a) How many colours do Smarties come in? Suppose k colours, all equally likely. Suppose we take 3 smarties and these are red, green, red. Let $x=\{2$ nd different from 1st and 3rd same as 1st $\}$. like $(k)=P(x \mid k)=$ $\frac{k-1}{k} \times \frac{1}{k}=\frac{k-1}{k^{2}}$. For $k=2,3,4, \ldots$, like $(k)=\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \ldots ; k(x)=2$ maximizes. Suppose the 4th is orange; like $(k)=\frac{k-1}{k^{2}} \frac{k-2}{k}=\frac{(k-1)(k-2)}{k^{3}}=$ $\frac{2}{27}, \frac{3}{32}, \frac{12}{125}, \frac{5}{54}, \ldots$; the max here is at $k=5$.
b) $X \sim B(n, p) ; \log p(x \mid n, p)=\log \binom{n}{x} p^{x}(1-p)^{n-x} ; n$ is known, p unknown, so this $=\cdots+x \log p+(n-x) \log (1-p) . \frac{\partial}{\partial p}=0 \Rightarrow \frac{x}{p}-\frac{n-x}{1-p}=0 \Rightarrow$ $\hat{p}(x)=\frac{x}{n} \Rightarrow \hat{p}(X)=\frac{X}{n}$. This is unbiased; $E(\hat{p}(X))=\frac{E X}{n}=\frac{n p}{n}=p$
c) $X \sim B(n, p)$, p known, n unknown. $P(x \mid n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$, to be maximised wrt n for $n \in\{x, x+1, x+2, \ldots\} \cdot \frac{P(x \mid n+1, p}{P(x \mid n, p)}=\frac{\binom{n+1}{x} p^{x}(1-p)^{n+1-x}}{\binom{n}{x} p^{x}(1-p)^{n-x}}=$
$\frac{(1-p)(n+1)}{n+1-x}$; if we graph this we see $n+1-x \leq 1 \Leftrightarrow n+1 \geq \frac{x}{p} . A(x)=\left[\frac{x}{p}\right]$; if $\frac{x}{p} \in \mathbb{Z}$ then $\frac{x}{p}$ and $\frac{x}{p-1}$ are both MLEs
d) $X_{1}, \ldots, X_{n} \sim \operatorname{geometric}(p) ; \log p\left(x_{1}, \ldots, x_{n} \mid p\right)=\log \prod_{i=1}^{n}\left(x_{i} \mid p\right)=$ $\log \prod_{i=1}^{n}(1-p)^{x_{i}-1} p=\left(\sum x_{i}-n\right) \log (1-p)+n \log p ; \frac{\partial}{\partial p}(\ldots)=0 \Rightarrow$ $\frac{-\left(\sum x_{i}-n\right)}{1-p}+\frac{n}{p}=0$; MLE $\hat{p}=\frac{1}{\bar{x}}\left(\hat{x}=\frac{\sum x_{i}}{n} ; E(\hat{p}(x))=E\left(\frac{1}{\bar{x}}\right) \neq \frac{E 1}{E \bar{x}}\right.$; for the case $n=1 E \hat{p}(x)=E \frac{1}{x_{1}}=\sum_{1}^{\infty} \frac{1}{j}(1-p)^{j-1} p=-\frac{p}{1-p} \log p>p$, so this estimator is biased

2.2 Sufficient Statistics

$\bar{x}=\frac{\sum x_{i}}{n} . T(x)$ is said to be sufficient for θ if $p_{\theta}(x \in . \mid T(X)=t)$ doesn't depend on θ.

Thm 2.2

The statistic T is sufficient for θ iff $f(x \mid \theta)=g(T(x), \theta)(x)$; this is called the factorisation criteria. Suppose the sample space is discrete and $f(x \mid \theta)=$ $p_{\theta}(X=x)$ has the factorisation criteria, then $p_{\theta}(X=x \mid T(X)=t)=$ $\frac{p_{\theta}(X=x)}{p_{\theta}(T(X)=t)}=\frac{g(T(x), \theta) h(x)}{\sum_{x: T(x)=t} g(T(x), \theta) h(x)}=\frac{h(x)}{\sum_{x: T(x)=t} h(x)}$ which does not depend on θ. $p(x \mid \theta)=p_{\theta}(X=x)=p_{\theta}(T(X)=t) p_{\theta}(X=x \mid T(X)=t)=g(T(X), \theta) h(x)$.

Example 2.3

a) $X_{1}, \ldots, X_{n} \sim P(\lambda) ; f(x \mid \lambda)=\prod_{1}^{n} \frac{\lambda^{x_{i}} e^{-\lambda}}{x_{i}!}=\lambda^{\sum x_{i}} e^{-n \lambda} \prod \frac{1}{x_{i}!}=g\left(\sum x_{i}, \lambda\right) h(x)$, so $\sum x_{i}$ is sufficient for λ. Note MLE of λ must depend on $\sum x_{i}=T(X)$; $\tilde{\lambda} \operatorname{MLE}(X)=\frac{T(X)}{n}=\bar{X}$
b) $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right) ; \theta=\left(\mu, \sigma^{2}\right)$ to be estimated. $f\left(x \mid \mu \sigma^{2}\right)=$
$\prod_{1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}}=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{\pi}{2}}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}}=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{\pi}{2}}} e^{-\frac{1}{2 \sigma^{2}}\left[\sum\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]}=$ $s\left(\sum\left(x_{i}-\bar{x}\right)^{2}, \bar{x}, \mu, \sigma^{2}\right) h(x) ; T(X)=\left(\bar{x}, \sum\left(x_{i}-\bar{x}\right)^{2}\right), \hat{\mu}=\bar{x}, \hat{\sigma^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}$
c) $X_{1}, \ldots, X_{n} \sim U[0, \theta], f(x \mid \theta)=\prod_{i=1}^{n} I\left[0 \leq x_{i} \leq \theta\right] \frac{1}{\theta}=\frac{1}{\theta^{n}} I\left[\max _{i} x_{i} \leq \theta\right]$. We want this to $=g(T(x), \theta) h(x)$ so $T(x)=\max x_{i}$ is sufficient for θ; the MLE is $\hat{\theta}(x)=\max x_{i} . E \hat{\theta}(X)=E \max x_{i} ; P\left(\max X_{i} \leq t\right)=F(t)=$ $P\left(X_{1} \leq t, \ldots, X_{n} \leq t\right)=P\left(X_{1} \leq t\right) \ldots P\left(X_{n} \leq t\right)=\left(\frac{t}{\theta}\right)^{n}, f(t)=$ $F^{\prime}(t)=\frac{n t^{n-i}}{\theta^{n}}$, so $E \max X_{i}=\int_{0}^{\theta} t f(t) d t=\int_{0}^{\theta} \frac{t n t^{n-1}}{\theta^{n}} d t=\frac{n}{n+1} \theta \neq \theta$ so the MLE is biased, however notice it is asymtotically unbiased, i.e. $E \hat{\theta} \rightarrow \theta$ as $n \rightarrow \infty$

3 The Rao-Blackwell Theorem

3.1 Mean square error

A good estimator should make small $E\left((\hat{\theta}(X)-\theta)^{2}\right)$ (which is of course the variance of $\hat{\theta}$ for the case when $\hat{\theta}$ is unbiased), the mean square error.

Example 3.1

$X_{1}, \ldots, X_{n} \sim B(1, p), p$ to be estimated. $\hat{p}=\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}, \tilde{p}=\frac{X_{1}+2 X_{2}}{3}$; these are both unbiased so we compare variance; $\operatorname{Var}(\hat{p})^{n}=\frac{1}{n^{2}} \sum \operatorname{Var}\left(x_{i}\right)=$ $\frac{p(1-p)}{n}, \operatorname{Var}(\tilde{p})=\frac{1}{9}\left(\operatorname{Var}\left(x_{1}\right)+4 \operatorname{Var}\left(x_{2}\right)=\frac{5}{9} p(1-p)\right.$. There are also unbiased estimators for which the variance decreases with increasing n but not as rapidly as for \hat{p}, e.g. $p^{\star}=\frac{X_{1}+2 X_{2}+\cdots+n X_{n}}{\frac{n(n+1)}{2}}$ has $E p^{\star}=p$ and we can find $\operatorname{Var}\left(p^{\star}\right)=$ $\frac{2(2 n+1)}{3 n(n+1)} p(1-p)$ and $\frac{\operatorname{Var}(\hat{p})}{\operatorname{Var}\left(p^{\star}\right)} \rightarrow \frac{3}{4}$ as $n \rightarrow \infty$.

Example 3.2

$X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, both paramaters unknown. $\log \left(f(x) \mu \sigma^{2}\right)=\log \prod_{1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}}=$ $-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{1}^{n}\left(x_{i}-\mu\right)^{2}$; for unbiased estimators the partial derivatives of this wrt μ, σ^{2} must be both 0 i.e. $\frac{1}{\hat{\sigma}^{2}} \sum\left(X_{i}-\hat{\mu}\right)=0=-\frac{n}{2 \hat{\sigma}^{2}}+\frac{1}{2 \hat{\sigma}^{2}} \sum\left(X_{i}-\hat{\mu}\right)^{2}$. So $\hat{\mu}=\frac{\sum X_{i}}{n}=\bar{X}, \hat{\sigma}^{2}=\frac{1}{n} \sum\left(X_{i}-\hat{\mu}\right)^{2}=\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2} ; E \hat{\mu}=\mu$ so this is unbiased but $E \sum_{1}^{n}\left(X_{i}-\bar{X}\right)=(n-1) \sigma^{2}$ so $E \hat{\sigma}^{2}=\frac{n-1}{n} \sigma^{2}$ so this is biased.

We might prefer to have an unbiased estimator; we see we can just multiply by a constant, $\tilde{\sigma}^{2}=\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)^{2}$ is unbiased. However, neither the MLE nor this unbiased estimator minimizes the mean square error; for an estimator of the form $\lambda \sum\left(X_{i}-\bar{X}\right)^{2}:=S_{X X}$, the MSE is $E\left(\left(\lambda S_{X X}-\sigma^{2}\right)^{2}\right)=\lambda^{2} E S_{X X}^{2}-$ $2 \lambda \sigma^{2} E S_{X X}+\sigma^{4}$; we already know $E S_{X X}=(n-1) \sigma^{2}$ and will later find $E S_{X X}^{2}$, which gives that this is $\lambda^{2}\left(2(n-1) \sigma^{4}+(n-1)^{2} \sigma^{4}\right)-2 \lambda \sigma^{2}(n-1) \sigma^{2}+\sigma^{4}$ minimised by $\lambda=\frac{1}{n+1}$.

3.2 Rao-Blackwell Theorem

Thm 3.3

Let $\hat{\theta}$ be an estimator at $\theta \mathrm{w} / E \hat{\theta}^{2}<\infty \forall \theta$. Suppose T is a sufficient statistic for θ, and let $\theta^{\star}=E(\hat{\theta} \mid T)$, then $E\left(\theta^{\star}-\theta\right)^{2} \leq E(\hat{\theta}-\theta)^{2}$, w/ equality only if $\hat{\theta}$ is a function of T.

The proof is just a few lines, but conceptually somewhat difficult: $E\left(\theta^{\star}-\right.$ $\theta)^{2}=E(E(\hat{\theta} \mid T)-\theta)^{2}=E(E(\hat{\theta}-\theta \mid T))^{2} \leq E\left(E\left((\hat{\theta}-\theta)^{2} \mid T\right)\right)=E(\hat{\theta}-\theta)^{2}$ $\left(\forall w,(E w)^{2} \leq E w^{2}\right.$ since $\operatorname{Var}(w)=E w^{2}-(E w)^{2} \geq 0$, with equality only when $\operatorname{Var}(w)=0$ i.e. w constant) with equality only when $\hat{\theta}-\theta \mid T$ is a constant i.e. $\hat{\theta}$ is a function of T.

If $\hat{\theta}$ is unbiased, $E\left(\theta^{\star}\right)=E(E(\hat{\theta} \mid T))=E \hat{\theta}=\theta$ so θ^{\star} is also unbiased.

Examples 3.4

a) $X_{1}, \ldots, X_{n} \sim P(\underset{\sim}{\lambda})$; a sufficient statistic for λ is $\sum X_{i}$. We start with a trivial estimator $\tilde{\lambda}=X_{1}$ 。 $\lambda^{\star}=E(\tilde{\lambda} \mid T)=E\left(X_{1} \mid \sum_{1}^{n} X_{i}=t\right)$. Now $E\left(\sum_{1}^{n} X_{i} \mid \sum X_{i}=t\right)=t=\sum_{j=1}^{n} E\left(X_{j} \mid \sum_{i} X_{i}=t\right)$, so this is $\frac{t}{n}$
b) $X_{1}, \ldots, X_{n} \sim P(\lambda), \theta=e^{-} \lambda$ to be estimated. $\theta=P\left(X_{1}=0\right) \therefore \hat{\theta}=$ $I\left[X_{1}=0\right]$ is unbiased. $\theta^{\star}(t)=E(\hat{\theta} \mid T=t)=P\left(X_{1}=0 \mid \sum_{1}^{n} X_{i}=\right.$ $t)=\frac{P\left(X_{1}=0 \text { and } \sum_{1}^{n} X_{i}=t\right)}{P\left(\sum_{1}^{n} X_{i}=t\right)}=\frac{\frac{e^{-\lambda}(\lambda(n-1))^{t} e^{-\lambda(n-1)}}{t!}}{\frac{(\lambda n)^{t} e^{-\lambda n}}{t!}}=\left(\frac{n-1}{n}\right)^{t}$, so $\theta^{\star}(X)=$ $\left(\frac{n-1}{n}\right)^{\sum X_{i}}$
c) $X_{1}, \ldots, X_{n} \sim U[0, \theta] ; E X_{1}=\frac{\theta}{2}$ so $2 X_{1}$ is unbiased; $\theta^{\star}=E(\hat{\theta} \mid T=t)$; $T=\max x_{i}$ is sufficient for θ so this is $E\left(2 X_{1} \mid \max X_{i}=t\right)=\frac{1}{n} 2 t+$ $\frac{n-1}{n} 2 \frac{t}{2}=\frac{n+1}{n} t$

3.3 Consistency and asymtotically efficient

MLEs are always asymtotically unbiased, though we will not proove this in this course: $E\left(\hat{\theta}_{\text {MLE }}\right) \rightarrow \theta$ as $n \rightarrow \infty$. In fact, we have a stronger property, called consistency, which is that $P\left(\left|\hat{\theta}_{\text {MLE }}-\theta\right|>t\right) \rightarrow 0$ as $n \rightarrow \infty$. We also have that $\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(\hat{\theta}_{\text {MLE }}\right)}{\frac{1}{n I(\theta)}} \rightarrow 1$ as $n \rightarrow \infty$, with the denominator being the Crawer-Rao lower bound on the variance of an estimator; the MLE is asymtotically efficent.

4 Confidence intervals

4.1 Interval estimates

Say $X_{1}, \ldots, X_{n} \sim N(\theta, 1)$ and we have an unbiased estimator $\hat{\theta}$. Even if $E(\hat{\theta}(X)-\theta)^{2}$ is small, we will often have $\hat{\theta} \neq \theta$. We can instead consider the probability that $\theta \in$ an interval estimate $[a(x), b(x)] ;[-\infty, \infty]$ is correct w/ prob 1. We define an interval estimator $[a(X), b(X)]$; if $P([a(X), b(X)] \ni \theta)=\gamma$ this defines a $\gamma \times 100 \%$ confidence interval for θ.

Example 4.1

a) $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right), \mu$ unknown. $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n} \therefore \bar{X}-\mu \sim N\left(0, \frac{\sigma^{2}}{n} \Rightarrow\right.\right.$ $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1)$. We want $P\left(\xi \leq \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \leq \eta\right)=0.5=P(\bar{X}-$ $\frac{\eta \sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+\frac{\xi \sigma}{\sqrt{n}} ; \bar{X}-\frac{\eta \sigma}{\sqrt{n}}=a(X), \bar{X}+\frac{\xi \sigma}{\sqrt{n}}=b(X)$. We want to minimize $b(X)-a(X)$, which we do by choosing a symetrical interval; for $W \sim N(0,1), P(-1.96 \leq W \leq 1.96)=0.95, P(-2.58 \leq W \leq 2.58)=0.99$
b) $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ with both unknown. $\frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{\frac{S_{X X}}{n-1}}} \sim t_{n-1}$ where the RHS is the students' t-distribution and $S_{X X}=\sum\left(X_{i}-\bar{X}\right)^{2} . \gamma=0.95=$ $P\left(\xi \leq \frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{\frac{S_{X X}}{n-1}}} \leq \eta\right)=P\left(\bar{X}-\eta \sqrt{\frac{S_{X X}}{n(n-1)}} \leq \mu \leq \bar{X}+\xi \sqrt{\frac{S_{X X}}{n(n-1)}} ;\right.$ notice $t_{\infty}=N(0,1)$

4.2 Opinion Polls

Let $p=$ probability someone supports Labour; $X_{i} \sim B(1, p)$ are 1 if a person supports Labour, 0 otherwise. $\hat{p}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) . X_{1}+\cdots+X_{n} \sim B(n, p) \approx \sim$ $N(n p, n p(1-p))$, so $\bar{X} \approx \sim N\left(p, \frac{p(1-p)}{n} . E \bar{X}=p, \operatorname{Var} \bar{X}=\frac{p(1-p)}{n} \leq \frac{1}{n}(p\right.$ is unknown, but the variance is maximised by $p=\frac{1}{2}$), so $\frac{(\bar{X}-p) \sqrt{n}}{\sqrt{p(1-p)}} \sim N(0,1) . P(\hat{p}-$ $0.03 \leq p \leq \hat{p}+0.03)=P\left(\frac{-0.03}{\sqrt{\frac{p(1-p)}{n}}} \leq \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \leq \frac{0.03}{\sqrt{\frac{p(1-p)}{n}}} \cdot \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)\right.$ so this is $\Phi\left(0.03 \sqrt{\frac{n}{p(1-p)}}-\Phi\left(-0.03 \sqrt{\frac{n}{p(1-p)}} \geq \Phi(0.03 \sqrt{4 n}-\Phi(-0.03 \sqrt{4 n}\right.\right.$, which is ≥ 0.95 if $0.03 \sqrt{4 n} \geq 1.96 \Leftrightarrow n \geq 1068$; for real opinion polls $n=1100$ is used, regardless of the population size.

Example 4.2

Of 1000 Americans, 59% believe the world will end, and of those, 33% believe it will within a decade, therefore this is 19.5% of the population.

Rule of 39

[I found this section incomprehensible]

Opinion Polls

$\operatorname{Var}(\hat{p})=\frac{N-n}{N-1} \frac{p(1-p)}{n}$, where N is the total population.

Rk

μ, p location
σ scale

Example 4.3

$X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\theta) . f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{1}^{n} \hat{\theta} e^{-\theta x_{i}}=\theta^{n} e^{-\theta \sum x_{i}}$, so $T(X)=$ $\sum X_{i}$ is sufficient for $\theta . \sum X_{i} \sim \Gamma(n, \theta), f_{T}(t)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{(n-1)!}, t \geq 0 . S=2 \theta T \sim$ $\Gamma\left(n, \frac{1}{2}\right) . \quad P(S \leq s)=P(2 \theta T \leq s) . \quad f_{S}(s)=f_{T}\left(\frac{s}{2 \theta}\right) \frac{1}{2 \theta}=\frac{\theta^{n}\left(\frac{S}{2 \theta}\right)^{n-1} e^{-\theta \frac{S}{2 \theta}}}{(n-1)!}=$ $\frac{\left(\frac{S}{2}\right)^{n-1} e^{-\frac{S}{2}}}{(n-1)!} . P(\xi \leq 2 T \theta \leq 2 \eta)=P\left(\frac{2 T}{\eta} \leq \frac{1}{\theta} \leq \frac{2 T}{\xi}\right)=F_{2 n}(\xi)-F_{2 n}(\eta)$ where $F_{2 n}$ is the cdf of a $\chi_{2 n}^{2}$ random variable.

4.3 Shortcomings of CI

$X_{1}, X_{2} \sim U\left[\theta-\frac{1}{2}, \theta+\frac{1}{2}\right] . P\left(\min X_{i} \leq \theta \leq \max X_{i}\right)=P\left(X_{2} \leq \theta \leq X_{1}\right)+P\left(X_{1} \leq\right.$ $\left.\theta \leq X_{2}\right)=\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{1}{2}=\frac{1}{2}$, so $\left[\min x_{i}, \max x_{i}\right]$ is 50% CI. But if e.g. $X=(7.4,8.0)$ then $\theta \leq 7.4+\frac{1}{2}=7.9$ and similarly $\theta \geq 7.5$ so $[7.4,8.0]$ is a $100 \% \mathrm{CI}$, not 50%.

5 Bayesian Estimation

5.1 Prior and Posterior Distributions

In Bayesian statistics we take the view that a probability represents our level of belief in a given proposition, and requires us to incorporate our prior beliefs, in the form of a prior distribution for θ. We then combine data with this to get posterior beliefs - the beliefs we hold after seeing the data.

$$
P(\theta \mid \text { action })=P\left(\theta \mid x_{1} \ldots x_{n}\right)=\frac{f\left(x_{1} \ldots x_{n} \mid \theta\right) p(\theta)}{\int f\left(x_{1} \ldots x_{n} \mid \theta\right) p(\theta) d \theta} \propto f\left(x_{1} \ldots x_{n} \mid \theta\right) p(\theta)
$$

Example 5.1

Take our prior distribution for the number of colours of smarties to be 5,6,7,8 with respective probabilities $\frac{1}{10}, \frac{3}{10}, \frac{3}{10}, \frac{3}{10}$. If our data is $x=$ red, green, red, let $\theta=k$ be the no. of colours. $f(x \mid k)=\frac{k-1}{k^{2}}$ so we have:

k	$f(x \mid k)$	$f(x \mid k) p(k)$	Posterior $p(k \mid x)$			
5	0.160	0.016	0.13			
6	0.139	0.042	0.33			
7	0.122	0.037	0.29			
8	0.109	0.033	0.26			
	total	0.127		k	$f(x \mid k)$	$f(x \mid k) p(k)$
		5	0.096	Posterior $p(k \mid x)$		
		6	0.093	0.010	0.11	
Similarly, if our data is red, green, orange, we have:	7	0.087	0.026	0.31		
		8	0.082	0.025	0.30	
			total	0.088	0.28	

5.2 Conditional PDFs

Discrete case

The key idea here is that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ (or 0 if $P(B)=0$); write $f_{X Y}(x, y)=P(X=x, Y=y), f_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=$ $\frac{P(X=x, Y=y}{P(Y=y)}=\frac{f_{X Y}(x, y)}{f_{Y}(y)}$, or 0 if $f_{Y}(y)=0$.

Example 5.2

$X \sim \operatorname{Poisson}(\lambda), R \sim \operatorname{Poisson}(\mu)$ independent, $Y=X+R \sim \operatorname{Poisson}(\lambda+$ $\mu) . \quad f_{X \mid Y}(x, y)=\frac{\frac{\lambda^{x}-\lambda}{x!} \frac{\mu^{y-x} e^{-\mu}}{(y-x)!}}{\frac{(\lambda+\mu)^{y}}{y!} e^{-(\lambda+\mu)}}=\binom{y}{x}\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(1-\frac{\lambda}{\lambda+\mu}\right)^{y-x}$, i.e. $X \mid Y$ is distributed as $B\left(y, \frac{\lambda^{y!}}{\lambda+\mu}\right)$.

Continuous case

$Z=(X, Y), f_{Z}(x, y)=f_{X, Y}(x, y), f_{Y}(t)=\int f_{X, Y}(x, y) d x, f_{X \mid Y}(x, y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$, or 0 if $f_{Y}(y)=0$.

Example 5.3

a) $\theta=$ prob. of heads on a biased coin. Let x_{1}, \ldots, x_{n} each be 1 for heads, 0 for tails, and $\sum x_{i}=t$. Let our prior distribution be $p(\theta)=1 \forall 0 \leq \theta \leq 1$; $P\left(\theta \mid x_{1} \ldots x_{n}\right) \propto \theta^{t}(1-\theta)^{n-t}$ (only the parts in terms of θ are relevant [lulz]. $p\left(\theta \mid x_{1} \ldots x_{n}\right)=\frac{\theta^{t}(1-\theta)^{n-t}}{\int_{0}^{1} \theta^{t}(1-\theta)^{n-t} d \theta}$; this is the $\operatorname{Beta}(t+1, n-t+1)$ distribution. We find the peak of this distribution is the MLE, which is unsurprising since we started with a uniform distribution, so this new distribution is simply the likelihood function [I think]
b) $X_{1}, \ldots, X_{n} \sim N(\mu, 1)$. Prior distribution for μ given by $p(\mu) \sim N\left(0, \tau^{-2}\right)$. $P\left(\mu \mid x_{1} \ldots x_{n}\right) \propto f\left(x_{1} \ldots x_{n}\right) p(\mu) \propto e^{-\frac{1}{2} \sum\left(x_{i}-\mu\right)^{2}} e^{-\frac{1}{2} \tau^{2} \mu^{2}} ;$ we could integrate at this stage but it would be very messy; instead we rearrange this as being $\propto e^{-\frac{1}{2}\left(n+\tau^{2}\right)\left(\mu-\frac{\sum x_{i}}{n+\tau^{2}}\right)^{2}}$ which we can then recognise as $p\left(\mu \mid x_{1} \ldots x_{n}\right) \sim N\left(\frac{\sum x_{i}}{n+\tau^{2}}, \frac{1}{\mu+\tau^{2}}\right)$
c) $X_{1}, \ldots, X_{n} \sim \exp (\lambda)$ i.i.d; prior $\lambda \sim \exp (\mu) . P\left(\lambda \mid x_{1} \ldots x_{n}\right) \propto\left(\prod_{1}^{n} \lambda e^{-\lambda x_{i}}\right) \mu e^{-\lambda \mu}=\propto$ $\lambda^{n} e^{-\lambda\left(\mu+\sum x_{i}\right)}$; we recognise this as being $\propto \operatorname{gamma}\left(n+1, \mu+\sum x_{i}\right)$ since $\Gamma(n, \theta)$ has $\frac{\theta^{n} t^{n-1} e^{-t}}{(n-1)!}$, so $p\left(\lambda \mid x_{1} \ldots x_{n}\right)=\frac{\lambda^{n}\left(\mu+\sum x_{i}\right)^{n+1} e^{-\lambda\left(\mu+\sum x_{i}\right)}}{n!}$

All these give us distributions for $P(\theta \mid$ data $)$. Rather than simply taking the peak value, we might like to choose $\hat{\theta}$ to minimize some loss function.

5.3 Estimation within Bayesian Statistics

a) Say we have some loss function $L(\theta, a)$ between the true value θ and our estimate a, e.g. $(a-\theta)^{2}$. We want ti minimise $E L(\theta)$ (the expectation being taken wrt the posterior distribution) over a; it is $\int L(\theta, a) p(\theta$ | $\left.x_{1} \ldots x_{n}\right) d \theta=\int(\theta-a)^{2} p\left(\theta \mid x_{1} \ldots x_{n}\right) d \theta$; to minimize we differentiate wrt a and put $0=2 \int(a-\theta) p\left(\theta \mid x_{1} \ldots x_{n}\right) d \theta$, so $a=\int \theta p\left(\theta \mid x_{1} \ldots x_{n}\right) d \theta$, the posterior mean, so we take $\hat{\theta}$ to be this
b) $L(\theta, a)=|a-\theta|$ has $E L(\theta, a)=\int_{-\infty}^{a}(a-\theta) p\left(\theta \mid x_{1} \ldots x_{n}\right) d \theta+\int_{a}^{\infty} p(\theta \mid$ $\left.x_{1} \ldots x_{n}\right) d \theta$; differentiating and putting $=0$ we have $0=\int_{-\infty}^{a} p(\theta \mid x) d \theta-$ $\int_{\theta}^{\infty} p(\theta \mid x) d \theta$, so a should be the median of the posterior distribution of θ

Example 5.4

$X_{1}, \ldots, X_{n} \sim P(\lambda), \lambda \sim \exp (1)$ i.e. $p(\lambda)=e^{-\lambda}, \lambda \geq 0 . \quad P\left(\lambda \mid x_{1} \ldots x_{n}\right) \propto$ $\left(\prod_{1}^{n} \frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}\right) e^{-\lambda} \propto e^{-\lambda(n+1)} \lambda^{\sum x_{I}}$, the distribution of $\Gamma\left(\sum x_{i}+1, n+1\right)$. The mean of this is $\frac{\sum x_{i}+1}{n+1}$, so this is our Bayes estimate for λ under quadratic loss (with this particular prior distribution). There is no neat expression for our estimate under absolute error loss; $\tilde{\lambda}$ is simply the value such that $\int_{0}^{\tilde{\lambda}} \frac{e^{-\lambda(n+1)} \lambda^{\sum x_{i}}(n+1) \sum x_{i}+1}{\left(\sum x_{i}\right)!} d \lambda=$ $\frac{1}{2}$.

6 Hypothesis Testing

6.1 The Neyman-Dearson framework

Say we have $X_{1} \ldots X_{n} \sim f(\mid \theta)$ i.i.d. For estimation we use some $\hat{\theta}(x)$, for hypothesis testing we test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$. H_{0} is called the null hypothesis, H_{1} is the alternate hypothesis. We could also have hpyotheses like $H_{0}: f=f_{0}, H_{1}: f=f_{1}$ or $H_{0}: \theta \in \Theta_{0}, H_{1}: \theta \in \Theta_{1}$ with $\Theta_{0} \cap \Theta_{1}=$ $\emptyset, \Theta_{0} \cup \Theta_{0}=\Theta$ the entire paramater space. For now we consider $H_{0}: f=$ $f_{0}, H_{1}: f \neq f_{0}$, a goodness-of-fit test.

6.2 Terminology

A simple hypothesis specifies f completely, e.g. $\theta=\theta_{0}$, wheras $\theta>\theta_{0}$ or $\theta \in \Theta_{0}$ would be a composite hypothesis. We will have some critical region C; we reject H_{0} iff our data $x=\left(x_{1} \ldots x_{n}\right) \in C \subset \mathbb{R}^{n}$. There are two types of errors: a type I error is rejecting H_{0} when it is true, a type II error is not rejecting (which we may wish to distinguish from accepting) H_{0} when it is false. Generally type I errors are "worse", e.g. $H_{0}=$ defendant is innocent in a murder case.
$P($ type I error $)=\alpha$ should be small; we generally set $\alpha=0.01$ or 0.05 . Let $P($ type II error $)=\beta$; we then have an optimization problem, to minimize β subject to fixed α. This α is called the size or significance level.
$\alpha=P\left(x \in C \mid H_{0}\right)$; for a simple $H_{0}: \theta=\overline{\theta_{0}, \alpha=P(x \in C} \mid \theta=\theta_{0}$, while for a composite $H_{0}: \theta \in \Theta_{0}$, the size is $\sup _{\theta_{0} \in \Theta_{0}} P\left(x \in C \mid \theta=\theta_{0}\right)$.

We considered likelihood $f\left(x_{1} \ldots x_{n} \mid \theta\right)$ as a function of θ; when testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ we consider the likelihood ratio $\frac{f\left(x_{1} \ldots x_{n} \mid \theta=\theta_{1}\right)}{f\left(x_{1} \ldots x_{n} \mid \theta=\theta_{0}\right)}$ and reject H_{0} when this is large. For composite hypotheses we use $L_{x}\left(H_{0}, H_{1}\right)=$ $\frac{L_{x}\left(H_{1}\right)}{L_{x}\left(H_{0}\right)}$ where $L_{x}\left(H_{i}\right)=\sup _{\theta \in \Theta_{i}} f\left(x_{1} \ldots x_{n} \mid \theta\right)$.

6.3 Likelihood ratio tests

$C=\left\{x: L_{x}\left(H_{0}, H_{1}\right) \geq k\right\}$ say. This gives us a likelihood ratio test.

Lemma 6.3 (Neyman-Pearson Lemma)

Say we have $H_{0}: f=f_{0}$ to be tested against $H_{1}: f=f_{1}$. Assume $f_{1}, f_{0}>0$ on the same regions and are continuous. Then amongst all test of size $\leq \alpha$ the test with the smallest probability of a type II error is given by $C=\{x$: $\left.\frac{f_{1}(x)}{f_{0}(x)} \geq k\right\}$ where k is chosen such that $\alpha=P\left(X \in C \mid H_{0}\right)=\int_{x \in C} f_{0}(x) d x$ $\left[=\int_{\mathbb{R}^{n}} \phi_{C}(x) f_{0}(x) d x\right.$; see below]. This is a popular tripos question.

Consider any test with size $\leq \alpha$; let its critical region be D. Let $\phi_{D}(x)$ be the indicator that $x \in D$. Then $0 \leq\left(\phi_{C}(x)-\phi_{D}(x)\right)\left(f_{1}(x)-k f_{0}(x)\right)$ by the definition of $\phi_{C}(x)$. Integrating over $\mathbb{R}^{n}, 0 \leq P\left(X \in C \mid H_{1}\right)-k P(X \in C \mid$ $\left.H_{0}\right)-P\left(X \in D \mid H_{1}\right)+k P\left(X \in D \mid H_{0}\right) \leq P\left(X \in C \mid H_{1}\right)-P(X \in D \mid$ $H_{1}+\alpha-\alpha$ so $1-P\left(X \in C \mid H_{1}\right) \leq 1-P\left(X \in D \mid H_{1}\right)$ i.e. P_{C} (type II error $) \leq$ P_{D} (type II error).

6.4 Single sample test mean with simple alternate, normal distribution with known variance

$x_{1} \ldots x_{n} \sim N\left(\mu, \sigma^{2}\right), \sigma^{2}$ known. $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu=\mu_{1} \cdot \frac{f\left(x \mid \mu_{1} \sigma^{2}\right.}{f\left(x \mid \mu_{0}, \sigma^{2}\right.}=$ $\frac{\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu_{1}\right)^{2}}}{\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu_{0}\right)^{2}}}=e^{\frac{\sum\left(x_{i}-\mu_{0}\right)^{2}-\sum\left(x_{i}-\mu_{1}\right)^{2}}{2 \sigma^{2}}}$. Assume $\mu_{1}>\mu_{0}$, then this is monotone increasing in \bar{x}, so $\geq k$ iff $\bar{x} \geq$ some c. There is no need to compute the relationship between k and c and doing so would waste a lot of time; from now on we work purely with $c ; C=\{x: \bar{x} \geq c\}$ some c. Recall $\bar{x} \sim N\left(\mu_{0}, \frac{\sigma^{2}}{n}\right)$ if H_{0} true. Let $Z=\sqrt{n} \frac{\bar{X}-\mu_{0}}{\sigma} \sim N(0,1)$. If $\alpha=0.05$ then $P_{H_{0}}(\bar{x} \geq c) \equiv P_{H_{0}}\left(Z \geq c^{\prime}\right)=0.05 \Rightarrow c^{\prime}=1.645 \Rightarrow c=\mu_{0}+\frac{\sigma 1.645}{\sqrt{n}}$.

Say we were testing $H_{0}: \mu=5$ against $H_{1}: \mu=6$ with $\sigma^{2}=1$ and have data $x=(5.1,5.5,4.9,5.3) . \bar{X}=5.2 \therefore Z=\frac{2(5.2-5)}{1}=0.4<1.645$ so we don't reject H_{0}. However, notice that if we were testing $H_{0}: \mu=6$ against $H_{1}: \mu=5$ we have $Z=\frac{2(5.2-6)}{1}=-1.6>-1.645$, so we don't reject H_{0} in this case either.

7 Further aspects of Hypothesis Testing

$\alpha=$ size $=$ significance level $=P\left(\right.$ reject $\left.H_{0} \mid H_{0}\right)=P($ type I error $) . Z=0.4$ in the example above. Rather than fixing $\alpha=\sup _{\theta \in \Theta_{0}} P(X \in C \mid \theta)$ and then testing H_{0} against this, we can define the p-value $p^{\star}=\sup _{\theta \in \Theta_{0}} P_{\theta}\left(L_{X}\left(H_{0}, H_{1}\right) \geq\right.$ $\left.L_{x}\left(H_{0}, H_{1}\right)\right)$, the probability of obtaining a more extreme result - this is the smallest α such that we would reject H_{0} if we were conducting a test of size α.

7.1 The power of a test

A type II error is not rejecting H_{0} when it is false. For $\theta \in \Theta$ we define the power function $w(\theta)=P(X \in C \mid \theta)$; for $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ this is $1-\beta$. This is generally an increasing curve passing through α at $\theta=\theta_{0}$; of course it is easier to make the test if θ_{1} is larger.

$$
w(\theta)=1-P(\text { type II error } \mid \theta) \text { for } \theta \neq \theta_{0}
$$

7.2 Uniformly most powerful test

This is a difficult section: for $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu=\mu_{1}$ we know the best test is to reject H_{0} if $Z \geq c$ some c (i.e. $\bar{X} \geq c^{\prime}$). We notice that c is independent of the value of μ_{1}, so in fact we have the same test for any $\mu_{1}>\mu_{0}$. We say this test is uniformly most powerful for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0} ; \alpha$ is now $\sup _{\mu \leq \mu_{0}} P(x \in C \mid \mu)$ which we find $=P\left(X \in C \mid \mu=\mu_{0}\right)$ as before.

Example

$X_{1} \ldots X_{n} \sim N\left(\mu, \sigma^{2}\right), \mu$ known. Test $H_{0}: \sigma^{2} \leq 1$ against $H_{1}: \sigma^{2}>1$; to do this we first consider $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{1}: \sigma^{2}=\sigma_{1}^{2}, \sigma_{0}^{2} \leq 1<$ $\sigma_{1}^{2} \cdot \frac{f\left(x \mid \mu \sigma_{1}^{2}\right)}{f\left(x \mid \mu \sigma_{0}^{2}\right)}=\frac{\sqrt{2 \pi \sigma_{1}^{2}} e^{-\frac{1}{2 \sigma_{1}^{2}} \sum\left(X_{i}-\mu\right)^{2}}}{\sqrt{2 \pi \sigma_{0}^{2}} e^{-\frac{1}{2 \sigma_{0}^{2}} \sum\left(X_{i}-\mu\right)^{2}}}=\left(\frac{\sigma_{1}}{\sigma_{0}}\right)^{n} e^{\left(\frac{1}{2 \sigma_{0}^{2}}-\frac{1}{2 \sigma_{1}^{2}}\right) \sum\left(X_{i}-\mu\right)^{2}}$, an increasing function of $\sum\left(X_{i}-\mu\right)^{2}$. So we should reject H_{0} if $\sum\left(X_{i}-\mu\right) \geq c$ for some c.
$X_{i}-\mu \sim N\left(0, \sigma^{2}\right)$ so $\sup _{\sigma_{0}^{2} \leq 1} P\left(\sum\left(X_{i}-\mu\right)^{2} \geq c \mid \sigma^{2}=\sigma_{0}^{2}\right)=P\left(\sum\left(X_{i}-\right.\right.$ $\mu)^{2} \geq c \mid \sigma_{0}^{2}=1$) and (if H_{0} true) $X_{i}-\mu \sim N(0,1)$. The sum of n such X_{i} is defined to be distributed as χ_{n}^{2}, the chi-squared distribution. We reject H_{0} if $\sum\left(X_{i}-\mu\right)^{2} \geq F_{\alpha}^{(n)}$ where $F_{\alpha}^{(n)}$ is the value at which the area above it under a χ_{n}^{2} distribution is α; this does not depend on σ_{1}^{2} so is our best test for $H_{0}: \sigma^{2} \leq 1$ against $H_{1}: \sigma^{2}>1$.

7.3 Confidence intervals and hypothesis tests

Theorem 7.3

Suppose that for every θ_{0} there is a test of size α of $H_{0}: \theta=\theta_{0}$ against some H_{1}. Denote the acceptance region (i.e. complement of the critical region) of this by $A\left(\theta_{0}\right)$. Let $I(X)=\{\theta: X \in A \mid \theta\}$. This is a $100(1-\alpha) \%$ CI for θ, and conversely (i.e. if we have a CI we can form such a test for any θ). [lol $\left.\theta, \theta_{0}\right]$, as $P\left(X \in A\left(\theta_{0}\right) \mid \theta=\theta_{0}\right)=P\left(\theta \in I(X) \mid \theta=\theta_{0}\right)=1-\alpha, X \in A\left(\theta_{0}\right) \Leftrightarrow \theta \in I(X)$. So finding a 95% CI for μ and testing whether or not μ_{0} is in this interval is equivalent to testing H_{0} against H_{1} at $\alpha=0.05$.

Until now we have mostly covered one-tailed tests. We have a two-tailed test if we test a hypothesis such as $H_{1}: \theta \neq \theta_{0}$; there are two possibile ways this can be true, namely $\theta<\theta_{0}$ and $\theta>\theta_{0}$. We generally arrange things such that if H_{0} is true there is a probability $\frac{\alpha}{2}$ of a result in each tail.

7.4 The Bayesian perspective on hypothesis testing

Say we are tosing a coin and testing $H_{0}: p=\frac{1}{2}$ against $H_{1}: p>\frac{1}{2}$. One possible experiment is to toss it 5 times and count the number of heads; say we get HHHHT, then our p-value is P (number of heads $\left.\geq 4 \mid H_{0}\right)=\left(\frac{1}{2}\right)^{5}+5 \frac{1}{2}\left(\frac{1}{2}\right)^{4}=$ 0.1875 . An alternative experiment is to toss the coin until we get our first tail; say we get HHHHT, then our p-value is the probability our first tail is on the fifth or later test, i.e. the probability of four heads, so $\left(\frac{1}{2}^{4}\right)=0.625$. Thus if our α were 0.10 , we would accept H_{0} for the first experiment but reject it for the second. This is rather odd, since "the coin didn't know" which experiment we were doing. The Bayesian approach would give us the same answer in both cases, since $\frac{P\left(H_{1} \mid x\right)}{P\left(H_{0} \mid x\right)}=\frac{P\left(x \mid H_{1}\right) P\left(H_{1}\right)}{P\left(x \mid H_{0}\right) P\left(H_{0}\right)}=L_{x}\left(H_{0} H_{1}\right) \frac{P\left(H_{1}\right)}{P\left(H_{0}\right)}$ and $L_{x}\left(H_{0} H_{1}\right), \frac{p^{4}(1-p)}{\left(\frac{1}{2}\right)^{5}}$ in this case, is independent of the choice of experiment.

8 Generalized likelihood ratio tests

8.1 χ^{2} distribution

$X_{1}^{2}+\cdots+X_{n}^{2}$ has χ_{n}^{2} distribution when the X_{i} are i.i.d. $N(0,1)$ random variables. $\chi_{n}^{2} \equiv \Gamma\left(\frac{1}{2} n, \frac{1}{2}\right)$ [or possibly $\frac{1}{2 n}$, lol lecturer]. The p.d.f. is $f(t)=\frac{\left(\frac{1}{2}\right)^{\frac{n}{2}} t^{\frac{n}{2}-1} e^{-\frac{t}{2}}}{\Gamma\left(\frac{n}{2}\right)}$, for $t>0$. $\int_{0}^{\infty}\left(\frac{1}{2}\right)^{\frac{n}{2}} t^{\frac{n}{2}-1} e^{-\frac{t}{2}} d t=\Gamma\left(\frac{n}{2}\right)$, so this is correctly normalized. See the fact (from IA probability) that for $X_{1}, X_{2} \sim N(0,1)$, if we let $r^{2}=X_{1}^{2}+X_{2}^{2}$ then $r \sim \exp$.

8.2 Generalized likelihood ratio tests

$C=\left\{x: L_{x}\left(H_{0}, H_{1}\right)>k\right\}$. We generally test whether some $T(X)$ is $>$ some c; we need to find $P_{H_{0}}(T(X)>c)$. This is easy for e.g. the normal case with $T=\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$, but how do we find it for more complicated distributions?

Say we are testing $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$ with the $\Theta_{i} \subset \Theta=$ $\left\{\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)\right\}$. If we have H_{0} of the form $\theta_{i_{1}}=\alpha_{1}, \ldots, \theta_{i_{p}}=\alpha_{p}$ for fixed $\alpha_{1}, \ldots, \alpha_{p}$, or $A \theta=b$ for some fixed $p \times k$ matrix A and p-vector b, or $\theta_{i}=\theta_{i}\left(\phi_{i}, \ldots, \phi_{k-p}\right) \forall i$. In all of these cases there are $k-p$ degrees of freedom.

Theorem 8.1

Suppose $\Theta_{0} \subset \Theta_{1}$ and $\left|\Theta_{1}\right|-\left|\Theta_{0}\right|=p$ (where $\left|\Theta_{i}\right|$ denotes the number of degrees of freedom). Under certain conditions (which will not be stated for here, but hold for all usual cases) for X_{1}, \ldots, X_{n} i.i.d. [and possibly only in the limit as $n \rightarrow \infty$ - lol lecturer] $2 \log L_{X}\left(H_{0} H_{1}\right) \sim \chi_{p}^{2}$ if H_{0} is true, and $2 \log L_{X}$ is larger if H_{0} is not true. So we reject H_{0} if $2 \log L_{X}\left(H_{0} H_{1}\right)>c$ where $\alpha=P(\omega>c)$ for $\omega \sim \chi_{p}^{2}$. We shall not proove this here.

Lemma 8.2

For X_{1}, \ldots, X_{n} i.i.e. as $N\left(\mu, \sigma^{2}\right)$:

$$
\begin{aligned}
& \max _{\mu} f\left(x \mid \mu \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} e^{\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{2 \sigma^{2}}} \\
& \max _{\sigma^{2}} f\left(x \mid \mu \sigma^{2}\right)=\left(2 \pi \frac{\sum\left(X_{i}-\mu\right)^{2}}{n}\right)^{-\frac{n}{2}} e^{-\frac{n}{2}} \\
& \max _{\mu, \sigma^{2}} f\left(x \mid \mu \sigma^{2}\right)=\left(2 \pi \frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n}\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}
\end{aligned}
$$

8.3 Single sample, known variance

Test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu$ arbitrary (in practice, $\mu \neq \mu_{0}$) [I think, lol lecturer]. $L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\mu} f\left(x \mid \mu \sigma^{2}\right)}{f\left(x \mid \mu_{0} \sigma^{2}\right)}=e^{\frac{1}{2 \sigma^{2}} n(\bar{X}-\mu)^{2}} \therefore 2 \log L_{x}=\frac{1}{\sigma^{2}} n(\bar{X}-\mu)^{2}=$ z^{2} where $z=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim \chi_{1}^{2}$ if H_{0} is true. The one-tailed χ^{2} test we perform is equivalent to a two-tailed test for a normal distribution.

8.4 Single sample, test variance, known mean

Say $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ and test $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$. $L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\sigma^{2}} f\left(x \mid \mu \sigma^{2}\right)}{f\left(x \mid \mu \sigma_{0}^{2}\right)}$; we find $2 \log L_{X}\left[L_{X}\right.$ is short for $\left.L_{X}\left(H_{0} H_{1}\right)\right]$ is $n(t-1-\log t)$ where $t=\frac{\sum\left(X_{1}-\mu\right)^{2}}{n \sigma_{0}}$. If H_{0} is true then $\frac{\sum\left(X_{i}-\mu\right)^{2}}{n \sigma_{0}^{2}} \sim \chi_{n}^{2}$; this is unsurprising since each $\frac{X_{i}-\mu}{\sigma} \sim N(0,1)$ [I think; lecturer was on really bad form this lecture]

8.5 Two samples, test equality of means, known common variance

Say X_{1}, \ldots, X_{m} i.i.d as $N\left(\mu_{1}, \sigma^{2}\right), Y_{1}, \ldots, Y_{n}$ i.i.d. as $N\left(\mu_{2}, \sigma^{2}\right)$. We test H_{0} : $\mu_{1}=\mu_{2}$ against $H_{1}: \mu_{1} \neq \mu_{2} ; L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\mu_{1}, \mu_{2}} f\left(X \mid \mu_{1} \sigma^{2}\right) f\left(Y \mid \mu_{2} \sigma^{2}\right)}{\sup _{\mu} f\left(X \mid \mu \sigma^{2}\right) f\left(Y \mid \sum \sigma^{2}\right)}$, which we can find to be $e^{\frac{1}{2 \sigma^{2}} \frac{m n}{m+n}(\bar{X}-\bar{Y})^{2}} ; 2 \log L_{X} \sim \chi_{1}^{2}$ since $\bar{X} \sim N\left(\mu_{1}, \frac{\sigma^{2}}{m}\right), \bar{Y} \sim$ $N\left(\mu_{2}, \frac{\sigma^{2}}{n}\right)$ so if H_{0} true $\bar{X}-\bar{Y} \sim N\left(0, \sigma^{2}\left(\frac{1}{m}+\frac{1}{n}\right)\right)$ so $Z=(\bar{X}-\bar{Y}) \frac{1}{\sigma \sqrt{\frac{1}{m}+\frac{1}{n}}} \sim$ $N(0,1)$ and so $Z^{2}=\frac{(\bar{X}-\bar{Y})^{2}}{\sigma^{2}} \frac{m n}{m+n} \sim \chi_{1}^{2}$.

8.6 Goodness of fit test

Say we have k categories of possible results with respective probabilities p_{i}, and obtain a result of x_{i} in each category with $\sum x_{i}=n$ (of course $\sum p_{i}=1$). We test $H_{0}: p_{i}=p_{i}(\theta)$ some $\theta \in \Theta_{0}$ against $H_{1}: p_{i}$ unrestricted, e.g. $H_{0}: p_{i}=$ $\binom{k}{i} \theta^{i}(1-\theta)^{k-i} . P\left(X_{1} \ldots X_{k} \mid p_{1} \ldots p_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}, \operatorname{so~}_{\sup _{H_{1}}} \log f(x)=$ some constant $+\sup \left\{\sum x_{i} \log p_{i} \mid 0 \leq p_{i} \leq 1, \sum p_{i}=1\right\}$. Using Lagrangian multipliers as per the Optimisation course we find $\hat{p}_{i}=\frac{X_{i}}{n} . \sup _{H_{0}} \log f(x)=$ constant $+\sup _{\theta}\left\{\sum x_{i} \log p_{i}(\theta)\right\}$; we reject H_{0} if $2 \log L_{x}\left(H_{0}, H_{1}\right)$ is large. H_{0} : $p_{i}=p_{i}(\theta), \theta \in \Theta_{0}$ has $\left|\Theta_{0}\right|=p$ degrees of freedom, while $H_{1}: p_{i}$ arbitrary has $k-1$ degrees of freedom (since we still have the constraint that $\sum_{1}^{k} p_{i}=1$), so we test against $\chi_{k=1-p}^{2}$, the number of degrees of freedom being the number of boxes - the number of paramaters estimated (for H_{0}) - 1 .
[Note: I have sometimes used $l_{X}\left(H_{0} H_{1}\right)$ above for the likelihood ratio; in lectures $L_{X}\left(H_{0} H_{1}\right)$ was always used]

9 Chi-squared tests of categorical data

9.1 Pearson's chi-squared test

We saw for $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$ with $\Theta_{0} \subset \Theta_{1}, 2 \log L_{X}\left(H_{0} H_{1}\right) \sim$ $\chi_{\left|\Theta_{1}\right|-\left|\Theta_{0}\right|}^{2}$ [if H_{0} true]; if there are k possible outcomes with probability p_{i} of each and we obtain x_{i} outcomes of type i from $\sum x_{i}=n$ trials, and test $H_{1}: p_{1}, \ldots, p_{k}$ anything, $\sum p_{i}=1,0 \leq p_{i} \leq 1$ against $H_{0}: p_{i}=p_{i}(\theta)$ e.g. $p_{i}=$ $\binom{n}{i} \theta^{i}(1-\theta)^{n-i}$ or $\frac{\theta^{i} e^{-\theta}}{i!}$: For $\sup _{H_{1}} P\left(X_{1} \ldots X_{K} \mid p_{1} \ldots p_{k}\right)=\sup _{H_{1}} \frac{n!}{X_{1}!\ldots X_{n}!}$ we use Lagrangian multipliers and maximise $L=\log P(\ldots)+\lambda\left(1-\sum p_{i}\right) ; \frac{\partial L}{\partial p_{i}}=$ $\frac{x_{i}}{p_{i}}-\lambda=0 \therefore \hat{p}_{i} \propto x_{i} \therefore \hat{p}_{i}=\frac{x_{i}}{n} . \sup _{H_{0}} p\left(X_{1} \ldots X_{n} \mid p_{1}(\theta) \ldots p_{n}(\theta)\right)$ is really a sup over θ. Then $2 \log L_{X}\left(H_{0} H_{1}\right)=2 \sup _{p_{1} \ldots p_{k}} \log P\left(X \mid H_{1}\right)-2 \sup _{\theta} \log P(X \mid$ $\left.H_{0}\right)=2 \sum x_{i} \log \left(\frac{\frac{x_{i}}{n}}{p_{i}(\hat{\theta})}\right.$. Pearson wanted to simplify this; let $o_{i}=x_{i}$ the observed number in the i th cell, $e_{i}=n p_{1}(\hat{\theta})$, the expected number in the i th cell if H_{0} is true, and $\delta_{i}=o_{i}-e_{i}$. Then the above becomes $2 \sum o_{i} \log \frac{o_{i}}{e_{i}}=2 \sum_{i}\left(e_{i}+\right.$ $\left.\delta_{i}\right) \log \left(1+\frac{\delta_{i}}{e_{i}}\right)=2 \sum_{i}\left(e_{i}+\delta_{i}\right)\left(\frac{\delta_{i}}{e_{i}}-\frac{\delta_{i}^{2}}{2 e_{i}^{2}}+\ldots\right)\left(\delta_{i}\right.$ will be small if H_{0} is true) which is $2\left(\sum \delta_{i}+\sum \frac{\delta_{i}^{2}}{e_{i}}-\sum \frac{\delta_{i}^{2}}{2 e_{i}}+\ldots\right)=2 \sum \frac{\delta_{i}^{2}}{2 e_{i}}$ since $\sum \delta_{i}=\sum o_{i}-\sum e_{i}=n-n=0$, and this is $\sum_{i=1}^{k} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}$, Pearson's chi-squared statistic. This is $\sim \chi_{k-1-p}^{2}$ where $p=\left|\Theta_{0}\right|$ or equivalently the number of paramaters we estimate to fit the null hypothesis to the data.

Observe that $\sum \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}=\sum \frac{o_{i}^{2}}{e_{i}}-2 \sum o_{i}+\sum e_{i}=\sum \frac{o_{i}^{2}}{e_{i}}-n$ (since $\sum e_{i}=$ $n=\sum o_{i}$).

$9.2 \chi^{2}$ test of homogeneity

Say we have a table of results, e.g. columns of whether a patient survived against rows of whether they were male or female, and we want to test $H_{0}: p_{i j}=p_{j}$, i.e. the distribution of each row is the same, agaists H_{1} that the $p_{i j}$ (the probability of getting result j for a result in the i th row) are arbitrary (such that the $\sum_{j} p_{i j}=1$ for each i); the details are in the printed notes for this course.

For $H_{0}, \hat{p}_{j}=\frac{x_{\cdot j}}{x_{.}}$where $x_{\cdot j}=\sum_{i} x_{i j}$ and similarly, and for $H_{1}, \hat{p}_{i j}=\frac{x_{i j}}{x_{i} .}$, so $2 \log L_{x}\left(H_{0} H_{1}\right)=2 \sum_{i} \sum_{j} x_{i j} \log \left(\frac{x_{i j} x_{. .}}{x_{\cdot j} x_{i \cdot}}\right) ; o_{i j}=x_{i j}, e_{i j}=x_{i \cdot} \hat{p}_{j}=\frac{x_{i} \cdot x_{. j}}{x . .}$ so this is $2 \sum_{i} \sum_{j} o_{i j} \log \left(\frac{o_{i j}}{e_{i j}}\right)$, which as before is approximately $\sum_{i j} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}$. This approximation is in general valid for $e_{i j} \geq 5 \forall i, j$; this is useful for e.g. knowing where to "truncate" the cells for a poisson distribution (since we must have a cell $\geq n$ for some n if we want to have a finite number of cells). $H_{0}: p_{i j}=p_{j}$ has $n-1$ degrees of freedom where n is the number of columns, and H_{1} has $m(n-1)$ degrees of freedom where m is the number of rows, so the number of degrees of freedom to use in the test is $m(n-1)-(n-1)=(m-1)(n-1)$.

$9.3 \chi^{2}$ test of row column independence, contingency tables

Say we have a similar table of results, but this time want to test $H_{0}: p_{i j}=p_{i} q_{j}$ i.e. rows and columns are independent, against H_{1} that the $p_{i j}$ are arbitrary. $\left|\Theta_{1}\right|=m n-1[\mathrm{ORLY}]$ and $\left|\Theta_{0}\right|=m-1+n-1$ so the number of degrees
of freedom for the test is $m n-1-m+1-n+1=(m-1)(n-1) ; \hat{p}_{i}=$ $\frac{x_{i .}}{x_{. .}}, \hat{q}_{j}=\frac{x_{. j}}{x_{. .}}, \hat{p}_{i j}=\frac{x_{i j}}{x_{. .}}, e_{i} j=\hat{p}_{i} \hat{q}_{j} x . . ;$ we find ourselves considering $\log \left(\frac{\hat{p}_{i j}}{\hat{p}_{i} \hat{q}_{j}}\right)=$ $\log \left(\frac{x_{i j} x_{. .}}{x_{j} x_{i} .}\right)=\log \frac{o_{i j}}{e_{i j}}$ and we have the exact same analysis as in 9.2 ; we test $T=\sum \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}$ against a $\chi_{(m-1)(n-1)}^{2}$ distribution, and the $e_{i j}$ are exactly the same for both analyses; the above $x_{i} \cdot \hat{p}_{j}=\frac{x_{i} \cdot x_{j}}{x . .}=x_{. .} \hat{p}_{i} \hat{p}_{j}$ in this test. This is interesting, since the origins of the two tests are philisophically quite different.

10 Distributions of the sample mean and variance

10.1 Simpson's paradox

Lulz. Like the one you won 10 for explaining.

10.2 Transformations of variables

For $X_{1} \ldots X_{n}$ i.i.d. as $N\left(\mu, \sigma^{2}\right)$, let $\sum\left(X_{i}-\bar{X}\right)^{2}=S_{X X}$. Say $X_{i}=x_{i}\left(Y_{1}, \ldots, Y_{n}\right) \forall i$, then $f_{Y}\left(y_{1}, \ldots, y_{n}\right)=f_{X}\left(x_{1}(y), \ldots, x_{n}(y)\right)\left|\begin{array}{ccc}\frac{\partial x_{1}}{\partial y_{1}} & \ldots & \frac{\partial x_{1}}{\partial y_{n}} \\ \ldots & & \ldots \\ \frac{\partial x_{n}}{\partial y_{1}} & \ldots & \frac{\partial x_{n}}{\partial y_{n}}\end{array}\right|$, where the matrix is the Jacobian; compare this with a change of variables in integration when e.g. $d x d y=r d r d \theta$.

Example 10.2

Suppose $X_{1} \sim \Gamma\left(n_{1}, \lambda\right), X_{2} \sim \Gamma\left(n_{2} \lambda\right)$ independent and let $Y_{1}=\frac{X_{1}}{X_{1}+X_{2}}, Y_{2}=$ $X_{1}+X_{2} . f_{X}\left(x_{1} x_{2}\right)=\frac{\lambda^{n_{1}} e^{-\lambda x_{1}} x_{1}^{n_{1}-1}}{\left(n_{1}-1\right)!} \frac{\lambda^{n_{2}} e^{-\lambda x_{2}} x_{2}^{n_{2}-1}}{\left(n_{2}-1\right)!} ; x_{1}=y_{1} y_{2}, x_{2}=y_{2}-y_{1} y_{2}$ so $J\left(y_{1} y_{2}\right)=\left|\begin{array}{cc}y_{2} & y_{1} \\ -y_{2} & 1-y_{1}\end{array}\right|=y_{2}$ so $f_{Y}\left(y_{1} y_{2}=\frac{\lambda^{n_{1}+n_{2}}\left(y_{1} y_{2}\right)^{n_{1}-1}\left(y_{2}-y_{1} y_{2}\right)^{n_{2}-1} e^{-\lambda y_{2}}}{\left(n_{1}-1\right)!\left(n_{2}-1\right)!} \times\right.$ $y_{2}=\frac{\left(n_{1}+n_{2}-1\right)!}{\left(n_{1}-1\right)!\left(n_{2}-1\right)!} y_{1}^{n_{1}-1}\left(1-y_{1}\right)^{n_{2}-1} \times \frac{\gamma^{n_{1}+n_{2}} e^{-\lambda \gamma_{2}} y_{2}^{n_{1}+n_{2}-1}}{\left(n_{1}+n_{2}-1\right)!}$ so Y_{1}, Y_{2} are independent and distributed as $\beta\left(n_{1}, n_{2}\right), \Gamma\left(n_{1}+n_{2}, \lambda\right)$ respectively.

10.3 Orthogonal transformations of normal random variables [section 10.2 in lectures]

Lemma 10.3

Let X_{1}, \ldots, X_{n} be independent random variables, distributed as $N\left(\mu_{i}, \sigma^{2}\right)$ respectively, $A=\left(a_{i j}\right)$ an orthogonal matrix and $Y=A X$; this is a vector of independently distributed components with each $Y_{i} \sim N\left((A \mu)_{i}, \sigma^{2}\right): f_{X}\left(x_{1}, \ldots, x_{n} \mid\right.$ $\left.\mu \sigma^{2}\right)=\prod f\left(x_{i} \mid \mu_{i} \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}}} e^{-\frac{1}{2 \sigma^{2}}(X-\mu)^{T}(X-\mu)}=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(X_{i}-\mu\right)^{2}}$. Now $Y=A X \therefore X=A^{T} Y \therefore \frac{\partial X_{i}}{\partial Y_{j}}=a_{j i} \therefore J\left(y_{1}, \ldots, y_{n}\right)=\left|\operatorname{det} A^{T}\right|=1$, so $f_{Y}\left(y_{1} \ldots y_{n} \mid \mu \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{\pi}{2}}} e^{-\frac{\left(A^{T} y-\mu\right)^{T}\left(A^{T} y-\mu\right)}{2 \sigma^{2}}} \times 1=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{\pi}{2}}} e^{-\frac{\left(A^{T} y-A^{T} A \mu\right)^{T}\left(A^{T} y-A^{T} A \mu\right)}{2 \sigma^{2}}}=$ $\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{\pi}{2}}} e^{-\frac{(y-A \mu)^{T}(y-A \mu)}{2 \sigma^{2}}} \Rightarrow Y_{1}, \ldots, Y_{n} \sim N\left(A \mu, \sigma^{2} I\right)$ a multivariate normal dis-
tribution, or equivalently the $Y_{i} \sim N\left((A \mu)_{i}, \sigma^{2}\right)$ independently; we can also proove this result via moment generating functions.

10.4 The distributions of $\bar{X}, S_{X X}$

Lemma 10.4

Let X_{1}, \ldots, X_{n} be i.i.d. as $N\left(\mu \sigma^{2}\right)$ and $\bar{X}=\frac{1}{n} \sum_{1}^{n} X_{i}, S_{X X}=\sum\left(X_{i}-\bar{X}\right)^{2}$. Then:
i) $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right), n(\bar{X}-\mu)^{2} \sim \sigma^{2} \chi_{1}^{2}$
ii) $X_{i}-\mu \sim N\left(0, \sigma^{2}\right), \sum\left(X_{i}-\mu\right)^{2} \sim \sigma^{2} \chi_{n}^{2}$
iii) $\left.\sum\left(X_{i}-\mu\right)^{2}=S_{X X}+n \bar{X}-\mu\right)^{2}$
iv) $\frac{S_{X X}}{n-1}$ is an unbiased estimator for σ^{2}
v) $\bar{X}, S_{X X}$ are independent random variables
vi) $S_{X X} \sim \sigma^{2} \chi_{n-1}^{2}$
i) and ii) are immediate, iii) comes from consideration of $\sum\left(X_{i}-\bar{X}+\bar{X}-\mu\right)^{2}$ (the cross product terms of which are 0 since $\sum X_{i}=n \bar{X}$); iv) we have already prooven.

For v), let $Y=A(X-\mu)=\left(Y_{1}=\sqrt{n}(\bar{X}-\mu), Y_{2}, \ldots, Y_{n}\right)$; we can choose $A=\left(\begin{array}{cccc}\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \ldots & \frac{1}{\sqrt{n}} \\ & \ldots & \ldots & \end{array}\right)$ to be orthogonal. We know Y_{1}, \ldots, Y_{n} are independent normal random variables, so $Y_{1}=\sqrt{n}(\bar{X}-\mu) \sim N\left(0, \sigma^{2}\right)$ and is independent of $Y_{2}, \ldots, Y_{n} . \quad \sum_{2}^{n} Y_{i}^{2}=\sum_{1}^{n}\left(X_{i}-\mu\right)^{2}-Y_{1}^{2}$ since $Y^{T} Y=$ $(X-\mu)^{T} A^{T} A(X-\mu)=(X-\mu)^{T}(X-\mu)$ so $\sum_{1}^{n} Y_{i}^{2}=\sum_{1}^{n}\left(X_{i}-\mu\right)^{2}$ and so since $y_{1}^{2}=n(\bar{X}-\mu)^{2}$ this is $S_{X X}$ so $S_{X X}, Y_{1}$ are independent, i.e. $S_{X X}, \bar{X}$ are independent. $Y_{i} \sim N\left(0, \sigma^{2}\right)$ for $i=2, \ldots, n$ and these are independent so $Y_{2}^{2}+\cdots+Y_{n}^{2} \sim \sigma^{2} \chi_{n-1}^{2}$ (and we have vi)).

10.5 Student's t-distribution

To test $H_{0}: \mu=\mu_{0}$ for X_{1}, \ldots, X_{n} i.i.d. as $N\left(\mu, \sigma^{2}\right)$ for σ^{2} known we would reject H_{0} if $\left|\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma}\right|$ is large. To perform this test for unknown σ^{2} we use $\hat{\sigma}^{2}=\frac{S_{X X}}{n-1}$; we discover $\frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{\frac{S_{X X}}{n-1}}}$ has the t_{n-1} distribution independent of the true value of σ^{2}; informally $t_{n-1} \equiv \frac{N(0,1)}{\sqrt{\frac{\chi_{n-1}^{2}}{n-1}}}$. We could calculate the distribution function but it is messy; it "looks like a spread out normal", and $t_{n} \rightarrow N(0,1)$ as $n \rightarrow \infty$. For $X \sim N(0,1)$ and $W \sim t_{n-1}, P(X>t)<P(w>t) \forall t$; the RHS is decreasing in increasing n [???].

11 The t-test

Take X_{1}, \ldots, X_{n} i.i.d. as $N\left(\mu \sigma^{2}\right)$ unless otherwise stated.

11.1 Confidence interval for mean, unknown variance

$\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ or equivalently $\frac{(\bar{X}-\mu) \sqrt{n}}{\sigma^{2}} \sim N(0,1)$; we saw above this is independent of $S_{X X}=\sum_{n}\left(X_{i}-\bar{X}\right)^{2} \sim \sigma^{2} \chi_{n-1}^{2}$ or equivalently $\frac{S_{X X}}{\sigma^{2}} \sim \chi_{n-1}^{2} . \sigma$ is a "nuisance paramater"; we are not interested in its value but nevertheless have to consider it in our test.

We saw $\frac{(\bar{X}-\mu) \sqrt{n}}{\sqrt{\frac{S_{X X}}{n-1}}} \sim t_{n-1}$, so a CI of size $(1-a) 100 \%$ is is given by $1-\alpha=$ $P\left(-t_{\frac{\alpha}{2}}^{(n-1)} \leq \frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{\frac{S_{X X}}{n-1}}} \leq t_{\frac{\alpha}{2}}^{(n-1)}\right.$) [Yes, notation did just change at random with no explanation], i.e. $P\left(\bar{X}-t_{\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{n}}\right)$ where $\hat{\sigma}^{2}=\frac{S_{X X}}{n-1}$; compare this with the $\bar{X} \pm N_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ we would use when working with known σ.

11.2 Single sample, test mean, unknown variance

Test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$. Then $L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\mu \sigma^{2}} f\left(x \mid \mu \sigma^{2}\right)}{\sup _{\sigma^{2}} f\left(x \mid \mu_{0} \sigma^{2}\right.}=$ $\frac{\left(2 \pi \sum \frac{\left(X_{i}-\mu_{0}\right)^{2}}{n}\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}}{\left(2 \pi \sum \frac{\left(X_{i}-\bar{X}\right)^{2}}{n}\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}}=\left(\frac{\sum\left(X_{i}-\bar{X}\right)^{2}+n\left(\bar{X}-\mu_{0}\right)^{2}}{\sum\left(X_{i}-X\right)^{2}}\right)^{\frac{n}{2}}$ since $X_{i}-\mu_{0}=X_{i}-\bar{X}+$ $\bar{X}-\mu_{0}$; this is $\left(1+\frac{n\left(\bar{X}-\mu_{0}\right)^{2}}{\sum\left(X_{i}-X\right)^{2}}\right)^{\frac{n}{2}} ; \frac{n\left(\bar{X}-\mu_{0}\right)^{2}}{\sum\left(X_{i}-X\right)^{2}}=T^{2}(n+1)$ where $T=\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sqrt{\frac{S_{X X}}{n-1}}}$, and this is large when T is large. This makes sense, since if H_{0} is true then $T \sim t_{n-1}$.

11.3 Two samples, test equality of means, unknown common variance

$X_{1} \ldots X_{m} \sim N\left(\mu_{1} \sigma^{2}\right), Y_{1} \ldots Y_{n} \sim N\left(\mu_{2} \sigma^{2}\right)$, test $H_{0}: \mu_{1}=\mu_{2}$ against $H_{1}: \mu_{1} \neq$ $\mu_{2} . L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\mu_{1} \mu_{2} \sigma^{2}} f\left(x, \mid \mu_{1} \mu_{2} \sigma^{2}\right)}{\sup _{\mu \sigma^{2}} f\left(x, y \mid \mu \mu \sigma^{2}\right)}$; we find that we reject H_{0} if $\frac{(\bar{X}-\bar{Y})^{2}}{S_{X X}+S_{Y Y}}$ is large. We can find this more "intuitively" by $\bar{X} \sim N\left(\mu_{1}, \frac{\sigma^{2}}{m}\right), \bar{Y} \sim N\left(\mu_{2}, \frac{\sigma^{2}}{n}\right)$ so $\bar{X}-\bar{Y} \sim N\left(\mu_{1}-\mu_{2}, \sigma^{2}\left(\frac{1}{m}+\frac{1}{n}\right)\right)$; if H_{0} is true then $\frac{\bar{X}-\bar{Y}}{\sigma \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim N(0,1)$.
 reject if $|T|>t_{\frac{\alpha}{2}}^{(n+m-2)}$.

11.4 Single sample, test variance, mean unknown

We test $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$; this time μ is our nuisance paramater. $L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\mu \sigma^{2}} f\left(x \mid \mu \sigma^{2}\right)}{\sup _{\mu} f\left(x \mid \mu \sigma_{0}^{2}\right)}$ which we eventually find is large when $T=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n \sigma_{0}^{2}}$ differs substantially from 1. We know $S_{X X} \sim \sigma_{0}^{2} \chi_{n-1}^{2}$ if H_{0} is true; we want $P\left(\left.\frac{S_{X X}}{\sigma_{0}^{2}}<a_{1} \right\rvert\, H_{0}\right)+P\left(\left.\frac{S_{X X}}{\sigma_{0}^{2}}>a_{2} \right\rvert\, H_{0}\right)=\alpha$.

12 The F-test and analysis of variance

12.1 F-distribution

For $X \sim \chi_{m}^{2}$ we can see this as $X=\omega_{1}^{2}+\cdots+\omega_{m}^{2}$ for ω_{i} i.i.d. as $N(0,1)$. $E X=m, \operatorname{Var}(X)$ we find to be $2 m$. If $Y \sim \chi_{n}^{2}$ independently of X we say $Z=\frac{\frac{X}{m}}{\frac{Y}{n}} \sim F_{m, n}$; we clearly have $\frac{1}{Z} \sim F_{n, m}$.

12.2 Two samples, compare variance

Say X_{1}, \ldots, X_{n} i.i.d. as $N\left(\mu_{1}, \sigma_{1}^{2}\right), Y_{1}, \ldots, Y_{n}$ independently i.i.d. as $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, and we want to test $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ against $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$. As always we use a LRT; $L_{X}\left(H_{0} H_{1}\right)=\frac{\sup _{\sigma_{1}, \sigma_{2}, \mu_{1}, \mu_{2}} f\left(x, y \mid \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right.}{\sup _{\sigma_{,}, \mu_{1}, \mu_{2}} f\left(x, y \mid \mu_{1}, \sigma^{2}, \mu_{2}, \sigma^{2}\right.}$; we find we want to consider $\frac{S_{X X}}{S_{Y Y}} \cdot \frac{S_{X X}}{m-1}=\hat{\sigma}_{1}$ and similarly for $Y ; S_{X X}=\sum_{i=1}^{m}\left(X_{i}-\bar{X}\right)^{2} \sim \sigma_{1}^{2} \chi_{m-1}^{2}$, so $T=\frac{\frac{S_{X X}}{m-1}}{\frac{S_{Y Y}}{n-1}} \sim \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} F_{m-1, n-1}$; if H_{0} is true this is $\sim F_{m-1, n-1}$ so we should reject H_{0} if T lies in the lower or upper tail of such a distribution.

12.3 Non-central χ^{2}

For $X_{i} \sim N\left(\mu_{i}, \sigma^{2}\right), X_{1}^{2}+\cdots+X_{n}^{2} \sim \chi_{n}^{2}(\lambda)$, a non-central χ_{n}^{2} distribution, where $\lambda=\mu_{1}^{2}+\cdots+\mu_{n}^{2}$.

12.4 One-way analysis of variance (ANOVA)

This is used to test $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$ against H_{1} that the μ_{i} are general, where we have n_{i} samples from each of k different populations; $X_{i j}=\mu_{i}+\epsilon_{i j}$ for $j=1, \ldots, n_{i}, i=1, \ldots, k$. Assume the $\epsilon_{i j}$ are IID as $N\left(0, \sigma^{2}\right)$ for σ^{2} unknown. Then set $\bar{X} . .=\frac{\sum_{i j} X_{i j}}{\sum_{i} n_{i}}=\hat{\mu}$ the "overall mean", $\bar{X}_{i .}=\frac{\sum_{j} X_{i j}}{n_{i}}=\hat{\mu}_{i}$ the "sample
 which we find is $\left(\frac{S_{0}}{S_{1}}\right)^{\frac{N}{2}}$ where $S_{0}=\sum_{i j}\left(x_{i j}-\bar{x}_{. .}\right)^{2}, S_{1}=\sum_{i j}\left(X_{i j}-\bar{X}_{i .}\right)^{2}$; we have clearly $S_{0}>S_{1}$, and $S_{0}=\sum\left(x_{i j}-\bar{x}_{i} .+\bar{x}_{i} .-\bar{x} . .\right)^{2}=\sum\left(x_{i j}-\bar{x}_{i .}\right)^{2}+$ $\sum_{i} n_{i}\left(\bar{x}_{i} .-\bar{x}_{. .}\right)^{2}$ (the cross terms are zero by summing over j before i); this is $S_{1}+S_{2}$ where $S_{2}=\sum_{i} n_{i}\left(\bar{x}_{i}-\bar{x}_{. .}\right)^{2}=\sum_{i} n_{i}\left(\hat{\mu}_{i}-\hat{\mu}\right)^{2}$, so $\frac{S_{0}}{S_{1}}$ is large when $\frac{S_{2}}{S_{1}}$ is large; if H_{0} is true we can find $S_{2} \sim \sigma^{2} \chi_{k-1}^{2}, S_{1} \sim \sigma^{2} \chi_{N-k}^{2}$ independently; the distribution of S_{1} coming from the fact that $\sum_{j}\left(X_{i j}-\bar{X}_{i} .\right)^{2} \sim \sigma^{2} \chi_{n_{i}-1}^{2}$ independent of the μ_{i}. So we reject H_{0} if $T=\frac{\frac{S_{2}}{k-1}}{\frac{S_{1}}{N-k}}$ is large compared to the $F_{k-1, N-k}$ distribution which it takes if H_{0} is true.

13 Linear regression

[This lecture was missed]

14 Hypothesis tests in regression models

Say we have data Y_{1}, \ldots, Y_{n} and assume $Y_{i}=\alpha+\beta w_{i}+\epsilon_{i}$ for unknown paramaters α, β with the ϵ_{i} i.i.d. as $N\left(0, \sigma^{2}\right)$ and the w_{i} known with $\sum w_{i}=0$. We saw in the previous lecture than the MLEs are $\hat{\alpha}=\bar{Y}, \hat{\beta}=\frac{\sum Y_{i} w_{i}}{\sum w_{i}^{2}}$; we can write $\vec{Y}=\left(\begin{array}{c}Y_{1} \\ \ldots \\ Y_{n}\end{array}\right) \sim N\left(\alpha \overrightarrow{1}+\beta \vec{w}, \sigma^{2} I\right)$ a "multivariate normal" distribution.

14.1 Theorem

i) $\hat{\alpha}=\bar{Y} \sim N\left(\alpha, \frac{\sigma^{2}}{n}\right)$
ii) $\hat{\beta}=\frac{S_{w Y}}{S_{w w}} \sim N\left(\beta, \frac{\sigma^{2}}{\vec{w}^{T} \vec{w}}\right)$ independent of $\hat{\alpha}$
iii) We say $S=\sum\left(Y_{i}-\alpha-\beta w_{i}\right)^{2}$ is minimised [by the above $\left.\hat{\alpha}, \hat{\beta}\right]$ by R, the residual sum of squares, which is $\sim \sigma^{2} \chi_{n-2}^{2}$ independent of $\hat{\alpha}, \hat{\beta}$. We can find $R=\sum Y_{i}^{2}-n \hat{Y}^{2}-\left(\vec{w}^{T} \vec{w}\right) \hat{\beta}^{2}$.
iv) Therefore, $\hat{\sigma}^{2}=\frac{R}{n-2}$

Recall the proof that $S_{X X}, \bar{X}$ are independent. Let $A=\left(\begin{array}{cccc}\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \ldots & \frac{1}{\sqrt{n}} \\ \sqrt{\vec{w}^{T} \vec{w}} w_{1} & \sqrt{\vec{w}^{T} \vec{w}} w_{2} & \ldots & \sqrt{\vec{w}^{T} \vec{w}} w_{n} \\ \ldots & \ldots & \ldots & \ldots\end{array}\right)$.
We can choose the remainder of the matrix such that $A A^{T}=I$ since we have that the inner product of the first row with itself is 1 , likewise the second row, and the inner product of the first and second rows is 0 since $\sum w_{i}=0$. So since $\vec{Y} \sim N\left(\alpha \overrightarrow{1}+\beta \vec{w}, \sigma^{2} I\right), \vec{Z}=A \vec{Y} \sim N\left(A(\alpha \overrightarrow{1}+\beta \vec{w}), \sigma^{2} I\right)$ i.e. the components of Z are independent normal random variables with variance σ^{2}. We have $Z_{1}=\sqrt{n} \hat{\alpha}=\sqrt{n} \bar{Y} \sim N\left(\sqrt{n} \alpha, \sigma^{2}\right)$ so i) holds, $Z_{2}=\sqrt{\vec{w}^{T}} \vec{w} \hat{\beta} \sim N\left(\sqrt{\vec{w}^{T} \vec{w}} \beta, \sigma^{2}\right)$ so ii) holds. Z_{3}, \ldots, Z_{n} are all $N\left(0, \sigma^{2}\right)$ independent - they have mean 0 since these are vectors orthogonal to $\overrightarrow{1}, \vec{w}$ so the relevant columns of $A(\alpha \overrightarrow{1}+\beta \vec{w})=0$. So $\sum_{1}^{n} Z_{i}^{2}=n \bar{Y}^{2}+\left(\vec{w}^{T} \vec{w}\right) \hat{\beta}^{2}+\sum_{3}^{n} Z_{i}^{2}=\sum Y_{i}^{2}$ since $Z^{T} Z=Y^{T} Y . \sum Y_{i}^{2}=$ $\|Y--\hat{\alpha} \overrightarrow{1}-\hat{\beta} \vec{w}+\hat{\alpha} \overrightarrow{1}+\hat{\beta} \vec{w}\|^{2}$ and the cross product terms can be found to be 0 so this $=\|Y-\hat{\alpha} \overrightarrow{1}-\hat{\beta} \vec{w}\|^{2}+n \hat{\alpha}^{2}+\hat{\beta}^{2}\|w\|^{2}=R+n \bar{Y}^{2}+\left(\vec{w}^{T} \vec{w}\right) \hat{\beta}^{2}$ so $R+\sum_{3}^{n} Z_{i}^{2} \sim \chi_{n-2}^{2}$ and we have iii) (and hence iv)).

14.2 Tests and CIs

To test $H_{0}: \beta=\beta_{0}$ against $H_{1}: \beta \neq \beta_{0}$: if H_{0} is true $\hat{\beta} \sim N\left(\beta_{0}, \frac{\sigma^{2}}{\vec{w}^{T} \vec{w}}\right.$ and so $\frac{\left(\hat{\beta}-\beta_{0}\right) \sqrt{w^{T} w}}{\sigma} \sim N(0,1)$, and $\frac{R}{(n-2) \sigma^{2}} \sim \frac{\chi_{n-2}^{2}}{n-2}$ so $T=\frac{\left(\hat{\beta}-\beta_{0}\right) \sqrt{w^{T} w}}{\sqrt{\frac{R}{n-2}}} \sim t_{n-2}$ and we reject H_{0} if $|T|>t_{\frac{\alpha}{2}}^{(n-2)}$.

To find a $(1-\alpha) 100 \%$ confidence interval for β we have $\frac{(\hat{\beta}-\beta) \sqrt{w^{T} w}}{\sqrt{\frac{R}{n-2}}} \sim t_{n-2}$ so $P\left(\hat{\beta}-t_{\frac{\alpha}{2}}^{(n-2)} \frac{\hat{\sigma}}{\sqrt{w^{T} w}} \leq \beta \leq \hat{\beta}+t_{\frac{\alpha}{2}}^{(n-2)} \frac{\hat{\sigma}}{\sqrt{w^{T} w}}\right)=1-\alpha$ where $\hat{\theta}=\sqrt{\frac{R}{n-2}}$.

A confidence interval for the value of Y that would be observed at a given $w_{0}: Y=\alpha+\beta w_{0}+\epsilon_{0} \sim N\left(\alpha+\beta w_{0}, \sigma^{2}\right)$. Let $\hat{Y}=\hat{\alpha}+\hat{\beta} w_{0}$. Then $Y-\hat{Y} \sim$
$N\left(0, \sigma^{2}\left(1+\frac{1}{n}+\frac{w_{0}^{2}}{w^{T} w}\right)\right.$) (since $\operatorname{Var}(\hat{\alpha})=\frac{\sigma^{2}}{n}, \operatorname{Var}\left(w_{0} \hat{\beta}\right)=\frac{w_{0}^{2} \sigma^{2}}{w^{T} w}$; note this is a "predictive confidence interval"; it is a CI for the value that would be measured at w_{0} rather than the "true" value $\alpha+\beta w_{0}$ (to get one for that, we would remove the $\sigma^{2} \times 1$ term from the variance)). So our $(1-\alpha) 100 \%$ confidence interval for Y is $\left[\hat{Y}-t_{\frac{\alpha}{2}}^{(n-2)} \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{w_{0}^{2}}{w^{T} w}}, Y+t_{\frac{\alpha}{2}}^{(n-2)} \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{w_{0}^{2}}{w^{T} w}}\right]$.

14.3 The correlation coefficient

The sample correlation coefficient of $\left(X_{1}, \ldots, X_{n}\right),\left(Y_{1}, \ldots, Y_{n}\right)$ is defined to be $R=\frac{S_{X Y}}{\sqrt{S_{X X} S_{Y Y}}}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}}$ (this is the commonly published correlation coefficient; 0 for no correlation, 1 for a perfect positive correlation, -1 for a perfect negative correlation). To test for a correlation between the two sets of data we let $w_{i}=X_{i}-\bar{X}$ and test $H_{0}: \beta=0$ against $H_{1}: \beta \neq 0$. We have $Y_{i}=\alpha+\epsilon_{i}$ and $T=\frac{\hat{\beta} \sqrt{S_{X X}}}{\sqrt{\frac{R}{n-2}}}$ which we find $=\frac{\frac{S_{X Y}}{S_{X X}} \sqrt{S_{X X} \sqrt{n-2}}}{\sqrt{S_{Y Y}^{2}-\frac{S_{X Y}^{2}}{S_{X X}}}}=\frac{\sqrt{n-2} r}{\sqrt{1-r^{2}}}$. So as we would expect we reject H_{0} when r is far away from 0 , i.e. close to ± 1 (since we always have $|r| \leq 1$.

$$
S_{Y Y}=\sum\left(Y_{i}-\bar{Y}\right)^{2} ; \hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i} \text { has } \sum\left(\hat{Y}_{i}-\hat{Y}\right)^{2}=\frac{S_{X Y}^{2}}{S_{X X}} \frac{\sum\left(\hat{Y}_{i}-\hat{Y}\right)^{2}}{\sum\left(Y_{i}-\hat{Y}\right)^{2}}=r^{2}
$$

14.4 Testing linearity

Say we have data $Y_{i j}=\alpha+\beta X_{i}+\epsilon_{i j}, j=1, \ldots, m, i=1, \ldots, n$, i.e. we have made m observations at each distinct point, for n different points. Let $\bar{Y}_{i}=\frac{1}{n} \sum_{j} Y_{i j}$, then $\bar{Y}_{i}=a+b X_{i}+\eta_{i}=\alpha+\beta\left(X_{i}-\bar{X}\right)+\eta_{i}$ with $\eta_{i} \sim N\left(0, \frac{\sigma^{2}}{m}\right)$ independent of $\sum\left(Y_{i j}-\bar{Y}_{i}\right)^{2} \sim \sigma^{2} \chi_{m-1}^{2}[\sim$ not in notes but must be there for sanity]. We could do a linear regression analysis of \bar{Y}_{i} on X_{i}; we get the residual sum of squares $\sum\left(\bar{Y}_{i}-\hat{\alpha}-\hat{\beta}\left(X_{i}-\bar{X}\right)\right)^{2} \sim \frac{\sigma^{2}}{m} \chi_{n-2}^{2} . \quad F=\frac{\frac{m \sum\left(\bar{Y}_{i}-\hat{\alpha}-\hat{\beta}\left(X_{i}-\hat{\alpha}\right)^{2}\right)}{n-2}}{\frac{\sum_{i j}\left(Y_{i j}-Y_{i}\right)^{2}}{n(m-1)}}$, the ratio of variation explained by the linear regression to total variation, is $\sim F_{n-2, n(m-1)}$ and $\sum\left(Y_{i j}-\bar{Y}\right)^{2} \sim \sigma^{2} \chi_{n m-2}^{2}$.

14.5 Analysis of variance in regression models

Consider e.g. comparing rows $k, l ; Y_{i j}=\alpha_{i}+\beta x_{i j}$ where i is which population the sample is taken from, j is the number of the sample; say the sample size is n from each population. Define $\bar{\alpha}$ in the obvious way and test $H_{0}: \alpha_{k}=\alpha_{l}$ against $H_{1}: \alpha_{k} \neq \alpha_{l}$:

Minimize $S=\sum_{j=1}^{n}\left(Y_{k j}-\alpha_{k}-\beta x_{k j}\right)^{2}+\sum_{j=1}^{n}\left(y_{l j}-\alpha_{l}-\beta x_{l j}\right)^{2}$ under H_{1}, H_{0} to get R_{1}, R_{0}. We can reason that we should reject H_{0} if $R_{1}-R_{0}$ is large; $R_{0}=\left(R_{0}-R_{1}\right)+R_{1}$. We find $R_{1} \sim \sigma^{2} \chi_{2 n-3}$ whether or not H_{0} is true while $R_{0}-R_{1} \sim \sigma^{2} \chi_{3-2}^{2}$ (the degrees of freedom being those of H_{1} - those of H_{0}) if H_{0} is true. So we perform a one-tailled test of $T=\frac{\frac{R_{0}-R_{1}}{3-2}}{\frac{R_{1}}{50-3}}$ against the $F_{1,47}$ distribution.

The remainder of the lectures for this course is non-examinable.

