
Set Theory and Logic

May 14, 2008

This course is often found to be difficult, for two main reasons; logic involves
a lot of new concepts, and the mathematical phenomena of set theory are also
strange and new.

Going against the conventional wisdom on this subject, we will first con-
centrate on set theory, and then lead gently onto logic, which means we will
actually follow the course schedules quite closely.

There are three main components to the course: first, mathematical sets
(covering topics: ordinals, cardinals, the axiom of choice and Zorn’s lemma,
and fixed points and so on; these blend together rather than forming separate
chapters), second logic (covering propositional logic, which is not actually that
hard, and predicate logic. This latter we shall study quite seriously; it is still
possible to say things even at this level which are not found in textbooks. We
will consider the limitations of logic, and the distinction between informal and
formal reasoning), and finally formal set theory (axioms, axiomatic development,
and a nonexaminable section on independence and consistency)

Books

The closest thing to a course book is P.T. Johnstone’s “Notes on Logic and Set
Theory”. A nice book recommended for the second section is D. van Dalen’s
“Logic and Structure”; for the first and particularly the third section, “Set
Theory” by A. Heingel and P. Hamburger is quite nice. For “bedside reading”
rather than the course, the lecturer recommends T Forser’s “Logic Induction
and Sets”, which takes a somewhat computer-scientific viewpoint, and also a
rather hard book with few proofs, H. Heinlich’s “Axiom of Choice”. Any other
books on the schedules are recommended against by the lecturer.

1 Well-orderings and Ordinals

1.1 Motivation

For the natural numbers N, which we take in this course to include 0, there are
several nice properties; in partucular, we have proof by induction: if we have a
set of statements P (n) for each n ∈ N (e.g.

∑n
1 r

2 = 1
6n(n+ 1)(2n+ 1)), then

if we can show P (0) and ∀n, P (n) ⇒ P (n + 1) then we have ∀nP (n). We can
also define functions by recursion, e.g. 0! = 1, (n + 1)! = (n + 1)n!. The idea
behind both of these is that if we have dealt with a (proper) initial segment of
N then there is a “next” element of N, and if we know how to “go on” to this
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next element in general, then we can go on “forever”. We ask: how general is
this property?

1.2 Totally ordered sets

Definition: A totally ordered set (X,<) is a set X equipped with a binary
relation < such that: x < y, y < z ⇒ x < z∀x, y, z ∈ X , x ⊀ x∀x ∈ X , and
(trichotomy) ∀x, y ∈ X either x < y or x = y or x > y.

Note that this implies that only one possibility among the three for tri-
chotomy holds; if x < y and x = y then x < x, a contradiction; if x < y and
y < x we again have x < x.

Examples: N,Q or R with the standard <. A non-example is S1 = {(x, y) :
x2 + y2 = 1} with (x1, y1) < (x2, y2) if y1 < y2; trichotomy does not hold for
e.g. (−1, 0), (1, 0).

Example: the lexicographic ordering: given a set (alphabet) Σ write Σ⋆ for
the set of finite sequences (words) ~a = (a1, . . . , an) of elements of Σ (including
the empty sequence). Suppose we have a total order ¡ on Σ. Then define < on

Σ⋆ by ~a = (a1, . . . , an) < ~b = (b1, . . . , bm) if ∃i such that aj = bj∀j < i and
either ai “doesn’t exist” while bi does, or ai < bi. This is the order in which
words appear in a dictionary, so it is plausible that it is a total order on Σ⋆ at
least for finite Σ; in fact it is for general Σ: that ~a ⊀ ~a is obvious, the reader
may check ~a < ~b,~b < ~c ⇒ ~a < ~c. We shall check trichotomy: suppose ~a 6= ~b,
and let i be the first place where ~a,~b differ. Either one is defined at i and the
other is not, in which case the latter is ¡ the former, or ai, bi both exist; then if
ai < bi then ~a < ~b, otherwise bi < ai and ~b < ~a.

Notation: write x ≤ y to mean x < y or x = y. Then we could equivalently
define totally ordered sets to be (X,≤) such that x ≤ y and y ≤ z ⇒ x ≤ z,
x ≤ y and y ≤ x⇒ x = y, and ∀x, y either x ≤ y or y ≤ x.

1.3 Well-orderings

Definition: a well ordered set (A,<) is a totally ordered set for which if ∅ 6=
X ⊂ A then X has a ¡-least-element, i.e. a a0 ∈ X such that a0 ≤ a∀a ∈ X .

Examples: (N, <): we have the minimum principle (which is equivalent to
mathematical induction).

Any finite totally ordered set is isomorphic to one of the form {0 < 1 <
· · · < n} for some n.

Note ∅ is well ordered.
Non-examples are Q or R with the standard ¡; take X = {a : a > 0}.
Some examples as subsets of Q or R: {1 − 1

n
: n ≥ 1} ∪ {1}; since distance

is irrelevant this is order-isomorphic to N with an “extra” point “on top”.
{1 − 1

n
: n ≥ 1} ∪ {2 − 1

n
: n ≥ 1}

What about {m − 1
n

: n,m ≥ 1} [this is clearly also well ordered]? Is N⋆

with the lexicographic ordering well-ordered? [Spoilers: no]
It is useful to have the equivalent formulation that a well-ordering is a total

ordering for which ∀0 6= X ⊂ A∃a0 : ∀a < a0, a /∈ X .
Proposition: A total ordering (A,<) is a well-ordering iff it satisfies the

principle of <-induction: if [for some P ⊂ A] ∀a, ∀b < a, b ∈ P ⇒ a ∈ P , then
∀aa ∈ P (i.e. P = A) (equivalently if ∀a∀b < aP (b) ⇒ P (a) then ∀aP (a):
suppose (A,<) is well-ordered, take P ⊂ A satisfying the condition. Suppose
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P 6= A, then A\P is non-empty, so take a ∈ A\P ¡-minimal, then ∀b < ab ∈ P ,
but then by the induction condition a ∈ P , a contradiction. For the converse,
suppose we have ¡-induction; takeX ⊂ A with no ¡-minimal element. Then A\X
satisfies the induction condition: if ∀b < a, b /∈ X then a /∈ X , as otherwise a is
a ¡-minimal element of X . So by induction A \X = A so X = ∅.

If (X,≤) is a total order, an initial segment is S ⊂ X such that x ≤ y ∈
S ⇒ x ∈ S. If a ∈ X then {x : x < a} =: A<a is an inital segment; for example,
in R the A<a are the intervals (−∞, a). So we see that not all initial segments
are of this form, e.g. (−∞, 0].

An initial segment S is proper if S 6= A. In a well-ordering (A,<) all proper
initial segments are of the form A<a for some a; this is [the lecturer claims] the
best way to conceptialise a well-ordering: suppose S is a proper initial segment,
A \ S 6= ∅ so take a ∈ A \ S ¡-minimal; then ∀b < a, b ∈ S so A<a ⊂ S, and
if x ∈ S then x � a (as otherwise a ∈ S by the definition of S, and we have a
contradiction) so x < a and S = A<a. So for each proper initial segment B of
a well-order (A,≤) there is an s(B) ∈ A such that B = A<s(B); the converse of
this is an exercise.

Note that an initial segment of a well ordering will be a well ordering.

1.4 Order Isomorphisms

Let (A,<), (B,<) be well orderings; an order-isomorphism from A to B is a
bijection A → B such that a < a′ ⇒ f(a) < f(a′)∀a, a′ ∈ A (note that by
trichotomy the ⇒ is an if and only if). For such an f , B<f(a) = f(A<a); thus
f(a) = s(B<f(a)) = s(f(A<a)).

Lemma: If f, g : A → B are order isomorphisms then f = g, by induction:
if f = g on A<a then f(a) = s(f(A<a)) = s(g(A<a)) = g(a).

Suppose f1 : A1 → B1, f2 : A2 → B2 are order isomorphisms between initial
segments of A and B, then the restrictions of f1, f2 to the initial segment A1∩A2

are equal [in this case one of the Ai is a subset of the other, since we have a
total order. But this style of proof generalises better].

Let (fi : Ai → Bi)i∈I be the family of all order isomorphisms between
iniital segments of A and B. Then taking unions we have an order isomorphism⋃
iAi = A′ → B′ =

⋃
iBi. Suppose that both A′, B′ are proper; then we can

extend f ′ to an order isomorphismA′∪{s(A′)} → B′∪{s(B′)} by s(A′) 7→ s(B′),
a contradiction since the fi are all order isomorphisms between initial segments
of A,B. Thus we have proved:

Theorem: Let (A,<), (B,<) be well orderings, then either A is (uniquely)
order isomorphic to an inital segment of B or vice versa, since in the above
either A′ = A or B′ = B.

1.5 Ordinals as Order Types

We say (A,<), (A′, <) have the same order type, and so represent the same or-
dinal, if they are order isomorphic; we can define (following Frege) an ordinal
as an equivance class of well-orderings under order isomorphism. Thus proper-
ties of ordinals are equivalent to properties of well-orderings which are invariant
under order isomorphism.

Notation, due to Cantor: we shall use α, β, . . . for our ordinals and write
Ā = α when A is a representative for α (there are canonical representatives for
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all ordinals, but this is irrelevant to us).
We have an ordering on ordinals: let α ≤ β just when ∃Ā = α, B̄ = β such

that A is an initial segment of B; α < β when this is a proper initial segment.
Since order isomorphisms between initial segments of well orderings are unique
we have Ā ≤ B̄ and B̄ ≤ Ā ⇒ Ā = B̄ (if Ā < B̄ and B̄ < Ā we have Ā < Ā,
which could not happen as the unique order isomorphism from a set to itself
is the identity). From above for any A,B either Ā ≤ B̄ or B̄ ≤ Ā. So the
collection of ordinals On is totally ordered by ¡.

The proper initial segments of a well order A are of the form A<a for some
(unique) a ∈ A, so the set of proper initial segments of A is order isomorphic
to A under the inclusion relation ⊂, i.e. for any ordinal α, {β : β < α} is order
isomorphic to α.

Suppose X is a nonempty subclass of On; take α ∈ X . Either α is ¡-minimal
in X or {β < α : β ∈ X} is nonempty, but then this set is a subset of one ≃ α,
so we can find a ¡-minimal element of it, β; thus either way we have a ¡-minimal
element of X . So On is well-ordered by ¡.

Burali-Forti Paradox: Let Ω be the order type of On; then On is order
isomorphic to {α : α < Ω} = On<Ω, and On is isomorphic to initial segment
of itself, a contradiction (compare this with Cantor’s paradox: let V be the
collection of all sets, then P (V ) = V , a contradiction by Cantor’s theorem,
or the well known Russell’s Paradox). The lecturer claims we should not be
worried by this; the usual solution is to say that On is not a set.

1.6 Ordinal Arithmetic

The least ordinal 0 is the order type of ∅. For α = Ā take ∞ /∈ A, and orrde
A∪{∞} by extending the order on A by a <∞∀a ∈ A; this gives a well ordering
of order type α + 1. Observe that if Ā = α and A has a maximal element α0

then β = A<α0
is such that α = β + 1; such an α is called a successor ordinals.

The other nonzero (it is best to consider 0 separately, even though the reasons
for such are not presently aparrent) ordinals are the limit ordinals, which are
the nonzero ordirnals α such that β < α⇒ ∃γ : β < γ < α.

Let α = Ā, β = B̄; take A+B = A⊔B (e.g. by {0}×A∪{1}×B), and extend
the order on A,B by setting a < b∀a ∈ A, b ∈ B; this gives a well ordering. For
A×B order anti-lexicographicly: (a, b) < (a′, b′) iff b < b′ or b = b′ and a < a′.
This is clearly a well ordering: for X ⊂ A×B non-emty take b0 to be minimal
such that (a, b0) ∈ X for some a, then set Xb0 = {a : (a, b0) ∈ X}; this is a
nonempty subset of A so has a minimal element a0. Then (a0, b0) is minimal in
X .

For subtraction, we set α− β = 0 if β ≥ α. For β ≤ α take Ā = α and B an
initial segment [of A] with B̄ = β, then A \ B is a subset of A so well ordered;
define α− β to be its order type.

Suprema of sets of ordinals: for a set X of ordinals, assume we have rep-
resentatives Aβ for β ∈ X such that ∀β ≤ γ (β, γ ∈ X) Aβ is an initial seg-
ment of Aγ (we can do this by taking On<β as our representative for each β),
then A =

⋃
β∈X Aβ is well ordered by the union of the order relations (e.g. if

a < b < c ∈ A then c ∈ Aβ for some β so a < c; similarly for ¡-minimal elements)
[We define the supremum of X to be the order type of this A].

The assumption was not really necessary, because we could take any repre-
sentatives Aβ and then quotient

⋃
Aβ by identifying elements which correspond
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under the unique order isomorphisms between initial segments of our Aβ .
Note that we have a kind of “continuity” in the second argument of addi-

tion and multiplication: α + supi∈I βi = supi∈i α + βi (provided I 6= ∅) and
αi supi∈I βi = supi∈I αβi.

Aside: A set X of ordinals could have a maximal element β0, then supX =
β0 and β0 + 1 is the least [ordinal] ¿ all the elements of X ; if it does not, then
supX /∈ X and supX is the least [ordinal] ¿ all the elements of X .

Some ordinals: we have 0, 1, 2, . . . ; the supremum of this is ω. Then we have
ω + 1 (note that 1 + ω is simply ω), ω + 2, . . . , ω + ω which we can calle ω2
(note that 2ω is simply ω. So we have ω3, . . . , ωω = ω2, . . . , ωω, . . . , ωω

ω

, . . . , ǫ0,
which is the ordinal with the property that ωǫ0 = ǫ0, just as ωω is the ordinal
with the property that ωωω = ωω, ω2 is the ordinal with the property that
ω + ω2 = ω2, and so on.

Hartog’s Lemma

This is important. Let X be a set, then there is a least ordinal γ = γ(X) such
that γ does not inject into X (i.e. such that γ = C̄ ⇒ C does not inject into X):
consider the set W = {R ⊂ X · X : R is a well ordering of some subset of X}
(possible R are possible relations). We have a function W → On by R 7→ ρ = R̄;
the image Z is a set of ordinals, and as W is closed under initial segments, Z is
an initial segment of the ordinals. The order type γ of Z is such that Z = On<γ ;
γ /∈ Z and γ is the least such ordinal.

Recall that ω = N̄; we may set ω0 = ω. Then set ω1 = γ(N), which will be
the least uncountable ordinal; set ω2 = γ(ω1) and so on.

1.7 The Recursion Theorem

Suppose (A,<) is a well ordered set, X a set and g a function from the set
of partial functions A → X , Ptl(A,X), to X Then there is a unique function
f : A→ X such that g(a) = g(f |A<a) [∀a ∈ A]

Example of use: suppose (A,<), (B,<) are well orderings (we use X = B ∪
{∞} where ∞ /∈ B); then by this theorem there is a function f : A→ B ∪ {∞}
such that f(a) = s{f(a|prime) : a′ < a} so long as the latter is a proper
initial segment of B and ∞ otherwise (so this is another proof that either A
is isomorphic to an initial segment of B or B is isomorphic to a proper initial
segment of A).

Proof of the above theorem: Let an attempt be a map φ : A′ → X for some

initial segment A′ of A with φ(a) = g(φ |A<a)∀a ∈ A|prime; by induction we
have that if φ1 : A1 → X,φ2 : A2 → X are attempts then φ1 = φ2 on their
intersection. So take f to be the union of all attempts φ, i.e. f(a) = x if
φ(a) = x for some attempt φ. Then we certainly have f(a) = g(f |A<a

)∀a ∈ the
domain of f , some A′. But this is an initial segment so f itself is an attempt.
If A′ 6= A then the domain of f is A<a0

for some a0 and we can extend this to
an attempt f̄ by setting f̄(a0) = g(f |A′), contradicting the definition of f . So
the domain of f is A.

We now want to replace (A,<) by the class (On,<); write Ptl(On, V ) for
the set of φ defined on some subset (note set rather than class) of On with φ(α)
a set where defined (V here is the class of all sets):
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Recursion Theorem: Given G : Ptl(On, V )L → V there is a unique F :
On → V such that F (α) = G(F |On<α

).
Examples of applications: for fixed α we can define α + β by recursion

on β: α + 0 = α, α + (β + 1) = (α + β) + 1 (where by δ + 1 we mean
the successor of δ)) (for successor ordinals) and α + λ = supβ<λ α + β for
limit ordinals γ. (Given a definition like this, we can define a suitable G by
“brute force”; in this case, define G(φ) to be α if φ is everywhere undefined,
φ(β0) + 1 if φ is defined on an initial segment of ordinals with greatest ele-
ment β0 and β0 is an ordinal, sup(range(φ)) if φ is defined on a (nonempty)
initial segment of ordinals with no greatest element and range(φ) ⊂ On, 0 (or
whatever you will; mathematicians joke about defining it to be the moon) for
any other φ. Or in this particular case we can define G(φ) = α ∨ {φ(β) + 1 :
β an ordinal in the domain of φ with φ(β) an ordinal}, where A∨B means the
supremum of A ∪B).

For fixed α we define αβ by α0 = 0, α(β + 1) = αβ +α, αλ = supβ<λ αβ for
λ a limit.

For fixed α we define αβ by α0 = 1, αβ+1 = αβα, αλ = supβ<λ α
β for λ a

limit; note that we can easily show by induction on β that for α, β countable so
is αβ (which is not so for cardinals; see later).

2 Axiom of Choice

(Equivalents and consequences)

2.1 Statement (and some observations)

Axiom of Choice: Let X be a set of nonempty sets, then there is a function
c : X →

⋃
X (i.e.

⋃
x∈X x) such that c(x) ∈ x∀x ∈ X . Some trivial alternative

forms are for {xi : i ∈ I} an indexed family of nonempty sets, there is a
function c : I →

⋃
i∈I xi such that c(i) ∈ xi∀i ∈ I; we will use this form for our

observations below. As the final form, for any surjective map p : Z → I there
is a maps : I → Z such that p ◦ s : I → I is the identity.

Observations: If I is finite then there is no problem: for I = {1, . . . , n} we
take ci ∈ xi∀1 ≤ i ≤ n and define c(i) = ci; this is “definition by a finite number
of cases”, or “just do it”. The axiom is almost no help if the sets xi are finite,
but even then it depends on the nature of the sets; as Russell famously said, we
can pick members from an infinite collection of pairs of shoes (by e.g. picking
the left shoe from each), but can we pick members from an infinite collection of
pairs of socks?

2.2 Zorn’s Lemma

A partially ordered set (X,<) or (<≤) is a set such that x ≤ y ≤ z ⇒ x ≤ z
and x ≤ y and y ≤ x⇒ x = y. A subset C of a partially ordered set (X,≤) is a
chain if it is totally ordered; note the empty set is a chain. An upper bound for
any Y ⊂ X where X is a partially ordered set is a y0 ∈ X with y0 ≥ y∀y ∈ Y ;
a maximal element in a partially ordered set (X,≤) is an x0 such that ∀x ∈ X ,
x ≥ x0 ⇒ x = x0.
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Statement of Zorn’s Lemma: Let (X,≤) be a partially ordered set in which
every chain has an upper bound, then X has a maximal element. (Note that
X is automatically nonempty since the empty chain has an upper bound; some
earlier works prefer to require this explicitly).

Proof: Suppose X has no maximal element. For a chain C, we have an
upper bound ūC , which by assumption is not a maximal element, so we can
take uC > ūC , and have a strict upper bound for any C; by the axiom of choice
we can define u from the set of chains in X to X with u(C) a strict upper
bound for each C. Recall (Hartog) that there is an ordinal γ(X) which does not
embed into X . Define f : On<γ(X) → X recursively by f(α) = u(f(On<α)) for
f(On<α) a chain, u(∅) otherwise (this will be seen to be irrelevant). We claim
∀α < γ(x) f(On<α) is a chain, by induction on α: suppose ∀β < αf(On<β)
is a chain. In the case α = 0 or α is a limit ordinal, On<α =

⋃
β<αOn<β so

f(On<α =
⋃
β<α f(On<β), a nested union of chains so a chain; if α = β + 1,

On<α = On<β ∪ {β} so f(On<α)/f(On<β) ∪ {f(β)} which is a chain together
with a proper upper bound (by the definition of f) so a chain, so in either
case f(On<α) is a chain, and so f(On<α) is a chain ∀α < γ(X). So the
first condition in the definition of f always holds, so if β < α < γ(X) then
f(α) = u(f(On<α)) > f(β), so f : On<γ(X) → X is injective, contradicting the
definition of γ. Thus X has a maximal element.

Aside: we have actually used a modified principle of induction: suppose
P ⊂ On<γ) satisfies the modified induction condition that P (0), ∀βP (β) ⇒
P (β + 1), and for λ a limit, ∀β < λP (β) ⇒ P (λ), then ∀α < γP (α). This
follows easily from the “official” principle of ¡-induction because the “official”
induction condition follows easily from the modified one; in fact the two are
equivalent.

2.3 Uses of Zorn’s Lemma in Mathematics

We usually only use a simpler form, the observation below:
Definition: A supremum for Y ⊂ a partially ordered set X is y0 ∈ X such

that y0 ≥ y∀y ∈ Y and if z ≥ y∀y ∈ Y then z ≥ y0 (i.e. y0 is a least upper
bound); clearly this is unique if it exists. (X,≤) is complete if all subsets have
suprema, and chain complete if all chains have suprema.

Observation: If (X,≤) is chain complete then it has a maximal element.
Application: any vector space V has a basis: let L be the poset (partially

ordered set) of linearly independent subsets of V under inclusion; we claim L
is chain complete: suppose {Li : i ∈ I} is a chain in L, then

⋃
i∈I Li is linearly

independent (for ~e1, . . . , ~en ∈
⋃
i Li with

∑
i λi~ei = ~0, each ~ek lies in some Lik ,

and there must be a maximal element L of the finitely many chain elements
Li1 , . . . , Lin , then ~e1, . . . , ~en ∈ L, a linearly independent set, so λi = 0∀i). So
by ZL L has a maximal element L0; were this not a basis, have ~v ∈ V \ 〈L0〉
and then L0 ∪ {~v} is linearly independent, a contradiction.

Application: Any ring R with 0 6= 1 has a maximal ideal: consider the
collection of proper ideals I ⊳ R; this is chain complete (∅ has {0} ⊳ R as its
supremum, a nonempty chain (Ik : k ∈ K) has

⋃
k∈K Ik as its supremum), so

by ZL we have a maximal eleement of the poset, which will be a maximal ideal.
Application: If R is a ring and I ⊳ R and a ∈ R such that a0, a1, a2, . . . /∈ R

then there is a prime ideal P ⊳ R with an /∈ P∀n = 0, 1, . . . (note this is
automatically the case if a /∈ P ): take the poset of ideals J with I ≤ J and
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an /∈ J∀n; this is chain complete (ordered by inclusion) as in the previous
example, so by ZL there is a maximal element P . We have 1 = a0 /∈ P .
Suppose b, c /∈ P , then 〈P, b〉 ∋ ar, 〈P, c〉 ∋ as since these ideals are bigger than
P . So ar = p0 + λb, as = p1 + µc so ar+s = (p0p1 + . . . ) + λµbc, so 〈P, bc〉 > P
and bc /∈ P . Thus P is prime as required.

2.4 The Well-Ordering Principle

Theorem: Any set can be wess ordered: for a set X consider the set W of
well orderings of subsets of X , ordered by initial segments (A ≤ B if A is an
initial segment of B). Consider a chain {Ai : i ∈ I} in W ; this is a set of
well orderings such that among any two, one is an initial segment of the other,
so

⋃
i∈I Ai is a well ordering; thus W is chain-complete, so by ZL it has a

maximal element (X ′, <′). Were X ′ 6= X take x0 ∈ X \X ′, and order X ′∪{x0}
by x′ < x0∀x′ ∈ X ′, which gives a well ordering with X ′ as a proper initial
segment, contradicting the definition of X ′. So X = X ′ and X is well ordered.

The well-ordering principle WO is the statement that every set can be well
ordered.

Proposition: WO⇒AC: suppose (Xi : i ∈ I) is a family of non-empty sets;
take a well-ordering of

⋃
i∈I Xi and define c : I →

⋃
i∈I Xi by c(i) is the ¡-least

element in Xi ⊂
⋃
j∈I Xj .

Remarks: we thus have AC, WO, ZL are equivalent; it is quite hard to prove
the reverses of the implications we have proved (e.g. to show AC ⇒ WO)
directly. Although we have proven that e.g. a well-ordering of R must exists, it
is hard to imagine what this would “look like”.

2.5 ZL via the Bourbake-Witt Theorem

The schedules suggest this is a preferred method of proving ZL, but the lecturer
entirely disagrees.

Theorem: Let (X,≤) be a chain-complete poset and h : X → X an increas-
ing function, i.e. x ≤ h(x)∀x ∈ X . Then h has a fixed point x0 ∈ X .

Proof of this is easy using the ordinals < γ(X); define f : On<γ(X) → X
recursively by f(0) = sup ∅ (the bottom element, 1), f(β+1) = h(f(β)), f(λ) =
supβ<λ f(β) for λ a limit (so long as {f(β) : β < λ} is a chain) (and f(α) = 1
otherwise). By recursion {f(β) : β < λ} is always a chain; then if h has no fixed
point we have f(β) < f(β + 1)∀β and if β < λ with λ a limit then f(β) < f(λ)
(as otherwise f(β) = f(β + 1), so f embeds On<γ(X) into X , a contradiction;
thus h has a fixed point.

Suppose (X,≤) is a chain complete poset; if X has no maximal elements
then by AC we have a h : X → X with x < h(x)∀x ∈ X , an increasing function
with no fixed point, contradicting the theorem, so the theorem gives ZL for
chain complete posets.

Now, to prove the stronger form of ZL, take (X,≤) a poset in which every
chain has an upper bound. Consider the set of chains in X , ordered by inclusion;
this is chain complete, so there is a maximal chain C; take x0 an upper bound
for C, then x0 is maximal in X , as if there is x̄ > x0 then C ∪ {x̄} is a chain,
contradicting the definition of C.
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Bourbake-Witt without ordinals etc. (Non-examinable sketch)

(It is somewhat disquieting that we needed the entire machinery of ordinals to
make a relatively small proof; in fact it is possible to avoid doing so, though
this proof is perilous, distasteful and hence nonexaminable)

Consider C defined as the intersection of all A ⊂ X closed under suprema
of chains in X and under h (i.e. H(A) ⊂ A). This has an induction principle!
It is sufficient to prove C is a chain, as we can then take c = supC, which is
∈ C, so c ≤ h(c) ∈ C ⇒ h(c) ≤ supC ⇒ h(c) = c.

This proof only works by “magical” inspiration: we decide to prove that
(†)∀x∀yx ≤ y or f(y) ≤ x, by induction on x. It is easy to see that the x
such that † holds are closed under suprema of chains; to proove this set is closed
under f is very messy to do directly or by immediate induction on y, so we again
need inspiration: we proove ∀y y ≤ x or f(x) ≤ y by induction on y; the set of
such y is closed under ∨s (suprema) as before; if f(x) ≤ y then f(x) ≤ f(y), if
y ≤ x then either x ≤ y ⇒ x = y ⇒ f(x) ≤ f(y), or f(y) ≤ x, so in any case
we are OK; the induction works, and easily implies † is closed under f ; the first
induction works, and C is a chain as required.

3 Cardinals and their arithmetic

3.1 Cardinals via equinumerosity

Informally, we want to consider the size (number of elements) of a set indepen-
dently of its elements.

We say sets X,Y are equinumerous X ≈ Y if there is a bijection X
∼
→ Y

(
∼
→ denotes a bijection). Then a cardinal or cardinal number is an equivalence

class of sets under ≈ (which is clearly an equivalence relation); as before, op-
erations on, properties of and propositions about cardinals are the same things
about (representative) sets, invariant under ≈. We shall write our cardinals as
~m,~n, . . . ; |M | is the cardinal of a set M (Cantor wrote¯̄M). If |M | = ~m we say
M is a representative of the cardinal ~m.

The biggest difference between this and the case of ordinals is that order
isomorphisms between well orderings are unique, wheras bijections between sets
are hardly ever so.

If there is an injection X →֒ Y we write X . Y ; this is evidently invariant
under ≈, so we can write |X | ≤ |Y |. Since a composite X →֒ Y →֒ Z of
injections is injective, |X | ≤ |Y | ≤ |Z| ⇒ |X | ≤ |Z|.

Schröder-Bernstein Theorem

Suppose f : A → B, g : B → A are injections, then there is a bijection A
∼
→ B

(i.e. |A| ≤ |B|, |B| ≤ |A| ⇒ |A| = |B|); this gives that ≤ is a partial ordering
on cardinals:

Set A2n = (gf)n(A), A2n+1 = (gf)ngB = g(fg)nB,B2n = (fg)nB,B2n+1 =
(fg)nfA = f(gf)nA. So f : A2n

∼
→ B2n+1, A2n+1

∼
→ B2n+2, and so f :

A2n \ A2n+1 → B2n+1 \ B2n+2; similarly g : B2n \ B2n+1
∼
→ A2n+1 \ A2n+2.

Also f−1(
⋂
k≥0 Bk) = f−1(

⋂
k≥1 Bk) =

⋂
k≥1 f

−1(Bk) =
⋂
k≥0 Ak, so f :

⋂
k≥0 Ak

∼
→

⋂
k≥0 Bk. We have A = (A0 \ A1) ∪ (A1 \ A2) ∪ · · · ∪

⋂
k Ak, B =
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(B0 \ B1) ∪ (B1 \ B2) ∪ · · · ∪
⋂
kBk, and these unions are disjoint; then we

have an isomorphism by taking g−1 : (A2n+1 \ A2n+2)
∼
→ (B2n \ B2n+1), f :

(A2n \A2n+1
∼
→ (B2n+1 \B2n+2), and either of these

⋂
Ak

∼
→

⋂
Bk.

3.2 Tarski fixed point theorem

Recall that a poset (X,≤) is complete if all subsets Y supX have suprema.
Example: For any set A consider the power set P (A) ordered by ⊂. This

is a complete lattice (a lattice being something with finiet suprema and infina;
see the example sheet for proof that one implies the other) with ∨{xi : i ∈
I} =

⋃
{xi : i ∈ I}. If X ⊂ P (A) is closed under unions then (X,⊂) is also

a complete poset; in particular if (A, τA) is a topological space then (τA,⊂) is
complete.

Definition: A map f : (X,≤) → (Y,≤) is order preserving if x ≤ y ⇒ f(x) ≤
f(y).

Theorem: Let (X,≤) be complete and f : X → X order preserving, then
f has a fixed point: let a = ∨{x : x ≤ f(x)}. Then for x ≤ f(x) we have
x ≤ a⇒ f(x) ≤ f(a) ⇒ x ≤ f(a) ⇒ a ≤ f(a), so f(a) ≤ f(f(a)) ⇒ f(a) ∈ {x :
x ≤ f(x)} ⇒ f(a) ≤ a⇒ a = f(a).

Application: Let f : A → B, g : B → A be injections; define F : P (A) →
P (A) by F (x) = A \ g(B \ f(x)). If x ≤ y then f(x) ⊂ f(y) ⇒ B \ f(x) ⊃
B \ f(y) ⇒ g(B \ f(x)) ⊃ g(B \ f(y)) ⇒ F (x) = A \ g(B \ f(x)) ⊂ A \
g(B \ f(y)) = F (y), so F is order preserving. So we have a fixed point Ā ⊂ A
with Ā = F (Ā) = A \ g(B \ f(Ā)). Then f : Ā

∼
→ f(Ā) =: B̄ ⊂ B and

g : (B \ B̄)
∼
→ g(B \ B̄) ⊂ A, but g(B \ B̄) = A \ Ā, so g−1 : A \A

∼
→ B \ B̄ and

we have a bijection A
∼
→ B.

3.3 Cardinal arithmetic

Take |M | = ~m, |N | = ~n¿ For addition set ~m+~n to be the cardinal of the disjoint
union M +N (i.e. {0} ×M ∪ {1} ×N), for multiplication ~m · ~n is the cardinal
of the product M ×N , and for exponentiation ~n~m is the cardinal of the set NM

of all functions f : M → N .
The elementary rules of arithmetic follow from (natural) isomorphisms be-

tween sets: addition is associative and commutative with unit 0 = |∅|, mul-
tiplication is associative and commutative with unit 1 = |1| where 1 = {0},
multiplication distributes over addition ~n · (~m+~p) = ~n · ~m+~n ·~p, and (~n · ~m)~p =
~n~m · ~m~p, ~n~m·~p = (~n~m)~p.

Examples: Finite cardinals, the cardinals of finite sets and of finite ordinals
(or well orderings), 0 = |∅|, 1 = |{0}|, 2 = |{0, 1}| etc.

The cardinal of N is ω = ω0 = ℵ0 = |N| = |{0, 1, . . .}|; this is the “denumer-
able” or “countably infinite” cardinal.

ω1 = ℵ1 is the cardinal of the first innumerable ordinal (note that there is
more than one infinite cardinal, essentially by Hartogs).

2ω = 2ω0 is the cardinal of the continuum (2N ≃ R, because we have injec-
tions in both directions: 2N →֒ R either by (a0, a1, a2, . . . ) ∈ 2N 7→

∑∞
n=0 an(

2
3 )n+1

onto the Cantor set (aside: the complement of the Cantor set has measure
1
3 + 2

9 + · · · = 1, so the Cantor set is an uncountable (see later) set of measure
0), or by 2N →֒ NN →֒ R by the continued fraction expansion (x0, x1, . . . ) 7→
x0 + 1

x1+
1

...

, the image of this second injection being the irrationals, and then
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there is an injection R → 2N by e.g. composing R → (0,∞) → (0, 1) by x 7→ ex

and then y 7→ y
1+y , and then injecting (0, 1) into 2N by mapping a real to its

binary expansion, choosing the non-terminating one where we have a choice).
Interlude on Cantor’s theorem: for clarity, define ~n ≤⋆ ~m to mean that

whenever |N | = ~n, |M | = ~m either N = ∅ or there is a surjection M → N .
Observe ~n ≤ ~m ⇒ ~n ≤⋆ ~m, for take f : N → M injective, then either N = ∅
and we are done, or take a ∈ N and define g : M → N by g(y) = the unique
x such that f(x) = y if y is in the image of f , and g(y) = a otherwise; this is
clearly surjective. If we have AC then ~n ≤⋆ ~m⇒ ~n ≤ ~m; without it, ≤⋆ can be
very bad to work with; it may not even be a partial order.

Theorem: We never have 2~n ≤⋆ ~n (and so never have 2~n ≤ ~n): note 2X ≃
P (X) by characteristic functions, and so is never empty. Suppose g : X → P (X)
and consider {x ∈ X : x /∈ g(x)}; this cannot be in the image of g, so g is not
surjective.

Representative calculations: beware, we are working with cardinals, not
ordinals throughout, and 2ω the cardinal of the continuum is very different
from 2ω as an ordinal. ω + ω = ω for we have a bijection N + N → N; similarly
ω ·ω = ω (for an explicit byjection, (n,m) 7→ 1

2 (n+m)(n+m+1)+n, or just use
that we have injections in both directions). 2ω ·2ω = 2ω+ω = 2ω, the cardinality
of the set RN of all real sequences is (2ω)ω = 2ω·ω = 2ω. The cardinality of the
set RR of functions R → R is (2ω)2

ω

= 2ω·2
ω

. Observe that +, · behave well wrt
≤, so 2ω = 2 · 2ω ≤ ω · 2ω ≤ 2ω · 2ω = 2ω, so ω · 2ω = 2ω and |RR| = 2(2ω), which
is bigger than 2ω by Cantor.

3.4 The Hierarchy of Alephs

Here we will consider the cardinality of well-orderable sets (i.e. all sets if we
assume AC): if X is well-orderable, then there is a minimal α such that X has
an ordering of order type α. Ordinals κ which are of this form have ∀β < κ,
On<β ≇ On<κ so |On<β | 6= |On<κ| (hereafter we will identify On<α with α),
so ∀β < κ|β| 6= κ; clearly if β < κ then |β| ≤ |κ|, so ∀β < κ|β| < |κ|.

We call ordinals of this kind initial ordinals; these are the canonical repre-
sentatives of well-ordered cardinals. If κ, µ are initial ordinals we have at first
sight two orderings: κ ≤ µ as ordinals, or |κ| ≤ |µ| as cardinals. However,
clearly if κ ≤ µ as ordinals then |κ| ≤ |µ|, and conversely suppose |κ| ≤ |µ|;
were µ < κ then since κ is initial we would have |µ| < |κ|, a contradiction, so
κ ≤ µ and the two orderings are the same.

What are these initial ordinals? So far we know the finite ordinals 0, 1, . . . ,
ℵ0 = ω0 = ω the least infinite ordinal, and ℵ1 = ω1 the least uncountable
ordinal. But clearly we can define ℵ2 = ω2, the least ordinal with cardinality
not ≤ ω1, and so on.

For any cardinal ~m = |M | define ~m+ to be |γ(M)|; from the definition γ(M)
is always initial, so we can write |γ(M)| = γ(M). Define a function On → On
α 7→ ωα = ℵα by recursion, by ω0 = ω, ωβ+1 = ω+

β (we are about to show

inductively that ωα is inital ∀α (though this doesn’t actually matter, ~m+ is
always initial anyway)), and for λ a limit ωλ = supβ<λ ωβ.

Some properties of this function: clearly β ≤ γ ⇒ ωβ ≤ ωγ , by induction on
γ. ∀α ωα is initial, by induction: ω0 is initial, for α = β + 1 ωα = ω+

β which
is always initial, for α = λ a limit for any ρ < ωλ we have ρ < ωβ for some
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β < λ, and ωβ is initial by the induction hypothesis, so |ρ| < |ωβ | ≤ |ωλ|, so ωλ
is initial. Observe that α ≤ ωα by induction on α.

Take κ an infinite initial ordinal; κ ≤ ωκ and so we can take α least such
that κ ≤ ωα. We claim that then κ = ωα: it is actually easiest to prove this by
cases on α. If α = 0 then κ ≤ ω so κ = ω (since ω is the least infinite initial
ordinal), if α = β + 1 then κ ≤ ω+

β = ωβ+1 but κ � ωβ so ωβ < κ; observe that

there are no objections of κ into ωβ (|κ| � |ωβ|) so κ ≥ ω+
β by the definition of

~m+. So κ = ωβ+1. Finally if α = λ a limit then κ ≤ ωλ = supβ<λ ωβ; if κ < ωλ
then κ < ωβ for some β < λ contradicting the definition of α. So κ = ωλ. Thus
the hierarchy ωα of alephs enumerates the infinite initial ordinals. Thus, under
AC, the ordering of cardinals is ω +On = On.

3.5 Cardinal arithmetic with choice

Theorem: Suppose κ is an infinite well-ordered cardinal, then κ · κ = κ; we
proove this by induction. We need the base case ω · ω = ω, but we have done
this already. Now, assume µ · µ = µ∀ infinite µ ≤ κ. Define an ordering ≺ on
κ×κ (= {(α, β) : α, β < κ} by (α, β) ≺ (γ, δ) if either max(α, β) < max(γ, δ) or
max(α, β) = max(γ, δ) and α < γ or max(α, β) = max(γ, δ), α = γ and β < δ.
This is a total ordering (the proof is easy but tedious, by cases), and a well-
ordering: if ∅ 6= X ⊂ κ×κ then take ρ the least ordinal such that ρ = max(α, β)
for some (α, β) ⊂ X , α0 least such that ∃β : (α0, β) ∈ Xρ the subset of X
corresponding to ρ, and then β0 least such that (α0, β0) ∈ Xρ,α0

; then (α0, β0)
is least in X . Finally, (κ× κ,≺) is the union of the (ρ× ρ,≺) over all ordinals
ρ < κ as initial segments; any (proper) initial segment of κ × κ is included in
some ρ× ρ. |ρ| = µ is a (well ordered) cardinal < κ so |ρ× ρ| = µ ·µ = µ by the
induction hypothesis; thus all proper initial segments of κ× κ have cardinality
< κ and so order type < κ. So the order type of (κ×κ,≺) is ≤ κ, so as cardinals
κ · κ ≤ κ, and κ · κ = κ.

Thus, with AC, some cardinal arithmetic is trivial: if µ, κ are infinite cardi-
nals (which are automatically well ordered if we assume AC) then µ+κ = µ·κ =
max(µ, κ), for if we wlog assume µ ≤ κ then κ ≤ µ+κ ≤ κ+κ = 2 ·κ ≤ µ ·κ ≤
κ · κ = κ, [so all of these are equal] - addition and multiplication are boring.
However, we have no hold at all on exponentiation; in particular, even with AC,
there is no clear intuition as to what 2ℵ0 is. The remainder of the course is, in
large part, an attempt to set this fact/question into some reasonable context,
and ask why it is so.

4 Propositional Logic

Much of the early part of this section is nonexaminable.
Aside: if (X,≤) is a (small) finite poset we can describe it via its Hasse

diagram, effectively a directed acyclic graph; x ≤ y if there is a line between
them and y is above x.

4.1 Boolean algebras as lattices

Finite suprema (joins) in a poset (X,≤): the binary case is a∨ b determined by
a, b ≤ a∨b and if a, b ≤ x then a∨b ≤ x; the “zeroary” case is ⊥= 0 determined
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by ⊥≤ x∀x. Then we inductively define xb1 ∨ · · · ∨ xn∀n ≥ 0. Think of logical
or, or set-theoretic union.

We always have 1) ∨ is associative and commutative with unit ⊥ 2) the order
can be recovered by a ≤ b⇔ a ∨ b = b.

Similarly, finite infina (meets) (which dually are sups in (X,≤)op, the poset
with order reversed) are defined by in the binary case a∧ b ≤ a, b and if x ≤ a, b
then x ≤ a ∧ b. The “0-ary” infinum is T determined by x ≤ T∀x; think of
logical and or set-theoretic intersection.

Definition: A lattice is a poset with finite meets and joins; a lattice is
distributive if we have a∧(b∨c) = (a∧b)∨(a∧c) and a∨(b∧c) = (a∨b)∧(a∨c) (in
fact these two properties are equivalent). A complement of a in a lattice (L,≤)
is ā = ¬a ∈ L such that a ∨ ā = T, a ∧ ā =⊥; note that these are not generally
unique. However, in a distributive lattice complements are unique: suppose ã
is another complement for a, then ã = ã∧T = ã∧ (a∨ ā) = (ã∧a)∨ (ã∧ ā) =⊥
∨(ã ∧ ā) = ã ∧ ā so ã ≤ ā, and similarly ā ≤ ã.

Definition: A Boolean algebra is a distributive lattice in which all elements
have complements.

Example: (P (X),⊂) is a boolean algebra; moreover if L ⊂ P (X) is closed
under intersections, unions and complements then L is a Boolean algebra, e.g.
L = {x ∈ P (N) : x or N \ x is finite} is a countable Boolean algebra, so not
≃ (P (Y ),⊂) for any Y .

4.2 Boolean algebra as algebra

We can give Boolean algebra by a set of operations {T,∧,⊥,∨, (̄)}, so we can
consider Boolean algebras constructed by generators and relations; in particular
we have free Boolean algebras: for construction, take a set of generators (as
primitive constants), construct terms in the operators, and quotient out by the
equations. For Boolean algebras it is easy to see what form of elements we
get: 1) apply the de Morgan laws ¬(A ∧ b) = ¬a ∨ ¬b,¬(a ∨ b) = ¬a ∧ ¬b, and
cancelling ¬¬a = a; this brings all ¬s “to the centre”; they either act on a single
primitive element by ¬p, or not at all. 2) Use a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) to
bring ∨s “out” and ∧s “in”; we get a “normal” form (. . . )∨(. . . )∨. . . , where the
terms in the brackets are ∧s of primitive elements and complements of primitive
elements (some further simplifications are possible, but we will not bother with
them here).

Free Boolean algebras: B(0) = 2 has two elements T,⊥. B(1) has four
elements, ⊥, p, p̄, T . B(2) has 24 = 16 elements given by unions of the 4 elements
nearest the bottom, p ∧ q, p ∧ q̄, p̄ ∧ q, p̄ ∧ q̄. In general B(n) = P (2n) and has
22n

elements.
Aside: Let A be a kind of algebra; write A(n) for the free [A-algebra] on n

generators (we can think of this as the space of polynomials in these generators).
Then for any other A-algebra R, each [t(x1, . . . , xn)] ∈ A(n) gives us a map
Rn → R, so it gives a homomorphism of algebras A(n) → the ring of maps
Rn → R with pointwise algebra structure. For Boolean algebras this is an
isomorphism.

Example: Say we have a map 23 → 2 by (T,⊥, T ), (⊥, T,⊥), (T, T,⊥), (T, T, T )
each 7→ T [the others 7→ ⊥]; then the equivalent Boolean expression is (p ∧ q̄ ∧
r) ∨ (p̄ ∧ q ∧ r̄) ∨ . . . .
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The propositional calculus is based on the free Boolean algebra on a count-
able set {p0, p1, . . . } = B(N) = B(ω); we study it via homomorphisms v :
B(ω) → 2; by freeness such a v is determined by the function v : {p0, p1, . . . } →
2 = {T,⊥} (and conversely any such function determines a HM). Such a v is
called a valuation; we consider it as saying for each proposition pi whether pi is
true (7→ T ) or false (7→⊥).

A HM v : B → 2 is determined by either v−1(T ), which is a prime filter,
or v−1(⊥) which is a prime ideal (A filter is a Φ ⊂ B such that t ∈ Φ, a ∧ b ∈
Φ∀a, b ∈ Φ, and if b ∈ Φ and a ≥ b then a ∈ Φ; such a Φ is prime iff 0 ∈ Φ and
if a ∨ b ∈ Φ then a ∈ Φ or b ∈ Φ).

The completeness theorem for propositional calculus amounts to: suppose
Γ ⊂ B(ω) and A ∈ B(ω), then A ∈ Fil(Γ), the filter generated by Γ, iff whenever
v : B(ω) → 2 is such that v(C) = T∀C ∈ Γ, then v(A) = T : for the forward
implication if Γ ⊂ v−1(T ) then since the latter is a filter Fil(Γ) ⊂ v−1(T ), as
a sketch of the reverse suppose A /∈ Fil(Γ); by ZL take a maximal filter Φ ⊃ Γ
with A /∈ Φ; this maximal filter will be prime, so corresponds to a v : B(ω) → 2
with v(A) =⊥, v(C) = T∀C ∈ Γ, a contradiction.

4.3 Propositional calculus: semantic entailment

We start with a countable set {p0, p1, . . . } of atomic propositions; from this we
form a set Prop of all propositions: ⊥∈ Prop (⊥6= pi∀i, if A,B ∈ Prop then
there is another element A → B ∈ Prop (this will actually be the proposition
that A implies B).

Given a valuation v : {p0, p1, . . . } → {T,⊥} we extend it to Prop by v(⊥) =⊥
and v(A→ B) =⊥ if v(A) = T, v(B) =⊥, and T otherwise.

Definition: For Γ ⊂ Prop and A ∈ Prop we write Γ � A, “semantically
entails”, just when ∀v if v(c) = T∀c ∈ Γ then v(A) = T . An A such that � A
(i.e. ∅ � A) is called a tautology.

The traditional picture is to say → is determined by its truth table
A→ B B = T B =⊥
A = T T ⊥
A =⊥ T T

;

this works essentially because B(2) ≃ the space of maps 22 → 2.
From the Boolean algebra primitives we could define a → b by ¬a ∨ b;

conversely given → and ⊥ we can define Boolean algebra by ¬a = a→⊥, a∨b =
¬a→ b (= (a→⊥) → b), a ∧ b = ¬(¬a ∨ ¬b).

4.4 Proposition calculus: syntactic entailment

We want to define a relation Γ ⊢ A to mean “there is a proof of A from Γ”;
we will in fact find Γ ⊢ A just when A ∈ Fil(Γ). We define this by giving 1)
Axioms: Γ ⊢ each of these axioms: A → (B → A), (A → (B → C)) → ((A →
B) → (A → C)), and ¬¬A → A (the ¬ being just notation, by the above). 2)
Natural stipulation: if c ∈ Γ then Γ ⊢ c 3) Rule of inference (Modus Perens or
MP): if Γ ⊢ A→ B and Γ ⊢ A then Γ ⊢ B.

“Unravelling” this definition, Γ ⊢ A iff there is a sequence A0, A1, . . . , An =
A such that for each i either Ai is an axiom or in Γ, or there are j, k < i such
that Aj = Ak → Ai (it is possible to use this as the definition of a proof).

Lemma: ⊢ A → A: by axiom 2, (A → ((A → A) → A) → ((A → (A →
A)) → (A → A)); by axiom 1, A → ((A → A) → A), so by MP (A → (A →
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A)) → (A→ A); by axiom 1 A→ (A→ A), so by MP A→ A.
Observe that if Γ ⊢ A → B then Γ, A ⊢ A → B and Γ, A ⊢ A, so by MP

Γ, A ⊢ B [Γ, A means Γ together with A; formally speaking Γ ∪ {A}].
Deduction theorem: if Γ, A ⊢ B then Γ ⊢ A → B: induction on the (length

of the) proof of Γ, A→ B: in the case B is an axiom or ∈ Γ we have Γ ⊢ B, but
Γ ⊢ B → (A → B) by axiom 1, so by MP Γ ⊢ A → B. In the case B is A we
apply the lemma Γ ⊢ A→ A. The last case is where Γ, A ⊢ D → B and Γ, A ⊢ D
and we deduce Γ, A ⊢ B; by the induction hypothesis Γ ⊢ A → (D → B) and
Γ ⊢ A → D, but by axiom 2 Γ ⊢ (A → (D → B)) → ((A → D) → (A → B)),
and so applying MP twice we have Γ ⊢ A→ B.

Evident property: If Γ, A ⊢ B and Γ ⊢ A then Γ ⊢ B; we take a proof of A
from Γ and append a proof of B from Γ and A (deleting the ocurrences of A in
the latter, so that we don’t have redundant repetition of A). A special case: if
A ⊢ B,B ⊢ C then A ⊢ C.

Lemma: ⊥⊢ A∀A: ⊢⊥→ (A→⊥) i.e. ⊢⊥→ ¬A by axiom 1; putting ¬A for
A we have ⊢⊥→ ¬¬A∀A, so ⊥⊢ ¬¬A∀A; by axiom 3 ¬¬A→ A so ¬¬A ⊢ A∀A,
so ⊥⊢ A∀A.

4.5 Soundness

Observation: The rule MP is sound, in the sense that if v(A → B) = T and
v(A) = T then v(B) = T , directly from the truth table for A→ B.

Observation: Our axioms are sound, in that v(A) = T∀T for each axiom A:
v(¬¬A → A) = T as v(¬¬A) = v(A), and use the diagonal of the truth table.
For v(A→ (B → A)), were this ⊥ we would have v(A) = T and v(B → A) =⊥
so v(A) =⊥, a contradiction; similarly for the other axiom.

Soundness theorem: If Γ ⊢ A then Γ � A: take a valuation v such that
v(c) = T∀c ∈ Γ; then by induction on (length of) proofs, if Γ ⊢ A then v(A) = T :
take a valuation v such that v(c) = T∀c ∈ Γ: for the case A is an axiom, we are
done by the second observation, for A ∈ Γ the result is true by hypothesis, and
if A has followed from an earlier B and B → A, v(B) = T and v(B → A) = T
by the induction hypothesis, so by our first observation v(A) = T .

4.6 Completeness

Completeness theorem: If Γ � A then Γ ⊢ A.
Definition: Γ is consistent if Γ 0⊥.
Clear fact: If Γ is consist and Γ ⊢ A then Γ, A is also consistent, for if

Γ, A ⊢⊥ then Γ ⊢ A→⊥, but then since Γ ⊢ A, Γ ⊢⊥ by MP.
Model existence theorem: If Γ is consistent then there is a valuation v with

v(c) = T∀c ∈ Γ; we call such a v a model of Γ (Remarks: this is the result that
Γ consistent ⇒ Γ has a model, or that if Γ 0⊥ then Γ 2⊥): By ZL take Φ a
maximal consistent set containing Γ. By maximality Φ is deductively closed,
i.e. Φ ⊢ A⇒ A ∈ Φ. Define a valuation v by v(p) = T if p ∈ Φ, ⊥ if p /∈ Φ. We
claim that ∀A, v(A) = T ⇔ A ∈ Φ: this is true for atomic propositions by the
definition of v. It is true for ⊥ since v(⊥) =⊥ and ⊥/∈ Φ. So by induction on the
structure of formulae, it is sufficient to show A→ B ∈ Φ ⇔ (A ∈ Φ ⇒ B ∈ Φ).
For the forward implication suppose A→ B ∈ Φ, then if A ∈ Φ then Φ ⊢ B by
MP so B ∈ Φ; for the reverse, if B ∈ Φ we have ⊢ B → (A→ B) and so by MP
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Φ ⊢ (A→ B) and A→ B ∈ Φ; in the case A /∈ Φ then Φ, A ⊢⊥; recall ⊥⊢ B∀B
so Φ, A ⊢ B and Φ ⊢ A→ B. Now since Γ ⊂ Φ we have v(c) = T∀c ∈ Γ.

Proof of completeness: Suppose Γ 0 A. Then Γ,¬A is consistent (for if
Γ,¬A →⊥ then Γ ⊢ ¬A →⊥ i.e. Γ ⊢ ¬¬A, but ¬¬A ⊢ A so Γ ⊢ A). So by
model existence, Γ,¬A has a model, i.e. there is a valuation with v(c) = T∀c ∈ Γ
but v(A) =⊥, so Γ 2 A.

Consequence: The question “is A provable” is decidable, for ⊢ A⇔� A, and
we can check the latter by checking all valuations on the finite number of letters
in A.

Compactness Theorem: if Γ is a set of propositions such that any finite
∆ ⊂ Γ has a model, then Γ has a model: if Γ is inconsistent, i.e. Γ ⊢⊥, then for
some finite ∆ ⊂ Γ, ∆ ⊢⊥ (as proofs are of finite length, so can use only finitely
many elements of Γ as hypotheses). So if all [finite] ∆ ⊂ Γ are consistent then
Γ is consistent; if all [finite] ∆ ⊂ Γ have models then they are consistent by
soundness, so Γ is consistent, so Γ has a model by model existence.

Application: Let (X,≤) be a poset and take our atomic propositions to be
pxy for x, y ∈ X . Consider Γ = {pxy : x ≤ y ∈ X} ∪ {¬(pxy ∧ pyx) : x 6=
y} ∪ {pxy ∧ pyz → pxz : x, y, z} ∪ {pxy ∨ pxy : x, y}. Consider ∆ ⊂ Γ finite; then
there is Y ⊂ X finite such that propositions ∈ ∆ mention only elements of Y .
Any finite partial order extends to a total order (by induction); applying this
to (Y,≤) gives a model for ∆. So all finite subsets of Γ have a model, so Γ has
a model, which gives a total order on X extending ≤.

An aside: why is compactness so called? Write Γ � ∆ for: whenever v is a
valuation making all of Γ true, it makes one of ∆ true. Note Γ � ∆ iff Γ,¬∆ �
(by which we mean �⊥). Equivalently Γ � ∆ iff � ¬Γ, δ. Now consider the
valuations v : {p0, . . . } → {T,⊥} = 2 as the points of a space (2N); consider the
propositions A as basic open sets in a topology where v ∈ A iff v(A) = T . Then
� Γ says that Γ covers the space, and the compactness theorem becomes: if ⊢ Γ
then ⊢ ∆ for some finite ∆ ⊂ Γ, i.e. that the space is compact.

Another aside: we could have shown model existence by enumerating p0, p1, . . .
and adding them to Γ just when they are consistent with what we already have.

5 Predicate Calculus

5.1 Terms and equational logic

A signature Σ consists of a set of function simbols f with associated arities
#f ∈ N; constants are of arity 0. E.g. for groups we have e (of # = 0), · (of
# = 2) and −1 (of # = 1).

Take a (countable) set V of variables, then we define the set Terms(V ) of
terms in V from the signature Σ by recursion: each x ∈ V is a term, and if
f ∈ Σ with #f = n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

Write Terms(~x) for the terms whose variables lie in ~x = x1, . . . , xn. Terms(∅)
are the closed terms; if there are no constants then there are no closed terms.
A typical term might look like e.g. ((x · y−1) · (zz−1)−1)−1 in groups.

A structure for a signature σ consists of a set A and, for each f ∈ Σ with
#f = n, an n-ary function Jf(~x)K : An → A (the reader is entitled to call this
just f if they do not find doing so confusing [arguably I should have done this]).
We can extend this, evidently, to an interpretation of terms t ∈ Terms(~x); then
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we have Jt(~x)K : An → A; we write this as ~a ∈ An 7→ Jt(~a)K (we tacitly extend
the signature with constants ∀a ∈ A) (Note we allow “dummy” variables; t need
not depend on all the variables x1, . . . , xn).

Equational logic is concerned with deductions between equations. We take
a relation symbol of =, and equations are t = s where t, s are terms. Given a
structure A we say A � t = s, i.e. t = s is true in A, just when Jt(~x)K = Js(~x)K
as functions An → A, where ~x includes all the variables in s, t (and possibly
more; this is irrelevant).

Note: If there are no constants in Σ, then A = ∅ (with the inevitable choice
of interpretation) is a valid structure. For it, A � t = s∀t, s.

Let Γ be a set of equations and t = s an equation in Σ. We say Γ � t = s
just when ∀ structures A for Σ, if A � u = v∀u, v ∈ Γ then A � t = s.

Aside: this is a logic of equations though of as universally quantified, i.e.
t = s really means t = s∀x1, . . . , xn, and so on.

Example: the familiar equations x · (y · z) = (x · y) · z, x · x−1 = e; note that
in the second we have different numbers of variables on both sides, so we must
take a “dummy” variable on the right hand side.

Equational logic is given by the axiom t = t and rule: if t = s and u(s) = v(s)
then u(t) = v(t) (the lecturer writes A and B ⇒ C as AB

C
. u(s) = v(s) means

u(x)[ s
x
] = v(x)[ s

x
], (this is notation for “u(x) with s substituted in place of x”,

etc.). Special cases: if t = s and s = s then s = t, since s[ s
x
] = x[ s

x
]. If t = s

and s = r then t = r.
Inductively from the easy consequence that if t1 = s1, . . . , tn = sn then

f(t1, . . . , tn) = f(s1, . . . , sn) (†), we only actually need to assume the axiom for
the case when t is a variable.

If Γ is a set of equations and t = s an equation in some Σ, we say Γ ⊢ t = s
just when t = s follows from Γ using our axiom and rule.

Soundness is clear: if Γ ⊢ t = s then γ � t = s, by induction on the length
of the proof.

Completeness theorem: If Γ � t = s then Γ ⊢ t = s: let ~x be the variables
in t = s. Consider Terms(~x) factored out by the equivalence relation u ∼ v if
Γ ⊢ u(~x) = v~x). Define for each f ∈ Σ, JfK([t1], . . . , [tn]) = [f(t1, . . . , tn)] (the
brackets here have their normal meaning of [x] is the equivalence class of x);
this is well defined by (†). Now in this structire all the equations of Γ hold, so
if Γ � t = s then t = s holds and so Γ ⊢ t = s.

Γ ⊢ t = s,Γ � t = s both hold just if t = s is true when evaluated at the
elements [x1], . . . , [xn] in the free model for Γ generated by {x1, . . . , xn}.

Example: the group axioms together with x2 = e ⊢ xy = yx; this is the
case because the free group on two generators a, b say, together with x2 = e, is
{e, a, b, ab} = C2 × C2.

Some of the notation in the previous section confused some members of
the lecture audience; u[ s

x
] denotes the result of substituting s for x in u, JfK :

An → An is an interpretation of the function symbol f , Jt(~x)K : An → An is an
interpretation of the term t, where the variables ~x = x1, . . . , xn include all the
variables of t (but possibly also some dummy variables). We write Jt(~x)K(~a) =
Jt(~a)K for ~a ∈ An. Finally [t(~x)] is the equivalence class of a term with variables
in the free structure for some equations Γ; we have JfK([t1(~x)], . . . , [tn(~x)]) =
[f(t1, . . . , tn)(~x)] (of course this is the only possible way to interpret what we
have written on the LHS, but this point can be confusing).
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5.2 The Language of the Predicate Calculus

A signature for a first order language consists of 1) a functional signature, i.e. a
set of function symbols f with arities #f ∈ {0, 1, 2, . . .} 2) a relational signature,
a set of relation symbols R with arities (we almost never see #R = 0; see later)
and 3) a special relation symbol =, of arity 2.

Examples: 1) No function symbols and one (non-=) relation symbol R,
#R = 2, e.g. R =< for posets, R = E(·, ·) the edge relation for a graph, R =∈
for set theory (see later). 2) 0, 1,+,×, <, . . . , e.g. for arithmetic, algebra, etc.

Recall: the terms are defined recursively by: if x ∈ V is a variable then x is
a term, if #f = n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

Formulae of the language: If R is a relation symbol (including =) of arity
n and t1, . . . , tn are terms then R(t1, . . . , tn) is an atomic formula (Note that
this depends very much on what the terms are; e.g. in example 1 the atomic
formulae (up to change of variables) are R(x, y), R(x, x), x = y and x = x;
in example 2 e.g. (1 + 1)(xy) < xx + yy is an atomic formula). The atomic
formulae are all formulae, ⊥ is a formula and if φ, ψ are formulae then (φ→ ψ)
is too. Finally if x is a variable and φ a formula then ∀xφ is a formula.

The new feature here is ∀x; in ∀x we say that x is bound. E.g. in a poset,
∀xy ≤ x says something about y, but says nothing about x (wheras y ≤ x
says something about both x and y). This is the same as ∀zy ≤ z; a change of
bound variable (which is called an α-equivalence for historical reasons) makes no
difference. But this is not the same as ∀yy ≤ y; we can change bound variables
so long as we avoid capture. ∀yz ≤ y says the same thing about z as ∀xy ≤ x
says of y (a possibly useful analogy is with

∫
f(x, y)dx, which is a function of y

and not of x; it =
∫
f(z, y)dz and is the same function of y as

∫
f(y, z)dy is of

z.
We define the free variables FV (φ), FV (t) of formulae and terms: for terms,

FV (x) = {x}, FV (f(t1, . . . , tn)) = FV (t1) ∪ · · · ∪ FV (tn). For atomic for-
mulae FV (R(t1, . . . , tn)) = FV (t1) ∪ · · · ∪ FV (tn); for other formulae FV (⊥
) = ∅, FV (φ → ψ) = FV (φ) ∪ FV (ψ), FV (∀xφ) = FV (φ) \ {x} (Examples:
FV (∀x ⊥) = FV (∀xx = x) = ∅, FV (∀xx < y) = {y}, FV (x < y → ∀x¬x =
x) = {x, y} (we would usually write this last term as e.g. x < y → ∀z¬z = z to
be less confusing)).

Recall that we get all the Boolean operations ∧,∨,¬ from → and ⊥, and we
have normal forms which arose from the de Morgan laws and the cancellation law
(that ¬¬A,A are equivalent). In particular, A∨B is equivalent to ¬(¬A∧¬B).
By analogy we define ∃xφ(x) to mean ¬(∀x(¬φ(x))).

5.3 Modules and Satisfaction

Let L be a first order language. A structure M for L consits of a set M
together with: i) for each function symbol f with arity n, an n-ary function
JfK : Mn → M ii) for each relation symbol R with arity n, an n-ary relation
JRK ⊂ Mn or JRK : Mn → {T,⊥} (Note we shall always take the = symbol to
mean “honest” equality in M, i.e. = is {(a, a) : a ∈ M} ⊂ M2.

Recall that we extend the interpretation of a function symbol to an inter-
pretation of terms with possibly dummy variables: Jt(~x)K : Mn → M. We
extend this to an interpretation Jφ(~x)K of a formula φ where the variables ~x =
x1, . . . , xn include FV (φ) (and possibly some dummies) by ~a ∈ JR(t1, . . . , tk)K iff
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(Jt1(~a)K, . . . , Jtk(~a)K) ∈ JRK ⊂ Mk (or JR(t1, . . . , tk)K = JRK(Jt1(~a)K, . . . , Jtk(~a)K)),
J⊥K(~a) =⊥, Jφ→ ψK(~a) = T iff Jφ(~a) = T implies Jψ(~a)K = T . J∀xφ(x)K(~a) = T
iff ∀c ∈ MJφ(c,~a)K = T . This is sometimes called Tarski’s definition of truth;
in philisophy it is sometimes talked about as “the grass is green” is true if and
only if the grass is green.

For a formula φ with FV (φ) ⊂ ~x in a language L and a structure M for
L, we have an interpretation Jφ(~x)K ⊂ Mn. We say that M satisfies φ(~a),
M � φ(~a), just when ~a ∈ Jφ(~x)K.

If Γ is a set of formulae with free variables ⊂ ~x then we say that ~a ∈ Mn

satisfies all Γ when M � γ(~a)∀γ ∈ Γ. We are interested particularly in the case
where ~x is empty so Γ consists of sentences, i.e. FV (γ) = ∅∀γ ∈ Γ.

Note: If γ is a sentence then JγK is either T or ⊥ (i.e. T ∼ M0 = 1,⊥∼ ∅ ⊂
M0).

We have a general notion of semantic entailment: Take Γ a set of forumlae
and φ a formula with all the free variables ⊂ ~x. Then Γ semantically entails φ
Γ � φ just when for any structure M and ~a ∈ Mn, if M � γ(~a)∀γ ∈ Γ then
M � φ(~a). A nuance: unless ~x is empty, the empty structure (which exists
just when there are no constants) need not be considered; however, in the case
where “everything” is a sentence, which we are most interested in, the empty
model does need to be considered.

Examples: 1) ∀x, y, zx·(y ·z) = (x·y)·z (∀x, y, z is just notation for ∀x∀y∀z),
∀xx · e = x ∧ e · x = x, ∀xx · x−1 = e ∧ x−1 · x = e: this holds exactly in a
group. We call this set of sentences Groups. 2) Groups together with x 6=
e, x2 6= e, x3 6= e, . . . (xn is just notation, with the obvious meaning). This will
be interpreted in groups with an element of infinite order. Note that we are not
saying ∃x : x 6= e∧x2 6= e∧ . . . ; we cannot do this, since we do not have infinite
conjunctions. 3) ∀x, yx ≤ y ∧ y ≤ x ⇒ x = y, ∀x, y, zx ≤ y ∧ y ≤ z → x ≤ z -
posets. 4) ∀x¬E(x, x), ∀x, yE(x, y) → E(y, x) - graphs.

When we have a class of structures for L such that there is a set of sentences
Γ such that this class is exactly the set of all structures in which Γ is true, we
say the class is axiomatizable in first order logic.

Some structures in mathematics seem canonical: 1) (N, 0, 1, S,+,×). PA
(Peano arithmetic) is the collection of sentences: ∀x0 6= Sx, ∀x, ySx = Sy →
x = y, ∀xx+0 = x, ∀x, yx+Sy = S(x+y), ∀xx×0 = 0, ∀x, yx×Sy = x×y+x,
and ∀~x = x1, . . . , xn ((φ(0, ~x) ∧ ∀yφ(y, ~x) → φ(Sy, ~x)) → ∀yφ(y, ~x)). But PA
(and its consequences) are not the collection of all things true in arithmetic; in
particular PA is incomplete, i.e. there are φ such that PA neither entails φ nor
¬φ.

5.4 Applications of completeness and compactness

There is a notion of proof of φ from Γ (finitely, as for the propositional calculus),
and we have analagous theorems: Γ ⊢ φ (disregarding empty model issues for
now):

Completeness theorem: If Γ � φ then Γ ⊢ φ
Model existence: If Γ 0⊥ then Γ has a model
Compactness theorem: If Γ is such that all finite ∆ ⊂ Γ have models then

so does Γ
The completeness theorem extends to say that if L is countable then Γ will

have a countable model - and if it is denumerable then there are models of
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arbitrarily large cardinality (see later).
Application: Completeness and decidability. Γ is complete iff ∀ sentences φ,

Γ ⊢ φ or Γ ⊢ ¬φ. If we can computably enumerate Γ then the notion of proof
gives a way to generate consequences computationally, and so we can effectively
decide whether φ follows from Γ or not: generate consequences until either φ or
¬φ “turns up” (of course this assumes Γ is consistent).

Example: Let Γ be {∀x1, . . . , xn∃y : x1 6= y ∧ · · · ∧ xn 6= y} i.e. ∀~x∃y :∧n
i=1 xi 6= y (call this proposition ηi for later). Suppose Γ is not complete.

Then we have φ such that Γ, φ and Γ,¬φ are both consistent. Each of them has
a countable model, but any two such are isomorphic, so we cannot have φ true
in one and false in the other.

Note: for any M, {φ|M � φ} is a complete theory.
Examples: Let DLO (dense linear orders) be total orders plus ∀x, yx <

y → ∃z : x < z < y,¬∃x : ∀yx ≥ y,¬∃x : ∀yy ≤ x. In fact this has (up to
isomorphism) a unique countable model (Q, <).

ACF0 is the theory of algebraicly closed fields of characteristic 0. Forc any
κ > ω there is (up to isomorphism) a unique model of this cardinality. It follows
that this theory is complete and so decidable.

Application: Axiomatizability: The class of finite groups is not axiomatiz-
able: suppose Γ was such a theory. Consider Π = Γ ∪ {ηn : n = 1, 2, . . .} where
ηi is as above. Any finite subset ∆ of Π contains only finitely many ηn, so if
m > all the ns in question then Cm is a model of ∆. So by compactness Π has
a model, an infinite finite group, a contradiction.

Application: Existence of non-standard models. Let Th(N) be the collec-
tion of all sentences true in (N, 0, 1, s,+,×) (s being successor). It is complete
and consistent, but very complicated - more so than PA, and even PA is not
“decidable” - there is no algorithm for deciding PA � φ. Extend the language
with a new constant ∞. Considre Γ = Th(N) ∪ {∞ 6= 0,∞ 6= 1,∞ 6= 2, . . . } (of
course 2 is just notation for s(1), etc.); any finite ∆ ⊂ Γ contains finitely many
statements “∞ 6= n”, so if N is greater than all the n for which ∞ 6= n appears
in ∆, ∆ has a model (namely N where ∞ is interpreted to be N). So Γ has a
model, a non-standard model of true arithmetic.

5.5 Proofs in the predicate calculus

Generally we have proofs with formulae with free variables. A way to think
about this is to assume the variables have been “declared”, e.g. “let p be a
prime number”. So there is a tacit assumption that our structure is non-empty.
For this course (the notation is not standard) we will write Γ ⊢ φ if φ follows

from Γ assuming Γ non-empty, and Γ
0

⊢ φ when we also consider the empty case
(this only makes sense for sentences) (The formal notation for these would be
~x

⊢ and ⊢ respectively.
Axioms: φ → (ψ → φ), (φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)),¬¬φ → φ

as before. ∀xx = x, ∀x, yx = y → (φ → φ[ y
x
]) (where this is “substitution

without capture”; if y appears elsewhere in φ we must change that before sub-
stituting). ∀x(φ → ψ) → φ → (∀xψ) so long as x /∈ FV (φ). ∀xφ → φ[ t

x
] ([for

any term t] again without capture). All the axioms other than the last are true

for ⊢ and
0

⊢ wherever they make sense; the last is always true for ⊢ but only
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true for
0

⊢ as long as t and ∀xφ(x) are closed.
Rules of inference: φφ→ψ

ψ
(MP as before). Suppose that x is not free in any

assumption in the proof of φ(x), then φ(x)
∀xφ(x) (this is called Generalization or

Gen; it introduces
0

⊢ when it can). We say Γ ⊢ φ (or Γ
0

⊢ φ) just when there is
a sequevce φ1, . . . , φn = φ with each φ1 either an axiom, in Γ or following from
earlier φj , φk by the rules of inference.

Nuances: ⊢ ∀x ⊥→⊥ (=⊥ [ y
x
]), but this does not hold for

0

⊢. We say that Γ

is consistent when
(0)

0 ⊥ (i.e. Γ
0

0⊥ if Γ [consists of] sentences, Γ 0⊥ otherwise).
Γ 0⊥ means Γ is consistent with the assumption ∃x : x = x, so ∀xx 6= x is
consistent in a language with no constants.

We have the usual propositional calculus theorems. Write
·
⊥ to mean a

theorem holds for both ⊢ and
·
⊢.

Simple ones: Deduction theorem: Γ, φ
·
⊢ φ ⇒ Γ

·
⊢ φ → ψ. Soundness

theorem: If Γ
·
⊢ φ then Γ

·
� φ.

Lemma: Suppose ∃xφ(x) is consistent with Γ (i.e. {∃xφ(x)}∪Γ is consistent).
Then so is φ(~c) where ~c is a new constant: suppose not. Then Γ, φ(~c) ⊢⊥; replace
c by some free (new) variable x, then Γ, φ(x) ⊢⊥ so Γ ⊢ ¬φ(x) (by the deduction

theorem), so Γ
(0)

⊢ ∀x¬φ(x) so Γ,¬∀x¬φ(x) ⊢⊥ i.e. Γ,¬∃xφ(x) ⊢⊥.

The completeness theorem: if Γ
(0)

� φ then Γ
(0)

⊢ φ. As in the propositional
calculus, this follows from:

Model existence: If Γ
(0)

0⊥ then Γ has a model (i.e. Γ 1⊥ [presumably there
should be a (0) there, but I don’t care enough to check]), which also proves the
compactness theorem.

The remainder of this section (5) is nonexaminable.
Background: A substructure N →֒ M of a structure M (for some language)

is given by an N ⊂ M [some of my earlier M should have been M , but the
lecturer was not terribly clear in his distinctions between them] closed under the
defined functions (and so with corresponding interpretations JfKN = JfKM |N :
Nn → N) and with the restricted interpretation of the relation symbols JRKN =
JRKM ∩Nn.

1) Suppose φ(~x) is a QF (quantifier free) formula. Then if N →֒ M and
~a ∈ Nn¡ then N � φ(~a) iff M � φ(~a) (aside: N →֒ M is said to be an elementary
embedding if this holds for all φ. This is terrible notation, but sadly well
established). 2) Suppose ∀~yφ(~x, ~y) is a formula, φ QF. Then M � ∀yφ(~a, ~y) ⇒
N � ∀yφ(~a, ~y). 3) Suppose M is a structure for L. Then M has a minimal
substructure M0 by M0 = the set of JtKM for closed terms t of L. Examples:
The minimal substructure of R as an ordered field is Z (multiplicative inversion is
not a function symbol, since we can’t apply it to 0), the minimal substructure of
any graph is the empty graph. 4) Let M be a structure. Define the theory of M
Th(M) to be the set of sentences φ with M � φ. This is consistent, deductively
closed, and complete; φ → ψ ∈ Th(M) ⇔ (φ ∈ Th(M) ⇒ ψ ∈ Th(M)).
5) If in addition M = M0 then ∀xφ(x) ∈ Th(M) iff φ(t) ∈ Th(M)∀ closed
[terms] t (†). 6) If T is a collection of sentences in L satisfying † then there
is a model for T , M (with M = M0): set M to be the quotient of the set
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of closed terms t by the relation ∼ where t ∼ s iff t = s ∈ T ; then define
JfK([t1], . . . , [tn]) = [f(t1, . . . , tn)] and similarly JRK (considered as a function
Mn → {T,⊥}).

Given Γ consistent in L, we extend to Γ̄ with the properties in 6), in a
language L̄, with the property that ∀xφ(x) ∈ Γ̄ iff φ(~c) ∈ Γ̄∀ constants c (equiv-
alently, ∃xφ(x) ∈ Γ̄ if φ(c) ∈ Γ̄ for some c: first we take a maximal consistent
extension Γ1 of Γ, then for all sentences ∃xφ(x) ∈ Γ1 add a constant cφ and φ(cφ)
giving Γ̄1 in a new language L1; this Γ̄ is still consistent by an earlier lemma.
Repeat, obtaining Γ2, Γ̄2 in L2 and so on, then let Γ̄ =

⋃
i Γ̄i in L̄ =

⋃
i Li and

we are done.

6 Formal set theory

6.1 The hierarchy V
α

of pure sets

Define V : On →“Sets” by recursion: V0 = 0 (the empty set ∅), Vα+1 = P (Vα,
Vλ =

⋃
β<λ Vβ for λ a limit.

Early stages: V0 = 0, V1 = {0}, V2 = {0, {0}}, V3 = {0, {0}, {{0}}, {0, {0}}}.
The cardinalities are 0 for V0, 20 = 1 for V1, 21 = 2 for V2, 22 = 4 for V3, 24/16
for V4, 216 = 65536 for V5 and so on.

Every set is a set of sets; this is what is meant by pure sets.
Definition (important): A (pure) set x is transitive just when z ∈ y ∈ x ⇒

z ∈ x (∀y, z).
Two equivalent interpretations: 1) {z : ∃y ∈ x : z ∈ y} = ∪{y : y ∈ x} = ∪x.

So x is transitive iff ∪x ⊂ x.
Lemma: Suppose {xi : i ∈ I} is an indexed family of transitive sets. Then⋃

i{xi : i ∈ I} is transitive, either obviously, or with our bare hands, or because
∪

⋃
i{xi : i ∈ I} =

⋃
i{∪xi : i ∈ I} ⊂

⋃
i{xi : i ∈ I}.

2) z ∈ y ∈ x⇒ z ∈ x is the statement that y ∈ x⇒ y ⊂ x. So x is transitive
iff x ⊂ Px.

Lemma: If x is transitive so is Px: if x ⊂ Px then Px ⊂ PPx.
Proposition: For all α, Vα is transitive, by induction on α: 0 is transitive,

and the two lemmas give the induction.
Proposition: For α ≤ γ we have Vα ⊂ Vγ , by induction on γ ≥ α: for γ = α,

Vα ⊂ Vα. For γ = λ > α a limit, Vα ⊂
⋃
β<λ Vβ = Vλ. If Vα ⊂ Vγ , then as Vγ is

transitive, Vα ⊂ Vγ ⊂ P (Vγ) = Vγ+1.
Let V =

⋃
α∈On Vα. Just as On is not itself an ordinal, V is not itself a pure

set (= element of some Vα).
We shall axiomatize the properties of (V,∈). Sets=members of V ; if x ∈ V

then it represents {y ∈ V : V � y ∈ x}. We also consider classes, subcollections
of V defined (with parameters from V ).

6.2 Axioms for Set Theory

The official language has (in addition to =) just one binary relation symbol
∈; for practical purposes we need “definitional extensions”: 1) Suppose L is a
language, T a theory and φ(~x) a formula. Add to L a relation symbol R, and
to T ∀~xR(~x) ↔ φ(~x) (x ↔ y being notation for x → y ∧ y → x), forming L′

and T ′. Then (†) T ′ proves for any formula in L′ that it is equivalent to a
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formula in L, and T ′ proves in L just what T does, so R is harmless notation.
2) Suppose LT are as above and φ(~x, y) a formula such that T ⊢ ∀x∃!yφ(~x, y),
i.e. T ⊢ ∀~x∃yφ(~x, y)∧∀~x, y, y′(φ(~x, y)∧φ(~x, y′) → y = y′). Add to L a function
symbol f(~x) and to T ∀~x, y(f(~x) = y ↔ φ(~x, y)). Then † again holds.

“Basic axiom”: sets are determined by their members: Extensionality: ∀x, y(∀zz ∈
x↔ z ∈ y) → x = y.

Set existence axioms: Empty set: ∃z : ∀y¬y ∈ z. By extensionality, such
a z is unique and so we can introduce a constant 0 and the axiom becomes
∀y¬y ∈ 0. Pairing: ∀x, y∃z : ∀ww ∈ z ↔ w = x ∨ w = y; by extensionality for
fixed x, y such a z is unique and so we can introduce a function symbol {, } and
the axiom becomes ∀x, y∀ww ∈ {x, y} ↔ w = x ∨w = y.

Pairing enables us to code the notion of an ordered pair: we set (x, y) =
{{x}, {x, y}} where {x} = {x, x}. The lecturer claims that of course an ordered
pair is still a mathematical primitive, and “by rights” should be axiomatized;
this is just a method for coding the notion in set theory; to say this is what an
ordered pair “really is” is a bit silly.

Lemma: (x, y) = (u, v) iff x = u and y = v; the reverse implication is trivial.
For the forward, we have {{x}, {x, y}} = {{u}, {u, v}}; either {x} = {u, v} in
which case x = u = v so the RHS is {{u}} so {x, y} = {u} so y = u = v and
x = u, y = v as required, or {x, y} = {u} and the same argument holds, or
{x} = {u} and {x, y} = {u, v}, so x = u and either y = u and we argue as
before, or y = v and we have the result.

Unions: ∀x∃z : ∀ww ∈ z ↔ ∃y : w ∈ y ∧ y ∈ x; by extensionality as always
we can introduce a function symbol ∪ and ∀x∀ww ∈ ∪x ↔ ∃yw ∈ y ∧ y ∈ x.
We can then define x ∪ y = ∪{x, y}.

(Our axioms thus far are absolute, not that we are defining the notion in
this course. The next is “less safe”)

Power set: ∀x∃z∀yy ∈ z ↔ (∀ww ∈ y → w ∈ x). Introduce a relation
symbol y ⊂ x for ∀ww ∈ y → w ∈ x, then a function symbol P and our axiom
is ∀x(∀yy ∈ Px↔ y ⊂ x).

Separation: let φ(y, ~w) be a formula. ∀~w∀x∃z∀yy ∈ z ↔ y ∈ x ∧ φ(y, ~w).
By extensionality we can introduce a function symbol {y ∈ x : φ(y, ~w)} (this
notation is slightly confusing as y “isn’t really there”; it’s not acted on by
the function, but is rather being used as a dummy), and our axiom becomes
∀~w, xy ∈ {y ∈ x : φ(y, ~w)} ↔ y ∈ x ∧ φ(y, ~w).

Conceptual explanation: let φ(y, ~w) be a formula and suppose ~a are sets
i.e. in V . Then {y : φ(y,~a)} is a class; it might be (represented by) a set, e.g.
{y : y 6= y}“ =′′ 0, and it might not, e.g. {y : y = y} = V . {y : φ(y, ~w)} is
a (paramaterized) class. Separation says that if x is a set and A a class then
x ∩A is a set.

Example: For x, y sets, x × y = {(a, b) : a ∈ x, b ∈ y} is a class. Consider
x ∪ y = ∪{x, y}, which has elements of the form a or b. Then P (x ∪ y) con-
tains elements of the form {a}, {a, b}, . . . , so PP (x ∪ y) contains elements like
{{a}, {a, b}}. So x× y = PP (x ∪ y) ∩ x× y, which is a set by separation.

Axiom of infinity: set Sx = x ∪ {x} (= ∪{x, {x}}). ∃z : 0 ∈ z ∧ ∀yy ∈
z → Sy ∈ z. This is not unique; however, with separation, we can find a
unique minimal such: say that z is a (0, S)-algebra if 0 ∈ z ∧ ∀y ∈ zSy ∈ z
(∀x ∈ uψ is notation for ∀xx ∈ u→ ψ; ∃x ∈ uψ means ∃xx ∈ u ∧ ψ). Consider
A = ∩{z : z is an (0, S) algebra}; this is a class. The axiom gives us some (0, S)
algebra z0; we can consider by separation z0 ∩ A, which is A, and A is a (0, S)
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algebra since all the properties hold for intersections. So A is the minimal (0, S)
algebra.

What is A? 0 ∈ A, S0 = 0∪ {0} = {0} =: 1 ∈ A,S1 = {0}∪ {1} = {0, 1} =:
2 ∈ A, S2 = {0, 1, 2} =: 3 ∈ A and so on, so A is ω. With separation the axiom
becomes: 0 ∈ ω ∧ ∀y ∈ ωSy ∈ ω, ∀z0 ∈ z ∧ ∀y ∈ zSy ∈ z → ω ⊂ z; this second
half is the principle of mathematical induction.

Axiom of replacement: intuitively, the image of a set under a definable function (with parameters),
which we shall call a Function, is a set. The statement (actually an axiom
scheme) is: for any formula φ(x, y, z)∀z∀x∃!yφ(x, y, z) → ∀u∃v∀yy ∈ v ↔ ∃x ∈
uφ(x, y, z). Eqivalently, for any φ(x, y, z)∀z∀u∀x ∈ u∃!yφ(x, y, z) → ∃v∀yy ∈
v ↔ ∃x ∈ uφ(x, y, z). An alternative formulation: let F be a class. (F is a
relation if ∀z ∈ F∃x, y : z = (x, y)) F is a Function just when ∀x∃!y : (x, y) ∈ F
(We may insist that F be a relation as well; this is “neater”, but not actually
relevant). F is a Function on u if ∀x ∈ u∃!y(x, y) ∈ F . The Axiom is then (∀~z)
∀uF a function on u→ ImF is a set.

ZF (Zermelo-Fraenkel Set Theory) is the full axiom system; Z (Zermelo Set
Theory) is the same but without replacement.

6.3 Sets and Classes

In ZF, the variables denote sets; there are no variables for classes, we can talk
directly only about sets; the theory refers to classes indirectly and “class by
class”.

Remarks: 1) If x, y are sets then so is x × y. Then the set of relations
Rel(x, y) = P (x × y) is a set, and the sets of functions Fun(x, y) and partial
functions Ptl(x, y) are definable subcollections of Rel so sets by separation. The
collection of partial orders or well orders on a set x are definable subcollections of
Rel(x, x), PO(x) and WO(x), and we could define these as function symbols. A
partially ordered or well-ordered set is a pair (x,<) where <∈ PO(x) or WO(x).
The collections of these (i.e. the collection of posets and the collection of well
ordered sets) are classes. 2) If X,Y are classes (with parameters, as always)
then X × Y = {(a, b) : a ∈ X, b ∈ Y } is also a class. But we cannot continue
as in 1; {B : B ⊂ A} makes no sense in the language, we can’t use a variable
B to represent a class. We handle relations from X to Y relation by relation:
if R is a class, ∀z ∈ R∃x ∈ X, y ∈ Y : z = (x, y) says that R is a relation from
X to Y . If F is a relation from X to Y , ∀x ∈ X∃!y ∈ Y : (x, y) ∈ F says F
is a Function from X to Y . We can also take R a relation from X to X and
say that R well-orders X if (R is a total order and) ∀x 6= ∅x ⊂ X∃a ⊂ x : a is
R-minimal. This is a “safe” definition just when R is local on X in the sense
that ∀a ∈ X{b ∈ X : bRa} is a set. 3) If A is a class then PS(A) = {x : x ⊂ A}
(x ⊂ A meaning ∀y ∈ xy ∈ A is a class, the class of subsets of A (the S is for
“small”, since this only includes sets, not classes) (Aside: PS(V ) = V , and the
argument for Russell’s Paradox shows that {x : x /∈ x} is not in PS(V ) = V , i.e.
it is not a set). In the same spirit, forX,Y classes we have classes RelS(X×Y ) =
PS(X × Y ),PtlS(X,Y ) = {φ ∈ RelS(X × Y ) : ∀a ∈ domφ∃!b : (a, b) ∈ φ}. Note
that if X is a set then we have Fun(X,Y ) a class.
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6.4 Recursion theorems

Theorem 1: Let (x,<) be a well ordered set, g : x × Ptl(x, y) → y. Then there
is a unique f : x → y such that ∀a ∈ xf(a) = g(a, f |x<a). This is a single
provable sentence in Zermelo set theory (i.e. it does not use replacement).

Theorem 2: Let (x,<) be a well ordered set, G : x × PtlS(x, V ) → V a
Function. Then there is a unique f : x→ V (a set f ∈ Fun(x, V )) such that for
all a ∈ x f(a) = G(a, f |x<a) (⋆). G is “reall” a formula with paramaters ~z (so
this is a schema: for any G we can prove the result). The theorem is then that
∀~z∀(x,<)(x,<) well ordered → ∃!f : ∀a ∈ x ⋆ holds.

Theorem 3: Let (A,<) be a local well-ordered class. LetG : A×PtlS(A, V ) →
V be a Function. Then there is a unique Function F : A → V such that
∀a ∈ AF (a) = G(a, F |A<a

) (†), i.e. we have a map from Formulae(A,G) to a
Formula for F such that ∀~z((A,<) local well-ordered) ∧ (G : A×PtlS(A, V ) →
V ) → (F : A → V ) ∧ †. Uniqueness here means that if we have two such
functions, it is a provable theorem in ZF that they are equal.

Proof of theorem 3: Let φ ∈ PtlS(A, V ) be an attempt if domφ ⊂ A is a
<-initial segment and ∀a ∈ domφ φ = G(a, φ |A<a

). We can show by induction,
if φ, ψ are attempts then ∀a ∈ domφ ∩ domψ, φ(a) = ψ(a). So define F by
F (a) = b (i.e. (a, b) ∈ F ) if ∃φ: φ an attempt and φ(a) = b. It remains to prove
that F is defined on all A: if not, take a least where F (a) is not defined. F |A<a

is an attempt and can be extended to an attempt with domain A≤a by setting
a 7→ G(a, F |A<a

), so we have a contradiction.

6.5 von Neumann ordinals

Recall the idea that an ordinal is canonically represented by On<a; we will make
this happen.

Take (x,<) a well-ordered set and define by recursion (using theorem 2)
f : x → V : f(a) = {f(b) : b < a in x}. Consider Imf : 1) if y ∈ f(a) ∈ Imf
then y = f(b) for some b < a ∈ x and so y ∈ Imf . Thus Imf is a transitive
set. 2) b < a in x iff f(b) ∈ f(a) in Imf . So f : (x,<) → (Imf,∈) is an order
isomorphism, and Imf is well ordered by ∈

Definition: On = {α : α is transitive and well ordered by ∈}.
Observations: 1) If γ ⊂ α is an initial segment of α ∈ On then γ ∈ On. If

β ∈ α then α<β is α∈β = {c ∈ α : c ∈ β} = {c : c ∈ β} = β. Thus every
member of α is an ordinal. 2) Put (α,∈) (for α ∈ On) in the above recursion:
f(a) = {f(b) : b < a in α} = {f(b) : b ∈ a}. Inductively, f(a) = {b : b ∈ a} = a.
The same thing happens if we consider f : α→ β which is an order isomorphism
to an initial segment: a ∈ b in α iff f(a) ∈ f(b) in Imf . Then we deduce
inductively f(a) = {f(b) : b ∈ a} = {b : b ∈ a} = a, so order isomorphisms are
just inclusions. Recall that for any two well-ordered sets one is order isomorphic
(uniquely) to an initial segment of the other, so if αβ ∈ On either α ⊂ β or
β ⊂ α. If α ⊂ β either it is a proper initial segment and β<α = α and α ∈ β, or
α = β. So for α, β ∈ On, α ∈ β or α = β or β ∈ α. Thus On is totally ordered
by ∈.

Claim: On is a local well-ordered class under ∈. For locality, On<α = α,
a set. Let X ⊂ On be a nonempty class; pick α ∈ X ; either α is ∈-minimal
({β ∈ α : β ∈ X} = ∅), or the set α ∩X is 6= ∅, and by the well orderedness of
α we can take β ∈-minimal in α ∩X which is then ∈-minimal in X .
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6.6 The Axiom of Foundation

E.g. by T3 we have justifications for the definitions of α+β, α·β, αβ by recursion
on β ∈ On. Equally, we have justified the recursion V0 = 0, Vα+1 = P (Vα), Vλ =⋃
β<λ Vβ for λ a limit. So V : On→ (V ) the universe of sets is a Function; there

is a formula which “says” y = Vα; there is also a formula x ∈ Vα. Propositions
such as ∀αVα is transitive, ∀β ≤ αVβ ⊂ Vα are then all theorems of ZF.

Our idea was that every set should be in V =
⋃
α Vα. We need an axiom to

make this happen.
Axiom of Foundation: Suppose A 6= 0 is a nonempty class (with paramaters,

as always). Then A contains an ∈-minimal element, i.e. ∀~z(∃aa ∈ A) →
∃aa ∈ A ∧ ∀x ∈ ax /∈ A (or being more cute we can write the RHS of this as
∃a ∈ Aa∩A = 0). This says the class V is well-founded; see later. An equivalent
formulation is the axiom of ∈-induction: (∀x((∀y ∈ xφ(y)) → φ(x))) → ∀xφ(x);
the proof of equivalence is easy but nonexaminable, as it is really dull. Full ZF
is usually the system with foundation.

Theorem: It follows from the axioms that ∀x∃αx ∈ Vα: suppose not, i.e.
A = {x : ¬∃αx ∈ Vα} 6= 0. By foundation take a ∈ A ∈-minimal, then
∀x ∈ ax ∈ Vα for some α, so there is a Function x 7→ the least α such that
x ∈ Vα which is functional on a. By replacement it follows that there is a set
z ⊂ On such that ∀x ∈ a∃α ∈ z : x ∈ Vα. Let γ = sup z, then ∀x ∈ ax ∈ Vγ ,
i.e. a ⊂ Vγ and so a ∈ Vγ+1, a contradiction.

Aside: the least α such that x ∈ Vα is always a successor ordinal. So it is
more interesting to consider the previous ordinal.

Definition: The rank rk(x) of a (pure) set x is the least α such that x ⊂ Vα.
Lemma: rk(0) = 0.
Lemma: Suppose (xi : i ∈ I) is a family of pure sets. Then rk(

⋃
i xi) =

supi rk(xi) =
⋃
i rk(xi) (recall the rk(xi) are ordinals): xi ⊂

⋃
i∈I xi ⊂ Vrk(

S

i
xi)

so rk(xi) ≤ rk(
⋃
i xi)∀i and sup rk(xi) ≤ rk(

⋃
i xi). But also xi ⊂ Vrk(xi) ⊂

Vsup rk(xi) so
⋃
i xi ⊂ Vsup rk(xi) so rk(

⋃
i xi) ≤ sup rk(xi).

Recall that S(x) = x ∪ {x} and note that if α ∈ On then S(α) = α ∪ {α} =
α+ 1.

Lemma: rk(S(x)) = rk(x) + 1: x ⊂ Vrk(x) so x ∈ Vrk(x)+1 and both x, {x} ⊂
Vrk(x)+1 and so S(x) ⊂ Vrk(x)+1 and rkS(x) ≤ rk(x) + 1. Also x ∪ {x} = Sx ⊂
VrkS(x) and so x ∈ Vrk(S(x)); it follows (by the definition of Vα) than x ⊂ Vβ for
some β < rk(S(x)) so rk(x) < rk(s(x)) and rk(x)+1 ≤ rkS(x) and we are done.

Proposition: rk(α) = α, by induction on On using these lemmas.

6.7 The Recursion Theorem for V

We have a principle of ∈-induction for V , and so expect to have a corresponding
recursion theorem.

The Transitive Closure of a set x

Aside: for pure sets x ∈ Vα some α and Vα is transitive, and so x ∈ Vα ∩
⋂
{y :

y transitive,y ⊃ x} and this RHS is automatically the largest transitive set t
containing x. But for historical reasons we shall generalise (this is allegedly
more instructive):
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For a set x, define by recursion (using theorem 2) on ω, Tx : ω → V by
Tx(0) = x, Tx(n + 1) = Tx(n) ∪

⋃
Tx(n). By replacement {Tx(n) : n ∈ ω} is a

set, and taking unions, TC(x) :=
⋃
n∈ω Tx(n) is a set.

Claim: TC(x) is the least transitive set containing x. TC(x) is transitive,
since for any z ∈ y ∈ TC(x), y ∈ Tx(n) for some n so z ∈ Tx(n + 1) ⊂ TC(x).
For the least part, we need:

Lemma: Let t be transitive, t ⊃ z. Then ∪z ⊂ ∪t = t, so z ∪ (∪z) ⊂ t.
Let t ⊃ x be transitive, then by induction t ⊃ Tx(n): t ⊃ x = Tx(0), and

suppose t ⊃ Tx(n), then by the lemma t ⊃ Tx(n) ∪ ∪Tx(n) = Tx(N + 1). So we
have the claim.

Theorem: Suppose G : V ⊗ PtlS(V, V ) → V is a Function. Then there is
a unique F : V → V such that ∀a ∈ V , F (a) = G(a, F |{b:b∈a}) = G(a, F |a):
say φ is an attempt if φ ∈ PtlS(V, V ) ∧ domφ is transitive ∧ ∀a ∈ domφφ(a) =
G(a, φ |a). As ever, any two attempts φ, ψ agree on their common domain
domφ∩domψ (by induction, or else take a ∈-least in domφ∩ domψ where they
disagree, then φ(a) = G(a, φ |a) = G(a, ψ |a) = ψ(a), a contradiction. So we
can define F functional by F (a) = b (i.e. (a, b) ∈ F ) iff there is an attempt
φ with φ(a) = b. Note domF = ∪domφ so is transitive. It remains to prove
that domF = V ; suppose not, then take a ∈-least such that a /∈ domF . Then
∀b ∈ a, b ∈ domF , i.e. a ⊂ domF , a transitive set, so TC(a) ⊂ domF . (By
replacement, the image, ImF |TC(a) is a set and so) F |TC(a):= φ say, is a
set. Clearly φ is an attempt, so we can exted φ to φ̄ defined on TC({a}) by
setting φ̄(a) = G(a, φ |a). Then a ∈ domφ̄ for an attempt φ̄ so a ∈ domF , a
contradiction.

Asides: 1) If we are dealing with transitive relations we don’t need to fuss
about transitive closure. 2) We do have ∀b ∈ a∃φ : φ is an attempt with
b ∈ domφ, but we would need to use AC to pick a φ for each b ∈ a, which we
don’t want to do.

Essentially the same argument proves: suppose A is a class, R a Relation
on A which is local in the sense that ∀a ∈ A, {b ∈ A : bRa} is a set, and
well-founded in the sense that for any 0 6= X ⊂ A or 0 6= x ⊂ A (i.e. for both
classes and sets) there is an R-minimal element, i.e. ∃a ∈ X or x such that
∀b ∈ AbRa⇒ b ∈ X .

Theorem: Given G : A × PtlS(A, V ) → V a Function, there is a unique
F : A→ V with ∀a ∈ A,F (a) = G(a, F |{b∈A:bRa}).

Appendix: We can code mathematics in ZF set theory. To do the work on
cardinals or on models of the predicate calculus we should add an Axiom of
Choice: ∀xy∀y : x → y∀w ∈ y∃z ∈ xf(x) = w → ∃s : y → x : ∀w ∈ yf(s(w)) =
w. ZF with AC is usually written ZFC.

7 Models and Consistency

7.1 The Mostowski Collapse

Let A be a class and E a local well-founded relation on A. Then there is a
Function F : A → V such that F (a) = {F (b) : bEa}. Then ImF is a tran-
sitive class. Suppose further that (A,E) satisfies extensionality, in the sense
that ∀a, b ∈ A(∀c ∈ AcEa ↔ cEb) → a = b. Then F is injective, and
(ImF,E) ≃ (A,E). NOw imagin that we are considering models of (the lan-
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guage) ZF in mathematics coded in ZF(C). Then if (x,E) is such a model and
E is “really” well-founded (which is not quite the same thing as being well-
founded in the sense above, but we lack the time to explore the difference) and
the model satisfies extensionality, then (x,E) ≃ (z,∈). So we can reasonably
focus attention on models of the language which are themselves transitive sets.

7.2 Models for fragments of ZF

Example: Consider V ω (with the standard ∈). What axioms are true? 1)
Extensionality and Foundation are automatic 2) 0, {},∪ are absolute; we just
need V ω to be closed under them, which it is. 3) Power set P is not absolute;
we have to check what the power set means from the model’s point of view. For
x ∈ V ω, Px in V ω is {y ⊂ x : y ∈ V ω}; in this case this is (the usual) Px and
is in V ω, 4) Replacement has a similar subtlety, but is OK, 5) There are clearly
no infinite members of V ω; infinity fails.

Observation: Suppose infinity held. Then (V ω,∈) would be a model of
ZF, so ZF is consistent in ZF. This contradicts Gödel’s second incompleteness
theorem, assuming ZF is consistent.

[This ends the course; an excellent supplementary lecture covering the in-
completeness theorems was also given, but will not be included in these notes].
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