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This course requires the IB Cplx Anal course for concepts of cx anal fns,
isolated singularities, the argument prinzip, open mapping T etc.

A problem in cplx anal is that many “ordinary” real functions suddenly
become multivariate when we extend them to the cplx plane, for example√
, log. One possible response is to say that these functions are “not really”

multivariate but rather are defined on the wrong domain; for a given cplx
analytic fn we can consider its “best” or “natural” domain, which in this course
we take to be not necessarily an open subset of the cplx plane but often a slightly
more general object called a Riemann Surface - one definition of which is that
it is a surface on which we can do cplx anal. (We will not formally define a RS
at this stage; rather we will build up our defn as we go along). Conversely, we
can also study RS by considering those cplx analytic functions defined on it.

The recommended books for this course are listed in the schedules; sadly
no single book covers all the material (and all the books together cover much
more than is in this course); printed notes will be made available.

1 Mini-revision of cplx anal

For U ⊂ C open we define f : U → C is holomorphic or complex analytic

if limz→z0

f (z)− f (z0)

z−z0
exists (and is finite) ∀z0 ∈ U, or equivalently ∀D(a, r) ⊂ U,

f (z) =
∑∞

n=0 cn(z−a)n∀z ∈ D(a, r) (conventionally this defines a complex analytic
function while the first definition is what it means to be holomorphic, but the
two are equivalent in the spaces we are working with). By a theorem it is

also equivalent that f has a Cauchy Integral Formula: for any D(a, r) ⊂ U then

f (z) = 1
2πi

∮

|z−a|=r

f (w)

w−z dw∀z w/ |z− a| < r; as an excercise the reader should try and

find other equivalent definitions (if you find 3 you’re doing well; if you find
more than 4, tell me).

For a general set S ⊂ C (particularly the case where S is a single point), if
we say f is “holomorphic on S” we mean it is holomorphic on some open set

containing S.

1.1 Isolated zeroes

If f : U → C for U open is holomorphic. and f . 0 but f (a) = 0 then ∃ǫ > 0 s.t. f
has no zeroes on D⋆(a, ǫ); then a will be a zero of order n if f (z) = cn(z−a)n+higher
order terms.
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1.2 Finiteness principle

If K ⊂ U compact and f . 0 then f has only finitely many zeroes in K; let
z1, dots, zN be these zeroes and n1, . . . , nN their corresponding orders, then f (z) =
(z − z1)n1 . . . (z − zn)nN g(z) where g is holomorphic on K and never zero on K.

As an example, sin(πz) on D(0,N + 1
2 ) = πz(z − 1)(z + 1) . . . (z − N)(z +

N)gN(z); in fact it turns out that as Euler showed in 1742 we can write sin(πz) =

πz
∏∞

n=1

(

1 − z2

n2

)

.

For f : D⋆(a, r) → C holomorphic with an isolated singularity at a we have

a Laurent expansion f (z) =
∑∞

n=−∞ cn(z − a)n where cn =
1

2πi

∫

|z−a|=s

f (z)

(z−a)n+1 dz (for

s < r); this expansion is valid for z ∈ D⋆(a, s).
∑−1

n=−∞ cn(z − a)n is called the
principal part; the singularity is a removable singularity if cn = 0∀n < 0, a pole
of order N if c−N , 0 but cn = 0∀n < −N, and an essential singularity otherwise.

We define f is meromorphic on an open U ⊂ C if at each z ∈ U f is

holomorphic or has a pole. If K ⊂ U compact and f meromorphic then f has
only finitely many poles in K.

“partial fractions”: if f is meromorphic on an open U ⊂ C, K ⊂ U is compact
and w1, . . . ,wM are all the poles of f in K, then f (z) = P1( 1

z−w1
)+ · · ·+PM( 1

z−wM
)+

g̃(z) where each P j is a polynomial without constant terms and g̃ is holomorphic

on K. For example, π2

sin2(πz)
on D(0,M + 1

2 ) =
∑M

n=−M
1

(z−n)2 + gM(z); in fact it can

be shown that π2

sin2(πz)
=

∑∞
n=−∞

1
(z−n)2 .

Factorization: if f : U → C is meromorphic and K ⊂ U compact, z1, . . . , zN

are the zeroes in K with respective orders n1, . . . , nN and similarly w1, . . . ,wM

the poles of orders m1, . . . ,mM then f (z) =
(z−z1)n1 ...(z−zN)nN

(z−w1)m1 ...(z−wM)mM
ğ(z) where ğ is holo-

morphic and never zero on K.
We let f (a) = ∞mean f has a pole at a; this is just notation.

1.3 Proposition

Let f have an isolated singularity at a, then f has a pole at a of order ≤ m iff
| f (z)| ≤ M

|z−a|m for z near a.
Zero is in some sense “not really special”; we could replace zero with any

constant in all our theorems, and as long as we did this consistently they would
all remain valid; this leads us into:

1.4 Local Structure of Holomorphic Maps

For f : D(z0, r) → C holomorphic and f (z0) = w0 we define that f takes the
value w0 with multiplicity n at z0 iff f (z − w0) has a zero of order n at z0; we

write v f (z0) = n [this v should look funny, like -v-], the valency of f at z. It turns

out that this is in some sense preserved if we slightly perturb the point.
Notation: For a ∈ C, r > 0, D(a, r) is the open disc, D⋆(a, r) the punctured

(open) disc, D(a, r) the closed disc, and γ(a, r) the contour t 7→ a+ reit, 0 ≤ t ≤ 2π.
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1.5 Local Mapping Theorem

Let f : D(z0, r) → C be holomorphic with f (z0) = w0, v f (z0) = n. Then ∃ǫ >
0, δ > 0 such that for w ∈ D⋆(w0, δ) the equation f (z) = 0 has exactly n solutions
z in D⋆(z0, ǫ), and the valency is 1 at each of these.

Corollary: We get the converse “for free”: for f : D(z0, r)→ C holomorphic
with f (z0) = w0, if ∃ǫ > 0, δ > 0 such that for w ∈ D⋆(w0, δ) the equation f (z) = 0
has exactly n solutions z in D⋆(z0, ǫ), and the valency is 1 at each of these, then
the valency of f at z0 must be n because this is the only value it could take.

The proof of the theorem: we take ǫ > 0 such that on D⋆(z0, 2ǫ), f (z) , w0 and
f ′(z , 0); we satisfy the first condition by isolated zeroes applied to f (z)−w0, and
the second by continuity if f ′(z0) , 0 or isolated zeroes applied to f ′(z) if not.
Set δ = min|z−z0=ǫ | f (z)−w0; we have δ > 0 by isolated zeroes. Let w ∈ D⋆(w0, δ),
then f (z)−w = ( f (z)−w0)+ (w0−w); if |z− z0| = ǫ then |w−w0| < δ ≤ | f (z)−w0|.

Now we use Rouché’s theorem: f (z)−w0 and f (z)−w have the same number
of zeroes (counted with multiplicity) in D(z0, ǫ), but since f ′(z) > 0 these are all
simple zeroes so there are n distinct zeroes.

We can also generalize this result to poles; see questions 1 and 5 on the first

example sheet for this course.
Recall the Weierstrass-Casorati Theorem (without proof in this course): If

f : D⋆(a, r) → C is holomorphic and a an essential singularity, then ∀w ∈ C∃ a
sequence zn → a such that f (zn)→ w; this result is useful for the example sheet.

We define that for open U ⊂ C the map f : U → C is biholomorphic or

a conformal equivalence if f is holomorphic and has a holomorphic inverse

f−1 : f (U)→ U.

1.6 Inverse Function Theorem

Suppose f : U → C is holomorphic, z0 ∈ U, f ′(z0) , 0, then ∃ǫ > 0 such that
f : D(z0, ǫ) → f (D(z0, ǫ)) is a conformal equivalence: sine f ′(z0) , 0, v f (z0) =

1 ∴ f is 1:1 on D(z0, ǫ) for some ǫ > 0; on this disc f−1 is well defined, and
it is furthermore continuous by the open mapping theorem (use the topolog-
ical definition of continuity). If we assume the result from question 3 on the

first example sheet for this course, then f−1(w) = 1
2πi

∮

γ(z0,ǫ)

z f ′(z)

f (z)−w dz. Then we

change variables: let ζ = f (z), then dζ = f ′(z)dz, z = f−1(ζ); then the above

is 1
2πi

∫

f (γ(z0,ǫ))

f−1(ζ)

ζ−w dζ, so f−1 has a Cauchy Integral Formula, and is therefore

holomorphic as required.

1.7 Remarks

( f−1)′(w0) = 1
f ′(z0)

1.8 Corollary

If φ : U → φ(U) is holomorphic and 1:1 then φ−1 : φ(U → U is holomorphic,
by the broof of the inverse mapping theorem or the local mapping theorem. If
U ⊂ C is open we can equally well use z or φ(z) coordinates for the points of
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U; any holomorphic function on U corresponds to one on π(U) by composition
with φ−1, and vice versa.

So, if we have a holomorphic f : U → V and conformal equivalences
u : U → Ũ, v : V → Ṽ then f̃ = v ◦ f ◦ u−1 is an alternative expression for the
same map; f̃ is holomorphic if and only if f is. This raises a couple of questions:

The numerical values of the function differ between f , f̃ ; what properties
are preserved?

If we have many representations for a function f , is there a “best” or canon-
ical one?

From the proof of the local mapping theorem, valency is one invariant; in
fact more is true, valency gives us a complete set of invariants:

1.9 Theorem: Local Structure of Holomorphic Maps

Assume f : D(z0, r) → C, f (z0) = w0, v f (z0) = n, then ∃ conformal equivalences

u, v near z0,w0 respectively such that u(z0) = 0, v(w0) = 0 and f̃ (z̃) = z̃n - locally
there are only countably many distinct holomorphic functions.

Write f (z) − w = (z − z0)ng(z) with g(z0) , 0, g holomorphic. By continuity

of g take ǫ > 0 such that |g(z) − g(z0)| < |g(z0)|∀|z − z0| < ǫ. Then | g(z)

g(z0) − 1| < 1

i.e.
g(z)

g(z0) ∈ D(1, 1) for z in this region, so log
g(z)

g(z0) can be taken to be a single-

valued holomorphic function on D(z0, ǫ). Let h(z) = exp( 1
n log

g(z)

g(z0) +
1
n log g(z0)),

then (h(z))n = g(z). Now write f (z) = w0 + (u(z))n where u(z) = (z − z0)h(z) so
u(z0) = 0, u′(z0) = h(z0) , 0 (since (h(z0))n , 0) so u(z) is a conformal equivalence
near z0; then put v(w) = w−w0 which is clearly a conformas equivalence. Then
f̃ (z̃) = v ◦ f ◦ u−1(z̃) = ( f ◦ u−1)(z̃) − w0 = (u(u−1(z̃)))n = z̃n.

2 Holomorphic Maps on the Riemann Sphere

S2 = {X2 + Y2 + Z2 = 1} ⊂ R3
X,Y,Z; we write N = (0, 0, 1), S = (0, 0,−1), S0 = S2 \

{N}, S∞ = S2 \ {S}. We define φ : (X,Y,Z) ∈ S0 7→ X+iY
1−Z ∈ C, ψ : (X,Y,Z) ∈ S∞ 7→

X−iY
1+Z ∈ C; these are stereographic projections from the north and south pole,

both homeomorphisms onto C. For P ∈ S2 \ {N, S}, ψ(P) = X−iY
1−Z =

X2+Y2

(1+Z)(X+iY) =

1−Z2

(!+Z)(X+iY) =
1−Z

X+iY =
1

φ(P) . If we let 0 , z = φ(P), then P = φ−1(z), ψ ◦ φ−1(z) = 1
z

and this is a holomorphic function; similarly φ ◦ ψ−1(z) = 1
z .

We define S2 with ψ, φ is the Riemann Sphere. We can use φ to informally

identify S2 = C∪ {∞} but we need to make this mean the right things - when is
a function holomorphic at∞? When does it take the value∞ holomorphicly?

Definition: a continuous map F : U ⊂ S2 → S2 (for U open) is a holomorphic map

ifφ◦F◦φ−1, φ◦F◦ψ−1, ψ◦F◦φ−1, ψ◦F◦ψ−1 are all holomorphic functions where
they are defined (e.g. φ◦F◦φ−1 is defined on φ(S0∩U∩F−1(S0)) ⊂ C; the reader
should find a similar expresson for the other three functions). Note that since F
is continuous, φ(S0∩U∩F−1(S0)) ⊂ C and similar are open. Where everything is
defined, if f (z) = φ◦F◦φ−1(z) thenφ◦F◦ψ−1(z) = (φ◦F◦φ1)◦(φ◦ψ−1)(z) = f ( 1

z );

similarly ψ ◦ F ◦ φ−1(z) = 1
f (z) , ψ ◦ F ◦ ψ−1(z) = 1

f ( 1
z )

; thus it makes sense to ask

that all four of these maps are holomorphic.
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Proposition: if F : S2 → S2 \ {N} is holomorphic then F is constant: F is
determined by f (z) = φ◦F◦φ−1(z), h(z) = φ◦F◦ψ−1(z); f and h are holomorphic
on C, h(z) = f ( 1

z ). h(z) is bounded on {|z| ≤ 1} so f (z) is bounded on {|z| ≥ 1} and
also on {|z| ≤ 1}, so f is a bounded entire function and so constant by Liouville’s
theorem; similarly h is constant so F is constant.

Proposition: let U ⊂ S2 be open, N < U, F not ≡ N. Then f : U → S2 is
holomorphic iff f = φ◦F◦φ−1 is meromorphic on φ(U) with poles at φ(F−1(N));
thus if z = φ(P), F(P) = N iff f (z) = ∞ (which recall just means f has a pole
at z): for the forward implication let z0 ∈ φ(U), put g(z) = ψ ◦ F ◦ φ−1(z), then
TFAE: i) f (z0) is not defined (i.e. not a point ∈ C), ii) F(φ−1(z0) = N, iii) g(z0) = 0.
As F . N ⇒ g . 0, if g(z0) = 0 then z0 is an isolated zero, so z0 is a pole of
f (z) = 1

g(z) . For the reverse implication, assume f meromorphic on φ(U); since

N < U, STP f , g are holomorphic where defined: f is holomorphic away from
poles; g = 1

f , and if f (z0) = ∞ then g has a removable singularity at z0, so it can

be made holomorphic on its domain.
Proposition: For V ⊂ S2 open, N ∈ V ⊂ S∞, a non-constant continuous

map F : V → S2 is holomorphic iff firstly F is holomorphic on V \ {N} (i.e.
f = φ ◦ F ◦ φ−1 is meromorphic on φ(V \ {N}) and secondly f (z) =

∑n
k=−∞ ckzk

for some n ∈ Z, cn , 0 is valid for |z| > some R; we shall only proove the
forward direction but the arguments are reversible. F : V → S2 is holomorphic,
so apply the previous proposition to U = V \ {N} and we have the first part;
for the second part S < V ⇒ F is determined by F ◦ ψ−1 : ψ(V) ⊂ C → S2;
write h(z) = φ◦F◦ψ−1(z); this is meromorphic on ψ(V) by proposition 2 with φ
replaced byψ and N replaced by S. N ∈ V⇔ 0 ∈ ψ(V); h(z) = c̃mzm+ c̃m+1zm+1 is
a Laurent series with finite principal part valid for |z| < some r, for some m ∈ Z;
then f (z) = φ ◦ F ◦ φ−1(z) = h( 1

z ) = · · · + c̃m+1z−1−m + c̃mz−m is valid for |z| ≥ 1
r ;

putting n = −m,R = 1
r we have the second part.

So, meromorphic functions are equivalent to holomorphic maps → S2, so
in a sense “poles are not really singularities either”; we’ve just used the wrong
target space.

If f , non-constant, has a zero at a, then 1
f has a pole. For f (z) to be holomor-

phic at∞means g(z) = f ( 1
z ) is holomorphic at 0 (i.e. has a removable singularity

or pole there). We can then define the “multiplicity of ∞”; f (∞) = a ∈ C with
multiplicity n iff g(0) = a, vg(0) = n (This definition still works for f (∞) = ∞;
this is with multiplicity n⇔ g has a pole of order n at 0.

Example: f (z) =
p(z)

q(z) where p, q are polynomials with no common factor is

certainly meromorphic on C, so corresponds to a meromorphic map→ S2; f ( 1
z )

is also meromorphic in C. In particular, it has a Laurent series at 0 with finite
principal part, so by the above f = φ◦F◦φ−1 for some holomorphic F : S2 → S2.

Theorem: Every holomorphic F : S2 → S2 is defined by some rational
function f as in the above example; if F is non-constant then it is surjective:
assume F is non-constant, then f = φ ◦ F ◦ φ−1 is a meromorphic function on C
and f (z) = cmzm + cm−1zm+1 + . . . is valid ∀|z| > R for some R; let this series be
P0(z)+ c0+ c−1z−1 + . . . , so P0(z) (possibly 0) consists of positize powers on z. So
f (z) has no poles on {|z| > R} and since {|z| ≤ R} is a compact set f can only have
finitely many poles, say z0, . . . , zN, which must lie in this set. Let P j(

1
z−z j

) be

the principal part of the Laurent expansion at z j (so P j is a polynomial). Now

let f (z) = P0(z) + P1( 1
z−z1

) + · · · + PN( 1
z−zN

) + g(z). Then g must be holomorphic
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on {|z| > R}. ( f − P0)( 1
z has a removable singularity at 0 so is bounded near

z = 0, so ( f − P0) is bounded on {|z| > R}; likewise P j(
1

z−z j
) is bounded on

{|z| > R} so g is bounded on this set; g is holomorphic on {|z| ≤ R} (recall
the “partial fractions” result earlier), so g is a bounded entire function and so
constant, so f is a rational function. For surjectivity, let F = φ−1 ◦ f ◦ φ with

f (z) =
p(z)

q(z) ,deg p = d,deg q = l, d > 0 or l > 0. Suppose d > l and consider

f (z) = a ∈ C; we need p(z) = aq(z) but writing this as p(z) − aq(z) = 0 this is a
polynomial of degree d so has d roots. For a = ∞, f (∞) = ∞ (i.e g(z) = f ( 1

z ) has
a pole at 0); this is with multiplicity d − l, and f (z) = ∞ at the l roots of q(z).
So there are actually d inverses for each z. The d = l and d < l cases are left as
an excercise for the reader, but we will find that there are max{d, l} inverses for
each point.

Therefore, despite initilly appearing “worse”, rational functions are in fact
the “nicest” class of functions to consider in practice, since although they have
poles, entire functions may have genuine singularities at ∞ (and this is the
“interesting part” of any study of entire functions).

Remarks: A rational function f (z) =
p(z)

q(z) : C ∪ {∞} → C ∪ {∞} has f (z) =

limz→∞
p(z)

q(z) for z = ∞, ∞ if q(z) = 0, and
p(z)

q(z) otherwise; this is a fully rig-

orous use of ∞. Also, the number of solutions P ∈ S2 of F(z) = w is an
invariant, max{deg p,deg q}; it is the same ∀w ∈ S2. It is known as the
degree of F : S2 → S2. Finally, if deg F = 1 then F is a bijection and we can

show F−1 is holomorphic; F = az+b
cz+d , a Möbius transformation. So Aut(S2) is the

group of Möbius transformations; see question 6 on the first example sheet for
this course.

Theorem: suppose P1, . . . ,PK,Q1, . . . ,QK all ∈ S2 with Pi , Q j∀i, j (but per-
haps Pi = P j and/or Qi = Q j for some i, j, then ∃ holomorphic F : S2 → S2 such
that F(Pi) = 0, F(Qi) = ∞ with multiplicity given by repitition, and there are
no other zeroes or poles, and if G is another such map then G = cF for some

constant c , 0 ∈ C: Suppose all Pi,Q j , ∞, then just set F(z) =
(z−P1)...(z−PK)
(z−Q1)...(z−QK) ,

then F(∞) = 1 , 0,∞ and we have the result; if Pr+1 = · · · = PK = ∞ then

Qi , ∞∀i and setting F =
(z−P1)...(z−Pr)

(z−Q1)...(z−QK) sufficies; the similar final case is left as an

exercise for the reader. If G is another such map then G
F is meromorphic on C\

the finitely many points Pi,Q j, and has removable singularities at all of these

by considering Laurent expansions. So G
F is a holomorphic map S2 → S2 \ {0},

and therefore some nonzero constant.
What we have shown here is a special case of the general result that holo-

morphic maps on a compact space are algebraic maps, which leads into the

area of algebraic geometry.
From 1715, some of the best mathematicians were interested in integrals of

the form
∫ λ

0
dx

Q(X) where Q(x) is a cubic or quartic without multiple roots. These

are called elliptic integrals and cannot be solved with “ordinary” functions;

they lead into elliptic functions.

For Q(X) a quadratic, e.g.
∫ λ

0
dx√
1−x2
= I(λ), the inverse of I(λ) is λ(α) such

that
∫ λ(α)

0
dx√
1−x2

; we can find λ(α) = sinα. This is very surprising since it is

periodic, but we can explain this using complex analysis; the periodicity comes
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from taking different paths around the poles of the function in the integrals.
The inverse for e.g. Q(x) = (1 − mx2)(1 − x2) for 0 < m < 1 was discovered in c.
1820 by Abel and Jacobi to have two independent periods, one in R and one in
iR. We shall look at periodic functions over C.

Assume ∃λ , 0 such that f (z + λ) = f (z)∀z; wlog we can take λ = 1 (by
considering g(z) = f (λz). Assume f : S → C where S = {z|α < ℑz < β}. Define
e(z) = e2πiz; we have e(z+ 1) = e(z); e(S) = A := {e−2πβ < |z| < e−2πα}, an annulus.
Set F(w) = F(e(z)) = F(e2πiz) = f (z)∀w ∈ A; this is well defined as f is periodic
and holomorphic since e(z) has a local holomorphic inverse near each z ∈ S by
the IFT. So F ◦ e = f ⇒ F = f◦ the local inverse of e. Then we have a Laurent

expansion F(w) =
∑∞

n=−∞ cnwn valid for w ∈ A where cn =
1

2πi

∮

γ

F(w)dw
wn+1 where

γ is some loop winding once (anticlockwise) about the hole in the middle of
A; it will be the image of some path from a to a + 1 [direction uncertain] in S.

Changing variables by w = e(z) this is
∫ a+1

a
f (z)e(−nz)dz, since dw = 2πie(z)dz.

So f (z) =
∑∞

n=−∞ cne(nz), a Fourier Series convergent on S. Therefore, “singly
periodic” functions are “nothing new”.

2.1 Doubly-periodic functions

Take λ1, λ2 ∈ C linearly independent over R, then the lattice Λ is {nλ1 + mλ2 :
m, n ∈ Z} ⊂ C, an additive subgroup of C.

Define: f (z) is doubly-periodic or Λ-periodic if f (z + λ) = f (z)∀λ ∈ Λ. We

may wlog take λ1 = 1 so that Λ = {n +mτ|n,m ∈ Z}; furthermore we wlog take
ℑτ > 0. Then we have the fundamental parallelogram Pξ, the parallelogram

with corners ξ, ξ + 1, ξ + τ, ξ + 1 + τ. We can join the top and bottom sides to
map this into a tube, and thence into the torus or elliptic curve EΛ := C

Λ
. The

set of continuous Λ-periodic functions is then equivalent to that of continu-
ous functions on EΛ. We define that Elliptic Functions are meromorphic (see

later for why we do not consider only holomorphic functions) doubly-periodic
functions on C.

Let P = Pξ.
Theorem: constraints on elliptic functions. Assume F is meromorphic and

Λ-periodic on C and ξ ∈ C such that F has no zeroes or poles on the boundary
of Pξ; we can do this by drawing a slightly larger region than the fundamental
parallelogram; this will be a compact set so contain only finitely many zeroes
and poles, so we can then draw a fundamental parallelogram missing all of
them. Let a1, . . . , ak be (all) the zeroes of F on the compact set Pξ, repeated by
multiplicities; similarly b1, . . . , bl poles. Then firstly if F is holomorphic then it is
constant (which is why we are considering meromorphic functions), secondly
the sum of residues of F at poles in Pξ, not repeated by multiplicities, is 0, thirdly

k = l, and finally
∑k

i=1 ai −
∑l

j=1 b j ∈ Λ. For the first part if F is holomorphic
then it is continuous on Pξ so bounded on Pξ therefore bounded on C so
constant by Liouville’s theorem, for the second by the residue theorem the sum

of residues is 1
2πi

∮

∂Pξ
F(z)dz, but by the periodicity the integral along the bottom

left to right cancels the integral along the top right to left and similarly, so the
total integral is 0. For the third part, by the argument principle (logarithmic

residues), k − l = 1
2πi

∮

∂Pξ

F′(z)
F(z) dz = 0 similarly. For the last, let I = 1

2πi

∫

∂Pξ

zF′(z)
F(z) dz;
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the horizontal sides part of this is −τ 1
2πi

∫ ξ+1

ξ

F′(z)
F(z) dz (as all the rest of it cancels,

apart from the difference of τ in z). Then if we let u = F(z) this becomes
−τ
2πi

∫

F◦γ
du
u , but by the periodicity F ◦ γ is a closed loop, so this is −τn(F ◦ γ, 0)

where n(F◦γ, 0) is a winding number and so an integer; similarly the part from
the sloping sides ins an integer so the overall integral is nτ + m. But by the
residue theorem I =

∑

z∈P res zF′

F , where e.g. resai

zF′

F = ai× the multiplicity of this
zero, so I =

∑

ai −
∑

b j as required.
Remarks: 1) For F elliptic, # zeroes of F in P = # poles of P in P. Then

∀c ∈ C, F− c is elliptic with the same poles as F, so any value c is taken the same
number of times moduloΛ (counted with multiplicity). We call this number the
degree of an elliptic function F. 2) F cannot have degree 1 as then

∑

z∈P resF , 0

(assuming F is non-constant).

2.2 θ-functions

Define θ(z) = θ(z, τ) =
∑∞

n=−∞ e( 1
2 n2τ + nz) (where e(t) = exp(2πiz))where τ is a

fixed paramater with ℑτ > 0. We shall write
∑

to mean
∑∞

n=−∞.
Properties: 1) θ is holomorphic; we shall show this by proving it is holo-

morphic on SR = {z : |ℑz| ≤ R} for general R. We shall show uniform con-
vergence on SR using Weierstrass’ M-test: let τ = τ1 + iτ2, z = x + iy; we have
τ2 > 0. Then |e( 1

2 n2τ + nz)| = exp(−πτ2n2 − 2πny) ≤ exp(−πτ2n2 + 2π|n|R) =

exp(πτ2(|n| − R
τ2

)2 + πR2

τ2
) ≤MRe

−πτ2(|n|− R
τ2

)2 ≤MR(e−πτ2 )|n| for sufficiently large |n|,
so the series converges (in fact better than a geometric series) uniformly on SR

and also absolutely; this is true ∀R > 0 so θ is holomorphic on C.
2) θ(z)) = 1 +

∑∞
n=1 e( 1

2τn2 + nz) + e( 1
2 n2τ − nz) (this is valid by absolute

convergence) so θ(−z) = θ(z).
3) θ(z + 1) = θ(z) since all terms are periodic - we have a Fourier series.
4) θ . 0 as the coefficients of the FS are nontrivial.
Since θ is holomorphic it cannot be doubly-periodic, but it is “as close as

possible”: θ(z+ τ, τ) =
∑

e( 1
2 n2τ+ nτ+ nz) =

∑

e( 1
2 (n+ 1)2τ− τ

2 + (n+ 1)z− z) =

e(− τ2 − z)
∑

e( 1
2 (n + 1)2τ + (n + 1)z = e(− τ2 − z)θ(z, τ)(⋆), since we can replace

n + 1 with n and the series is the same.
Proposition: Let P be such that θ has no zeroes on ∂P (which we can do in

the same way as above), then θ has exactly one zero in P and this is a simple
zero (i.e. a zero of order 1): by the argument principle, 2πi× the number of

zeroes in P =
∮

∂P

θ′(z)
θ(z) dz; the integrals along the sloped sides cancel since θ has

period 1. θ′(z + τ) = e(− τ2 − z)θ′(z) − 2πie(− τ2 − z)θ(z) ∴
θ′(z+τ)
θ(z+τ) = −2πi +

θ′(z)
θ(z) ,

so the integral along the horizontal edges is 2πi, so we have one zero counted
with multiplicity, i.e. one simple zero, as required.

Proposition: θ( 1
2 +

τ
2 ) = 0 is the unique zero modulo Λ: from (⋆), θ(z − 1

2 −
τ
2 )e(− τ2 − (z − 1

2 − τ
2 )) = θ((z − 1

2 − τ
2 ) + τ). Define f (z) := θ(z − 1

2 − τ
2 ), then we

need f (0) = 0; we have f (z)e(−z + 1
2 ) = θ(z − 1

2 +
τ
2 ) = θ(z + 1

2 +
τ
2 ) since θ is

even, = θ(−z − 1
2 − τ

2 ) by evenness, = f (−z), so putting z = 0 we have e( 1
2 ) = −1

so f (0) = − f (0) and f (0) = 0 as required.
Theorem: Construction of Elliptic Functions: suppose we have a1, . . . , ak, b1, . . . , bk ∈

P ⊂ C, with possibly some repititions but never ai = b j, such that
∑

ai−
∑

b j ∈ Λ
(note this automatically implies k ≥ 2). Then there is an elliptic function with

8



zeroes in P exactly at the ai, poles exactly at the b j, and this is unique up to
multiplcation by a nonzero constant: Uniqueness is easy, if F1, F2 are two such

functions then F1

F2
is Λ-periodic with only removable singularities in P so con-

stant. For existence, let f (z) = θ(z − 1
2 − τ

2 ), and F(z) =
f (z−a1)... f (z−ak)

f (z−b1)... f (z−bk) ; this has the

correct zeroes and poles and period 1. Now f (z+τ−a) = e(−z+a+ 1
2 ) f (z)∀a ∈ C

by (⋆), so F(z + τ) = e(
∑k

i=1(ai − bi))F(z)) = e(mτ)F(z) for some m ∈ Z, so
e(−mz)F(z) is a function as required.

Elliptic functions are important in many areas of research; some of them
have names in their own right. We want to consider a simple example, so we
shall look at a function of elliptic degree 2 (recall there are none of degree 1),
which will have two poles; for many years mathematicians thought the easiest
of these to study would be those with two simple poles, but in 1862 Weierstrass
found that a simpler theory could be developed for an elliptic function with
one double pole.

Definition: The Weierstrass ℘-function is a meromorphic Λ-periodic func-
tion 1) with deg℘ = 2 and a double pole at z = 0 2) such that the Laurent
expansion of ℘ at z = 0 has leading term 1

z2 and no constant term; this does in
fact define ℘ uniquely.

Proposition: 1) ℘ is uniquely determined if it exists 2) ℘(−z) = ℘(z)∀z < Λ:
for 1), suppose ℘1(z), ℘2(z) satisfy the definition. Then g(z) = ℘1(z) − ℘2(z) is an
elliptic function with no poles not on Λ, but by the Laurent expansions it has
at worst a simple pole at z = 0, so it is of degree ≤ 1 so must be constant, but
by the Laurent expansion at 0 this constant must be 0, so ℘1 ≡ ℘2. For 2), ℘(−z)
also satisfies the definition of ℘, so must be ≡ ℘(z).

Theorem: ℘ exists: for suiatable A ∈ C, ℘(z) = A − d
dz log f (z) (with f as

defined above) satisfies the definition; equally well, ℘(z) = B+Ce(z)
(

θ(z)

θ(z)− 1
2− τt

)2

for suitable B,C ∈ C:
For the first definition, this is clearly meromorphic and periodic with period

1. Now as above we can compute
f ′(z+τ)

f (z+τ) = 2πi +
f ′(z)

f (z) so d
dz

f ′

f |z+τ= d
dz

f ′

f |z and

this is elliptic;
f ′

f is holomorphic away from f = 0 and has simple poles on Λ;

write f (z) = zg(z) so
f ′

f =
1
z +

g′

g , then
(

f ′

f

)′
= − 1

z2+ some function holomorphic

at 0, so A −
(

f ′

f

)′
= 1

z2 + g̃(z) with g̃ holomorphic, and by a suitable choice of A

we can have a function as required.
For the second definition, we will use the construction of elliptic functions

from θ as above;
(

θ(z)

θ(z− 1
2− τ2 )

)2

=

(

f (z+ 1
2+

τ
2 )

f (z)

)2

; using the same notation as above,

a1 = a2 = − 1
2 − τ

2 , b1 = b2 = 0; then for a1 + a2 − b1 − b2 = n +mτwe have m = −1

so F(z) = e(−mz)
(

f (z+ 1
2+

τ
2 )

f (z)

)2

= e(z)
(

θ(z)

θ(z− 1
2− τ2

)2

is elliptic with the correct poles,

so we can choose C such that F(z) = 1
z2 + . . . and B such that the constant term

vanishes.
℘′ witll be elliptic of degree 3 and even, so it has three zeroes:
Theorem ℘′( 1

2 ) = 0 = ℘′( τ2 ) = ℘′( 1+τ
2 ) (as ℘′ has degree 3, a trivial corollary

is that these are all simple zeroes and the only zeroes of ℘′ mod Λ): ℘′( 1
2 ) =

−℘′(− 1
2 ) since ℘′ is odd, but this = −℘′( 1

2 ) by periodicity, so ℘′( 1
2 ) = 0; the other

two are found similarly.
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Corollary: v℘(z) = 2 for 2z ∈ Λ, 1 otherwise: v℘ is always 1 or 2 since deg℘ =
2, and (for z0 not a lattice point), by differentiating, v℘(z) = 2⇔ ℘′(z) = 0, which
is the case iff 2z ∈ Λ; for z ∈ Λwe have a double pole so v℘(z) = 2, and we have
the result.

Remarks, without proof: since ℘(z) is even its Laurent expansion at z = 0
is ℘(z) = 1

z2 + 3E4z2 + 5E6z4 + . . . with terms of the form (2k + 1)E2k+2z2k, where

E2k| =
∑

ω∈Λ\{0}
1
ω2k , the Eisenstein series for Λ. We could define ℘, ℘′ explicitly

by ℘′(z) = −2
∑

ω∈Λ
1

(z−ω)3 , ℘(z) = 1
z2 +

∑

ω∈Λ\{0}
1

(z−ω)2 − 1
ω2 , but in practise this

definition is actually less useful than the one we have given.
Let f j(z) denote “some holomorphic function of z”; then we have ℘(z) =

1
z2 + 3E4z2 + 5E6z4 + z6 f1(z) ∴ ℘′(z) = − 2

z3 + 6E4z + 20E6z3 + z5 f2(z) ∴ (℘′(z))2 =
4
z6 − 24E4

z2 − 80E6 + z2 f3(z); also 4p(z)3 = 4
z6 +

36E4

z2 + 60E6 + z2 f4(z) so ℘′(z)2 −
4℘(z)3 + 60E6℘(z) + 140E6 = z2 f5(z); the left hand side is elliptic without poles
so constant, so the right hand side is also constant; it must be 0, so we have an
ODE for the ℘-function: ℘′2 = 4℘3 − 60E4℘ − 140E6, where E4,E6 are complex
constants.

[no, I’m not following this either]
If Q(p) = (℘′)2 we have Q(z) = 4z3−60E4z−140E6; g2 = 60E4 = 60

∑

ω,0∈Λ
1
ω4 , g3 =

140E6 = 140
∑

ω,0∈Λ
1
ω6 . Using the local inverse,

(

(℘−1)′(z)
)2
= 1

Q(z) ; let z = ℘(w).

Then ℘−1(z) − ℘−1(z0) =
∫ z

z0

1√
Q(z)

, an elliptic integral. This is an equality as sets

- the LHS is a multivalued function, the RHS is an integral dependent on the
path and which value of the

√
we take.

Let e1, e2, e3 := ℘( 1
2 ), ℘( τ2 ), ℘( 1+τ

2 ). Then Γ = {2
∫ e j

ei

dz√
Q(z)
}; since Q(z) = 4(z −

e1)(z − e2)(z − e3) this is {
∫ e j

ei

dz√
(z−e1)(z−e2)(z−e3)

}. So ℘ “sees” its domain C
Λ

; we can

recover the value of τ from this integral.

If f , g are elliptic with the same periods then so are f ± g, f g,
f

g for g . 0; the

meromorphicΛ-periodic functions form a field (aside: this is another reason for
using meromorphic rather than holomorphic functions, since the field structure
is far nicer than the ring structure we would have for holomorphic functions).

Theorem: 1) If f is even and elliptic then f (z) = R(℘(z)) for some rational
function R. We will not proove this part, but it is not difficult, and involves

no new ideas; we write f (z) = c
(℘(z)−℘(a1))...(℘(z)−℘(ak))
(℘(z)−℘(b1 ))...(℘(z)−℘(bl))

which has the correct poles,

and then argue that it is in fact the required function. 2) For f elliptic, f (z) =
R1(℘(z))+ ℘′(z)R2(℘(z)): write f as a sum of even and odd parts ( 1

2 ( f (z)+ f (−z))

etc.), call the even part R1(℘(z)) by 1), then 1
℘′(z)× the odd part is even, so

= R2(℘(z)) and we are done.

Riemann Surfaces and holomorphic maps

Recall the definition of a topological space; since we have a notion of open sets
it makes sense to speak of continuous maps and homeomorphisms.

Definition: a topological surface X is a Hausdorff topological space so that

∀p ∈ X∃Up ∋ p open such that Up ⊂ X is homeomorphic to an open disc in C.
Remarks: 1) dimension is actually a topological property (though we shall
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only see this in advanced topology) so homeomorphic spaces have the same
dimension; thus this definition is reasonable. 2) We need not have X ⊂ R3.

The homeomorphisms φp : Up → φ(Up) ⊂ C are called coordinate charts;
Up is called a coordinate neighbourhood in X. z = φp(q) is a local complex
coordinate. For Up ∩ Up̃ , ∅, φp̃ ◦ φ−1

p : φp(Up ∩ Up̃) → C is called a transition

function; we write τi j for φ j ◦ φ−1
i

.
Definition: A complex structure on a topological surface X is a collection

of charts (φα,Uα) such that
⋃

α Uα = X and all the ταβ are holomorphic where

defined; since τ−1
αβ = τβα this means they are biholomorphic.

A Riemann surface is a topological surface with a complex structure. (Some
books call this an abstract Riemann surface, to which the astute reader may
reply “So what about concrete Riemann surfaces, then?” The concrete Riemann
surfaces are algebraic curves; see later in the course).

Examples: any open U ⊂ C, with chart the identity on U; more generally,
for any X a Riemann surface, any open U ⊂ X is also a RS by the restriction
of the charts of X to the intersections of their domains with U. S2 with the
stereographic projections φ,ψ is a Riemann surface; so is any elliptic curve,
formally E = C

Λ
, with points z + Λ, but we have not shown this yet:

Proof: define the quotient map π : z ∈ C 7→ z+Λ ∈ E; π(z) = π(z′)⇔ z− z′ ∈
Λ. Define W ⊂ E is open iff π−1(W) ⊂ C is, a quotient topology on E. E is
Hausdorff, since for any two points we can put them in the fundamental open
parallelogram of Λ in C and use the Hausdorffness of C.

Let Di ⊂ C be a family of open discs in Cwith diameter < max{ 12 ,ℑ τ2 }. Then
if z, z′ ∈ Di then z = z′, and π(D1) ∩ π(D j) is connected and open in E. Define
Ui = π(Di), then (π |Di

) : Di ⊂ C → Ui ⊂ E is a homeomorphis, and φi defined
by (π |Di

)−1 is a chart. Then τi j = φ j ◦ φ−1
i

has τi j(z) − z ∈ Λ, so τi j(z) − z is
continuous on a connected set φi(Ui ∩ U j), taking values in a discrete set, so it
is constant; call this constant λi j ∈ Λ. Then τi j(z) = z + λi j, which is certainly
holomorphic, so we have a complex structure and the elliptic curve is a RS.

Without detail, a similar example is C
Z

, a Riemann Surface which is a topo-
logical cyclider.

Definition: For R, S two Riemann surfaces, let φi : Ui ⊂ R → C, ψα : Wα ⊂
S → C be their respecive charts (complex structure), then a continuous map
f : R → S is holomorphic if ψα ◦ f ◦ φ−1

i
is holomorphic (as a function C→ C)

where defined ∀i, α.
Examples: of course any holomorphic function from an open U ⊂ C → C;

we have proven already that the non-constant meromorphic functions on an
open U ⊂ C are precisely the non-constant holomorphic maps U→ S2.

Proposition: Let R be an RS with charts ψ j : U j ⊂ R → C, (wlog) all the
U j connected. Take φ : S2 \ {N} → C stereographic projection as before. Then
a continuous f : R → S2 is holomorphic iff ∀φ ◦ f ◦ ψ−1

j
such that f ◦ ψ−1

j
is

non-constant, φ ◦ f ◦ ψ−1
j

is a meromorphic function with poles precisely at

ψ j(U j ∩ f−1(N)). The proof is the same as that of the last example above, just
with domain R rather than (some subset of) S2 and ψ j instead of φ for the chart
applied [inverted] before f .

More examples: rational functions on C correspond precisely to holomor-
phic maps S2 → S2, as proven earlier. Elliptic functions descend to [or, less
formally, are] holomorphic maps C

Λ
→ S2, and the quotient map C → C

Λ
is
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holomorphic: for any chart φα, z ∈ D 7→ z + Λ by π, then 7→ z + λα by φα for
some λα ∈ Λ, so φα ◦ π is certainly holomorphic.

Singly-periodic functions similarly descend to holomorphic maps on C
Z

and
the quotient map is holomorphic; consider these exercises.

Definition: f : R → S is biholomorphic or a conformal equivalence if it is

holomorphic with a well defined holomorphic inverse f−1 : S→ R. We say R, S
are biholomorphic or conformally equivalent if a surjective biholomorphic such
f exists. This is the most rigid way of defining when surfaces are equivalent;
in geometry we consider the somewhat weaker notion of being diffeomorphic,
and in topology the far weaker idea of being homeomorphic; see questions 7
and 8 on the second example sheet for this course.

A closer look at holomorphic maps

For R, S connected Riemann surfaces, f : R→ S a holomorphic map, p ∈ R, q =
f (p) ∈ S, ∃ charts φ,ψ near p, q respectively and in fact centred at them (i.e.

φ(p) = 0 = ψ(q)). Then f̂ (z) = ψ ◦ f ◦ φ−1(z) is holomorphic near z = 0 (note

that f̂ is not uniquely determined; for different choices of chart φ′, ψ′ we obtain

f̂ ′ = v ◦ f̂ ◦u−1 where u = φ◦φ′−1, v = ψ ◦ψ′−1 are local conformal equivalences
near 0.

Isolated Values Principle

If f . a constant and R connected, then f−1(q) will be a discrete set in R ∀q ∈ S:
let X = {x ∈ R : ∃ open U ⊂ R, x ∈ U such that f |U≡ a constant},Y = {y ∈ R :
∃ open V ⊂ R, y ∈ V such that f (y) , f (y′)∀y′ ∈ V \ {y}}. We have X ∩ Y = ∅,X
open in R. For p, q, f̂ as before, f̂ (0) = 0, so either f̂ ≡ 0 so p ∈ X, or z = 0 is an

isolated zero of f̂ ; this means p ∈ Y; moreover, ∀z0 near 0, f̂ (z) − f̂ (z0) has z0 an
isolated zero, so Y is open, so Y open; since f is non-constant Y is non-empty,
so since R is connected R = Y and we have the result.

Note that Riemann Surfaces are connected iff they are path-connected, since
this is true of open subsets of C.

We define: if f̂ (z) . 0 then let the order of the zero at f̂(0) be n, then v f (p) := n,
the branching order of f at p. By the local mapping theorem this is well defined,

since f̂ , and hence also f , are locally n : 1 near 0 (or respectively p), so for any
charts φ̃, ψ̃ near p, q, v f (p) = vψ̃◦ f◦φ̃−1 (z) where z = φ(p). If v f (p) > 1 we say p is a
ramification point and q is the branch point.

If f is non-constant and R is connected then {p ∈ R : v f (p) > 1} is discrete,

since v f (p) > 1 ⇔ v f̂ (0) > 1 ⇔ f̂ (z) = z2g(z) for some holomorphic g⇔ f̂ ′(0) =

0, but this must be an isolated zero of f̂ ′ as otherwise f̂ ′ ≡ 0 and f is constant,
by the isolated value principle.

We have local structure of holomorphic maps: v f (p) = n ⇒ ∃ open U ∋
p,V ∋ q = f (p) such that ∀q′ ∈ V \ {q}, f−1(q′) ∩ U consists of n distinct points,

and v f = 1 at each of these; we have proven this for f̂ (z) so it holds for f since
the charts are bijections. As an “exercise”, the readers should see that we have

already proven we can choose charts φ,ψ such that f̂ (z) = zn.
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The open mapping theorem also holds: if f is non-constant holomorphic
and R connected then f (U) is open ∀ open U ⊂ R; this is true for a “small” open

set (i.e. one ⊂ U ∩ f−1(V) for U,V coordinate domains) as it is true for f̂ , and
any open subset of R is a union of such small open sets.

The inverse mapping theorem: v f (p) = 1 ⇒ ∃ open U ∋ p,V ∋ f (p) and
holomorphic g : V → U such that g ◦ f |U= IdU, f ◦ g |V= IdV. Corollary: if
f : R→ S is a holomorphic bijection then f−1 : S→ R is holomorphic.

Theorem and definition: degree: for f : R → S non-constant holomorphic,
R, S compact and connected, k(q) :=

∑

p∈ f−1(q) v f (p) is finite and independent of

q ∈ S; deg f := k: f−1(q) is discrete and R compact, so f−1(q) is finite and k(q)
is finite (note that compact of a RS is equivalent to saying the BWT holds).
Let q ∈ S, then ∀p ∈ f−1(q)∃ open Np ∋ p,Vp ∋ q such that ∀q′ ∈ Vp \ {q},
f−1(q′) ∩ Np consists of v f (p) points (surjectivity of f wil be a consequence
of our argument[, and so was not necessary as a hypothesis]). Define V =
⋂

p∈ f−1(q) Vp,Up := f−1(V)∩Np; we can wlog take the Up all distinct by reducing

V if necessary. We now claim we can further reduce V to Ṽ ⊂ V with q ∈ Ṽ
such that f−1(Ṽ) =

⋃

p∈ f−1(q) Ũp where Ũp := Up ∩ f−1(Ṽ); if not, we must have

a sequence qn → q such that ∀qn∃pn : f (pn) = qn, pn < Up∀p ∈ f−1(q). So since
R is compact we have a subsequence of the pn pnk

→ some p̌ (as k → ∞), but
then f (p̌) = f (limk→∞ pnk

= limk→∞ f (pnk
) = lim qnk

= q, but pn < pp̌∀ large n, a
contradiction. If q′ ∈ Ṽ \ {q} then # f−1(q′) =

∑

p∈ f−1(q) v f (p). ∀x ∈ f−1(q′), v f (x) = 1
so k(q′) = k(q)∀q′ close to q. So y ∈ S 7→ k(y) ∈ S is a continuous function
on the connected S taking values in a discrete set so a constant map. Note
that although the assumption of compactness of S may seem unnecessary, it is
actually needed; see question 9 on the second example sheet for this course.

Corollary: under the hypotheses of the above theorem, f is surjective.
Note that degree as defined here recovers the degree of a rational function

for f : S2 → S2, and the degree of an elliptic function for f : C
Λ
→ S2.

Euler Characteristics

We shall quote several results which are proven in the algebraic topology course:
for S a compact connected Riemann surface, we shall ignore its complex struc-
ture and treat it as a topological surface; S is orientable: for the transition
functions τi j(z) = φ j ◦φ−1

i
(z), wlog take τi j(0) = 0, then τi j(z) = Az+O(z2); write

z �

(

x
y

)

∈ R2 and consider A : R2 → R2 as a matrix; it will be

(

a −b
b a

)

for

some a, b ∈ R ,so det A = a2 + b2 > 0∀A ∈ C[\{0}] so transition functions pre-
serve orientation and S is orientable. From topology we have that all compact
oriented connected surfaces are classified by the Euler characteristic χ, i.e. two
such surfaces have the same χ iff they are homeomorphic.

χ can be defined by triangulation: Let edges mean images of homeomor-

phisms [0, 1] → S where S is our topological surface, verticies be the images
of 0 and 1 under these. We require that S\ the set of edges has finitely many
connected components, each homeomorphic to an open disc; then faces are
the closures of these components. We require that any two faces share at most
one edge, any two edges meet at one vertex or not at all, and for any vertex
there is a neighbourhood homeomorphic to a disc [centred at 0] with the vertex
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corresponding to 0, radii corresponding to edges and sectors corresponding to
different faces (note this implies at least 3 edges meet at each vertex). Then sets
of edges, verticies and faces satisfying all these form a triangulation T (this is
not the best definition of a triangulation, but works for our purposes).

Let E(T, S) be the number of edges, similarly V(T, S), F(T, S) for verticies and
faces; now from topology we have V(T, S)−E(T, S)+F(T, S) = χ(S) independently
of the specific triangulation T. Now we have for the genus g(S) that 2− 2g(S) =
χ(S); informally, g is the number of “handles” we must attach to S2 to obtain S.
By considering the projection of a tetrahedron we can find χ(S2) = 2, g(S2) = 0;
we can find that χ for a torus is 0 and g = 1, and so on.

A fact, which is a theorem in topology, is that every compact connected S
has a triangulation; this comes down to the fact that S is “second countable”
i.e. has a countable basis.

Theorem (Riemann-Hurwitz formula): for R, S compact connected Riemann
surfaces, f : R → S non-constant holomorphic and k = deg f , χ(R) = kχ(S) −
∑

p∈R(v f (p) − 1), or equivalently g(R) − 1 = k(g(S) − 1) + 1
2

∑

p∈R v f (p) − 1. This is
possibly the most important theorem in the cours; it combines a holomorphic
quantity (using power series) v f , an algebraic quantity k, and a topological
quantity χ or g. We assume the above fact, so take TS a triangulation of S.
Suppose first v f (p) = 1∀p ∈ R, then ∀q ∈ S∃ open Vq ∋ q such that f−1(Vq) =

⊔

[i.e. a disjoint union of] sets, each of which is mapped by f biholomorphicly
ont Vq, by local structure of holomorphic maps.

We have S =
⋃

q∈S Vq; by compactness take a finite subcover S =
⋃n

i=1 Vi.
Refine TS such that each face is a subset of some Vi, by baricentric subdifision:
take a point inside a face, and join it to each vertex of the face and the midpoint
of each side of the face. So we have a triangulation Tk by the above f−1(Vi) with
k = deg f copies of everything in TS, so χ(R) = kχ(S).

If there is a unique p ∈ R with v f (p) > 1, say v f (p) = r, let q = f (p) and make
q a vertex in TS (by baricentric subdivision if necessary). We have r ≤ k by the

definition of k. Locally near p, f̂ (z) = zr for suitable charts, so we again have k
copies of everything except that f−1(q) = k−(r−1) points so χ(R) = kχ(S)−(r−1)
as there are r − 1 fewer verticies in our triangulation of R. Now since there are
only finitely many p with v f (p) > 1, considering them one at a time we have the
general result.

Notice that the
∑

p∈R(v f (p)− 1) looked like an infinite sum, but actually only
has finitely many nonzero terms. We have now proven the first form of the
result; we then have 2 − 2g(R) = k(2 − 2g(S)) −∑

p∈R(v f (p) − 1) and the second
form follows. Since χ = 2− 2g we have χ is always even for a Riemann surface
(this is not the case for a general topological surface, but rather follows from
orientability).

Example: consider ℘ : C
Λ
→ S2; deg℘ = 2, χ(C

Λ
) = 0, χ(S2) = 2. Recall that

the points where v℘ = 2 are 1
2 +Λ,

τ
2 +Λ,

1+τ
2 +Λ, and also the pole of order 2 at

0 + Λ, so the e formula says 0 = 2 × 2 − 4 × 1 which is indeed the case.
g(C
Λ

) = 1, g(S2) = 0 so if we have f : S2 → γ for some topological surface γ
then in the second form of the theorem the LHS is ≤ 0, so the RHS must be also,
implying we must have g(γ) = 0 and γ is a topological sphere.
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Algebraic Curves

Definition: a complex algebraic curve in C2 (sometimes called an affine [al-
gebraic] curve) is C = {(s, t) ∈ C2 : P(s, t) = 0} for some complex polyno-
mial of two variables P. C is non-singular if ∀(s0, t0 ∈ C with P(s0, t0) ∈ C,

( ∂P
∂s (s0, t0), ∂P

∂t (s0, t0)) , (0, 0). An example is a complex line {λs + µt + ν = 0} for
(λ, µ) , (0, 0); this is biholomorphic to C.

Theorem: A non-singular algebraic curve C = {P(s, t) = 0} has a natural
complex structure (so is a Riemann Surface): for example, P(s, t) = t − q(s) for
some polynomial q is a graph of q, and the projection map (s, t) ∈ C 7→ s ∈ C is
a bijection and C can be identified with C.

To proove the above theorem we need the following:
Implicit Function Theorem: Suppose P(s, t) is a polynomial, P(s0, t0) = 0,

∂P
∂t (s0, t0) , 0, then ∃!h : D(s0, ǫ)→ D(t0, δ) for some ǫ, δ > 0 such that h(s0) = t0

and t = h(s) iff P(s, t) = 0, for (s, t) ∈ D(s0, ǫ) × D(t0, δ); also h is holomorphic.
The proof of this is nonexaminable; as a sketch, let f (t) = P(s0, t), then f (t0) =
0, f ′(t0) , 0 so t0 is a zero of order 1. So we have δ > 0 such that f (t) , 0
on D⋆(t0, 2δ); let γ(u) = t0 + δeiu, δ ∈ [0, 2π]; define Γs(u) = P(s, γ(u)). By

the argument principle, 1 = 1
2πi

∮

γ

f ′(t)
f (t) dt = n(Γs0

, 0), a winding number. Now

we claim (⋆) n(Γs, 0) is holomorphic (as a function of s) on D(s0, ǫ) for some
ǫ > 0; given this, we then have n(Γs, 0) ≡ 1∀|s − s0| < ǫ, i.e. h is unique as a
map D(s0, ǫ) → D(t0, δ). Now to show it is holomorphic, we have that h(s) =

1
2πi

∫

γ

t ∂∂t
P(s,t)

P(s,t) dt; compare this with the formula in question 3 on the first example

sheet for this course, which is this formula for the special case P(s, t) = t − q(s);
now we claim (⋆⋆) that this is holomorphic.

Both our claims were of the form that if Q(s, t) is holomorphic then
∫

γ
Q(s, t)dt

is holomorphic; for (⋆) this was the case Q =
f ′

f =
∂
∂t

P

P , for (⋆⋆) this was the

case Q =
t ∂∂t

P

P . We shall proove the result in general: write Q(s, t) = Q(s0, t) +

(s − s0)Q1(s0, t) + (s − s0)2R(s, t), so

∣

∣

∣

∣

∣

∫

γ
Q(s,t)dt−

∫

γ
Q(s0,t))dt

s−s0
−

∫

γ
∂Q
∂s (s0, t)dt

∣

∣

∣

∣

∣

, using Q1 =

∂
∂s Q(s0, t), is |

∫

γ
(s − s0)R(s, t)dt| = (s − s0)

∫

γ
R(s, t)dt = M|s − s0| → 0 as s→ s0, as

required.
In fact we have proven the result for any P(s, t) which is holomorphic (i.e.

holomorphic in both variables), not just polynomials. Also, note that the inverse
function theorem as seen in part IB is just the special case of this where P(s, t) =
t − q(s).

Now, the proof of the main theorem, above: let (s0, t0) ∈ C; wlog take
∂P
∂t (s0, t0) , 0 (recall that one of ∂

∂t ,
∂
∂s must be , 0). Define π1 : (s, t) ∈ C 7→ s ∈

C, π2 : (s, t) ∈ C 7→ t ∈ C, projection maps. By the implicit function theorem
there is a unique holomorphic h(s) such that C ∩ (D(s0, ǫ) × D(t0, δ)) = U is the
graph of h, = {(s, h(s)) : |s− s0| < ǫ}. So π1 |U: U → C is a bijection onto its image,
and a homeomorphism (where we have the obvious topology on C). Since
C ⊂ C2, a metric space, it has a metric so is Hausdorff; thus C is a topological
surface.

The transition functions between charts ar just the identity when both charts

are restrictions of the same πi. Otherwise say our charts are φ : (s, h(s)) 7→ s, φ̂ :
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(s, h(s)) 7→ h(s), then the transition function is just h(s) which is holomorphic
by the IFT; similarly its inverse is also holomorphic. So we have a complex
structure and C is a Riemann surface.

Example: {(s, t) : sn+tn = an} for some parameter a , 0 ∈ C; this is sometimes
called a Fermat curve.

Algebraic curves in C2 are never compact; e.g. {λs + µt = ν} for (λ, µ) , (0, )
is a complex line � C so not compact; {s2 + t2 = 1} is unbounded, as we can
take s = ix, t = y, then the equation is satisfied whenever y2 − x2 = 1 and this
is unbounded in R2; we can use the fundamental theorem of algebra to show
these surfaces are not compact in general, as is done in the first question on the
third example sheet.

We can sometimes “compactify” an (affine) algebraic curve C, i.e. find a
compact Riemann surface C̄ such that C is an open subset of C̄ and C̄ \ C is a
finite set of points:

Projective Curves

Definition: complex projective space Pn or CPn is the set of all 1-dimensional

complex subspaces of Cn+1 (i.e. lines through 0); we write z0 : z1 : · · · : zn ∈ Pn

for the span of a cpmlx vector (z0, . . . , zn) ∈ Cn+1 \ {0}. These give homogenous
complex coordinates on Pn, i.e. λz0 : λz1 : . . . |λzn = z0 : · · · : zn∀λ , 0 ∈ C.

Define Π : (z0, . . . , zn) ∈ Cn+1 \ {0} 7→ z0 : · · · : zn ∈ Pn; then we define a
topology onPn by the quotient topology under this map. ThenΠ is continuous,
and Pn is compact, since it is the continuous image underΠ of the compact set
{~z ∈ Cn+1 : |~z| = 1}.
Pn is Hausdorff: for ~z, ~w ∈ Cn \ {0} linearly independent (i.e. representing

distinct points of Pn, wlog take ~z = (1, 0, . . . , 0), ~w = (1, 1, 0, . . . , 0) by complex
linear isomorphisms from GL(n + 1,C); these are homeomorphisms of C pre-
serving sets Π−1(. . . ). (Consider An = {z0 = 1} ⊂ Cn+1, affine space. Then
(C~z) ∩An = {~z}, (C~w)∩An = {~w} [it seems like the lecturer was going to use this
in this proof, then didn’t - but the reader should still know the definition). Put
Uz = {1 : z2 : · · · : zn | |z j| < 1

3∀1 ≤ j ≤ n},Uw = {1|1 + w1 : w2 : · · · : wn | |w j| <
1
3∀1 ≤ j ≤ n}; these are both subsets of Pn. Then Π−1(Uz),Π−1(Uw) are open in

Cn+1 \ {0} (just by writing what they are) and these are disjoint sets, so we have
the result.

Note that any f : Pn → X is continuous iff f ◦Π : Cn+1 \ {0} → X is.
Consider (z1, . . . , zn) ∈ Cn 7→ (1, z1, . . . , zn) ∈ An 7→ 1 : z1 : · · · : zn ∈ Pn; this

is a homeomorphism (as we can check by a straightforward argument along
the lines of the previous result) onto its image, Π(An), which is open in Pn

(as Π−1(Π(An)) = {z0 , 0} ⊂ Cn+1 \ 0 (and therefore also an open subset of
⊂ Cn+1, should this ever be written instead by mistake as Cn+1 \ 0 is open. So
Pn has an open subset homeomorphic to Cn; identifying this with Cn we have
a decomposition of Pn into Cn and Pn−1; informally we form Pn by adding a
copy of Pn−1 at infinity to Cn.

Herafter we take n = 2; by the above we have an open coverP2 = A2
0
+A2

1
+A2

2

where A2
i
= {zi , 0} ⊂ P2; P2 \A2

0
� P1, so informallyP2 is a compactification of

C2 by adding the projective line at infinity. We shall use the notation X : Y : Z
for z0 : z1 : z2.
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Let P(X,Y,Z) be a homogenous polynomial of degree d; that is, P(λX, λY, λZ) =
λdP(X,Y,Z)∀λ ∈ C \ {0}. Then a (complex) projective curve in P2 is C = {X : Y :

Z | P(X,Y,Z)) = 0}; for some such P; this is a well defined subset of P2. Note C
is closed: P is continuous on C3 so C3 \ P−1(0) is open, soΠ−1(P2 \C) is open so
P2 \ C open so C closed; since this makes C a closed subset of a compact space
it is compact.

We define a : b : c ∈ C is a singular point of a projective curve C if ∂P
∂X (a, b, c) =

∂P
∂Y (a, b, c) = ∂P

∂Z (a, b, c) = 0. We say C is non-singular if it has no singular points;

some examples of non-singular projective curves are a projective line {αX+βY+
γZ = 0} (for not α = β = γ = 0), (projective) quadric curve {X2 + Y2 + Z2 = 0},
(projective) Fermat curve {Xn + Yn + Zn = 0}.

Theorem: every non-singular projective curve has the natural structure of a
(compact) Riemann surface; will proove below.

Lemma 1 (a special case of Euler’s formula): if P(X,Y,Z) is a homogenous

polynomial of degree m then X ∂P
∂X + Y ∂P

∂Y + Z ∂P
∂Z = mP∀X,Y,Z: this is easy for

polynomials, wlog we can take P = XiY jZk as P will be a linear combination of
such terms and both sides are linear, but then just apply the Leibnitz formula.

Lemma 2: For a : b : c ∈ C, a , 0, a : b : c is a non-singular point in C
iff ( b

a ,
c
a ) ∈ C2 is a non-singular point in C0 = {P(1, s, t) = 0}, since ( b

a ,
c
a ) is a

singular point in C − 0 iff P(1, b
a ,

c
a ) = 0 = ∂P

∂Y (1, b
a ,

c
a ) = ∂P

∂Z (1, b
a ,

c
a ) ⇔ P(a, b, c) =

0 = ∂P
∂Y (a, b, c) = ∂P

∂Z (a, b, c) = 0 but by Lemma 1 this is the case iff ∂P
∂X (a, b, c) = 0 as

well, as a , 0, i.e. this is the case iff a : b : c is a singular point in C.
Now, the proof of the main theorem: let C = {P(X,Y,Z) = 0 be a projective

curve inP2. Then C = C0∪C1∪C2 where Ci = C∩A2
i
; then Ci is an algebraic curve

in C2, e.g. C0 = {(s, t) ∈ C2 : P(1, s, t) = 0}; these Ci are called the affine pieces

of C. By Lemma 2 these are non-singular so have complex structures; putting
all these together, we have an open cover of C by coordinate domains. The
transition functions between charts of the same Ci are holomorphic; if we have
a transition function between charts of different Ci, say we have charts φ0, φ1

on C0,C1 respectively near a : b : c ∈ C0 ∩C1, then a , 0 , b. C0 = {P(1, s, t) = 0};
say φ0(s, t) ∈ U0 ⊂ C0 ⊂ C 7→ s, then φ−1

0
(s) = (s, h(s)) for some holomorphic

h. Now s = Y
X , t =

Z
X , so φ0(X : Y : Z) = Y

X ; similarly φ1(X : Y : Z) = X
Y or

Z
Y . Then we find φ1 ◦ φ−1

0
(s) = φ1(1 : s : h(s)) = 1

s or
h(s)

s , and either of these is
holomorphic where defined, so transition functions between charts on C0,C1,
and similarly all transition functions, are holomorphic and we have the result.

An algebraic curve C ⊂ C2 has projections π1, π2 : C → C which are well
defined and holomorphic (whether or not they are charts); by contrast the maps
e.g. X : Y : Z 7→ Y

Z are only defined on open subsets of our projective curve C
({Z , 0} ∩ C in this case).

If we have an algebraic curve in C2 given by {q(s, t) = 0} with deg q = k, to
extend it to a projective curve in P2 we define C = {X : Y : Z | Xkq( Y

X ,
Z
X = 0}; we

have C0 � {q(s, t) = 0}, and C \C0 is a finite set of points, induced by the roots of
qk(1, t) = 0, qk(s, 1) = 0 where qk is the terms of degree k in q(s, t). Note we have
no guarantee that the curve is nonsingular at points of C \ C0.

Without proof, it is a fact that any non-singular projective curve in P2 is
connected.
P1 = {X : Y : 0} ⊂ P2 is a Riemann Surface, as we can write it as a non-

singular projective curve by P(X,Y,Z) = Z.
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Proposition: P1 is biholomorphic to S2 (which recall we informally identified
with C ∪ {∞}; we can identify this with P1 by z : 1 ↔ z, 1 : 0 ↔ ∞): put

Ψ : s : t ∈ P1 7→ (
2ℜ(st̄)
|s|2+|t|2 ,

2ℑ(st̄)
|s|2+|t|2 ,

|s|2−|t|2
|s|2+|t|2 ) ∈ S2 ⊂ R3 (we come up with this map

by inverting stereographic projection). This is continuous, since the RHS is
continuous as a map C2 \ {0} → R3, and of the form ψ ◦Π.

We claimΨ is holomorphic; we use the usual stereographic projection charts
φ,ψ on S2, and charts on P1 by s : t 7→ s

t (valid for t , 0) and s : t 7→ t
s (valid for

s , 0); their respective inverses are s 7→ s : 1, t 7→ 1 : t. Then we can calculate
that coordinate expressions of Ψ will be s 7→ s : 1 7→ . . . 7→ s or 1

s (depending

whether we use φ,ψ respectively), similarly t 7→ 1
t or t (again corresponding to

φ,ψ); these are all holomorphic where defined, soΨ is holomorphic. Now we
just need to prooveΨ is bijective, then the inverse mapping theorem gives the
result.
Ψ−1(u, v,w) = (u+ iv) : (1−w) for w , 1 and (1+w) : (u− iv) for w , −1; note

that these agree for w , ±1, as then (u+iv) : (1−w) = (u+iv)(u−iv) : (1−w)(u−iv)
(note u − iv , 0), which is (u2 + v2) : (1 − w)(u − iv) = (1 − w2) : (1 − w)(u − iv) =
(1 + w) : (u − iv).

Branched Covers

Consider F : R → S a non-constant holomorphic surjection onto a connected
S. Let B = {x ∈ S : x = F(y) with vF(y) > 1}, the branch locus of F. We say
F is a cover of S branched over B. If R, S are compact, then ∀x ∈ S \ B∃ an
open neighbourhood U ∋ x such that F−1 is a

⊔

[notation: disjoint union] of
neighbourhoods biholomorphic to U, and ∀x ∈ B where F(y) = x, F is locally
z 7→ zn where n = vF(y).

We shall only consider the cases S = S2 or C.
Proposition: Let C = {P(s, t) = 0} be an algebraic curve inC2, defineφ : (s, t) ∈

C 7→ s ∈ C (recall this is holomorphic), and let (s0, t0) ∈ C. Then vφ(s0, t0) >

1 ⇔ ∂P
∂t (s0, t0) = 0; moreover vφ(s0, t0) = n ⇔ ∂P

∂t (s0, t0) = · · · = ∂n−1P
∂tn−1 (s0, t0) = 0

but ∂nP
∂tn (s0, t0) , 0. It sufficies to show the reverse implication; we wlog take

s0 = t0 = 0. Now if ∂P
∂t (0, 0) , 0 then φ is a chart of C near (0, 0) and vφ(0, 0) = 1;

if ∂P
∂t (0, 0) = 0 then ∂P

∂s (0, 0) , 0 as C is non-singular; then we have a chart near
(0, 0) by second projection (s, t) 7→ t with inverse t 7→ (h(t), t) for some h(t)
holomorphic near 0 with h(0) = 0.

We must have P(0, t) = tnq1(t) with q1(0) , 0 by hypothesis; let qi denote
holomorphic functions which don’t vanish at 0. Then write P(s, 0) = sq2(t), then
P(s, t) = tnq1(t)+sq3(s, t); let h(t) = tlq4(t); recale 0 ≡ P(h(t), t) = tnq1(t)+tlq4(t)q5(t),
so n = l = vh(0) = vφ(0, 0), since h is a local coordinate expression for φ.

Theorem: There exist Riemann surfaces of any genus g ≥ 0; given such a g,
let h(s) be a polynomial of degree 2g + 2 with no multiple roots; then we have
that the algebraic curve C = {(s, t) ∈ C : t2 − h(s) = 0} is nonsingular. We have
an open C0 = {(s, t) ∈ C : s , 0}with C \ C0 being 1 or 2 points.

Let k(z) = z2g+2h( 1
z ); this is a polynomial with no multiple roots. Then

Y = {(z,w) ∈ C2 : w2 − k(z) = 0} is a non-singular algebraic curve and we have
an open Y0 = {(z,w) ∈ Y : z , 0} ⊂ Y; this time we have Y \ Y0 is precisely two
points, as k(0) , 0.
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Now F : (s, t) ∈ C0 7→ 1
s ,

t
sg+1 ∈ Y0 is a valid function, as k(z = 1

s ) = 1
s2g+2 h(s) =

t2

s2g+2 = ( t
sg+1 = w)2. F is holomorphic: we have charts (s, t) 7→ s or t on C0,

(z,w) 7→ z or w on Y0; take φ : (s, t) 7→ s, ψ : (z,w) 7→ w, then s maps by φ−1 to

(s, a(s)) which maps by F to ( 1
s ,

a(s)

sg+1 ), which maps byψ to
a(s)

sg+1 , so this composition

f̂ is holomorphic; the result for other choices of charts is similar.
F is bijective: F−1(z,w) = ( 1

z ,
w

zg+1 ) ∈ C0 for any (z,w) ∈ Y0; thus F is biholo-
morphic.

Define X to be the quotient of C ⊔ Y by the relation x ∼ F(x)∀x ∈ C0; define
W ⊂ X is open iff both W ∩ C,W ∩ Y are (regarding C,Y as subsets of X). This
X is Hausdorff; the only nontrivial check is for X ∈ X \ Y, y ∈ X \ C (since C,Y
are both Hausdorff). In this case x ∈ C \ C0, y ∈ Y \ Y0; put ux = {(s, t) ∈ C : |s| <
1
2 }, uy = {(z,w) ∈ Y : |z| < 1

2 }; these are disjoint in X as |s| < 1
2 ⇒ | 1s = z| > 2.

We use the charts from C and Y, which together cover X; we only need
to check the transition functions for when we have φC : U ⊂ C → C, φY|V ⊂
Y→ C charts on C,Y respectively. The transitions can be computed using F as
(φY ◦F), ◦φ−1

C
, (φC ◦F−1) ◦φ−1

Y
; these are both holomorphic since φY ◦F is a chart

on C and φC ◦ F−1 is a chart on Y, as F is biholomorphic.
Further we have that X = {(s, t) ∈ C : |s| ≤ 1} ∪ {(z,w) ∈ Y : |z| ≤ 1}, a union

of two compact sets (these are compact subsets of C,Y respectively as they are
closed and bounded inC2) so compact. Also (without proof, since such is much
more an exercise in topology than part of this course) X is connected.

Define f : X → P1(= S2) by f (x) = s : 1 if x = (s, t) ∈ C, 1 : z if x = (z,w) ∈ Y;
this is valid since s = 1

z∀x ∈ C∩Y. Then f is holomorphic as f |C, f |Y are (since
they are first projections of algebraic curves); we claim deg f = 2; for this it is
sufficient to show there are infinitely many p ∈ P1 with f−1(p) = 2, since X is
compact so the set of x ∈ X with v f (x) > 1 is discrete so finite - consider C ⊂ X.

[I’m unclear about what’s happening here; hope this is right]
f |C is first projection (s, t) 7→ s of an algebraic curve, so f−1(x) is two points

iff h(s) , 0. Now p ∈ X has v f (p) > 1 iff f−1( f (p)) is a single point (p), so there
are no ramifications on X \ C = Y \ Y0, since P \ Y0 is two points, but f (Y \ Y0)
is the single point 1 : 0.

Using a proposition from above we can find the ramification points in C ⊂ X;

they are the (s, t) such that P(s, t) = 0 = ∂P
∂t (s, t)⋆, where P(s, t) = t2 − h(s). We

have ∂2P
∂t2 (s, t) ≡ 2 , 0 so the condition ⋆ becomes that t = 0 and h(s) = 0, so we

have 2g + 2 ramification points with v f = 2. Now Riemann-Hurwitz applied

to f : X → P1 gives χ(X) = 2χ(P1) − (2g + 2) = 2 − 2g, since χ(P1) = 2. So the
genus of X is g, as required.

Some remarks on this construction: X is, informally, a 2 : 1 branched cover
of P1 branched over 2g + 2 points. X has a meromorphic function of degree 2
( f ); such a Riemann surface is called hyperelliptic. Also note that X \C is finite
so X is a compactification of C, but X is not a projective curve in P2.

Meromorphic Differentials on Riemann surfaces

Let S be a connected RS. Then holomorphic maps F : S→ P1 are equivalent to
meromorphic functions f = ψ◦F : S\F−1(1 : 0)→ C (whereψ is the chart z : 1 7→
z onP1. We want to consider the derivative of this meromorphic function, but to
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do this we must take a chart on S. But then our derivative depends on the choice
of chart: by the chain rule, ( f ◦φβ)′ = (( f ◦φα)◦ (φ−1

α φβ))
′ = ( f ◦φα)′◦τ′αβ; [which

is not generally= ( f ◦φα)′]; thus writing fα for f ◦φ−1
α , f ′α(z) = f ′β(ταβ(z))τ′αβ(z)(⋆).

Therefore, we cannot just take f ′; rather:
Definition: a (meromorphic) differential η on a RS S is a collection of mero-

morphic functions ηα on φα(Vα) ⊂ C corresponding to the charts (φα,Vα)
of S satisfying ηα(z) = ηβ(ταβ(z))τ′αβ(z)(⋆⋆)∀z ∈ φα(Vα ∩ Vβ) for any pair of

charts φα, φβ where ταβ = φβ ◦ φ−1
α . Each ηα is a local expression or formula

for η in the chart φα. It is notationally convenient to write ηα(z)dz rather
than ηα; then if w = ταβ(z) is another local coordinate then (⋆⋆) becomes
ηα(z)dz = (ηβ(w) ◦ τ′αβ(z))dz = ηβ(w)dw(†). (⋆) is a special case of a meromorphic

differential; put ηα = f ′α, then (⋆⋆) holds, and (†) becomes f ′α(z)dz = f ′β(w)dw.

We will write d f for this example of a differential.

More generally, for f , g meromorphic functions on S putηα(z) = gα(z)
d fα(z)

dz (z);

then (⋆⋆) holds: gα(z)
d fα
dz (z) = gβ(w)

d fβ(w)

dw (w) dw
dz , where w = ταβ(z), but this is

ηβ(w)τ′αβ(z) as required, so this is a valid differential, denoted gd f . [Similarly] for

η a differential and g a meromorphic function, gη is a differential; conversely,
suppose η, ζ differentials, and ζα . 0 for some α (which by connectedness

implies ζα . 0∀α). Then (⋆⋆) ⇒ ηα
ζα
=

ηβτ′αβ
ζβτ′αβ

=
ηβ
ζβ

so there is a well defined

meromorphic function f on S such that ∀γηγ = fζγ. Then write η = fζ, and we
have proven:

Proposition: Suppose S is a connected RS and ζ a nonzero differential on S,
then any meromorphic differential η on S is fζ for some meromorphic f on S.

Suppose h is a non-constant meromorphic function on S. Then every differ-
ential on S is f dh for some meromorphic f .

Fact (this is in fact a deep theorem): 1. every RS carries a non-constant
meromorphic function, 2. Every compact RS is “algebraic”, which infor-
mally means it is biholomorphic to some {z0 : · · · : zn ∈ Pn|P1(z0, . . . , zn) =
0, . . . ,PN(z0, . . . , zn) = 0} for some homogenous polynomials Pi. This result was
conjectured by Riemann in around 1850 and proven over the next 50 years.

Note that if S is a non-singular projective curve in P2 and 0 : 0 : 1 ∈ S, and
S not a projective line {αX + βY = 0} for some α, β ∈ C, then X : Y : Z ∈ S 7→ X :
Y ∈ P1 is a non-constant meromorphic function.

Definition: a meromorphic differential η has a zero/pole of order m at p ∈ S
if for some local expression ηα with p ∈ Vα, ηα has a zero/pole of order m at
φα(p) ∈ C; note that this is well defined since if p ∈ Vβ then ηβ = ηατ′αβ and τ′αβ
is holomorphic and never 0. A differential is holomorphic if it has no poles.

An example is S = S2 with the stereographic projection charts α, β and
fβ(w) = w2 + 1, gβ(w) = 1

w2−1
. Then (gd f ) = 2w

w2−1
dw; let z be the coordinate under

α, w = 1
z = τ(z) = ταβ(z), then (gd f )α =

2( 1
z )

( 1
z )2−1

(− 1
z2 )dz = 2

z(z2−1)
dz; we have a zero

at w = 0 (z undefined or ∞) and poles w = ±1 (corresponding to z = ±1) and
z = 0 (at which w is undefined); these are all of order 1, so we have 3 simple
poles and 1 simple zero.

We want to write the zeroes and poles conveniently; for gd f as in the
example, we could write these as 1“w = 0′′ + (−1)“w = 1′′ + (−1)“w = −1′′ +
(−1)“z = 0′′. A better way to handle this is to use divisors:
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Divisors

Assume S is a compact connected Riemann surface.
Definition: A divisor on S is a formal sum D =

∑

Pi∈S niPi where ni ∈ Z and
only finitely many ni are nonzero. If ni = 1 we write Pi for 1Pi. Divisors form a
group under addition, using the distributive law kP + lP = (k + l)P.

Define the degree deg D =
∑

i ni; this gives a homomorphism deg : Div(S)→
Z from the group of divisors on S.

We say a divisor D ∈ Div(S) is effective, D ≥ 0, if ni ≥ 0∀i; thus we write
D ≥ D′ to mean D −D′ ≥ 0.

The divisor of a meromorphic function f . 0 on S is ( f ) =
∑

i kiAi −
∑

j l jB j,
where Ai are the zeroes of f , ki their corresponding orders, and similarly B j

poles, l j orders.
We say D is a principal divisor if D = ( f ) for some meromorphic f . 0. We

say D ∼ D′, D and D′ are linearly equivalent, if D −D′ is a principal divisor.

If ω is a meromorphic differential on S then we can write (ω) =
∑

zeroes −
∑

poles as for a meromorphic function; any such divisor (ω) is called a canonical divisor.
Properties: deg( f ) = 0, since the sum of orders of zeroes must equal the

degree of the meromorphic function f , but this also equals the sum of the orders

of poles. ( f g) = ( f )+ (g); if g . 0, (
f

g ) = ( f )− (g). For any two canonical divisors

(ω), (ω′) we have (ω) ∼ (ω′), since there exists a meromorphic f such that
ω′ = fω, so (ω′) = ( f )+ (ω). A consequence of this is that deg(ω) is independent
of the particular choice of meromorphic differential ω, but is rather a property
of the surface S (Note we assume S has non-constant meromorphic functions,
which is a true fact but not proven in this course).

Given D ∈ Div(S), consider the complex vector spaceL(D) = { f meromorphic on S :
D + ( f ) ≥ 0} ∪ {0}; the reader may verify this is in fact a vector space. Define
l(D) = dimL(D).

Lemma: L(D) is finite dimensional: let D =
∑

i niPi−
∑

j m jQ j with ni,m j > 0;
then ( f ) + D ≥ 0 ⇒ f has poles only at Pi, with orders ≤ ni. Choose and fix
a chart near each Pi, and define a linear map by f ∈ L(D) 7→ the sequence of
coefficients of the principal parts of the Laurent expansion for f at Pi, an element
of CN where N =

∑

i ni. Elements of the kernel of this map are meromorphic
functions on a compact Riemann surface with no poles, i.e. constant functions,
so the kernel is � C, and by rank-nullity l(D) ≤ N + 1.

Properties of l(D): l(0) = 1, since the only meromorphic functions without
poles are constant. For a canonical divisor KS = (ω), L(Ks) = { f : ( f KS) ≥ 0} ∪
{0},the space of all holomorphic differentials on S. If deg D < 0, deg(D + ( f )) <

0∀ f so l(D) = 0. If D ∼ D′ (i.e. D = D′ + (h)) then f ∈ L(D) iff f h ∈ L(D′), so
l(D) = l(D′).

Riemann-Roch Theorem

Suppose S is a compact connected Riemann surface (recall this means it has
non-constant meromorphic functions), then [for any divisor D] l(D) = 1− g(S)+
deg D+ l(KS−D) where g(S) is the genus of S and KS is any canonical divisor on
S. This is the second of the two most important results in this course (though
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we shall still be seing the third-most-important result). The proof is non-
examinable and there is not time to cover it in this course; a good, well-written
proof can be found in Kurwan’s “Complex Algebraic Curves”.

Immediate consequences of this result: the D = 0 case gives 1 = 1 − g(S) +
l(KS), i.e. l(KS) = g(S) (a remark for interest only; l(KS) is the geometric genus

pg of S; there are many concepts referred to as genus in mathematics; the
simplest is topological genus g). D = KS gives g(S) = 1 − g(S) + deg KS + 1 ∴
deg KS = 2g(S) − 2 = −χ(S). If deg D > 2g(S) − 2 then deg(KS − D) < 0, so
l(KS −D) = 0 ∴ l(D) = 1 − g(s) + deg D.

Applications: If g(S) = 0 then S is biholomorphic to P1 (= S2) (this is related
to question 11 on the third example sheet): take D = P, a single point in S;
deg P = 1 > 2g(S) − 2, so l(P) = 2 by the above, so ∃ a meromorphic function
f on S such that the only pole of f is a simple pole at P (since the space of
meromorphic functions without poles is only 1-dimensional), so we have [a
holomorphic] f : S→ P1 of degree 1, i.e. a bijection, so f−1 is holomorphic [and
f is a conformal equivalence].

Theorem: Every compact Riemann surface of genus 2 is hyperelliptic, i.e.
has a meromorphic function of degree 2: we have g(S) = 2, so by Riemann-Roch
1) l(KS) = g(S) = 2 > 0 ∴ ∃ a non-trivial holomorphic differential ω . 0 on S, 2)
For P,Q ∈ S, possibly coincident, let D = P+Q, then l(KS −P−Q) = l(P+Q)− 1.

deg(ω) = −χ(S) = 2 = # zeroes of ω, since ω has no poles. Let P,Q be the
zeroes of ω, then l(KS − P −Q) = l((ω) − P −Q) = l(0) = 1 ∴ l(P +Q) = 1 + 1 = 2
[which is > 1], so we have a meromorphic (non-constant) function f on S with
deg f ≤ 2, i.e. deg f must be 1 or 2. But we cannot have deg f = 1since g(S) , 0
so S is not the Riemann sphere; thus we must have deg f = 2.

Note that a “general” compact Riemann surface of genus ≥ 3 is not hyperel-
liptic, e.g. {X4 +Y4 = Z4} ⊂ P2 is a surface of genus 3 which is not hyperelliptic.

Suppose the genus is 1 and relabel S = E. Let Cl0(E) denote the set of linear
equivalence classes of divizors of degree 0 on E.

We want to give E a group structure. Map the quotient group DivE
∼ → Z

by deg; this is a homomorphism with kernel Cl0(E). So Cl0(E) is the kernel
of a homomorphism, so an (additive) group. Choose and fix P0 ∈ E (which
will become our zero element). Then deg D = 0 ⇒ deg(D + P0) = 1, so
deg(KE − (D + P0)) = −1 (since deg() = χ(E) = 0). So l(KE − (D + P0)) = 0.
Applying Riemann-Roch to D + P0, l(D + P0) = 1 − 1 + 1 + 0 = 1, so there is a
unique effective divisor of degree 1, linearly equivalent to D+ P0, i.e. there is a

unique P ∈ E such that D ∼ P − P0. So we have a bijection Cl0(E) → E, so we
can consider E as a group.

If P,Q ∈ E, then their sum under the group operation is found or defined to
be R such that (P − P0) + (Q − P0) ∼ R − P0, i.e. P +Q ∼ P + P0(⋆). So P0 is the
zero element, and Q is the inverse of P iff R = P0, i.e. P +Q = 2P0 (considering
P,Q,R as divisors throughout this).

An example: Λ ⊂ C a lattice, E = C
Λ

; the points of E are cosets z + Λ for
z ∈ C. Set P0 = 0 + Λ, then R is the sum of P and Q iff P + Q − R − P0 ∼ 0, i.e.
there is an elliptic function f such that f (a) = f (b) = 0, f (c) = f (0) = ∞ [where
P = a + Λ,Q = b + Λ,R = c + Λ], with these zeroes and poles being of order 1.
By the constraints on elliptic functions, such an f is possible iff a+ b− c− 0 ∈ Λ,
i.e. a + b ≡ c mod Λ.

Furthermore (and this relates to queston 11 on the second example sheet
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and question 5 on the third example sheet), for g(E) = 1, suppose we have
meromorphic functions f with ( f ) = P1 + P2 − 2P0, i.e. P2 is the inverse of P1

in the group, and h with (h) = Q1 + Q2 + Q3 = 3P0, i.e. Q1,Q2,Q3 sum to zero
in the group. Then h2 − a1 f 3, for a suptable choice of a1 , 0 ∈ C, has a pole of
order ≤ 5 at P0 and no other poles. So (for suitable a2, which = 0 if this pole is
of order ≤ 4), (h2 − a1 f 3)− a2 f h has a pole of order ≤ 4 at P0 and no other poles;
continuing similarly, (h2 − a1 f 3) − a2 f h − a3 f 2 − a4h − a5 f has a pole of order
≤ 1 at P0 and no other poles, so it must be a constant function, = a6; we can
wlog take a1 = 1, then h3 − f 2 − a2 f h − a3 f 2 − a4h − a5 f − a6 ≡ 0. We can define
P ∈ E \ {P0} 7→ 1 : f (P) : h(P)
inCsubsetP2 where : Y : Z | XZ2 − a2XYZ − a4X2Z = Y3 + a3XY2 + a5X2Y +
a6X3}(⋆⋆), a projective cubic curve; it can be shown that he map extends
holomorphicly over P0 by P0 7→ 0 : 0 : 1, E is biholomorphic to C and C is
non-singular so a Riemann surface. (⋆⋆) is called a cubic curve in Weierstrass
normal form; by a change of variables we may take a2 = a3 = a4 = 0. These
curves are covered in more detail on the fourth example sheet for this course.

Analytic Continuation

Suppose f : D ( C → C is holomorphic. Can we extend f holomorphicly to a
larger domain?

Definition: i) A function element is a pair ( f ,D) with D ⊂ C open connected
and f : D→ Cholomorphic. ii) (g,E) ≈ ( f ,D), (g,E) is direct analytic continuation

of ( f ,D), if E∩D , ∅ and f |D∩E= g |D∩E iii) (g,E) is analytic continuation of ( f ,D),

(g,E) ∼ ( f ,D), if there is a finite sequence ( f ,D) ≈ ( f1,D1) ≈ · · · ≈ ( fn,Dn) ≈
(g,E); this is an equivalence relation (note that≈ is not, since it is not transitive).
The equivalence class of ( f ,D) under ∼ is called a complete analytic function

(in the sense of Weierstrass).
The choice of D is important. For example, (log z,C\(R>0)) has no nontrivial

analytic continuation, as the domain we have chosen is too large. If D ∩ E is
not connected wee maay have f = g on one component of D ∩ E but f , g on
another, which would be problematic.

Lemma: 1) If f = g on some open disc U then f = g on any open connected
V ⊃ U: f − g ≡ 0 on U, so the identity principle on ( f − g) |V implies this is ≡ 0.
2) if we have ( f ,D) and E with E ∩ D , ∅ then if ∃(g,E) ≈ ( f ,D) then this g is
unique: if we had such g1, g2 then g1 − g2 ≡ 0 on D ∩ E, an open subset of the
connected E, so g1 − g2 ≡ 0 on E.

A good choice for D is an open disc, since for any two such discs D1,D2

D1 ∩ D2 is connected, and if f is holomorphic on D then it must be given by a
power (Taylor) series convergent on D. It is easy to find the maximal disc about
any z0 ∈ C - we just take the disk on which this series is convergent, using the

root test: for
∑∞

n=0 an(z − z0)n, consider whether limn→∞
n
√

|an(z − z0)n| < 1 where

lim is the “upper limit”, the maximum limit of any convergent subsequence.
Hadamard’s formula is that the radius of convergence is R = 1

limn→∞
n√|an |

; this R

is the distance from z0 to the nearest singularity of f .
Let D = {|z − z0| < R}, ∂D = {|z − z0| = R}, f : D → C holomorphic. Then

c ∈ ∂D is called a regular point (for ( f ,D)) if (g, {|z − c| < ǫ}) ≈ ( f ,D) for some
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ǫ > 0 and some g; otherwise c is a singular point. If there are no regular points

in ∂D then ∂D is the natural boundary of ( f ,D).

Examples: 0) f (z) =
∑∞

n=0 zn has R = 1 by Hadamard, z = 1 is a singular point
for ( f ,∆) (recall ∆ is the unit disc), and in fact it is the only such, as f (z) = 1

1−z .

1) f (z) =
∑∞

n=1 zn! (= z + z2 + z6 + . . . ): we find again R = 1, and claim {|z| = 1}
is the natural boundary of this ( f ,∆): if

arg z

2π =
p

q ∈ Q then z = re2πi
p
q so zn! =

rn!e2πi
pn!
q = rn! for n ≥ q; for 0 ≤ r < 1 let f̃ (z) =

∑m
n=q zn! =

∑m
n=q rn! ≥ rm!(m − q)

and limr→1(m − q)rm! = m − q > M for any M > 0 by taking m ∈ Z such that
m − q > M. So limr→1 f̃ (r) > M for any M, so f (z) has infinite limit on a dense
subset of {: z :]1}, so every z = eiφ forφ ∈ R is singular (since any neighbourhood
of z contains a point at which f , informally speaking, is infinite). 2) (sketch)

f (z) =
∑∞

n=1
z2n

2n has agin R = 1; moreover the series converges uniformly on
{|z| ≤ 1} so f is continuous on {|z| = 1}. ∀z with |z| = 1 we can find z is singular,
as otherwise ℑ( f (eit)) for some t ∈ R is

∑∞
n=1

1
2n sin(2nt) but this is not a C∞

function by the theory of fourier series.
A nontrivial analytic continuation may or may not exist; if it does, we may

perhaps obtain a “multivalued function”, i.e. have ( f ,D) ∼ (g,D) but f , g.
Riemann suggested that such functions are “defined on the wrong domain”,
and should be considered as functions on some surface which covers C.

Definition: let p : X → Y be continuous between topological surfaces, then
a continuous q : V → X is a local section of p over V ⊂ Y if p ◦ q = id |V, e.g.

charts on C
Λ

are local sections of p : z 7→ z + Λ over V = p(D) where D ⊂ C is a
small disc.

Theorem: every complete analytic functionF determines a Riemann surface
S(F ), the Riemann surface of a complete analytic functionF , with holomorphic
maps π : S(F )→ C, u : S(F )→ C such that if ( f ,D) ∈ F then f (z) = u ◦ q(z) for
some holomorphic local section q of π.

Examples: 0) an entire function f : C→ C has S(F ) = C, π = u = id |C. A ra-

tional function
p(z)

q(z) : C\{some finite set} → C has S(F ) = C\{that finite set}, π =
u = id. There is a natural compactification S(F ) = C ∪ {∞} = S2. 1)

∑∞
n=1 zn! has

S(F ) = ∆ ⊂ C, π = u = id∆; note that ∆ is not biholomorphic to C. 2) Log, the

complete analytic function containing (
∑∞

n=1(−1)n+1 (z−1)n

n , {|z − 1| < 1}). We can

show (exercise, using the identity principle) that ∀(h,D) ∈ Log, eh(z) = z∀z ∈ D.
We can also show that ∀(s0, t0) such that et0 = s0∃!h̃ : D(s0, ǫ)→ C for some ǫ > 0
such that [h̃(s0) = t0 and] (h̃,D(s0, ǫ)) ∈ Log.

We can identify S(Log) = {(s, t) ∈ C2 : et − s = 0}, a (non-algebraic) curve
in C2. Take charts by first projection (s, t) 7→ s on suitable open sets covering
S(Log). Then we have π : (s, tR ∈ S(Log) 7→ s, u : (s, t) 7→ t; [for D ⊂ C \ {0} set
φ = π |D, then φ−1 is a locas lection of π over D. Then (h,D) ∈ Log is given by
h = u ◦ φ−1, a “holomorphic branch of Log over D”.

u : S(Log) → C is a holomorphic bijection, so S(Log) is biholomorphic to
C; u−1 is uniquely determined [and is t 7→ exp(t)]. Note that under π : C �
S(Log)→ C, S(Log) “spirals” over C \ {0} infinitely many times.

3)
√

z, the complete analytic function containing (
∑∞

n=0

1
2 ( 1

2−1)...( 1
2−n+1)

n! × (z −
1)n,D(1, 1)). ∀( f ,D) ∈

√
z we have f 2(z) = z; also if t2

0 = s0 , 0 then ∃! (for

D fixed) ( f (s),D(s0, ǫ)) ∈
√

z for some ǫ > 0 with f (s0) = t0 (s0 = 0 cannot be
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included, as then f 2(z) = z, t ≥ 0, f (t) ±
√

t in real variable is not C∞ at t = 0)
Thus S(

√
z) = {(s, t) ∈ C2 : t2 − s = 0} \ {(0, 0)}, a punctured algebraic curve,

= {X : Y : Z | Z2 − XY = 0} \ {1 : 0 : 0, 0 : 1 : 0}, i.e. there is a projective curve
which is a natural compactification of S(

√
z).

4) “algebraic functions”: f (s) defined (locally, near some s0 ∈ C)) by P(s, f (s)) =

0 for some polynomial P(s, t) with P(s0, t0) = 0, ∂P
∂t (s0, t0) , 0, we get ( f ,D(s0, ǫ))

defining a complete analytic function. E.g. P(s, t) = t2 − (s2 − 1) . . . (s2 − n) for
n > 0, e.g. n = 4 - see the handout, and the earlier proof that there exist Riemann
surfaces of any genus.

5) Somewhat of a nonexample: beware, the “obvious” algebraic curve might
not be the “right” S(F ), even for F algebraic, as the algebraic curve might be

singular. E.g. F (z) = z
√

1 − z (the complete analytic function [presumably
defined by some series]). We have projection π : S(F ) → C, and want to use
C = {(s, t) ∈ C2 : t2 − s2(1 − s) = 0}, but this is singular at (0, 0); p : (s, t) ∈ C →
s ∈ C2 has p−1(0) = (0, 0), a single point, but π−1(0) is two points, corresponding
to ( f1,D(0, ǫ)), ( f2,D(0, ǫ)) where f1(z) = z(1− 1

2 z− 1
8 z2 + . . . ), f2(z) = − f1(z) (note

f1 , f2).
Now, the proof of our above theorem, that ∀( f ,D) ∈ F ∃ a local section q of π

such that f = u ◦ q. For z ∈ C, define ( f1,D1)
z∼ ( f0,D0) if z ∈ D1 ∩D0 and f1 = f0

near z.
z∼ is an equivalence relation; the equivalence class of ( f ,D) under

z∼ is
called the germ of ( f ,D) at z (note we must have z ∈ D); the notation is [ f , z].

Proposition: every germ [ f , z] uniquely determines 1) z ∈ C: z =
⋂

( f ,V)∈[ f ,z] V,
2) f (z) ∈ C: ∀( f1,V1), ( f2,V2) ∈ [ f , z], the definition implies f1(z) = f2(z), 3) A

complete analytic functionF such that [ f , z] ⊂ F : ( f1,V1)
z∼ ( f2,V2)⇒ ( f1,V1) ∼

( f2,D2). Put S(F ) to be the set of germs in F , π : [ f , z] ∈ S(F ) 7→ z ∈ C, u :
[ f , z] ∈ S(F ) 7→ f (z) ∈ C, and ∀( f , d) ∈ F , q : z ∈ D 7→ [ f , z] ∈ S(F ) [I am
unsure about this section]. Now we need to show that S(F ) is Hausdorff and
has complex structure, and π, u are holomorphic with respect to this.

Definition: If ( f ,D) ∈ F then [ f ,D] defined as the set of all germs [ f , z]
containing ( f ,D) is a basic neighbourhood; we have [ f ,D] ⊂ S(F ), and the map

[ f , z] ∈ [ f ,D] 7→ z ∈ D is a bijection. [Then we define] U ⊂ S(F ) is open iff
∀p ∈ U∃[ f ,D] such that p ∈ [ f ,D] ⊂ U, i.e. open sets in S)F ) are unions of basic
neighbourhoods; we clearly have unions of open sets being open and S(F ), ∅
are open. Suppose U1,U2 ⊂ S(F ) open; wlog take U j = [ f j,D j]. If U1 ∩U2 , ∅
then ∃[ f , z] ∈ U1 ∩ U2, then z ∈ D1 ∩ D2 so D1 ∩ D2 , ∅ Then f1(z) = f2(z), so
consider f1 − f2; we have f1 − f2 ≡ 0 on some D(z, ǫ), so [ f1,D(z, ǫ)] ⊂ U1 ∩ U2.
This holds for any [ f , z] ∈ U1 ∩U2, so U1 ∩U2 contains a basic neighbourhood
about each of its points, so is open, so we have a valid topology.

To see S(F ) is Hausdorff, suppose we have p1 , p2 ∈ S(F ), and let p j =

[ f2, z j]. If z1 = z2 = z,∃( f1,D1) ∈ [ f1, z1] and ( f2,D2) ∈ [ f2, z2]; then f1 − f2 is
never zero on D⋆(z, ǫ) for some ǫ > 0 [by identity principle?], so [ f1,D(z, ǫ)] ∩
[ f2,D(zǫ)] = ∅, as ∀ [w ∈ D⋆(z, ǫ)], f1(w) , f2(w) so [ f1,w] , [ f2,w].

If z1 , z2 then we can take ( f1,D1) ∈ [ f1, z1], ( f2,D2) ∈ [ f2, z2] with D1 ∩D2 =

∅ by Hausdorffness of C, by restricting the fi to smaller Di as necessary, so
[ f1,D1] ∩ [ f2,D2] = ∅.

Now we define the charts on S(F ): for [ f ,D] with D an open disc, φ :
[ f ,D] → D given by φ = π |[ f ,D] is our chart (recall π([ f , z]) = z); this is a
homeomorphism since for any open V ⊂ D, [ f ,V] is well defined and open with
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φ([ f ,V]) = V. Given a second chart φ2 : [ f2,D2]→ D2 with [ f ,D] ∩ [ f2,D2] , ∅
we have [ f ,D ∩D2] [open], and φ−1(z) = [ f , z] so φ2(φ−1(z)) = z and we have a
complex structure.

Finally,π and u are holomorphic maps: for any [ f , z] ∈ S(F ,π is locally some
chart φ so holomorphic. Recall u : [ f , z] ∈ S(F ) 7→ f (z) ∈ C; we have a local

expression: for [ f ,D] ⊂ S(F ), z ∈ π([ f ,D]) = φ([ f ,D]), z ∈ D
φ−1

7→ [ f , z] ∈ [ f ,D]
u7→

f (z) ∈ C, where ( f ,D) ∈ F so f is holomorphic [so u is locally holomorphic so
holomorphic].

Digression: covering surfaces

Charts φ on S(F ) are restrictions on π : S(F )→ C, so π has ramification points.
Definition: let R̃,R be topological surfaces. Then a continuous surjective

p : R̃→ R is “covering” (in a preliminary, weak, non-standard sense) if ∀x ∈ R̃∃
a neighbourhood Ũ ⊂ R̃ with Ũ ∋ x such that p |Ũ is a homeomorphism. (The
“correct” definition of covering implies this, but is not equivalent to it). Thus
π : S(F )→ C is a “covering” of its image π(S(F )) ⊂ C.

Proposition: Let R be a Riemann surface, p : R̃ → R a “covering” [R̃ a
topological surface]. Then there is a complex structure on R̃ such that p is holo-
morphic: for x ∈ R̃∃Ũ with x ∈ Ũ ⊂ R̃ such that p : Ũ→ U is a homeomorphism,
where U := p(Ũ) ⊂ R. Then there is a chart φ : W → C on W ⊂ R with p(x) ∈W.
Set φ̃ := φ◦p : p−1(U∩W) ⊂ R̃→ C; this is a composition of homeomorphisms,
so a homeomorphism. Then for transition functions, if we have two such φ̃α, φ̃β
then φ̃β ◦ φ̃−1

α = (φβ ◦p |Wβ)◦ (φα ◦p |Wα )
−1 = φβ ◦p |Wβ ◦(p |Wα )

−1 ◦φ−1
α = φβ ◦φ−1

α ,

which is holomorphic since R is a Riemann Surface. So these φ̃ form a complex
structure as required.

Definition: let p : R̃ → R be a “covering” and suppose γ : [0, 1] → R is
a continuous path. Suppose w0 ∈ R̃ is over γ(0), i.e. p(w0) = γ(0). Then a
lift of γ(t) from w0 is a continuous path Γ(t) such that Γ(0) = w0 and p ◦ Γ ≡ γ.

A fact from topology is that if a lift Γ exists then it is unique.
(If we had the “correct” definition of a covering, then lifts would always

exist).
Definition: a “covering” is regular if for any continuous γ : [0, 1] → R, we

have a lift from every point w0 such that p(w0) = γ(0).
π : S(F ) → C “covers” its image. For ( f ,D) ∈ F , γ : [0, 1] → C con-

tinuous, z0 = γ(0) ∈ D, ( f ,D) ∈ [ f , z0], π([ f , z0]) = z0, if γ(t) ∈ D then
Γ : [0, 1] → S(F ) t 7→ [ f , γ(t)] is the lift of γ from [ f , z0]. Generally, if
γ : [0, 1] → π(S(F )), z0 = γ(0), [ f , z0] ∋ ( f ,D) then the lift of γ from [ f , z0]
(if it exists) is the analytic continuation of ( f ,D) ∈ [ f , z0] along γ; the resulting

object is a germ of F at z1 = γ(1).
[Define] π : S(F ) → C is regular if there is an analytic continuation along

all paths γ in π(S(F )) from all [ f , z0] with z0 = γ(0).
Facts: 1) A regular “cover” p : R̃ → R has ∀x ∈ R∃ a neighbourhood

U ∋ x, U ⊂ R such that p−1(U) is a disjoint union of connected neighbourhoods
in R̃, each homeomorphic to U; this property is the topological definition of
covering (some sources insist R̃ be connected) (this definition clearly implies
our weaker definition). 2) To test for a regular cover: p : R̃ → R is regular if

∀z ∈ R∃ a neighbourhood K ∋ z such that every connected component of p−1(K)
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is compact (K being the closure of K).
Examples: 1) z ∈ C 7→ z + Λ ∈ C

Λ
is a regular cover, 2) z ∈ C⋆ 7→ zn ∈ C⋆ for

some n ∈ C is a regular cover - these first two examples pass the aforementioned

test, and are covers. 3) The “covering” π : S(

√

1 +
√

z) → C is not regular.

See question 4 on the fourth example sheet - there is a problem near z = 1,
γ(t) = 1 − ǫ

2 + ǫt for 0 ≤ t ≤ 1 cannot always be lifted.
Definition: Suppose γ, σ : [a, b] → Y are continuous paths in some surface

Y with γ(a) = σ(a), γ(b) = σ(b). Then a homotopy between γ and σ is H(s, t) :

[0, 1]× [a, b]→ Y such that H(s, a) = γ(a) (= σ(a), ∀s), H(s, b) = γ(b), H(0, t) = γ(t),
H(1, t) = σ(t), and H is continuous. Y is simply connected if allγ, σwith the same

endpoints are homotopic (i.e. there is a homotopy H for them).(Equivalently, Y
is path-connected and if γ(a) = γ(b) then γ is homotopic to σ(t) ≡ γ(a).

Fact, which is a theorem in topology: every path-connected surface R admits
aregular covering p : R̃ → R with R̃ simply connected. This R̃ is called the
universal regular cover of R.

The Monodromy Theorem

If p : R̃ → R is a regular covering and γ(t), σ(t) are homotopic paths in R, and
ω0 ∈ R̃ is such that p(ω0) = γ(a) (= σ(a)), then the lifts γ̃, σ̃ of γ, σ from ω0 are
homotopic; in particular γ̃(b) = σ̃(b). We shall assume this without proof.

Theorem: suppose U ⊂ C is open connected, D = D(z, r) ⊂ U, f : D → C
holomorphic and the germ [ f , z] ∋ ( f ,D) has analytic continuation along any
path in U. Then for any γ, σ : [a, b] → U homotopic, z = γ(a) = σ(a), we obtain
the same germ of f at w = γ(b) = σ(b): ( f ,D) is ∈ some complete analytic
function F ; we have S(F ) and π : S(F ) → C with U ⊂ π(S(F )). Consider
SU defined as the connected component of [ f , z] in S(F ); the hypothesis about
having analytic continuation along any path implies π : SU → C is a regular
covering, so we have the Monodromy Theorem and hence the result. This can
be applied to e.g. F = Log or F = n

√
z, which both pass the test of a regular

covering.
Corollary: under the hypotheses of the above theorem, if U is simpli-

connected, then all analytic continuations of ( f ,D) in U together give a single-
valued holomorphic function f : U → C: Any γ, σ with γ(a) = σ(a), γ(b) = σ(b)
are homotopic, so the germ of f at w = γ(b) is unique by the theorem. So e.g.
Log, n

√
z define single-valued holomorphic functions over any simply connected

U ⊂ C \ {0}.
For a , 0 ∈ C, aZ is an additive subgroup of C. C

aZ is, as we know, a

Riemann surface (a topological cylinder). For b , 0 ∈ C, consider C
bZ : z + aZ ∈

C
aZ 7→ b

a z + bZ ∈ C
bZ is a holomorphic bijection (inverse z + bZ 7→ a

b z + aZ), so
biholomorphic by the inverse mapping theorem.

Now let Λ ⊂ C be a lattice, Λ′ = αΛ for some α , 0 ∈ C. Then we similarly
have C

Λ
biholomorphic to C

Λ′ by z + Λ 7→ αz + Λ′; in fact, we have:

Theorem: C
Λ1
, C
Λ2

are conformally equivalent iff Λ′ = αΛ for some α ∈ C \ {0}:
we have done the reverse implication, for the forward let f : C

Λ1
→ C

Λ2
be

a conformal equivalence. Define πi : C → C
Λi

be defined by z 7→ z + Λi, a
holomorphic regular covering. Fix w0 ∈ C, defined by f (π1(0)) = π2(w0).
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Suppose z ∈ C. Choose γ : [0, 1]→ C with γ(0) = 0, γ(1) = z. Then π1(γ(t))
is a path from π1(0) to π1(z)¡ so f (π1(γ(t))) is a path from f (π1(0)) to f (π1(z)).
Now lift this path from w0, optaining a path Γ(t) with π2(Γ(t)) = f (π1(γ(t))).

If γ̃ is homotopic to γ, we obtain f (π1(γ̃(t))) homotopic to f (π1(γ(t))), then
by the Monodromy Theorem the lifts Γ̃(t), Γ(t) are homotopic; in particular
Γ̃(1) = Γ(1). Now define F(z) = Γ(1), and this is well defined. F is a bijection: we
obtain F−1 by switching Λ1 and Λ2, 0 and w0, and f and f−1, and applying the
same method. F is holomorphic as a function C → C: it suffices to prove it is
holomorphic near z1. Let F(z1) = w1, then we have a local holomorphic inverse
of π2 |D(w1,ǫ), say φ. Then F |D(z,δ)= φ◦ f ◦π1 is valid for some δ > 0 (as the preim-
age of D(w1, ǫ) is open), so F is locally a composition of holomorphic functions
so holomorphic. Then by the inverse function theorem F is biholomorphic. But
from complex analysis we know any biholomorphic function C→ C is a linear
function: F(z) = az + b for some a , 0, b ∈ C.

F(0) = b = w0 by the construction of F. Suppose ω ∈ Λ1, then π2(F(ω)) =
f (π1(ω)) = f (π1(0)) = π2(w0) by the definition of w0, so F(ω) − w0 ∈ Λ2, i.e.
F(ω) − F(0) ∈ Λ2, i.e. aω ∈ Λ2, so aΛ1 ⊂ Λ2, but by the same proof as F is a
bijection, αΛ2 ⊂ Λ1 where α = 1

a and we have equality as required.
Corollary: there exist uncountably many elliptic curves not biholomorphic

to each other.
Remark, for interest: let M be the set of conformal equivalence classes of

elliptic curves; we hope to make it into a “parameter space”. It is the set of
latticel modulo rescaling. ∀Λ∃α ∈ C⋆ such that Λ = Z + τZ for some τ ∈ the
upper half-plane H. However this is insufficient, as e.g. Z+ τZ = Z+ (1+ τ)Z,
or Z + iZ = Z + (1 + i)Z ∼ Z + ( i−1

2 ) (exercise: find a suitable value of α to
show that this holds). So we need to identify which τ are equivalent. Consider

PSL(2,Z) =

{
















a b
c d

















:a,b,c,d∈Z,ad−bc=1}

±1 ; this acts on H by τ 7→ aτ+b
cτ+d . The generators

are τ 7→ τ + 1, τ 7→ − 1
τ , with corresponding matricies

(

1 1
0 1

)

,

(

0 1
−1 0

)

respectively. We can show that M bijects with the orbits of this action of
PSL(2,Z) on H. So we need to find the fundamental region, which turns out
to be D = {τ ∈ H : |ℜτ| ≤ 1

2 ,ℜτ , − 1
2 , |τ| ≥ 1, |τ| > 1 ifℜτ < 0}. Note that the

boundaries of this region are identified with their reflections in the imaginary
axis, so the resulting surface is a “cigar” shape, with a tube going upwards to
infinity but closing up to a line along the bottom.

The Uniformization Theorem

Definition: a subgroup G of homeomorphisms of a surface X acts properly discontinuously

on X if∀x ∈ X∃ a neighbourhood U ∋ x such that g1(U)∩g2(U) = ∅∀g1 , g2 ∈ G.
Recall that for any Riemann surface S there is a universal regular cover

S̃, p : S̃ → S such that S̃ is a simply connected Riemann surface and p is
holomorphic.

The uniformization theorem: 1. any simply connected Riemann surface is
biholomorphic to either S2 or C or ∆ (the hard part), 2. (the easy part) every
connected Riemann surface is conformally equivalent to a quotient of a simply
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connected Riemann surface by a subgroup of biholomorphisms acting properly
discontinuously.

Corollary: every compact simply connected Riemann surface is biholomor-
phic to S2 (as we could also deduce from Riemann-Roch.

So for every Riemann surface S there is an S̃ as described with S biholomor-

phic to S̃
G ; we say S̃ uniformizes S.

The proof of the first part of the Uniformization Theorem uses some hard
analysis applied to PDEs, beyond the scope of this course. There is one book
at this level giving a proof, listed in the schedules; otherwise it is necessary
to go to actual relearch papers. A part of the proof is the Riemann Mapping
Theorem: any simply connected U ( C is biholomorphic to ∆. Another part is
the theorem on boundary behaviour, which is useful for question 9 on the fourth
example sheet: for D ( C simply connected, suppose the boundary ∂D ⊃ some
interval I = {x ∈ R : a < x < b}, and ∀x ∈ I∃D(x, ǫ) such that a) ∂D ∩ D(x, ǫ) =
I ∩ D(x, ǫ) and b) only one [component of D(x, ǫ) \ I] is contained in D. Then
any biholomorphic map D → ∆ extends continuously to a homeomorphism
D ∪ I→ ∆∪ some arc of the unit circle.

For more on the uniformization theorem, see Ahlfors, 3rd edition, pages
230-234 and 168-173.

In the second part of the uniformization theorem, we have that any S is
S̃
Γ

for Γ ⊂ Aut(S̃) acting properly discontinuously. AutS2 =
SL(2,C)
±1 , the set of

Möbius maps, AutC = {z 7→ az + b : a , 0} and as seen in question 3 on

the fourth example sheet, Aut∆ =
SU(1,1)
±1 ; all these are subgroups of Möbius

transformations.
Every Möbius transformation has a fixed point (in S2); recall that we want

∀x ∈ S2 a neighbourhood U ∋ x, U ⊂ S2 such that g1(U)∩U = ∅∀g1 ∈ Γ, but if x
is fixed, g1(x) = x, then this is impossible. So S2 only uniformizes itself.

In C, if have no fixed points then we must have a = 1, so Γ is a set of
translations z 7→ z + b; it can be shown that if Γ is nontrivial then it must = ωZ
or a lattice. So the surfaces uniformized by C are C, C⋆ (exercise: cylinders are
equivalent toC⋆ - the two infinitely far away ends of the cylinder correspond to 0
and∞), and C

Λ
. So all other Riemann surfaces are ∆

Λ
for someΛ. Unsurprisingly,

the “discrete” Γ ⊂ SU(1,1)
±1 give a nontrivial study area; they are called Fuchsian

groups.
It is important to note that C is not biholomorphic to ∆; for example, AutC

has a free abelian subgroup of rank 2, Λ, but it can be checked that the only
discrete abelian T ⊂ Aut∆ are cyclic.

The g = 0 Riemann surface is S2; the g = 1 Riemann surface is uniformized
by C. The Riemann surfaces of g ≥ 2 must be uniformized by ∆; finding the
relevant holomorphic universal regular cover can be quite complicated. See
question 9 on the fourth example sheet.

A non-examinable sketch of the proof of the second part of the uniformiza-
tion theorem: we consider cover transformations. These are, for p : S̃ → S,
homeomorphisms q : S̃→ S̃ such that p◦q = p. These are also sometimes called
deck transformations - the analogy is that the multiple preimages of redions of
S correspond to the decks of a ship.

Step 1: for any cover transformation q we have q ∈ AutS̃, q biholomorphic.
Step 2: cover transformations form a subgroup Γ of AutS̃ acting properly

discontinuously.

29



Step 3 (transitivity): if ω1, ω2 ∈ S̃ are such that p(ω1) = p(ω2), then there

is a unique cover transformation q such that q(ω1) = ω2. Corollary: S � S̃
Γ

by z ∈ S 7→ p−1(z) ∈ S̃
Γ

; this is a homeomorphism where S̃
Γ

has the quotient

topology: V ⊂ S̃
Γ

is open iff π−1(U) is open in S̃, where π : x ∈ S̃ 7→ Γ(x) ∈ S̃
Γ

.

Also, S̃
Γ

is Hausdorff.

Step 4: S̃
Γ

is a Riemann surface such thatπ is a holomorphic map; furthermore

S is biholomorphic to S̃
Γ

.
A remark for interest: there are three classes of compact Riemann surfaces

S: we could consider these as g = 0, g = 1, g > 1, but it is more natural (and
more justifiable, since “0,1,¿1” is not a natural set of classes) to consider these in
terms of χ(S); then our cases are χ > 0, χ = 0, χ < 0. Respectively these are uni-
formized by S2,C,∆; we have respectively a unique example, a 1D connected
parameter space (in fact homeomorphic to C) of possibilities, and many pos-
sibilities non-homeomorphic to each other. Now consider holomorphic maps
to S2: we have respectively any degree occurs, degree 2 always occurs (by e.g.
the ℘-function), there is only a holomorphic map of degree 2 onto S2 in “excep-
tional” cases. The constraints on zeroes and poles for these are respectively that
the numbers of each are equal, more complicated but tractable constraints, and
intricate constraints requiring Riemann-Roch. The curvature is respectively
positive, flat and negative (recall that we have a metric under which the disc is
a model of the hyperbolic plane).

This classification extends to higher dimensional manifolds; in the first two
cases we obtain respectively Fano, Calabi-Yau spaces. In the last case, there are
enough possibilities to fill another course.

This is the end of this course. Papers from the last three years are entirely
suitable for revision; before that, the course was given in a shorter format, so
papers from earlier years may miss some topics.
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