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1 Lecture

The example sheets for this course will be on the lecturer’s web page.
Some recommended books are J. Alperim and R. Bell’s Groups and Rep-

resentations, I. Issacs’ Character Theory of Finite Groups, G. James and M.
Liebeal’s Representations and Characters of Groups, the classic J-P Serre’s Lin-
ear Representation of Finite Groups, and M. Artin’s Algebra. There is a good
set of notes for this course, by C. Toloman, on the DPMMS teaching page.

We view a group as a way to describe the “symmetry” of an object, e.g.
the symmetric group Sn of permutations of the set {1, . . . , n} (for some n ≥ 1;
a permutation of a set X is a bijective f : X → X), or the alternating group
An ⊂ Sn, the set of products of an even number of transpositions (ij) ∈ Sn

(equivalently this is the set of σ ∈ Sn such that the number of pars i < j with
σ(i) > σ(j) is even).

The cyclic group Cn
∼= Zn

n is the set of rotations preserving a regular n-gon;
the dihedral group D2n (which we take as of order 2n) is the group of rotations
and reflections of the n-gon (note that in general this is a proper subgroup of
Sn)

The permutation group of a (possibly infinite) set X is the set Perm(X) of
all permutations of X . For example, we can see the gruop SO(2) of all rotations
of the plane about the origin as the symmetry group of a circle S1 in Euclidean
geometry; note that it = the circle group S1.

Example: the group of all isometries of the plane is {f : R2 → R2 :
d(f(x), f(y)) = d(x, y)∀x, y ∈ R2}; it is generated by rotations, reflections and
translations. Note that it is equal to the “semidirect product” O(2) ⋉ R2.

One can define a permutation group to mean G ⊂ Perm(X) (for some set X)
which is closed, contains the identity and contains inverses of all its elements; it
is a fact that composition of permutations is always associative. Another fact
is that every group can be viewed as a permutation group.

Definition: let G be a group, X a set; an action of G on X is a function G×
X → X , written gx [or g(x)] such that 1x = x∀x ∈ x, (gh)(x) = g(h(x))∀g, h ∈
G, x ∈ X .

1.1 Proposition

An action of a group G on a set X is equivalent to a homomorphism G →
Perm(X): just notice that for each g ∈ G, fg : X → X defined by fg(x) = gx is
a bijection since it has an inverse function fg−1 .
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Examples: Perm(X) acts on X in the obvious way. SO(3) the group of
rotations of R3 about the origin has finite subgroups [which act on R3] given by
the groups of symmetries of the platonic solids: A4 for the tetrahedron, S4 for
the cube or octahedron, and A5 for the icosahedron or dodecahedron.

Definition: let F be a field, V a vector space thereover. Then a (linear)
representation of a group G on V is an action of G on V such that ∀g ∈ G the
function g : V → V is linear.

Examples: we’ve described linear representations of Cn, D2n on R2 and of
SO(2) on R2, SO(3) on R3. We’ve also seen representations of S4, A4, A5 on R3.

For any vector space V over F the set End(V ) of linear maps V → V is
a ring under pointwise addition (f + g)(x) = f(x) + g(x) and composition as
multiplication fg(x) = f(g(x)). The set of invertible elements therof is a group
under multiplication, called the general linear group GL(V ) (= Aut(V )) (So
GL(V ) is the group of bijective linear maps V → V under composition)

Remark: For any group G and vector space V , linear representations of G
on V are equivalent to homomorphisms G→ GL(V ).

The nicest case is F = C; we will be able to describe all possible C-
representations of lots of interesting groups; often this is even very easy. This
is one of the most useful theories in all of algebra in terms of its applications in
e.g. quantum mechanics.

Definition: For V1, V2 represetations of a group G (over a field F ), an
isomorphism (of representations) f : V1 → V2 is a linear isomorphism such

that fgV1f
−1 = gV2∀g ∈ G, i.e. G acts “the same way” on V1, V2 if they are

identified under f .
Example: let V = Fn = {(z1, . . . , zn) : zi ∈ F} for some n ≥ 1; then

GL(Fn) is called the group GL(n, F ). We have End(Fn) = Mn(F ) the set of
n× n matricies with coefficients in F .

2 Lecture

2.1 Proposition

For any group G, the set of isomorphism classes of n-dimensional complex rep-

resentations of G can be identified with Hom(G,GL(n,C))
GL(n,C) , where GL(n,C) acts on

the set of homomorphisms G → GL(n,C) by conjugation a(ρ)(g) = aρ(g)a−1

(the quotient of a set by a group acting on it is the set of orbits): given any repre-
sentation on an n-dimensional vector space V , choose a basis for V , giving an iso-
morphism V → Cn; thus we have a homomorphism G→ Aut(Cn) = GL(n,C);
the choice of basis for V changes the homomorphism by conjugation by an
element of GL(n,C).

Representations of the group Z

A homomorphism ρ : Z → GL(n,C) is uniquely determined by ρ(1) ∈ GL(n,C),
and ρ(1) may be any A ∈ GL(n,C); thus classifying n-dimensional representa-
tions of Z (over C) is equivalent to classifying invertible n× n matricies up to
conjugation.
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2.2 Theorem: Jordan Canonical Form

Any A ∈ Mn(C) is conjugate to a matrix in JCF: let a Jordan block mean an

r × r matrix of the form









a 1
a . . .

. . . 1
a









for some a ∈ C, r ≥ 1. Then

a matrix is in JCF if it has the form









J1

J2

. . .
Jn









where the Ji are

Jordan blocks. The JCF of a matrix is unique up to reordering of the blocks.
Note that the determinant of a matrix in JCF is simply the product of its

diagonal entries; thus such a matrix is invertible iff all of the a are nonzero;
the isomorphism classes of representations of Z over C biject with matricies in
JCF with nonzero diagonal entries, where we only distinguish up to reordering
of blocks.

Examples: A 1D representation of Z is specified by a ∈ C⋆: ρ(1) = a ∈ C⋆ =
GL(1,C). A 2D representation of Z is isomorphic either to some representation

ρ(1) =

(

a 0
0 b

)

for some a, b ∈ C⋆ or one of the form ρ(1)] =

(

a 1
0 a

)

for

some a ∈ C⋆; two different representations of these forms are isomorphic only

by

(

a 0
0 b

)

∼
(

b 0
0 a

)

.

Definition: for any grop G, the trivial representation is the homomorphism
ρ : G→ GL(1,C) given by ρ(g) = 1∀g ∈ G.

Definition: A representation of a group G is faithful if the corresponding
homomorphism G→ GL(V ) is injective.

Example: the representation of Z given by ρ(1) = a for a ∈ C is faithful iff
a is not a root of unity.

Representations of Finite Cyclic Groups

Let G = Cn = Z
n = 〈g : gn = 1〉 = {1, g, . . . , gn−1}. A homomorphism

G → GL(r,C) is determined by ρ(g) ∈ GL(r,C), which can be any matrix A
with An = 1; thus we have to classify such matricies up to conjugation. We can

conjugate A into JCF, then we have An =

(

J1

. . .

)n

=





Jn
1

Jn
2

. . .



;

write J = aI + B where a ∈ C⋆, B =









0 1
0 . . .

. . . 1
0









. Then since I com-

mutes with anything, including B, we can use the binomial theorem to write
Jn = (aI + B)n = anI + nan−1B +

(

n
2

)

an−2B2 + . . . ; if this is to = I then we
must have an = 1 and also nan−1B = 0, but this implies B = 0 and J is a 1× 1
block. So any representation of a cyclic group is isomorphic to one of the form
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ρ(g) =









a1

a2

. . .
an









where each ai ∈ C is an nth root of unity (con-

versely, clearly any such is a valid representation). Two such representations
are isomorphic iff the numbers ai are the same up to reordering.

Definition: For any representations V,W of G, the direct sum V ⊕W = V ×
W = {(v, w) : v ∈ V,w ∈W} is also a representation of G, by g(v, w) = (gv, gw)
[check].

Definition: A subrepresentationW of a representation V of G is a linear sub-
space W ⊂ V such that ∀g ∈ G∀w ∈ Wg(W ) ∈ W , i.e. an invariant subspace
of V .

Example: V ⊕V contains V ⊕0 ≃ V and 0⊕W ≃W as subrepresentations.
We have shown above that every finite dimensional representation of a cyclic

group Cn over C is ≃ a direct sum of 1-dimensional representations L1⊕· · ·⊕Lr.

In general, G acts on V ⊕W by g 7→
(

ρV (g) 0
0 ρW (g)

)

in terms of bases for

V and W .
Definition: A representation V of a group G is irreducible if V 6= 0 and

any G-invariant subspace of V is either 0 or V [i.e. there are no nontrivial
subrepresentations?]

Definition: A representation of G is completely reducible if it is isomorphic
to a direct sum of irreducible representations; we have shown that all repre-
sentations of a finite cyclic group are completely reducible, and the irreducible
representations of Cn are all 1-dimentional, each given by an nth root of unity.

Finite abelian groups

Every finite abelian group G is (isomorphic to) a product of cyclic groups; more,
G can be written uniquely (up to order of factors) as a product of Z

pr for distinct
primes p.

A representation of G = Z
a1

× · · · × Z
ar

is given by matricies A1, . . . , Ar ∈
GL(n,C) such that Aai

i = 1∀i and the Ai all commute; to classify the repre-
sentations of G up to isomorphism means classifying the sets of such Ai up to
(A1, . . . , Ar) 7→ (gA1g

−1, . . . , gArg
−1) for some g ∈ GL(n,C).

2.3 Proposition

Any family of commuting matricies each diagonalizable can be simultaneously
diagonalized. The Ar are complex representations of finite cyclic groups so
diagonalizable, so we may take the Ar all diagonal, and then we automaticly
have that they commute. Say each Ai has entries ui1, . . . , uin along the diagonal;
then we need (uij)

ai = 1∀j∀i.

2.4 Proposition

Every complex representation of a finite abelian group is completely reducible,
and its irreducible representations are 1-dimensional; if G = Z

a1
×· · ·× Z

ar
then a

1-dimensional representation of G is specified by an aith root of unity for some
i.
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3 Lecture

3.1 Theorem

Every (finite-dimensional complex) representation of a finite group is completely
reducible: for a representation V of a group G, V is reducible iff the homo-

morphism G → GL(V ) is conjugate to a representation G → {
(

⋆ ⋆
0 ⋆

)

} ⊂

GL(n, F ); the matricies in this form are precisely those that map {

















0
. . .
0
⋆
. . .
⋆

















} ⊂

V into itself.
To prove that a representation V of a group G is completely reducible, we

have to show that it is conjugate to a representation G → {
(

⋆ 0
0 ⋆

)

} ⊂
GL(n, F ) [presumably this should have been phrased more clearly - I think this
needs to be the case whenever V is reducible]

Example: the representation Z → GL(2,C) given by n 7→
(

1 n
0 1

)

is not

completely reducible: thinking geometricly, we have a representation of G on a
space V with an invariant line W ⊂ V but such that there is no G-invariant
linear subspace T ⊂ V with V = W ⊕ T .

Examples of representations

Let G be a finite group. The regular representation of G is the vector space
CG = {

∑

i∈G agg : ag ∈ C} (i.e. the space with basis G), which G acts on by
left multiplication. The regular representation is always faithful; it will turn out
that for finite G every irreducible representation of G is a subrepresentation of
the regular representation.

LetG be a finite group acting on a finite setX ; the permutation representation
of G is the vector space CX = {∑x∈X axx : ax ∈ C}, with G acting on it in the
obvious way.

Recall that a hermitian form (or inner product) on a complex vector space
V is a function 〈, 〉 : V × V → C which is linear in its first argument, has
〈x, b1y1 + b2y2〉 = b̄1〈x, y1〉 + b̄2〈x, y2〉, has 〈x, y〉 = 〈y, x〉 and has ∀x 6= 0 ∈
V, 〈x, x〉 > 0.

Definition: Let V be a complex vector space with an inner product. A
representation of a group G on V is unitary if ∀g ∈ G∀x, y ∈ V, 〈gx, gy〉 = 〈x, y〉,
i.e. the matrix representation of g is unitary. A complex representation V of G
is- unitarizable if G preserves some inner product on V .

Example: Any permutation representation of a group G is unitarizable, by
defining an inner product on CX such that the basis set X is orthonormal.
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3.2 Proposition

Any finite dimensional unitary representation V of any group G is completely
reducible: suppose not, V 6= 0 and V not irreducible and W ⊂ V a G-invariant
subspace (i.e. gw ∈ W∀w ∈ W∀g ∈ G), 0 6= W 6= V . But then W⊥ = {x ∈
V : 〈x,w〉 = 0∀w ∈ W} is a G-invariant complement to W in V (because
〈, 〉 is positive definite we must have W ∩ W⊥ = 0 and then by dimensions
V = W ⊕W⊥), so V is the direct sum of two lower-dimensional representations,
and by induction on dimV we have the result.

3.3 Lol, the lecturer forgot his numbering

3.4 Proposition (Weyl’s unitary trick

All finite dimensional complex representations of a finite group G are unita-
rizable: we “average”: pick an inner product on V . Then define a new inner
product by 〈x, y〉G = 1

|G|
∑

g∈G〈gx, gy〉; this is a hermitian form, positive def-

inite and so on. But it is also G-invariant [proof is really obvious, and I’m
tired].

3.5 Proposition

Let V be a finite dimensional representation of a finite group G over a field F ;
suppose either charF = 0 or charF = p with p ∤ |G|. Then V is completely
reducible: as a sketch proof, we try to average as before; suppose we have
V and W as in 3.2. Let p be a projection map V → W ; this determines a
(not necessarily G-invariant) complement to W by ker p. Then define a new
projection V →W by σ(x) = 1

|G|
∑

g∈G gpg
−1x; the reader may verify this is a

projection V →W and kerσ is G-invariant.

4 Schur’s Lemma

[Thanks to a substitute lecturer, we have an actual definition: a linear repre-
sentation of a group G over a field F is a pair (ρ, V ) where V is a vector space
over F and ρ : G→ GL(V ) a homomorphism g → ρ(g) (we usually just write g
for ρ(g)) where ρ(g) : V → V is a linear isomorphism]

We want to consider G-homomorphisms between representations (ρi, Vi). A
linear φ : V1 → V2 is a G-homomorphism if φ(g(r)) = gφ(r)∀r ∈ V ∀g ∈ G, i.e.
φ commutes with the action of G. Write HomG(V1, V2) for the F -vector space
of G-homomorphisms or “intertwiners” V1 → V2.

4.1 Lemma

For V,W irreducible G-spaces over a field F , any G-homomorphism V → W
is either 0 or a G-isomorphism. If V is an irreducible complex (or, in fact, if
F is any algebraicly closed field) G-space then any G-endomorphism on V is a
scalar endomorphism: Let φ : V → W be a G-homomorphism, then kerφ is a
G-subspace of V , so either = V or = {0}; in the first case φ = 0, in the second
case Imφ is a G-subspace of W , so must = W , so φ is an isomorphism. If φ is a
G-endomorphism on a complex irreducible G-space V let λ be an eigenvalue of
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φ (we must have one by algebraic closure), then the eigenspace Eλ is a nonzero
G-subspace of V , so must = V and φ = λ.

4.2

If V,W are irreducible complex G-representations then dimC HomG(V,W ) = 1
if V,W G-isomorphic, 0 otherwise: if φ : V →W is a nonzero G-homomorphism
then φ is injective (kerφ is a non-V G-subspace of V ) and surjective (Imφ is a
nonzero G-subspace of W ) so φ is a G-isomorphism; if ψ is another such then
φ−1ψ is a G-automorphism on V so = λι for some λ ∈ C and ψ = λφ.

Define EndG(V ) = HomG(V, V ). We have seen this is a vector space over
F ; it is a ring under composition, so forms an algebra over F :

Definition: an (associative) ring (with a unity) containing a distinguished
copy of the field F commuting with every element of the ring and with 1 in this
copy of F being the unity of the ring, is an algebra over F ; it is a division algebra
if it is also a division ring (i.e. every nonzero element has a multiplicative
inverse).

4.3

If V is an irreducible G-representation over F then EndG(V ) is a division alge-
bra: the reader can check it is an algebra over F with the distinguished copy
of F being {λι : λ ∈ F}; it is a division ring since if φ is a nonzero element of
EndG(V ) then φ is an isomorphism so has an inverse.

Schur’s lemma over C [which the lecturer doesn’t seem to bother to state,
anywhere], now follows from:

4.4

The only finite dimensional division algebra over C is C itself: let A be a finite
dimensional division algebra over C. For any α ∈ A, the elements ι, α, α2, . . .
must be linearly dependent, so there is some nonzero complex polynomial p
with p(α) = 0; since C is algebraicly closed we can factorise this as p(x) =
(x−α1) . . . (x−αn) for some αi ∈ C, then p(α) = (α−α1) . . . (α−αn) = 0 and
since A is a division algebra we have α = αj for some j, so α ∈ C.

Remark: There are three finite dimensional division algebras over R, namely
R,C,H.

Applications

4.5

Any irreducible complex representation of a finite abelian groupG is 1D (another
proof of this): let V be such a representation. For g ∈ G the corresponding map
V → V is a g-endomorphism on V (as G is abelian [it must have an inverse])
so = λgι for some λg ∈ C; thus each 1D subspace of V is G-invariant. Since
V is irreducible it follows that V is 1D. Note that this fails over R, e.g. on the
example sheet we show that C3 has a 2-dimensional irreducible representation.
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4.6 Lecturer can’t count, I can’t latex

4.7 Exercise

If the finite group G has a faithful irreducible representation ρ over C then the
centre Z(G) is cyclic; in fact ρ(Z(G)) = 〈e 2πi

n ι〉 where n = |Z(G)|.

5 Lecture

Recall by Schur’s lemma the irreducible representations of a finite abelian group
G over C are 1-dimensional.

Example: G = Z
4 = 〈g : g4 = 1〉; there are 4 irreducible representations

given by g 7→ any 4th root of 1; those given by ±i are faithful, the other two
are not.

Example: G = Z
2 × Z

2 = 〈g, h : g2 = 1 = h2〉; there are 4 irreducible
representations of G given by g 7→ ±1, h 7→ ±1, none of which are faithful.

Remark: for any finite abelian group, the number of irreducible representa-
tion of G (over C, and up to isomorphism) is equal to |G|. However, beware:
there is no “natural ” 1:1 correspondence between the elements of G and the irre-
ducible representations of G, even given that G is finite abelian. If we choose an
isomorphism G ≃ Z

a1
×· · ·× Z

ar
then we can identify them, but this identification

is dependent on our choice of isomorphism.
This statement has two interesting generalizations to a general finite group

G: the number of isomorphism classes of irreducible representations ofG is equal
to the number of conjugacy classes of G. Also, if V1, . . . , Vr are the irreducible
representations of a finite group G, then |G| =

∑n
i=1 dim(Vi)

2.

Isotypical Decomposition

Let V be a representation (over C) of a finite cyclic group G = Z
n . Then the

generator g ∈ G acts by a linear map V → V , which we know is diagonalizable.
Let ξ = e

2πi
n ; the eigenvalues of G on V are then ∈ {1, ξ, . . . , ξn−1}. V has

a unique decomposition into eigenspaces for G as V =
⊕n−1

i=0 V (i) where V (i)
is the ξi-eigenspace for g ∈ GL(V ) (i.e. {x ∈ V : gx = ξix}). We can think of
V (i) ⊂ V as the sum of all the copies of a certain irreducible representation of
G that sit inside V .

Let G be any finite group, and V any complex representation of G. We know
that V is completely reducible, i.e. is a direct sum of irreducible representations.
So we can write V =

⊕

k W
⊕mk

k [W⊕mk

k = Wk ⊕ · · · ⊕Wk mk times], where
W1,W2, . . . are non-isomorphic irreducible representations of V and mk ≥ 0.
The individual “pieces” Wk ⊂ V are not at all unique, but the subspace W⊕mk

k

is uniquely determined; the resulting decomposition of V is called the isotypical
decomposition of V .

5.1 Lemma

Let V, V ′ be complex representations of a finite group G and f : V → V ′ a
G-linear map (i.e. a linear map commuting with all elements of G). Write
V =

⊕

k W
⊕mk

k , V ′ =
⊕

k W
⊕mk

k (possibly with some of the mk and/or m′
k

being 0), where the Wi are irreducible representations of G. Then f maps the
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subspace W⊕
k mk into W

⊕m′
k

k : consider, for each irreducible summand Wk ⊂
V and Wl ⊂ V ′, the composition Wk ⊂ V

f→ V ′
։ Wl (where ։ denotes

projection); this is a composition of G-linear maps so G-linear. By Schur’s
lemma it is 0 if k 6= l. The linear map V → V ′ is given by a block matrix




W1 →W1 W1 →W2 . . .
W2 →W1 W2 →W2 . . .

. . . . . . . . .



, so this must be block-diagonal.

5.2 Theorem

Let V be a representation of a finite group. Let V =
⊕

Vk be a decomposition
as we have described. Then 1) this decomposition is unique, independent of
how we first decomposed V into irreducibles 2) Every subrepresentation of V
which is isomorphic to Wk is contained in Vk 3) The endomorphism algebra
EndG(Vk) is isomorphic to the matrix algebra Mmk

(C), coming from our choice
of decomposition Vk = W⊕mk

k 4) EndG(V ) =
∏

k Mmk
(C) (as an algebra over

C):
First we proove 2): suppose we have a subrepresentation of V isomorphic

to Wk, and consider this as a G-linear map Wk →֒ V ; by Lemma 5.1 this must
map Wk into Vk ⊂ V . Now 1): notice Vk ⊂ V is the (non-direct) sum of all
subrepresentations of V isomorphic to the irreducible representation Wk; thus
it is independent of our original choice of decomposition Vk = W⊕mk

k . For 3)
we need to describe all G-linear maps Vk → Vk where we can write Vk = W⊕mk

k

with Wk irreducible; by Schur’s lemma any G-linear map Wk →Wk is a scalar.

We have End(Vk) = {





Wk →Wk Wk → Wk . . .
Wk →Wk Wk → Wk . . .

. . . . . . . . .



}; to say that a linear

map Vk → Vk is G-linear means every block (of f considered as an element of
End(Wk)) is G-linear, so EndG(V ) is just the set of those block-matricies with
each entry a dim(Wk) × dim(Wk) diagonal matrix with all the diagonal entries
the same scalar value, so isomorphic to Mmk

(C).
For 4), we know that any G-linear map f : V → V must (by Lemma 5.1)

map each Vk into itself. Therefore f is just a block matrix with its blocks being
G-linear maps V1 → V1, V2 → V2 and so on respectively; thus it is isomorphic
as described.

The Dual Representation

Let V be a representation /C of a group G; recall the dual space is V ⋆ =

Hom(V,C); this is also a representation of G by (gf)(x) = f(g−1x)∀x ∈ V, f ∈
V ⋆, g ∈ G. The inverse is needed so that G acts on V ⋆, which we can now see
is the case (but would not otherwise be so): (g1g2)(f)(x) = f((g1g2)

−1(x)) =
f(g−1

2 g−1
1 x) = g2f(g−1

1 x) = g1(g2f)(x).

5.3 Proposition

For a representation V of a group G (taking everything finite as usual) V is an
irreducible representation of G iff V ⋆ is: will show V reducible ⇒ V ⋆ reducible
(which suffices as (V ⋆)⋆ = V ). We say we have a G-invariant S with 0 $ S $ V ;
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set T ⊂ V ⋆ be the set of linear f : V → C that are zero on S, then 0 $ T $ V ⋆

and T is G-invariant (note dimT = dimV − dimS).
More generally, for any representations V,W of G, Hom(V,W ) (note its

dimension is dimV × dimW ) is also a representation of G: for f : V → W
linear, define (gf)(x) = gf(g−1x); then G acts linearly on Hom(V,W ).

Notice that the subspace of Hom(V,w) where G acts trivially is precisely
HomG(V,W ): if gf = f∀g ∈ G then f(x) = gf(g−1x)∀x ∈ V , i.e. g−1f(x) =
f(g−1x) so f is G-linear.

6 Tensor Products

Given vector spaces V,W (fin dim /C) define V ⊗W (or V ⊗C W ) to be the
complex vector space with basis consisting of all pairs v ∈ V,w ∈ W , written
v⊗w, modulo the linear subspace spanned by the relations (v1 +v2)⊗w = v1⊗
w+v2⊗w, v⊗(w1+w2) = v⊗w1+v⊗w2, (aV )⊗w = v⊗(aw) = a(v⊗w)∀a ∈ C.

6.1 Lemma

Let e1, . . . , ea be a basis for V , f1, . . . , fb a basis for W , then V ⊗W has basis
{ei ⊗ fj} (so it has dimension dimV × dimW ): by definition every element of
V ⊗W can be written as a finite sum

∑r
i=1 ai(vi ⊗ wi); we can write the vi as

linear combinations of e1, . . . , ea and the wi as linear combinations of f1, . . . , fb.
Using the relations in V ⊗W we can therefore write our element of V ⊗W as
a linear combination

∑

i,j cij(ei ⊗ fj), so {ei ⊗ fj} span V ⊗W .
To see that this set is linearly independent it suffices to construct a linear

map F : V ⊗W → C with F (ei′ ⊗ fj′) = δii′δjj′ for each i, j; to do this we use
the linear maps A : V → C, B : W → C given by A(ei′) = δii′ , similarly B,
which exist; then F : V ⊗W → C given by F (v ⊗ w) = A(v)B(w) satisfies all
the relations so is well defined, and does what we want.

Note that a general element of V ⊗W cannot be written as v ⊗ w for v ∈
V,w ∈W ; rather it is a linear combination of such things.

6.2 Proposition

There are natural isomorphisms for vector spaces U, V,W U ⊗V ≃ V ⊗U, (U ⊗
V ) ⊗W = U ⊗ (V ⊗W ), and (U ⊕ V ) ⊗W = U ⊗W ⊕ V ⊗W [lecturer wrote
× rather than ⊗ in this last]; we shall not bother to prove these.

If V,W are representations of a group G then V ⊗W is a representation of
G by g(v ⊗ w) = gv ⊗ gw, extended by linearity.

6.3 Lemma

If V,W are finite dimensional complex vector spaces then there is a natural
isomorphism Hom(V,W ) ≃ V ⋆ ⊗W (so Hom(V ⋆,W ) ≃ V ⊗W ): we’ll define a
linear map V ⋆⊗W → Hom(V,W ) by f⊗w 7→ the sinear map φ(t) = f(t)w ∈W ;
we need to show this is well defined on V ⋆ ⊗W , but this is easy (the linear map
associated with (f1 +f2)⊗w is the same as that associated with f1⊗w+f2⊗w
and so on). Then to see that it’s an isomorphism pick bases e1, . . . , ea for V
and f1, . . . , fb for W ; the “dual basis” e⋆

1, . . . , e
⋆
a for V ⋆ is given by e⋆

i (ej) = δij .
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Then V ⋆ ⊗W has a basis of the elements e⋆
i ⊗ fj; using our bases for V and

W , Hom(V,W ) is just the space of x× a matricies over C; the elements e⋆
i ⊗ fj

map to the “elementary” matricies which have one entry 1 and the rest zeroes,
which form a basis as required.

Example: Let V be any representation of G = Z
2 = {1, g}; how can we

write down the isotypic decomposition of V ? We need to find the +1- and −1-
eigenspaces of g : V → V , and then V = (V +1 = {x ∈ V : gx = x}) ⊕ (V −1 =
{x ∈ V : gx = −x}). We can describe the corresponding projections by explicit
formulae: x 7→ x+gx

2 , x 7→ x−gx
2 respectively.

Note that these formulae are valid for any representation of G = Z
2 over C,

even infinite dimensional ones:
Example: Let V be the space of continuous functions f : R → R; let G = Z

2
act on V by (gf)(x) = f(−x). Then V +1 is the subspace of even functions and
V −1 that of odd functions, so the above gives that we can write any continuous
function as the sum of an even and an odd function.

Remark: Let V be a representation of G, then V ⋆ is also; pick a basis for V ,
which is an isomorphism V ≃ Cn. Then the representation of G on V is given
by a homomorphism ρ1 : G → GL(n,C). Then the “dual” homomorphism ρ2 :
G→ GL(n,C) (which then ≃ V ⋆ by the dual basis) is given by ρ2(g) = (gT )−1

(For A : V → V the dual map A⋆ : V ⋆ → V ⋆ has matrix given by the transpose
AT ; (AB)T = BTAT so we need to take the inverse to make this an action, as
before).

Lemma: Let V,W be vector spaces over a field F . Then linear maps V⊗W →
some vector space X biject with bilinear maps F : V ×W → X (i.e. such F
which are linear in each argument): this is trivial from the definition of V ⊗W .

So e.g. to construct the natural map V ⋆ ⊗W → Hom(V,W ) it suffices to
write down a bilinear map F : V ⋆ ×W → Hom(V,W ); as before, we do this by
F (f, w)(t) = f(t)w, and it is easy to check this is bilinear.

Let V be a finite dimensional vector space over a field F . Then a nondegener-
ate bilinear form on V determines an isomorphism V ≃ V ⋆ by x 7→ (t 7→ 〈t, x〉).
Beware: an “inner product” for a complex vector space, however, is not a
bilinear form, so does not give an isomorphism V → V ⋆. This matters: for
V a complex representation of a finite group G we have shown this preserves a
(Hermitian) inner product, but this is insufficient to relate V and V ⋆, and in
fact V need not be isomorphic to V ⋆ as representations of G, e.g. if we take
the 1-dimensional representation of Z

n = 〈g : gn = 1〉 by g 7→ e
2πi
n then the

dual representation V ⋆ is given by g 7→ e−
2πi
n , and these are not isomorphic for

n ≥ 3.
By contrast, any representation of a finite group G over R does preserve

an inner product, by the same “averaging” proof. This is a non-degenerate
bilinear form, so gives an isomorphism V → V ⋆, which is G-linear. So every
real representation of a finite group is self-dual, for example the n = 2 case
in the previous example. Any real representation of a group G of dimension
n determines an n-dimensional complex representation by G → GL(R, n) ⊂
GL(C, n).

Lemma: Let V,W be finite dimensional complex vector spaces, A : V →
V,B : W → W linear maps. Define the linear map A ⊗ B : V ⊗W → V ⊗
W by (A ⊗ B)(v ⊗ w) = A(v) ⊗ B(w). Then 1) tr(A ⊗ B) = tr(A)tr(b) 2)
det(A⊗B) = detAdim W detBdim V : first suppose A,B are diagonalizable. Take
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bases e1, . . . , ea for V and f1, . . . , fb for W such that A(ei) = ciei, B(fj) =
djfj for some ci, dj ∈ C. Then V ⊗W has basis {ei ⊗ fj} and A ⊗ B acts
by (A ⊗ B)(ei ⊗ fj) = ciei ⊗ djfj = cidj(ei ⊗ fj), so A ⊗ B is a diagonal
matrix. Then tr(A ⊗ B) =

∑

i,j cidj =
∑

i ci
∑

j dj = tr(A)tr(B); similarly

det(A ⊗ B) =
∏

i,j cidj = (
∏

i ci)
dim W (

∏

j dj)
dim V = detAdim W detBdim V .

Then since everything is continuous and the set of diagonalizable matricies is
dense in Ma(C), we have the result ∀A,B.

Symmetric and Exterior Powers

Let V be a vector space over C (though most of this section holds for a general
field). Then the symmetric group Sn acts on V ⊗ · · · ⊗ V n times, called V ⊗n,
by σ(v1 ⊗ · · ·⊗ vn) = vσ(1) ⊗ · · ·⊗ vσ(n); this makes V ⊗n a linear representation
of Sn.

Definition: the nth symmetric power SnV is the subspace of V ⊗n where Sn

acts trivially. The sign representation sgn of Sn is the homomorphism Sn →
GL(1,C) by σ 7→ 1 if σ ∈ An, −1 otherwise. The nth exterior power of V ,
ΛnV , is the isotypic subspace for the sign representation of Sn inside V ⊗n (i.e.
{u ∈ V ⊗n : σ(u) = sgn(σ)u∀σ ∈ Sn}). We can calculate bases for these two
spaces in terms of a basis for V :

Example: Let V have basis {ei : 1 ≤ i ≤ r}. Then V ⊗2 has basis {ei ⊗ ej :
1 ≤ i, j ≤ r}; S2 acts on V ⊗2 by ei⊗ej 7→ ej⊗ei so we can read off that S2V has
basis {ei : 1 ≤ i ≤ r}∪{ 1

2 (ei⊗ej+ej⊗ei) : 1 ≤ i < j ≤ r}, Λ2V has basis { 1
2 (ei⊗

ej − ej ⊗ ei) : 1 ≤ i < j ≤ n}. if V is a representation of G then both G and
Sn act on V ⊗n, and the two actions commute (g(vσ(1) ⊗ vσ(2) ⊗ . . . ) = . . . [Yes,
the lecturer really did write literally this on the blackboard]). So G preserves
the Sn-isotypic decomposition. Thus SnV and ΛnV are representations of G.

7 Perhaps nothing needed numbering in the pre-
vious lecture

8 Lecture

Definition: Let V be a finite dimensional representation of a group G over C.
The character of V is the function χV : G → CχV (g) = tr(g) ∈ C (recall the
trace of a linear map f : V → V exists independently of choice of basis, since
tr(BAB−1) = tr(A) for any invertible B, or we can define it as the sum of the
eigenvalues of f (counted with multiplicity), or equivalently the sum of roots
of the characteristic polynomial). Note that this is well defined: if V,W are
isomorphic representations of G then they have the same character.

8.1 Theorem

For any representation V of a group G: 1) the character is a class function
(χV (hgh−1) = χV (g)∀g, h ∈ G 2) χV (1) = dim V ∈ C, 3) χV (g−1 = χV (g)∀g ∈
G 4) χV ⊕W (g) = χV (g) + χW (g), χV ⊗W (g) = χV (g)χW (g) 5) χV ⋆(g) = χV (g):
for 1), χV (hgh−1) = tr(ghg−1 |V ) = tr(g |V ) = χV (g) by properties of trace,
for 2) χV (1) = tr(IV ) = dimV , for 3) let g ∈ G, then 〈g〉 is a finite cyclic
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subgroup of G, ∼= Z
n , and V is a C-representation of it, so g |V (by which we

mean g considered as a linear map V → V ) is diagonalizable and its eigenvalues
are nth roots of unity. So in some basis for V , g |V is a diagonal matrix
with diagonal entries ai with (ai)

n = 1. Then g−1 |V is a diagonal matrix
with entries 1

ai
, so χV (g−1) =

∑r
i=1

1
ai

=
∑r

i=1 ai (since we know |ai| = 1)

which is
∑r

i=1 ai = χV (g). For 4), χV ⊕W (g) = tr

(

g |V 0
0 g |W

)

= tr(g |V
) + tr(g |W ) = χV (g) + χW (g); χV ⊗W (g) = tr(g |V ⊗W ) = tr(g |V )× tr(g |W ) as
above. Finally, for 5), if a representation V is described by some homomorphism
ρ : G → GL(r,C) then V ⋆ is described by G → GL(r,C) by g 7→ (ρ(g)T )−1.
Then for g ∈ G, after a change of basis ρ(g) is diagonal with diagonal entries ai,
an

i = 1∀i. Then χV ⋆(g) = tr(g |V ⋆) = tr((g |TV )−1) =
∑

1
ai

=
∑

ai =
∑

ai =

χV (g).

8.2 Lemma

For any finite dimensional representation V of a finite group G, dimC V
G =

1
|G|

∑

g∈G χV (g) (where V G is the G-invariant subspace), i.e. it is the number

of times the trivial representation occurs in a decomposition of V as a direct
sum of irreducible representations of G: for any projection π : V → W onto a
subspace W ⊂ V , trπ = dimW (since in a suitable basis π is a diagonal matrix
with diagonal entries dimW 1s and the remainder 0s. We get a projection
V → V G by π(x) = 1

|G|
∑

g∈G gx ∈ V , so dimC V
G = trπ = tr( 1

|G|
∑

g∈G g |V
) = 1

|G|
∑

g∈G tr(g |V ) = 1
|G|

∑

g∈G χV (g).

8.3 Lemma

Let V,W be representations of a finite group G, then define an inner product
with 〈χV , χW 〉 = dimC HomG(V,W ) by for two complex-valued functions α, β
on G, 〈α, β〉 = 1

|G|
∑

g∈G α(g)β(g). This is a Hermitian inner product on the

complex vector space of functions G→ C (we usually only consider it as applied
to the subspace of class functions): HomG(V,W ) is the subspace of G-invariant
elements of Hom(V,W ), which is a representation of G, so dimC HomG(V,W ) =
1
|G|

∑

g∈G χHom(V,W )(g) = 1
|G|

∑

g∈G χV ⋆⊗W (g) = 1
|G|

∑

g∈G χV ⋆(g)χW (g) =
1
|G|

∑

g∈G χV (g)χW (g) which = 〈χW , χV 〉 ∈ C. So 〈χV , χW 〉 = 〈χW , χv〉 =

dimC HomG(V,W ) = dimC HomG(V,W ).
Theorem: 1) For any irreducible complex representation V of a finite group,

‖χV ‖2 = 1, 2) For any non-isomorphic irreducible representations V,W of G,

〈χV , χW 〉 = 0: for 1) ‖χV ‖2 = 〈χV , χV 〉 = dimC HomG(V, V ) = 1 by Schur’s
lemma; the proof of 2) is identical.

8.4 Lol numbering

8.5 Corollary

The number of times an irreducible representation V occurs in a decomposition
of a representation W into irreducibles is 〈χV , χW 〉: if W ≃ ⊕

i W
⊕ni

i then
〈χV , χW 〉 =

∑

i ni〈χWi
, χV 〉 = ni where V ≃Wi (0 if none of the Wi are ≃ V ).
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8.6 Lol numbering

8.7 Corollary

Two complex representations of a finite group are isomorphic iff they have the
same character: By Maschke’s theorem, complex representations of G are com-
pletely reducible, so by corollary 8.2 the number of times each irreducible rep-
resentation occurs in V is determined by χV .

8.8 Corollary

A representation V of a finite group G is irreducible iff ‖χV ‖2 = 1: write V =
⊕

i W
⊕ni

i where the Wi are irreducible and not isomorphic to each other and
ni ≥ 0. Then 〈χV , χV 〉 = 〈∑i niχWi

,
∑

i niχWi
〉 =

∑

i n
2
i 〈χWi

, χWi
〉 =

∑

i n
2
i .

9 Lecture

Example: consider the standard representation of Z
n = {1, g, . . . gn−1} on R2 as

the rotations preserving a regular n-gon g 7→
(

cos 2π
n − sin 2π

n
sin 2π

n cos 2π
n

)

∈ GL(2,R);

more generally ga 7→
(

cos 2πa
n − sin 2πa

n
sin 2πa

n cos 2πa
n

)

. If n ≥ 3 then this 2D representa-

tion of Z
n is irreducible (as a real representation), since there is no 1D subspace

of R2 (i.e. a line through the origin) preserved under G. For n = 2 this rep-
resentation is far from irreducible; we have a continuous family of G-invariant
subspaces (all the lines through 0); this occurs because the representation is
W⊕2 where W is the representation g 7→ (−1).

Over C, our representation of Z
n (acting on C by the same matricies) must

be reducible, since we know it must be a sum of two 1D representations. Let
A be the matrix as above with g 7→ A, then detA = cos2 2π

n + sin2 2π
n =

1, trA = 2 cos 2π
n , so the eigenvalues a, b ∈ C of A are nth roots of unity with

ab = 1, a+ b = 2 cos 2π
n ∴ a = e

2πi
n , b = e−

2πi
n . So this representation is, over C,

the direct sum of the 1D representations g 7→ (e
2πi
n ), g 7→ (e−

2πi
n ).

Consider the standard representation of the dihedral group D2n = 〈g, r :
gn = 1, r2 = 1, rgr−1 = g−1〉 on R2 as the symmetries preserving a regular
n-gon; the image of D2n → GL(2,R) is given by g 7→ the matrix A as before,

r 7→
(

1 0
0 −1

)

; this representation is irreducible (for n ≥ 3) even over C,

because the only subspaces of C2 that are invariant under Z
n are two complex

lines (i.e. copies of C), and r switches these two lines (the relation rgr−1 = g−1

implies that r maps any linear subspace of V in which g acts as multiplication
by c ∈ C⋆ to one in which g acts as multiplication by 1

c ).
Example: S3 = D6 is the smallest nonabelian group; it has an obvious 3D

permutation representation σ(x1, x2, x3) = (xσ(1), xσ(2), xσ(3)). [In this repre-
sentation] S3 acts as the identity on C · (1, 1, 1); since S3 preserves the standard
inner product on C3 this means it preserves W := (C · (1, 1, 1))⊥ ⊂ V = C3, so
W is a 2D representation of S3; we can writeW = {(x1, x2, x3) : x1+x2+x3 ==
0} ⊂ C3.
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We claim that this 2D representation is isomorphic to the representation of
S3 ≃ D6 as symmetries of a triangle: it is sufficient to prove they have the
same character. The three conjugacy classes in S3 are those of 1,(123),(12); it
is therefore sufficient to consider only the characters of these.

1 (123) (12)
Triangle representation 2 -1 0
Trivial representation 1 1 1

3D permutation representation (reducible) 3 0 1
Now since the character of a direct sum is the sum of the characters, we can

calculate the line for our 2D representation by W :
1 (123) (12)

Triangle representation 2 -1 0
Trivial representation 1 1 1

3D permutation representation (reducible) 3 0 1
W 2 -1 0

In fact, we know all the irreducible representations of S3: we have
1 (123) (12)

Trivial representation 1 1 1
Sign representation 1 1 -1

2D irreducible representation W 2 -1 0
and since the characters of irreducible representations always form an or-

thonormal set in the vector space of class functions, which is 3D in this case,
these three form an orthonormal basis and there are no other irreducible repre-
sentations of S3.

9.1 Proposition

The multiplicity of any irreducible representation V in the regular represen-
tation CG, for any finite group G, is = dimV : we know this multiplicity is
〈χV , χCG∗〉, and have χCG(g) = |G| for g = 1, 0 otherwise. So 〈χV , χCG〉 =
1
|G|

∑

g∈G χV (g)χCG(g) = χV (1) = dimV .

9.2 Corollary

For any finite group G with irreducible complex representations W1, . . . ,Wr,
|G| =

∑

(dimC Wi)
2, because as a representation of G, CG =

⊕r
i=1W

⊕ dim Wi

i .

9.3 Theorem (Completeness of characters)

For a finite group G, the irreducible characters (i.e. the characters of irreducible
representations) form an ON basis for the space of class functions on G.

CG is a representation of G; it is equal to the space of functions G → C,
which is a commutative ring under (αβ)(g) = α(g)β(g), or forms a noncommuta-
tive ring, the group ring ofG, under the multiplication ofG ((

∑

g∈G agg)(
∑

h∈g bhh) =
∑

g,h∈G agbhgh.

9.4 Lemma

For any representation V of a group G we have a ring homomorphism CG →
End(V ) (≃ MnC where n = dimC V ): map each g ∈ G to gV ∈ End(V ) and
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extend by linearity; since V is a representation of G this gives a ring homomor-
phism.

9.5 Corollary

(This is a corollary to 9.3) The number of (complex) irreducible representations
of G (up to isomorphism) is the number of conjugacy classes in G.

Notice that the center of the group ring CG, Z(CG) = {f ∈ G : fe =
ef∀e ∈ CG}, is the vector space of class functions on G:

∑

g∈G agg ∈ Z(CG) ⇔
ag = ahgh−1∀g, h ∈ G. So for any representation V of G and any class function
φ : G → C, φ determines a linear map φ |V : V → V which commutes with all
elements of G, i.e. is G-linear.

Consider the case of an irreducible representation V of G and any class func-
tion φ: φ |V : V → V must be a scalar times the identity, by Schur’s lemma. We
have tr(φ |V ) = tr(

∑

g∈G φ(g)g |V ) =
∑

g∈G φ(g)tr(g |V ) =
∑

g∈G φ(g)χV (g) =

|G|〈φ, χV ⋆〉, so φ |V = |G|
dim V 〈φ, χV ⋆〉. So if φ is a class function that is orthogonal

to all irreducible characters, then φ |V = 0 for every irreducible representation V
of G, so by complete reducibility φ |CG= 0. But φCG(1) =

∑

g∈G φ(g)g ⇒ φ = 0.

10 Lecture

We have now proven “completeness of characters”: the characters of complex
irreducible representations of a finite group form an orthonormal basis for the
complex vector space of class functions on G. The proof relies on taking several
points of view on the regular representation CG; in particular, CG = the let
of functions G → C by

∑

g∈G α(g)g ↔ α : G → C. Under this identification,
Z(CG) is the set of class functions G→ C.

A remark: representations of G are equivalent to modules over the group
ring CG: if V is a CG-module then it becomes a representation of V by using
G|subsetCG; conversely if V is a representation of G we can make it into a
CG-module by setting (

∑

g∈G agg) ·x =
∑

g∈G ag(gx)∀x ∈ V . In other words, if
φ =

∑

g∈G agg then φ determines a linear map V → V by φ |V =
∑

g∈G ag(g |V ).
To see Z(CG) is the set of class functions G → C¡ we claim that φ =

∑

g∈G agG commutes with all elements of CG precisely when φ commutes with
every element of G ⊂ CG, because we can write (

∑

g∈G agg)h =
∑

g∈G ag(gh) =
∑

k∈G akh−1k, h(
∑

g∈G agg) =
∑

g∈G ahhg =
∑

k∈G ah−1k, so φ =
∑

agg lies
in Z(CG) iff ∀h, k ∈ G akh−1 = ah−1k: writing φ(g) = ag this is the case iff
φ(kh−1) = φ(h−1k)∀h, k ∈ G, i.e. φ is a class function.

The character table of a finite group G is the (we will later prove, square)
matxir showing the characters of all the irreducible representations of G on all

conjugacy classes, e.g. for S3 it is

1 (123) (12)
Trivial representation 1 1 1
Sign representation 1 1 -1

2D irreducible representation W 2 -1 0

.

Orthogonality of characters means that the rows of this matrix are or-
thonormal when suitably interpreted: recall 〈χ1, χ2〉 = 1

|G|
∑

g∈G χ1(g)χ2(g) =
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1
|G|

∑

C⊂G conjugacy classes |C|χ1(C)χ2(C), so we rewrite the table as

|C| 1
C 1 (123)

Trivial representation 1
Sign representation 1

2D irreducible representation W 2 -1

Then e.g. 〈1, sgn〉 = 1
6 (1 × 1 × 1 + 2 × 1 × 1 + 3 × 1 ×−1) = 0, and 〈W,W 〉 =

1
6 (1 × 22 + 2 × (−1)2 + 3 × 02) = 1, so the columns really are orthonormal.

Example: If we know all but one of the irreducible representations of a
group G, the last is determined by orthogonality. Suppose for S3 we knew the
trivial and sign representations; W is our unknown representation. We know
6 = |G| = 12 +12 +(dimW )2, so dimW = 2 and we have a 2 in the first column
of W (trI |W = dimW ). Then we could just use orthogonality of the rows, but
there is an easier method: we can interpret the orthonormality of the rows of

the characteristic table by saying that if we multiply each column C by
√

|C|
|G| ,

then the rows become orthonormal in the standard inner product on Cn. This
is equivalent to saying this modified matrix is unitary, which is equivalent to
saying that the columns are orthonormal. Thus we have:

10.1 Proposition

For any conjugacy classes C,C′,
∑

irreducible characters χ of G χ(C)χ(C′) = |G|
|C| if

C′ = C, 0 otherwise.
Therefore, any two different columns of the original character table are or-

thogonal in the usual inner product on Cn; thus we can easily finish the character
table of G.

Example: Let G be a finite cyclic group Z
n = 〈g : gn = 1〉; the n irreducible

representations ofG are 1D, call them ρj , where ρj(g) = (e
2πij

n ), so the character

table of G is, if we let ξ = e
2πi
n ,

|C| 1 1 1 1
C 1 g . . . gk . . . gn−1

ρ0 = 1 1 1 1 1
ρ1 1 ξ ξk ξn−1

. . .
ρj 1 ξj ξjk ξj(n−1)

. . .

.

Example: G = the dihedral group D2n of order 2n, 〈g, r : gn = 1, r2 =
1, rgr−1 = g−1〉; take n ≥ 3 odd, n = 2m + 1. Then all reflections rgj are
conjugate to r; there are m+ 2 conjugacy classes, so we want m+ 2 irreducible
complex representations. For any finite group G, any 1D representation factors
through the abelianization Gab = G

[G,G] where the quotient is the commutator

of G with itself, i.e. the normal subgroup generated by expressions aba−1b−1 for
a, b ∈ G, because any homomorphism G→ GL(1,C) = C⋆ must factor through
Gab because C⋆ is abelian. Thus the number of (isomorphism classes of) 1D
irreducible representations of G is |Gab.

11 Lecture

For n odd, (D2n)ab = Z{g,r}
〈ng=0,2r=0,r+g−r=−g〉 (by the numerator we mean Z ⊕ Z

with generators called g, r); this last relation in an abelian group implies 2g = 0
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so g = 0 and the group is Z{r}
〈2r=0〉 = Z

2 . So our 1D representations are the two ob-

vious 1D representations given by
1 {g, g−1} {g2, g−2} . . . {gm, g−m} r

1 1 1 1 1 1
sgn 1 1 1 1 -1

.

Because rgr−1 = g−1, any representation of D2n containing a subspace W
on which g acts by ξ ∈ C⋆ must also contain rW on which g acts by ξ−1. This
suggests the following 2D representations of G: for 1 ≤ j ≤ m, define Wj by g 7→
(

ξj 0
0 ξ−j

)

, r 7→
(

0 1
1 0

)

, where ξ = e
2πi
n . This is a valid representation;

it is irreducible “by hand”: as a representation of Z
n ⊂ D2n it is the direct sum

of two non-isomorphic irreducible representations , so the only (non-trivial) Z
n -

invariant subspaces of C2 are these two C-lines, but r switches these two lines, so
there are no nontrivial G-invariant subspaces and Wj is irreducible. So our table

becomes

1 {g, g−1} {g2, g−2} . . . {gm, g−m} r
1 1 1 1 1 1

sgn 1 1 1 1 -1

Wj for 1 ≤ j ≤ m 2 2 cos 2πj
n 2 cos 2π2j

n 2 cos 2πmj
n 0

.

Now considerD2n for n even, n = 2m (m ≥ 2). Here (D2n)ab = Z{g,r}
(ng=0,2r=0,2g=0) =

Z{g,r}
(2r=0,2g=0) ≃ Z

2×Z
2 . Then we find the table is

1 {g, g−1} . . . {gk, g−

1 1 1 1
α1 1 1 1
α2 1 -1 (−1)
α3 1 -1 (−1)

Wj as before, for 1 ≤ j ≤ m− 1 2 2 cos 2πj
n 2 cos 2π

11.1 Proposition

Let G,H be finite groups, then for any representations V of G, W of H , V ⊗CW
is a representation of G×H , and every irreducible representation of G×H arises
uniquely as a product of irreducible representations for V,W in this way:

For any linear map A : V → V we have a linear map A⊗1 : V ⊗W → V ⊗W
by (A⊗ 1)(v⊗w) = Av⊗w (this is a bilinear expression in v, w, so this works);
likewise forB : W →W linear we have !⊗B : V⊗W → V⊗W . These A⊗1, 1⊗B
commute [for any A,B], so we have a representation of GL(V ) × GL(W ) by
GL(V ⊗W ) (for any product group G×H we have G = G× 1 ⊂ G ×H,H =
1×H ⊂ G×H and elements of one of these commute with those of the other).
So given homomorphisms G→ GL(V ), H → GL(W ) we have a homomorphism
G×H → GL(V ⊗W ).

Now let V be an irreducible representation of G, W an irreducible represen-
tation of H ; we need to shouw V ⊗W is an irreducible representation of G×H ,
which we will do by computing ‖χV ⊗W ‖2 (which will = 1 iff V ⊗W is irre-
ducible). ‖χV ⊗W ‖2 = 1

|G×H|
∑

g∈G,h∈H |χV ⊗W (g, h)|2 = 1
|G||H|

∑

g∈G,h∈H |χV (g)χW (h)|2 =
1

|G||H|
∑

g∈G |χV (g)|2
∑

h∈H |χW (h)|2 = ‖χV ‖2‖χW ‖2 = 1 since V,W are irre-

ducible representations of G,H .
Now different (non-isomorphic) choices of irreducible representations of V,W

give non-isomorphic representations of G×H : (V ⊗W ) |G⊂G×H= V ⊕ dim W so
we can recover V from V ⊗W ; likewise V ⊗W uniquely determines W .

So, this gives us (# irreducible representations ofG× # irreducible represen-
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tations ofH) distinct irreducible representations ofG×H . But (a, b)(g, h)(a, b)−1 =
(aga−1, bhb−1) so the conjugacy classes in G ×H are just those of the form (a
conjugacy class in G)×(a conjugacy class in H). So the number of irreducible
representations of G × H is the number of conjugacy classes in G times the
number of conjugacy classes in H , and we have constructed all the irreducible
representations of G⊗H .

Example: The character table of A4, of order 12: we notice that N =
{1, (12)(34), (13)(24), (14)(23)} is a subgroup of A4, ≃ Z

2× Z
2 ; in fact it is normal,

with quotient group A4

N ≃ Z
3 (since this is the only group of order 3). Therefore

we have 3 1D representations of A4, all trivial on N (given by the 3 1D repre-
sentations of Z

3 ). Then we can find the last irreducible character a by orthonor-
mality; it must have dimension 3 so that |A4| = 12 = 12 + 12 + 12 + (dim a)2,
then we can find the rest by orthogonality and construct the character table:

setting ξ = e
2πi
3 , it is

|C| 1 3 4 4
1 (12)(34) (123) (132)

1 1 1 1 1
α1 1 1 ξ ξ2

α2 1 1 ξ2 ξ
a 3 -1 0 0

. In fact a is “nicely”

realizable as the permutation representation minus the trivial representation.

12 Character table of A5

Calculating this is at the limits of our ability at this stage (it will be much easier
with later results), but it is important to see it early on, becauseA5, of order 5!

2 =
60, is the smallest nonabelian simple group; thus in a sense all smaller groups
“break down” into abelian “pieces” (e.g. S3 has S3

Z

3

≃ Z
2 or A4

Z

2× Z

2

≃ Z
3 . The

conjugacy classes in S5 are 1, (12), (123), (12)(34), (1234), (12)(345), (12345); the
only ones of these in A5 are 1, (123), (12)(34), (12345), but it might be that some
pairs of elements of A5 are conjugate in S5 but not in A5.

For any g ∈ a group G, let ZG(g), the centralizer of g, be {h ∈ G : gh = hg}
(or equivalently {h ∈ G : hgh−1 = g}); this is a subgroup of G, and the

conjugacy class of g ∈ G has order |G|
|ZG(g)| (by orbit-stabilizer on the action of G

on itself by conjugation). In particular, |C| | |G| for any conjugacy class C ⊂ G.
Let g ∈ A5; if we know ZS5(g) then ZA5(g) = ZS5(g)∩A5; this will be either

ZS5(g) or a subgroup of index 2 therof. In the first case, the S5-conjugacy

class of g splits into two A5-conjugacy classes (since the size |G|
|ZG(g)| of each is

halved); in the second case (i.e. g commutes with some element of S5 \A5) the
S5-conjugacy class of g is its A5-conjugacy class.

Looking back at our classes (checking on the way that their sizes sum to

|A5| = 60):

C 1 (123) (12)(34) (12345)
|C| 1 20 15 4! = 24

|ZS5(g)| 1230 6 8 5
Element of centralizer in S5 \A5 (12) (45) (12) No

;

the centralizer of the last is just 〈(12345)〉 ⊂ A5, so it splits into two conju-
gacy classes (12345),(12354) (when a class splits, we can find the other class
by conjugating by any element of ZS5(g) \ A5). Thus the conjugacy classes in

19



A5 are
|C| 1 20 15 12 12
C 1 (123) (12)(34) (12345) (12354)

. So there are 5 irre-

ducible representations of A5; we would normally look for 1D representations,
but because A5 is nonabelian simple its abelianization is trivial and there are no
nontrivial 1D representations. We could of course try and reduce the regular rep-
resentation of dimension 60 into irreducibles, but this would be very impractical,
so we look for smaller “inderesting” representations. We have the 5D permu-

tation representation of A5, with e.g. (12)(34) 7→













0 1
1 0

0 1
1 0

1













; we see

that in general the trace of g in the permutation representation is the number of
elements of {1, 2, 3, 4, 5} fixed by g, so the character of this representation, α, is 5
2 1 0 0. We could compute ‖α‖2 = 2 =

∑

n2
i where α =

⊕

i W
⊕ni

i for irreducible
non-isomorphicWi, so α is the direct sum of two non-isomorphic irreducible rep-
resentations; we can see that C5 fixes C·(1, 1, 1, 1, 1), or compute 〈α, 1〉 = 1

60 (1×
5×1+20×2×1+15×1×1+0+0) = 1, so α contains the trivial representation pre-
cisely once. So we get the next irreducible character of A5, χ2, and our table is

|C| 1 20 15 12 12
C 1 (123) (12)(34) (12345) (12354)

Trivial representation 1 = χ1 1 1 1 1 1
5D permutation representation - trivial representation χ2 4 1 0 -1 -1

.

Some standard tricks which are futile in this case: if V is irreducible and L a
1D representation of G then V ⊗ L is irreducible; this might be ≃ V , but often
isn’t (however we have no nontrivial 1D representations so this is useless). If V
is irreducible then V ⋆ is irreducible, and has χV⋆

(g) = χV (g), so if we ever find
complex characters we have another representation by this.

We now look at χ2 ⊗ χ2, a 16D representation of A5; we want to break
it up into irreducibles. We use that for any representation V of G, V ⊗ V ≃
S2V ⊕ Λ2V ; here dimΛ2χ2 =

(

4
2

)

= 6, dimS2χ2 =
(

4+2−1
2

)

= 10.

12.1 Lemma

Let χV be a characteristic of a finite group G, then χS2V (g) = 1
2 (χV (g)2 +

χV (g2)), χΛ2V (g) = 1
2 (χV (g)2 −χV (g2)): for any g ∈ G, we know g acting on V

is diagonalizable; let e1, . . . , en be a basis for V in which g acts by g(ei) = aiei

for some ai ∈ C, then g acts on S2V with eigenvalues aiaj∀1 ≤ i ≤ j ≤ n (since
we have a basis by { 1

2 (ei⊗ej+ej⊗ei)}), and g acts on Λ2V with eigenvalues aiaj

for 1 ≤ i < j ≤ n (similarly), so χS2V (g) =
∑

i≤j aiaj = 1
2 ((

∑

ai)
2 +

∑

a2
i ) and

χΛ2V (g)/
∑

i<j aiaj = 1
2 ((

∑

ai)
2 −∑

a2
i ). So we can compute some characters,

for χS2χ2
10 1 2 0 0 (by calculation), and then since the two must sum to 42 12

02 (−1)2 (−1)2, for χΛ2χ2
6 0 -2 1 1.

The reader should compute that ‖χS2χ2
‖2 = 3, ‖χΛ2χ2

‖2 = 2, so S2χ2 is a
sum of three different irreducible characters and Λ2χ2 a sum of two different irre-
ducible characters; computing inner products we find S2χ2 = 1+χ2+β for some
irreducible β, and Λ2χ4 does not contain 1, χ2 or this β. So Λ2χ2 is the sum of
the two irreducible characters we don’t know; let them have dimensions u, v and
then we know 60 = 1 + 16 + 25 + u2+ v2 so u2 + v2 = 18 and we must have u =
3, v = 3; by orthogonality we can relate the remaining characters. We use a trick
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to finish: notice that for any characters χ, χV (g−1) = χV (g) = χV ⋆(g), so if g is
conjugate to g−1 then χV (g) is real, and if every element of G is conjugate to its
inverse, V ⋆ ≃ V ; this is the case here (the only nontrivial check is (12345)−1 =
(54321) = ((15)(24))(12345)((15)(24))−1), so all our remaining values a, b, c, d

are real: our working table looks like

|C| 1 20
C 1 (123)

Trivial representation 1 = χ1 1 1
5D permutation representation - trivial representation χ2 4 1

S2χ2 − 1 − χ2 = χ3 5 -1
χ4 3 a
χ5 3 -a

We can use e.g. that the second column multiplied by
√

|C|
|G|(=

√

1
3 ) must

have squared length equal to 1 in the standard inner product on C5, so 1 =
1
3 (12 + 12 + (−1)2 + aā+ aā) so 3 = 3 + 2|a|2 ∴ |a|2 = 0 ∴ a = 0. For the fourth
column even this isn’t enough; we obtain that 3 = |c|2 + |1 − c|2, but this only
tells us that c lies on an ellipse in C.

Now we use the trick mentioned above: χ⋆
4 is an irreducible representation

of dimension 3, so must be either χ4 or χ5. If χ⋆
4 ≃ χ5 then χ5(g) = χ4(g), or

χ⋆
4 ≃ χ4 ∴ χ⋆

5 ≃ χ5, so both χ4, χ5 are real-valued. But since every element g
of A5 is conjugate to g−1, any character χ of A5 must take real values (χ(g) =
χ(g−1) = χ(g)) i.e. χ is self-dual. So we mave 3 = c2+(1−c)2 as a real number,

and we find c = 1±
√

5
2 . So we can wlog take χ4 to have c = 1+

√
5

2 , then 1−c, the

corresponding entry of χ5, is 1−
√

5
2 . Then we can use orthogonality to compute

the other numbers, finding b = −1 ∴ 2 − b = −1, d = 1−
√

5
2 ∴ 1 − d = 1+

√
5

2 .

13 Lecture

(Actually this lecture started somewhere in the middle of the above calculation,
but I feel it morally begins here)

Theorem: For every finite group G, the dimension of any complex irreducible
representation divides |G|. The proof of this requires some algebra:

Definition: LetR ⊂ S be commutative rings. An element x ∈ S is integral over R
if there is a [nonzero] monic polynomial with coefficients in R satisfied by x, i.e.
xn + an−1x

n−1 + · · · + a0 = 0 ∈ S for some ai ∈ R; equivalently x ∈ S is
integral over R iff the subring R[x] ⊂ S is finitely generated as an R-module:
for the forward implication if x is integral over R then xn is an R-linear com-
bination of smaller powers of x, and inductively so is any higher power of x, so
R[x] is generated by 1, x, . . . , xn−1; for the reverse, if R[x] is generated as an
R-module by f1, . . . , fr, then R[x] must be generated by 1, x, . . . , xN for some
N , so write xN+1 as a linear combination of these, giving a monic polynomial
with coefficients in R satisfied by x.

An algebraic integer is a complex number which is integral over Z (clearly
this implies that x is an algebraic number, i.e. satisfies some polynomial with
coefficients in Q).

Remark: A rational number is an algebraic integer iff it is ∈ Z; for example,
if we had (1

2 )n + an−1(
1
2 )n−1 + · · · + an = 0 for ai ∈ Z we have an immediate

contradiction (the factor of 2n in the denominator of the first term can’t be

21



cancelled, or being more rigorous, multiply the equation by 2n and then the left
hand side is an odd integer so cannot = 0).

Example:
√
N is an algebraic integer since it satisfies x2 −N = 0.

Example: Which elements of Q(
√
N) are algebraic integers? Precisely those

whose trace and norm are integers (tr(a+b
√
N) = (a+b

√
N)+(a−b

√
N) = 2a,

norm is (a+ b
√
N)(a− b

√
N) = a2 −Nb2).

Example: nth roots of unity are algebraic integers, e.g. ξ3 = −1+
√
−3

2 (sat-
isfies ξ2 + ξ + 1 = 0).

13.1 Lemma

If x, y ∈ S are integral over Z ⊂ S then x + y, xy are integral over Z: we
know that Z[x] ⊂ S is a finitely generated Z-module, and y is integral over Z
so certainly over Z[x], so Z[x, y] is a finitely generated Z[x]-module and thus a
finitely generated Z-module. So x+ y, xy ∈ S are contained in a ring which is a
finitely generated Z-module ⊂ S; any subgroup of a finitely generated abelian
group is finitely generated, so Z[x+ y],Z[xy] are finitely generated and we have
the result.

13.2 Lemma

The image of an element x ∈ S integral over Z under any ring homomorphism
is integral over Z; the proof is immediate.

13.3 Theorem

For V an irreducible complex representation of a finite group G, dim(V ) | |G|;
this follows from the following two lemmas:

13.4 Lemma

The values of any character of G are algebraic integers, since they are sums of
roots of unity.

13.5 Lemma

For any conjugacy class C and irreducible representation V , χV (C) |C|
dim V is an

algebraic integer.

Proof of Theorem 13.3 given Lemma 13.5: it’s sufficient to prove |G|
dim V is an

algebraic integer, since we know it is rational. Since we assumed V irreducible,
‖χV ‖2 = 1 i.e. 1 = 1

|G|
∑

g∈G |χV (g)|2 = 1
|G|

∑

conjugacy classes C⊂G |C|χV (g)χV (g−1),

so |G|
dim V = 1

dim V

∑

C⊂G |C|χV (g)χV (g−1) =
∑

C⊂G( |C|
dim V χV (g−1))χV (g); the

bracket is algebraic by Lemma 13.5, and χV (g) is algebraic by Lemma 13.4.
Proof of Lemma 13.5: (Recall the proof of completeness of characters) Let

φ be any class function G → C; consider it as an element of Z(CG), then φ
acts as a G-linear map on any representation V of G. So if V is irreducible

then φ acts as a scalar on VW ; we find φ acts by the scalar |G|
dim V 〈φ, χV ⋆〉 in

this case. Let φ be the class function φ(g) = 1 if g ∈ C, 0 otherwise. Then
φ ∈ Z(ZG) (ZG is clearly a ring); we have a ring homomorphism Z(ZG) → C
given by φ 7→ the scalar φ |V (for V an irreducible representation of G). We see
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that φ ∈ Z(ZG) is integral over Z, as Z(ZG) is a finitely generated Z-module.
Therefore the image of φ under this homomorphism is integral over Z, but this

is |G|
dim V 〈φ, χV ⋆〉 = χV (c)|C|

dim V .

14 Lecture

Induced Representations

Recall the structure of the two irreducible representations of a dihedral group
D2n ⊃ the cyclic group Cn; as representations of the cyclic group they have the
form L1⊕L2 (with in this case L2 ≃ L⋆

1), where r ∈ D2n maps L1 to L2. So we
could write V = L1 ⊕ r · L1; from this description we can work out how all of
G acts on V . Namely, any element of G has the form h or rh for some h ∈ Cn.
We can see how such an element acts on L1, then an element of D2n acts on
rL1 by: for rx for x ∈ L1, g(rx) = (gr)x, then we can see how such an element
acts on any element of V . This is valid, since either gr ∈ Cn or gr = r· some
element of G; (gr)x is then ∈ L1 or r · L1 respectively.

Definition: Let H ⊂ G be a finite group, and W a complex representation
of H . The induced representation IndG

H(W ) is the representation of G given bi
IndG

H(W ) = g1W ⊕ · · · ⊕ grW , where g1, . . . , gr are a set of representatives for
G
H .

We have dimC IndG
H(W ) = [G : H ] dimC W .

Recall: For any subgroup H ⊂ G, G
H is the set of cosets {aH : a ∈ G} (which

is not generally a group); we have aH = bH ⇔ b−1a ∈ H , so G
H is a collection

of disjoint subsets of G, each of size |H |, and [G : H ] = |G
H | = |G|

|H| .

From this definition we can work out how any element ofG acts on IndG
H(W );

the group G permutes the subspaces giW in exactly the way G acts on G
H by

g(aH) = (ga)H∀g, a ∈ G.
Suppose g ∈ G maps g1H to g2H ; how exactly does it do so? By assumption

gg1H = g2H so gg1 = g2h for some h ∈ H , so we should have g(g1x) = (gg1)x =
(g2h)x = g2(hx) ∈ g2W for any x ∈ g1H ⊂W .

It is not completely clear that this defines a representation of G and doesn’t
depend on our choice of representatives for cosets; for this we need a fancier
definition.

Examples: Let W be the trivial (1D) representation of a subgroup H . Then
IndG

H(C) is simply the permutation representation C[ G
H ] of G acting on G

H .

Example: IndG
1 (C) =the regular representation CG.

Let R1 ⊂ R2 be rings, typically noncommutative (we will apply this to
CH ⊂ CG); recall that representations of G are the same thing as CG-modules.

Definition: For any R1-module M , define R2 ⊗R1 M to be the free abelian
group generated by symbols r2 ⊗m for r2 ∈ R2,m ∈ M , modulo the relations
(r1 + r2)⊗m = r1 ⊗m+ r2 ⊗m, r⊗ (m1 +m2) = r⊗m1 + r⊗m2, r⊗ (am) =
ra⊗m∀r ∈ R2, a ∈ R1,m ∈M .

Firstly, R2 ⊗R1 M is an R2-module by the obvious definition s(r ⊗ m) =
sr ⊗m (note the order of multiplication does matter). For H ⊂ G a subgroup,
CG⊗CHM is IndG

H(M); this is another way to define the induced representation
of a CH-module M . We relate this to the direct definition we use that CG is a
free CH-module, with generators any set of representatives g1, . . . , gr for G

H .
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H acts on G by g · h = gh; this is “very nice”; it’s a free action, so G splits
into r subsets gH , all of the same size as H . So CG =

⊕r
i=1 giCH . Therefore

CG⊗CH M =
⊕r

i=1 giM .

14.1 Theorem

For any rings R1 ⊂ R2 and any R1-module M and R2-module N , we have
HomR2(R2 ⊗R1 M,N) = HomR1(M,N |R1) where N |R1 is N considered as an
R1-module: say we have an R2-linear map f : R2⊗R1 M →M . Define φ(m) :=
f(1 ⊗ m) ∈ N for m ∈ M ; φ is R1-linear since ∀a ∈ R1,m ∈ M,φ(am) =
f(1 ⊗ am); aφ(m) = af(1 ⊗ m) and a ∈ R1 ⊂ R2 so this is f(a(1 ⊗ m)) =
f(a⊗m) = f(1⊗am) by the definition of R2⊗R1 M . We claim f is determined
by φ: ∀a ∈ R2,m ∈M, f(a⊗m) = af(1⊗m) ∈ N as f is R2-linear. Finally, we
have to show that everyR1-linear map φ : M → N comes from an R2-linear map
f : R2 ⊗R1 M → N ; we want to define f(a⊗m) = aφ(m) ∈ N . This is cleary
a well-defined function on the free abelian group on the set of symbols a ⊗m,
and the relations defining R2⊗R1 M are satisfied for f because (a,m) 7→ aφ(m)
is bilinear in a and m, and (ab,m) 7→ abφ(m) = aφ(bm) which is the image of
(a, bm) as φ is R1-linear, for any a ∈ R2, b ∈ R1,m ∈M .

14.2 Corollary (Frobenius reciprocity)

For groupsH ⊂ G and any representationsW ofH and V ofG, HomG(IndG
H(W,V )) =

HomH(W,V |H) where V |H is V viewed as a representation of H ; we have
proved this.

This means IndG
HW is “the universal representation of G that contains W

as a representation of H”.

15 Lecture

Example: Let V be any representation of G, than (as a representation of H ⊂
G) contains a representation W of H . Then the smallest G-subrepresentation
of V containing W is clearly

∑

g∈G gW =
∑

i giW where g1, . . . , gr ∈ G are

representatives of G
H . Frobenius reciprocity tells us that the H-linear map W →֒

V extends uniquely to a G-linear map IndG
H(W ) → V (the LHS being

⊕

i giW ;
the above subspace is the image of this map, but it’s not necessarily isomorphic

to IndG
H(W ), because

∑

giW need not be a direct sum.
Example: Let G = Z

2 , H = {1}, V = C the trivial representation of G. Let
W = V = C, a representation of H . So Frobenius reciprocity gives a G-linear

map Ind
Z

2

{1}(C) → C, which is clearly not injective.

Example: For any subgroup H of a finite group G, every irreducible repre-
sentation of G is a summand of IndG

H(W ) for some H-irreducible representation
W : look at ResG

H(V ); let W be any of the irreducible constituents therof (which
must exist since V 6= 0 as V is irreducible). Then we have a nonzero H-linear
map W → ResG

H(V ), so we have a nonzero G-linear map IndG
H(W ) → V . Since

V is irreducible this map is surjective and IndG
H ≃ V⊕some other representa-

tions by complete reducibility.
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15.1 Lemma (Simple properties of induction)

1) IndG
H(W1 ⊕W2) ≃ IndG

H(W1) ⊕ IndG
H(W2); this is trivial. 2) Let H ⊂ K ⊂

G be subgroups, then IndG
KIndK

H = IndG
H ; this follows from the definition of

IndG
H(W ) as CG⊗CH W , since for any rings R1 ⊂ R2 ⊂ R3 and R1-module M ,

R3 ⊗R2 (R2 ⊗R1 M) = R3 ⊗R1 M .
Induced characters: Given a representation W of H , with character χW :

H → C, we want to compute the character of IndG
H(W ). We could try extending

χW by φ(g) = χW (g) if g ∈ H , 0 otherwise, but this will not generally be a
class function, so we need to average this φ to make it one:

15.2 Lemma

If φ is a class function on H , extended by 0 to all of G, and x ∈ G, then the
“conjugated function” g ∈ G 7→ φ(x−1gx) only depends on the coset xH : we
have to show that ∀g ∈ G∀h ∈ Hφ(x−1gx) = φ((xh)−1g(xh)); the RHS here is
φ(h−1x−1gxh) = φ(x−1gx) as φ is invariant under H-conjugation.

So we can define, for any class function φ on H , a class function on G by
IndG

H(φ)(g) =
∑k

i=1 φ(g−1
i ggi) where g1, . . . , gk are representatives for G

H (this
is 1

|H|
∑

a∈G φ(a−1ga) by the lemma).

15.3 Theorem

For finite groups H ⊂ G and any representation W of H , the character of the
representation IndG

H(W ) of G is IndG
H(χW ): let g1, . . . , gr be representatives for

G
H , then IndG

H(W ) = g1W ⊕ · · · ⊕ grW . Pick any g ∈ G; we have to compute

tr(g) ∈ C for G acting on IndG
H(W ). We only get a contribution from g acting

on giW if g maps giW into itself, i.e. if ggiH = giH , i.e. if g−1
i ggi ∈ H .

Assuming this is so, we need the trace of g acting on giW : for each x ∈ W ,
g(gix) is gihx for some h ∈ H (g−1

i ggi = h), so tr(g |giW ) = tr(h |W ), so
χIndG

H
(g) =

∑

{i∈{1,...,r}:g−1
i ggi∈H} tr(g |giW ) =

∑

1≤i≤r χW (g−1
i ggi where we

extend χW by 0 in G \H , but this is just IndG
H(χW ).

Example: Z
4 = 〈(1234)〉 ⊂ S4; we want to compute the character of the

induced representation IndS4
Z

4

(α) where α is a faithful 1D representation of Z
4 ,

say α((1234)) = i. Then che character of α is:
1 (1234) (13)(24) (1432)

α 1 i -1 -i

The induced representation of S4 (|Z
4 | = 4, |S4| = 6 so it is of dimension 6)

is then:
|C| 1 6 8 3 6
C 1 (12) (123) (12)(34) (1234)

IndS4
Z

4

(α) 6 0 0 -2 0

Explanations: For (12)(34), only one of the 3 elements of S4 it is conjugate
to lies in H (namely (13)(24)), so IndS4

Z

4

(α)((12)(34)) = 1
| Z

4 |
|S4| 13 × (−1) =

24
4×3 (−1) = −2. The element (1234) is conjugate to 6 elements of S4 of which two

lie in Z
4 , (1234) and (1432), so IndS4

Z

4

(α)((1234)) = 1
| Z

4 |
(1
6 |S4|i+ 1

6 |S4|(−i))[= 0].

Remark: Extending the field of a representation. Let F ⊂ E be fields, V a
vector space over F , then E ⊗F V is a vector space over E (if V has basis {ei}
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so is {∑n
i=1 aiei : ai ∈ F} then VE := E ⊗F V is {∑n

i=1 biei : bi ∈ E}. So given
a representation V of G over F , VE is a representation of G over E; we have
used this already for R ⊂ C.

Example: The two 3D representations of A5 over C are just two ways of iden-
tifying A5 ⊂ GL(3,R) with the symmetries of an icosahedron. (12345), (12354)
correspond to rotations around an axis through some vertex of the icosahe-
dron. So the character of one of these representations on (12345) has the

form tr





1 0 0
0 a1 a2

0a
3 a4



 where the ai are the matrix for a rotation by 2π
5

in R2. Over C this is conjugate to





1
ξ

ξ−1



 where ξ = e
2πi
5 (or an-

other primitive 5th root of unity; the other representation will correspond to




1
ξ2

ξ−2



, so we can see whi there are two representations). So the

value of one character on one of the conjugacy classes is u = 1 + ξ5 + ξ−1
5 . To

write this in terms of square roots we use ξ5 = 1, 1 + ξ + ξ2 + ξ3 + ξ4 = 0, so
u − 1 = ξ + ξ−1

∴ (u − 1)2 = (ξ + ξ−1)2 = ξ2 + 2 + ξ−2 + 1 + (1 + ξ2 + ξ3) =
1 − ξ − ξ4 = 1 − (u − 1) = 2 − u ∴ u2 + 2u+ 1 = 2 − u, and u2 − u− 1 = 0 so
u = 1

2 (1 ±
√

5), and these are indeed the two characters we found.

16 Lecture

16.1 Lemma

(For H ⊂ G finite groups, W a representation of H , V a representation of G)
〈IndG

HχW , χV 〉G = 〈χW ,ResG
HχV 〉H . This is Frobenius reciprocity in terms of

characters, because, for any representations V1, V2 ofG over C, dimC HomG(V1, V2) =
〈χV1 , χV2〉 [I didn’t understand this in the lectures, nor afterwards].

We’ll give a formula for ResG
KIndG

HW for K,H subgroups of G and W a
representation of H . We have IndG

H(W ) = g1W ⊕ · · · ⊕ grW for g1, . . . , gr ∈ G
representatives for G

H . How does K ⊂ G act on this? It will break into pieces,

one for each K-orbit on G
H , where K acts by k(gH) = (kg)H for k ∈ K, g ∈ G.

Definition: The set K
G/H of double cosets (for K,H subgroups of G) is the set of K-orbits on G

H .
Equivalently, the double cosets are the K ×H-orbits in G, where k×H acts on
G by (k, h)(g) = kgh−1 (so this is equivalent to the set of H-orbits on K
G the set of right cosets of K in G).

What is the stabilizer in K of an element sH in G
H , i.e. which k ∈ K have

k(sH) = sH? k(sH) = sH iff s−1ks ∈ H , i.e. k ∈ sHs−1.
Definition: Let Hs = K ∩ sHs−1 for any s ∈ G; this is exactly the stabilizer

in K of a point of G
H .

16.2 Theorem (Mackey’s restriction formula)

Let H,K ⊂ G be subgrous, W a representation of H . Then ResG
KIndG

HW ≃
⊕

s IndK
Hs

(sW ), where s runs over a set of representatives in G for K
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G/H (the group sHs−1 ⊂ G is isomorphic to H , so the representation W of
H must correspond to some representation of sHs−1, which we will call sW .

Then for x ∈ W , (shs−1)(sx) = s(hx)). This is IndK
Hs

RessHs−1

Hs
(sW ): We have

IndG
HW = g1 ⊕ · · · ⊕ grW for gi representatives of G/H . Each element of K

maps each subspace giW into another gjW . So ResG
KIndG

HW =
⊕

s K · (sW )
where s runs over a set of representatives for K
G/H . Since Hs is the stabilizer of sH in G/H , the subgroup Hs ⊂ K maps the
vector space sW into itself (where we consider Hs acting in “the obvious way”
on sW ) so K · sW =

⊕

ki · sW where Ki are representatives in K for K/Hs.
But this = IndK

Hs
(sW ) as required.

16.3 Theorem (Mackey’s irreducibility criterion

Let H ⊂ G be groups, W a representation of H . Then IndG
H is irreducible if

and only if 1) W is irreducible and 2) for each s ∈ G \H , the representations
sW and ResH

Hs
(W ) are disjoint as representations of Hs := sHs−1 ∩H .

(We say representations V1, V2 of a group G are disjoint if no irreducible
component of V1 is (isomorphic to) an irreducible component of V2; by Schur it

is equivalent that HomG(V1, V2) = 0). Note that sW = RessHs−1

Hs
(sW ), which

is a very similar form to ResH
Hs

(sW ).
Remark: it is equivalent to state 2) for a set of representatives of H

G/H \ {1}; in particular, if H ⊳ G then H
G/H is the group G/H , and we just need 2) for all s ∈ G/H \ {1}.

16.4 Corollary

If H⊳G and W is a representation of H then IndG
H(W ) is irreducible if and only

if W is irreducible and W, sW are non-isomorphic ∀s ∈ G/H \ {1}.
Proof of theorem 16.3: A representation V of G is irreducible iff ‖χV ‖2 = 1.

Consider 〈IndG
HχW , IndG

HχW 〉G = 〈χW ,ResG
HIndG

HχW 〉H =
∑

s∈HG/H〈χW , IndH
Hs

(RessHs−1

Hs
(sW ))〉 =

∑

s∈HG/H〈ResH
Hs
χW ,RessHs−1

Hs
sW 〉Hs

where Hs = sHs−1 ∩ H . This is a sum

of nonnegative integers, and for s = 1 we get 〈χW , χW 〉 ≥ 1. So IndG
HχW is

irreducible iff ‖χW ‖2 = 1 and all the other terms in the sum are 0, i.e. if W is
an irreducible representation of H and for all s ∈ H
G/H \ {1}, W and sW are disjoint as representations of Hs = sHs−1 ∩H .

17 Lecture

Example: Mackey’s criterion for A4 ⊂ S4. The character table for A4 is
|C| 1 3 4 4
C 1 (12)(34) (123) (132)
χ1 1 1 1 1
χ2 1 1 ξ ξ2

χ3 1 1 ξ2 ξ
χ4 =permutation representation - 1 3 -1 0 0

where ξ =

e
2πi
3 .
Aab

4 = A4

〈(12)(34),(13),(24)〉 ≃ Z
3 .
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By Mackey, for an irreducible representationW of A4, IndS4

A4
W is irreducible

iff W is not isomorphic to sW , for some s ∈ S4 \ A4 (if W is given by a
homomorphism ρ : A4 → GL(W ) then sW is given by ρs(g) = ρ(s−1gs)∀g ∈ A4

[the lecturer was very confused about where we should use s−1gs or sgs−1,
so I would not entirely trust this]). In other words, ρs is the composition of
conjugation by s ∈ S4 \A4, considered as an isomorphism A4 → A4, with ρ.

Conjugation by s in this case clearly maps [1] and [(12)(34)] to themselves,
but (32)(123)(32) = (132). So we have the following characters for S4:

C 1 (12) (123) (12)(34) (1234)
φ1 1 1 1 1 1

sign representation φ2 1 -1 1 1 -1
permutation representation - 1 φ3 3 1 0 -1 -1

φ4 = φ3 ⊗ φ2 3 -1 0 -1 1

IndS4

A4
(χ2) =: φ5 2 0 ξ + ξ2 = −1 2 0

.

Recall (IndG
HχW )(g) =

∑

s∈ G
H
χW (sgs−1) where χW (sgs−1) is taken to be 0

if sgs−1 /∈ H .
We know that ResS4

A4
IndS4

A4
χ4 = χ4 ⊕ sχ4 (≃ χ4 ⊕ χ4), so, since IndS4

A4
χ4

is reducible, χ4 extends to an irreducible representation of S4 [I have no idea
about this paragraph at all].

Nilpotent groups and p-groups

Definition: A p-group (for a prime p) is a group of order pN for some N ≥ 0.

Definition: A group G is nilpotent if there is a chain of subgroups G ⊃ G1 ⊃
· · · ⊃ Gr = {1} such that Gr−1 ∈ Z(G) the centre of G, Gr−2 ∈ Z( G

Gr−1 ) and
so on.

17.1 Theorem

A p-group is nilpotent: it suffices to show that for G 6= {1} a p-group, Z(G)
is nontrivial, then we will have the result by induction on N . Every conjugacy
class in G has size dividing |G| (since the size of the conjugacy class of g ∈ G is

|G|
|ZG(g)| ), so a power of p, so every element g ∈ G \ Z(G) has a conjugacy class

of size a multiple of p. So were Z(G) = {1} then |G| = 1+ a sum of multiples
of p, so |G| = 1 mod p, a contradiction.

Definition: A group G is solvable if it has a chain of subgrous G = G0 ⊃
G1 ⊃ · · · ⊃ Gr = {1} such that Gi+1 ⊳ Gi∀i and Gi

Gi+1 is abelian ∀i (clearly
any abelian group is nilpotent and any nilpotent group is solvable, but not
conversely, e.g. S3 is solvable but not nilpotent (since Z(S3) = {1})).

Example: Let F be a field. Then the group SUTn(F ) of upper-triangular
n × n matricies with entries from F and diagonals all 1s is nilpotent, but for
n = 3 it is nonabelian.

Example: UTn(F ) the group of matricies a with entries from F with aii ∈
F ⋆, aij = 0∀i > j is solvable, but usually not nilpotent.

17.2 Theorem

Every complex irreducible representation of a finite p-group is induced from a
1D representation of some subgroup.
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The proof of this uses:

17.3 Lemma

This is a clever lemma. Let G be a finite group, A ⊳ G, V an irreducible repre-
sentation of G. Then V is induced from a representation W of some subgroup
H with A ⊂ H ⊂ G such that W |A is isotypical (i.e. a sum of copies of the
same irreducible representation) (This includes the case H = G when V |A is
isotypic).

17.4 Corollary

(A corollary to 17.3)
Under the assumptions of 17.3, if A is also abelian, then V is induced from

a representation W of some subgroup H with A ⊂ H ⊂ G such that A acts on
W by scalars (i.e. matricies aI : a ∈ C).

Proof of 17.3: Consider the isotypic decomposition of V |A; we have V |A=
V1⊕· · ·⊕Vn where [each] Vi is a sum of copies of some irreducible representation
of A. We claim that any element of G permutes the subspaces V1, . . . , Vn: if Vi

is a sum of copies of an irreducible representation W of A then gVi is a sum
of coppies of the irreducible representation gW of A (this is valid, since gW is
a representation of gAg−1 = A). Since V is irreducible, G acts transitively on
{1, . . . , n} [by these permutations].

Let H ⊂ G be the stabilizer of 1 ∈ {1, . . . , n} (so H maps V1 into itself).
Then we see that V = IndG

H(V1), and V1 is a representation of H such that V1 |A
is isotypic.

17.5 Lemma

(A little lemma)
Let G be a nonabelian p-group. Then G contains a normal, nonabelian, non-

central subgroup: We know G is nilpotent; in particular, G
Z(G) (which 6= 1 since

G is nonabelian) has a nontrivial center. Let g be an element of G \ Z(G) that
maps into Z( G

Z(G) ) [under the quotient map]; let A = 〈Z(G), g〉 ⊂ G. Clearly

A * Z(G). A is abelian, since all elements of Z(G) commute with g, so any
pair of elements of A commutes. To show A is normal, it suffices to show that
any G-conjugate of any element of A lies in A; this is clearly true for elements
of Z(G). For a general x ∈ G, xgx−1 = g × (some element of Z(G)), because g
maps into Z( G

Z(G) ), so we have the result.

Proof of theorem 17.2: Let V be an irreducible representation of a p-group
G of C. If G is abelian, V is 1D and we have nothing to prove. Suppose G is
not abelian; by lemma 17.5 G contains an abelian normal subgroup A * Z(G).
By corollary 17.4, V is induced from a representation W of a subgroup H with

A ⊂ H ⊂ G such that A acts by scalars on W . It follows that ker(H
ρ→

GL(W )) 6= {1} (because ρ(A) ⊂ Z(ρ(G))).
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18 Lecture

Each value in our character for IndS4

A4
(α) above is a sum of two roots of unity.

If g ∼
(

ξi

ξj

)

, we have |Re(χ(g))| ≤ χ(1), with equality iff g acts by 1

on this representation. So our last representation is not faithful; its kernel is
{1, (12)(34), (13)(24), (14)(23)}. So S4 acts on this 2D representation through
its quotient S4

that group , which is ≃ S3 (the 2D irreducible representation of S3

has character 2,−1, 0 on the classes 1,(123),(12) respectively). This is rather
special; S5 cannot map onto Sn for 2 < n < 5 as A5 is simple.

Why does S4 map onto S3? One can think of S4 as the group of rotations
of R3 preserving the cube (it permutes the four diagonals of the cube), then the
homomorphism S4 ։ S3 comes from the way S4 permutes the three coordinate
axes.

Theorem: Every irreducible complex representation of a p-group is induced
from a 1D representation of some subgroup: suppose we know this for all p-
groups of order < |G|. Let V bet an irreducible representation of G, ρ : G →
GL(V ). If ker(ρ) 6= {1} then V is a representation of the smaller p-group

G
ker ρ ; we have V = Ind

G
ker ρ

H
ker ρ

(some 1D representation α), where H is the inverse

image under G → G
ker ρ of some subgroup of G

ker ρ . We can think of α as a 1D

representation ofH , and then V = IndG
H(α) and we are done. So we may assume

V is a faithful irreducible representation of G. If G is abelian we are done (V
must be 1D), so we can assume G is not abelian; by the previous lecture G has
an abelian normal subgroup A ⊳ G with A * Z(G). By another lemma from
the previous lecture, there is a subgroup H with A ⊂ H ⊂ G and irreducible
representation W of H such that V = IndG

H(W ) and A acts by scalars on W .
But then this representation can’t be faithful, because scalars commute with
every matrix, so this case can’t arise.

18.1 Theorem (Burnside’s paqb theorem

Every group of order paqb for p, q prime is solvable; equivalently the order |G|
of any nonabelian simple group G has at least 3 distinct prime factors. (This is
the best possible result, since A5 is a nonabelian simple group with |A5| = 60 =
22 × 3× 5 having exactly 3 distinct prime factors. This result is a key first step
in the classification of all finite simple groups, which was only finished in around
2005: Theorem (roughly): Any finite simple group is isomorphic to one of: 1)
Z
p for p prime 2) An for n ≥ 5 3) “Groups of Lie p type”: roughly, groups of

matricies over a finite field, e.g. PSLn(Fq) where q = pr a prime power, n ≥ 2
or PSOn(Fq) or PSPZn

(Fn) or a few variants of these. 4) 26 “sporadic” finite
simple groups, including the “Monster”).

The theorem follows from these two lemmas:

18.2 Lemma

For each character χ of a finite group G and each g ∈ G, |χ(g)| = χ(1) ⇔ χ(g)
χ(1)

is a nonzero algebraic integer.
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18.3 Lemma

If G has order paqb then there is a nontrivial irreducible character χ of G and

g 6= 1 ∈ G such that χ(g)
χ(1) is a nonzero algebraic integer.

Given these two lemmas, Burnside follows: STP that a nonabelian simple
group G of order paqb does not exist. Suppose G is such a group; by lemma

18.3 there is g 6= 1 ∈ G and an irreducible character χ 6= 1 such that χ(g)
χ(1) is an

algebraic integer. By lemma 18.2, |χ(g)| = χ(1) = dim V for the space V with
character χ. Say χ(1) = dimV = n, then χ(g) is a sum of n roots of unity,
since it is the trace of a diagonal n× n matrix with entries roots of unity. Now
|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn| with equality iff there are z ∈ C, ai ∈ R≥0 such
that zi = aiz∀i. So |χ(g)| = 1 ⇒ all the eigenvalues of g acting on V are equal,
i.e. g acts as a scalar on V , so g commutes with all of V . But Z(G) = {1}
since G is nonabelian simple. Also, this representation is faithful, because it’s
nontrivial and G is simple. So g ∈ Z(G) so g = 1, a contradiction.

Proof of lemma 18.2: Let χ be a character of a finite group G, g ∈ G. The
forward implication is easy: if |χ(g)| = χ(1) then g acts by a scalar c, a root of

unity, on V . Then χ(g) = nc and so χ(g)
χ(1) = nc

n = c, which is a root of unity so

an algebraic integer. For the reverse, suppose χ(g)
χ(1) is an algebraic integer. Write

n = dimV = χ(1) and let c1, . . . , cn be the eigenvalues of g on V ; they are roots

of unity. Thus χ(g)
χ(1) = c1+···+cn

n . Clearly |χ(g)
χ(1) | ≤ 1. Appealing to Galois theory,

this is a number in Q(ζ) where ζ = e
2πi
N for N = |G|. This is the splitting field

of the polynomial xN − 1. Then it is a fact (a theorem in Galois theory) that
{α ∈ Q(ζ) : g(α) = α)∀g ∈ Gal(Q(ζ)/Q)} = Q(ζ)Gal(Q(ζ)/Q) = Q.

Consider the “norm” of χ(g)
χ(1) , by which we mean the product of all “Galois

conjugates” of χ(g)
χ(1) ∈ Q(ζ). By the fact, this norm lies in Q (since it’s fixed

by the Galois group), but it’s an algebraic integer because all Galois conjugates
of an algebraic integer [are algebraic integers]. So this norm is an “ordinary”
integer ∈ Z. But the norm is a product of expressions sum of n nth roots of unity

n ∈
C, all of which have absolute value ≤ 1, so the norm must be ±1, and we see

that our original number χ(g)
χ(1) must have absolute value 1.

19 Lecture

All these arguments are due to Burnside in around 1900. To prove the theorem,
it remains to prove Lemma 18.2: claim: we can find a conjugacy class C ⊂
C,C 6= {1} of size a power of p, and an irreducible character χ 6= 1 with χ(C) 6= 0

such that χ(1) is not a multiple of p. Given this claim, χ(C)
χ(1) is clearly nonzero,

and it is an algebraic integer using the fact that for any irreducible character χ

and conjugacy class C, |C|
dim χχ(C) is an algebraic integer, which comes from: for

an irreducible V , we can view V as a CG-module, and Z(G) acts by scalars on
V . This gives a ring homomorphism Z(ZG) → C; because Z(ZG) is a finitely
generated Z-module and also a ring, the image of this consists of algebraic
integers. But we found an explicit formula for this homomorphism; in particular,

for each conjugacy class C ⊂ G,
∑

g∈C g 7→ |C|
dim χχ(C). So given the claim, we

know that |C|χ(C)
χ(1) is an algebraic integer, and |C| is a power of p and χ(1) is
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not a multiple of p. To deduce that χ(C)
χ(1) is an algebraic integer, we use that

χ(1), |C| are relatively prime: thus 1 = aχ(1)+b|C| for some a, b ∈ Z, so χ(C)
χ(1) =

aχ(C) + b |C|
χ(1)χ(C), and both these terms are algebraic integers (the second by

the above, the first because χ(C) is a sum of roots of unity), so the claim implies
the lemma. Proof of the claim: To find a conjugacy class C 6= {1} of size a power
of p, it’s equivalent to find a g 6= 1 with |ZG(g)| = prqb for some 0 ≤ r ≤ a (as

then |C| = |G|
|ZG(g)| is a power of p). Use Sylow’s theorem: there is a subgroup

H ⊂ G of order qb. This H is a q-group, so it has nontrivial centre (for b ≥ 1; for
b = 1 the group is nilpotent and we have the result). Let g ∈ Z(H) \ {1}, then
ZG(g) is a subgroup containing the q-Sylow subgroup, so has order as required.
Use the orthogonality of columns in the character table for the columns {1} and
C; this tells us that 1 +

∑

nontrivial irreducible characters χ(C)χ(1) = 0 Since χ(1) is
a dimension this is 1 +

∑

χ6=1 χ(C)χ(1); if every irreducible representation 6= 1
had dimension a multiple of p, then we would have 1+(algebraic integer)×p = 0,
so 1

p would be an algebraic integer, which is false. So there is an irreducible

character χ 6= 1 with χ(1) not a multiple of p; in fact we may insist this is so
for χ(C) 6= 0, as we can remove the terms with χ(C) = 0 from the above sum.

Compact Groups

Definition: A topological group G is a group that is also a topological space
such that the multiplication map G × G → G : (g, h) 7→ gh and map g 7→ g−1

are continuous.
Example: Any group G can be viewed as a topological group with the dis-

crete topology (since then every function G→ S is continuous).
Example: GL(n,R) and GL(n,C) are topological groups when considered

as subspaces of Rn2

,Cn2

.
A compact group is a topological group which is compact as a topological

space.
Some examples of compact groups: finite groups, the circle S1 = {z ∈

C : |z| = 1} under multiplication, O(n) ⊂ GL(n,R) (i.e. {A ∈ GL(n,R) :
AAT = 1} = {A ∈ GL(n,R) : ‖Ax‖ = ‖x‖∀x ∈ Rn} = {A ∈ GL(n,R) :
〈Ax,Ay〉 = 〈x, y〉∀x, y ∈ Rn}) (O(n) contains rotations and reflections). Note
that if A ∈ O(n) then detA = ±1.

Definition: SO(n), the special orthogonal group, is {A ∈ O(n) : detA = 1};
intuitively this is the group of rotations but not reflections.

Examples: O(1) ≃ Z
2 , SO(1) = {1}, SO(2) ≃ S1, O(2)

S1 ≃ Z
2 . SO(3) is the

group of rotations about various axes in R3.
Why is O(n) compact? One can describe it as the set of orthonormal bases

in Rn, e.g.

(

a b
c d

)

∈ O(2) ⇔ {
(

a
b

)

,

(

c
d

)

} is an ON basis for R2. The

set of ON bases of Rn is {(v1, . . . , vn) ∈ Rn × · · · × Rn : 〈vi, vj〉 = δij} which

is a closed subset of Rn2

(it’s the inverse image of a single point of R under a
continuous function), and it’s clearly bounded since ‖vi‖ = 1∀i, so it’s compact.

Similarly, U(n) = {A ∈ GL(n,C) : AAT = 1} is a compact group. If
A ∈ U(n) then | detA| = 1.
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Definition: SU(n) = {A ∈ U(n) : detA = 1}; we have U(n)
SU(n) ≃ S1 with the

isomorphism being the usual determinant.
Example: U(1) ≃ SO(2) ≃ S1. SU(1) = {1}. SU(2) is homeomorphic to

S3: take an element A ∈ U(2) and ask what A(e1), A(e2) ∈ C2 are (ei being the
standard basis vectors). Clearly A(e1) ∈ S3 considered as {z ∈ C2 : ‖z‖ = 1};
if we know A(e1) then A(e2) can be any element of length 1 in the C-line
(Ae1)

⊥ ≃ C ⊂ C2. If A ∈ SU(2) then A is uniquely determined by A(e1) ∈ S3,
and A(e1) may take any value in S3, so SU(2) ≃ S3.

In fact S1 and S3 are the only spheres that have the structure of a topological
group.

20 Lecture

Quaternions are the noncommutative R-algebra of dimension 4 (as a R-vector
space), with basis 1, i, j, k. Multiplication is given by (Hamilton) i2 = j2 =
k2 = −1, ij = k, ji = −k and cyclic permutations of these last two. This
is a division algebra or “noncommutative field”: ∀x 6= 0 ∈ H∃y ∈ H : xy =

yx = 1; write y = x−1. We cannot write a
b for general a, b ∈ H since ab−1

does not generally = b−1a. To prove that we do have a division algebra, define
conjugation in H by a+ bi+ cj + dk = a − bi − cj − dk; with this definition

we find (a + bi+ cj + dk)(a+ bi+ cj + dk) = a2 + b2 + c2 + d2 ∈ R, so define
|x| =

√
xx̄ for x ∈ H; this is real, ≥ 0, and > 0 if x 6= 0. So if x 6= 0 ∈ Hthen

x̄
|x|2 is an inverse for x as required.

Notice that {x ∈ H : |x| = 1} ≃ S3, e.g. by considering H as ≃ R4. This is
a group under multiplication because in fact |xy| = |x||y|∀x, y ∈ H. Note the
parallel with S1 ⊂ C.

This group S3 is isomorphic to the group SU(2) = {
(

a −b̄
b ā

)

: |a|2+|b|2 =

1, a, b ∈ C{. Clearly this is homeomorphic to S3 which we can consider as
{(a, b) : |a|2 + |b|2 = 1, a, b ∈ C}, but we want a group isomorphism to

S3 ⊂ H. Multiplication on SU(2) is given by

(

a1 . . .
b1 . . .

) (

a2 . . .
b2 . . .

)

=
(

a1a2 − b̄1b2 . . .
b1a2 + ā1b2 . . .

)

, but this is exactly the formula for multiplication of

quaternions: (a1+jb1)(a2+jb2) = (a1a2− b̄1b2)+j(b1a2+ā1b2) (any quaternion
can be writtten a+ jb for a, b ∈ C) using the fact that for z ∈ C ⊂ H, zj = jz̄.

Schur’s lemma for C-representations of topological gorups is true by the same
argument as for finite groups. Averaging arguments work for compact groups
G using “Haar measure”

∫

G
: {continuous functionsG → C} → C. It has

the properties
∫

G 1 = 1 (i.e. the volume of G is 1), left- and right-invariance
∫

G
f(g)dg =

∫

G
f(gh)dg =

∫

G
f(hg)dg∀h ∈ G. If G is finite we can just define

Haar measure by
∫

G
f(g)dg = 1

|G|
∑

g∈G f(g) ∈ C. For G = S1, Haar measure is

just
∫

G f(eiθ)dg := 1
2π

∫ 2π

0 f(eiθ)dθ. Haar measure exists for all compact groups,
but not for e.g. R.

For SU(2) and other groups, we will later give explicit formulae for Haar
measure. For SU(2) ≃ S3, Haar measure is the standard form on S3, scaled to
have volume 1.
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Definition: A finite dimensional representation of a topological group G on
a complex vector space V is a continuous group homomorphism G→ GL(V ) ≃
GL(n,C). The character of a representation is given by χV (g) = tr(g |V ) ∈ C
as before; this is a continuous class function on G.

20.1 Proposition

Every finite dimensional complex representation of a compact group G is uni-
tarizable; therefore representations of G are completely reducible.

20.2 Theorem

Characters of complex irreducible representations of a compact group G have
L2-norm 1 and the characters of two non-isomorphic irreducible representations
are orthogonal, where we define 〈χ1, χ2〉 :=

∫

G
χ1(g)χ2(g)dg ∈ C.

20.3 Corollary

A representation V of a compact group G is irreducible iff ‖χV ‖2 = 1: write
V = W⊕n1

1 ⊕ · · · ⊕ W⊕nr
r for the Wi irreducible (by 20.1). Then by 20.2,

‖χV ‖2 = 〈∑niχWi
,
∑

njχWj
〉 =

∑

n2
i .

Completeness of character means: the Hilbert space of L2 class functions, by
which we mean class functions with finite length, is a “Hilbert space direct sum”
of the characters of irreducible representations; it has an orthonormal basis given
by the character of irreducible representations: the spcae of L2 class functions
on G is ≃ ⊕∞

i=1 C · χVi
, i.e. any L2 class function has the form

∑

i aiχVi
for

some ai ∈ C with
∑ |ai|2 <∞.

20.4 Theorem

Every complex irreducible representation of S1 is isomorphic to the 1D rep-
resentation z 7→ zn for some integer n: by Schur’s lemma, every irreducible
representation of an abelian group is 1D, so we have to classify continuous
homomorphisms S1 → C⋆ = GL(1,C). Clearly the image of such a homomor-
phism must be ⊂ S1¿ Notice that ρ : S1 → C⋆ must send any nth root of 1
to another nth root of 1. Since ρ is continuous, there is a n > 0 such that
ρ({e2πiθ : θ ∈ [− 1

n ,
1
n}) ⊂ {eiθ : θ ∈ (−π

2 ,
π
2 )}. So in particular ρ(e

2πi
n ) = e

2πia
n

for some integer a ∈ (−n
4 ,

n
4 ). We claim ρ(z) = za∀z ∈ S1; first, we’ll show

that ρ(e2πi 1
2rn ) = e2πi a

2rn ∀ integers r ≥ 0. We know this for r = 0; if we

know this for smaller values of r, then ρ(e2πi 1
2rn ) = ±e2πi a

2rn But we know that

ρ(e2πi 1
2rn ) ∈ {eiθ : θ ∈ (−π

2 ,
π
2 )}, so the ± must be + and we have induction:

ρ(z) = za for z = e2πi 1
2rn for all r ≥ 0. But since ρ is a homomorphism, then

ρ(z) = za for all (2rn)th roots of 1, for all r ≥ 0, and this forms a dense set of
points in S1, and ρ(z), za are continuous, so ρ(z) = za∀z ∈ S1.

21 Lecture

Fourier series: The Hilbert space L2(S1) = {f : S1 → C :
∫

|f |2 < ∞} has an
ON basis given by the characters of the irreducible representations of S1. In this
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particular case the characters are simply the functions fn(θ) = einθ or fn(z) =
zn for n ∈ Z, so we can expand any function f in terms of characters as f(θ) =
∑

n∈Z〈f, fn〉fn(θ) where 〈f, fn〉 = 1
2π

∫ 2π

0 f(θ)fn(θ)dθ = 1
2π

∫ 2π

0 f(θ)e−inθdθ,
the standard formula for the coefficients an of the Fourier series of f . So we can
see this course as a generalization of Fourier analysis to all finite groups; we can
use the representation theory for e.g. (Z

n )2 for problems like encoding videos.
The coefficients of an for n near 0 are usually the most important.

21.1 Conjugacy classes in U(n) and SU(n)

Every unitary matrix is diagonalizable, in fact by a unitary matrix. Moreover,
a unitary matrix has diagonal entries in S1 ⊂ C. So any A ∈ U(n) is conjugate
to a diagonal matrix with diagonal entries eiθ1 , . . . , eiθn for θ1, . . . , θn ∈ R. So
two unitary matricies are conjugate iff they have the same eigenvalues (possibly

in different orders), so the set of conjugacy classes in U(n) is ≃ (S1)n

Sn
where Sn

acts on (S1)n by permuting the n points. Moreover, the set of conjugacy classes
in SU(n) is ker((S1)n → s1 : (z1, . . . , zn) 7→ z1z2 . . . zn)/Sn. So any matrix in

SU(2) is conjugate to a matrix

(

eiθ

e−iθ

)

and this is unique except that

we can replace θ with −θ. So the set of conjugacy classes in SU(2) is = [0, π].

Under SU(2) = S3 ⊂ H ≃ R4, the matricies {
(

eiθ

e−iθ

)

} form a subgroup

≃ S1 which corresponds to S1 ⊂ C ⊂ H. In fact, the conjugacy classes in S3

are exactly the subsets {x ∈ S3 : Rex = a} for a ∈ [−1, 1]; here θ ∈ [0, π]
and a ∈ [−1, 1 are related by a = Re(eiθ) = cos θ. Finally, notice that for any

A ∈ SU(2), A ∼
(

eiθ

e−iθ

)

, trA = tr

(

eiθ

e−iθ

)

= eiθ + e−iθ = 2 cos θ.

21.2 Proposition

Elements of SU(2) are conjugate iff they have the same value of 1
2 trA ∈ [−1, 1].

Haar measure on SU(2) is the standard volume form on S3 ⊂ R4, scaled
to have total volume 1. To check this, one should check that left and right
multiplication by unit quaternions ∈ S3 preserve the Euclidean metric on R4,
and hence volumes on S3; this follows from the formula |xu| = |ux| = |x| for
|u| = 1, x ∈ H ≃ R4 where |x| is the Euclidean length of x (In fact, more
generally, |ab| = |a||b|∀a, b ∈ H).

21.3 Theorem (Weyl integration formula)

Let f be a continuous class function on SU(2). Then
∫

SU(2)
f(g)dg = 1

4π

∫ 2π

0
f(θ)|∆(θ)|2dθ =

1
π

∫ 2π

0
f(θ) sin2 θdθ, where ∆ is the Weyl denominator ∆(θ) = eiθ − e−iθ, and

f(θ) means f

(

eiθ

e−iθ

)

∈ C (The two last versions are the same since

∆(θ) = eiθ − e−iθ = i sin θ): we have
∫

S3 f(g)dg =
∫ π

0

∫

S2×dθ f(g)dxdθ where

x ∈ S2 with a given value of θ (the notation is quite silly and confusing, but the
reader should be able to understand the result). This is

∫ π

0 (area of S2 for thisθ)f(θ)dθ =
∫ π

0 4π sin2 θf(θ)dθ. We have to scale this formula by a constant to make
∫

S3 1dg =
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1:
∫ π

0
4π sin2 θdθ = 2π2 ( = the volume of S3 in the standard Euclidean metric),

so using Haar measure,
∫

SU(2) f(g)dg = 1
2π2

∫ π

0 4π sin2 θf(θ)dθ = 2
π

∫ π

0 sin2 θf(θ)dθ =
1
π

∫ 2π

0 sin2 θf(θ)dθ.

Symmetric and exterior powers

Recall: for a complex vector space V , Sn acts on the space V ⊗n and we defined
SnV = {x ∈ V ⊗n : σ(x) = x∀σ ∈ Sn},ΛnV = {x ∈ V ⊗n : σ(x) = sgn(σ)x∀σ ∈
Sn}. Because representations of Sn are completely reducible, we can also think

of these as quotients of V ⊗n: SnV = V ⊗n

x1⊗···⊗xn=xσ(1)⊗···⊗xσ(n)∀σ∈Sn
,ΛnV =

V ⊗n

x1⊗···⊗xn=(sgn(σ))xσ(1)⊗···⊗xσ(n)∀σ∈Sn
. We use the notation x1x2 . . . xn for the

image of x1⊗· · ·⊗xn in SnV and x1∧· · ·∧xn for the image of it in ΛnV ; we have
x1x2 = x2x1 and x1∧x2 = −x2∧x1 and so on. In particular, if we choose a basis
y1, . . . , yr for V then SnV becomes the vector space of homogenous polynomials
of degree n in y1, . . . , yr.

22 Irreducible Representations of SU(2)

The trivial representation of dimension 1 is irreducible. Also SU(2) has a “stan-
dard” 2D rep by considering it as a subset of GL(2,C) (to check this is irre-

ducible, consider its restriction to S1 = {
(

eiθ

e−iθ

)

: θ ∈ R} ⊂ SU(2); it

is the sum of the two non-isomorphic 1D representations z 7→ z and z 7→ z−1,
so the only possible (nontrivial) SU(2)-invariant subspaces of V are the two
lines C · (1, 0) and C · (0, 1), but these are not preserved by, for example,
(

0 1
−1 0

)

∈ SU(2), so V is irreducible). For any n ≥ 0, we shall show

that SnV is an irreducible representation of SU(2), and that every irreducible
representation of SU(2) is isomorphic to SnV for some n ≥ 0.

If we take e1, e2 a basis for V then SnV has a basis en
1 , e

n−1
1 e2, . . . , e

n
2 , so

dimC S
nV = n + 1. To describe the character of SnV , it’s enough to describe

its restriction to S1 ⊂ SU(2): for z ∈ S1,

(

z
z−1

)

∈ SU(2) maps ea
1e

n−a
2

to (ze1)
a(z−1e2)

n−a = z2a−nea
1e

n−a
2 . So χSnV (z) =

∑n
a=0 z

2a−n = zn + zn−2 +
· · · + z−n; the reader will simply need to learn this for the exam.

Example: χ1(z) = 1, χV (z) = z + z−1, χS2V = z2 + 1 + z−2.

22.1 Theorem

The representation SnV of SU(2) is irreducible: STP ‖χSnV ‖2 = 1. We

have ‖χSnV ‖2 =
∫

SU(2) |χSnV (g)|2dg = 1
4π

∫ 2π

0 |χSnV (z)| · |∆(z)|2dθ (where

we consider z = eiθ). This is 1
4π

∫ 2π

0
(zn + zn−2 + · · · + z−n)(zn + zn−2 +

· · · + z−n)(z − z−1)(z−1 − z)dθ since zn = z−n for z = eiθ ∈ S1; this is
1
4π

∫ 2π

0
(zn+1−z−(n+1))(−zn+1+z−(n+1))dθ = 1

4π

∫ 2π

0
(−z2n+2+2−z−(2n+2))dθ.

We have 1
2π

∫ 2π

0 zndθ = 1
2π

∫ 2π

0 einθdθ = {1 if n = 0, 0 otherwise}, so this is
1
4π 2 × 2π = 1. So we have the result.

36



Why is this all the irreducible representations of SU(2)? Let W be a finite
dimensional representation of SU(2). Then the character of W (on S1 ⊂ SU(2))
is a Laurent polynomial (with integer coefficients) b1z

a1 + b2z
a2 + · · · + brz

ar ,
bi ∈ Z, ai ∈ Z, because W |S1 is a direct sum of 1D representations z 7→ za, a ∈
Z. Moreover, the character of any such W is an even Laurent polynomial,

f(z) = f(z−1), because

(

eiθ

e−iθ

)

is conjugate to

(

e−iθ

eiθ

)

in SU(2).

So χW (z) = χW (z−1). Then just observe that che characters of the irreducible
representations of SU(2) [that we have already found] span the abelian group
of all even Laurent polynomials. So every irreducible representation of SU(2)
is isomorphic to SnV for some n ≥ 0.

Tensor products of representations of SU(2)

What is the representation V ⊗V (i.e. how does it decompose into irreducibles)?
It’s a 4D representation of SU(2). We always have V ⊗ V ≃ S2V ⊕ Λ2V (this
is a general result for any group and any representation). In SU(2) S2V is an
irreducible representation of dimension 3; Λ2V is then a 1D representation, so
must be irreducible and ≃ C (the trivial representation).

What does it mean that SU(2) acts trivially on Λ2V ? For any group act-
ing on an n-dimensional vector space V , G acts on ΛnV which has dimension
(

n
n

)

= 1 (dimC Λa(Cb) =
(

b
a

)

). So the action of G on ΛnV must be given by a
homomorphism G → C⋆. If G acts on V by ρ : G → GL(n,C) then it acts on
ΛnV by det ρ : G→ C⋆. And det ρ = 1 for ρ : SU(2) → GL(2,C).

We can answer similar questions about e.g. V ⊗3 = V ⊗ V ⊗ V or V ⊗ S2V
“by hand”.

Example: Let W = V ⊗ S2V , a representation of SU(2) of dimension 2 ×
3 = 6. We want to decompose it into irreducibles; its character is χW (z) =
χV (z)χS2V (z) = (z + z−1)(z2 + 1 + z−2) = z3 + 2z + 2z−1 + z−3). This must
decompose (uniquely) as a sum of characters of irreducible representations of
SU(2); in this clase it is clearly (z3 + z + z−1 + z−3) + (z + z−1), so there is an
isomorphism of representations of SU(2) V ⊗ S2V ≃ S3V ⊕ V (the dimensions
are correct here, because dimS3V = 4). The SU(2)-linear map V ⊗ S2V →
SU3V is just multiplication of polynomials. Some elements of its kernel are e.g.
e1 ⊗ (e1e2) − e2 ⊗ (e21) 6= 0 ∈ ker(V ⊗ S2V → S3V ).

22.2 Theorem (Clebsch-Gordon)

For any integers 0 ≤ p ≤ q, SpV ⊗ SqV ≃ Sp+qV ⊕ Sp+q−2V ⊕ · · · ⊕ Sq−pV
as a representation of SU(2): It suffices to compute characters. We have

χSpV ⊗SqV = ( zq+1−z−(q+1)

z−z−1 (zp + zp−2 + · · ·+ z−p) (as χSqV = zq + zq−2 + · · ·+
z−q = zq+1+z−(q+1)

z−z−1 . This =
∑p

a=0(
zp+q+1−2a−zp−q−1−2a

z−z−1 ) =
∑p

a=0 χSp+p−2aV (z),

because this last is
∑p

a=0
zp+q−2a+1−z−p−q+2a−1

z−z−1 , and rearranging the sums these
are equal.

37



22.3 Theorem

SO(3) ≃ SU(2)
{±1} , where −1 =

(

−1
−1

)

∈ SU(2), SO(4) ≃ SU(2)×SU(2)
{(1,1),(−1,−1)} .

Proof sketch: think of SU(2) as the group S3 of quaternions of length 1. Then
S3 acts on the vector space R3 of “pure quaternions” R · i + R · j + R · k =
{z ∈ H : Rez = 0} by a(z) = aza−1 ∈ R3. This gives a homomorphism
SU(2) → O(3) = SO(3)∪ another component; since SU(2) is connected it
maps into SO(3).

Also, U(2) = SU(2)×S1

{(1,1),(−1,−1)} .

We map SU(2) → SO(3) by: g ∈ S3 acts on {x ∈ H : Rex = 0} ≃ R3 by
x 7→ gxg−1 ∈ R3; this homomorphism is onto and its kernel is {±1}. We map
SU(2) × SU(2) → SO(4) by for x ∈ H ≃ R4, (g, h)(x) = gxh−1. This maps
into O(4) since multiplication by a unit quaternion preserves length. But the
image of SU(2) × SU(2) must be connected, and (1, 1) 7→ 1, so this maps into
SO(4). The kernel is {(1, 1), (−1,−1)} and the homomorphism is surjective, so

SO(4) = SU(2)×SU(2)
{(1,1),(−1,−1)} .

For U(2), it’s easy that any element of U(2) is AB with A ∈ SU(2) and

B =

(

eiθ

e−iθ

)

for some θ ∈ R. So U(2) = SU(2)×S1

{(1,1),(−1,−1)} .

For compact Lie groups G,H (as or finite groups) any complex irreducible
representation of G ×H has the form V ⊗C W where V is an irreducible rep-
resentation of G and W an irreducible representation of H . Moreover, each
irreducible representation of G × H arrises uniquely in this way. So the irre-
ducible representations of SO(3) are exactly those irreducible representations
of SU(2) in which −1 ∈ SU(2) acts by identity. Now the irreducible represen-
tations of SU(2) are SnV for n ≥ 0 where V ≃ C2 is the standard represen-
tation of SU(2); −1 ∈ SU(2) acts by x 7→ −x∀x ∈ V so −1 ∈ SU(2) acts by
x1 × · · · × xn 7→ (−x1) . . . (−xn) = (−1)nx1 . . . xn. So the irreducible represen-
tations of SO(3) over C are C, S2V, S4V, . . . ; call these C = W0,W1,W2, . . .
respectively, since V is not a representation of SO(3) so using the SnV notation
would be misleading. Then dimC Wi = 2i+ 1.

Here C = W0 is the trivial representation of SO(3). W1 is the standard
representation of SO(3) on R3, tensored with C (so W1 ≃ C3 as a vector space).
What is S2W1? We can analyze this as a representation of SU(2); here W1 has
character z−2+1+z2 so S2W1 has character (z−2)2+12+(z2)2+z−2×1+z−2×
z2+1×z2 = z−4+z−2+2+z2+z4; this is because in general, for any vector spaces
A and B, there are natural isomorphism Sn(A ⊕ B) =

⊕n
j=0 S

jA ⊗C S
n−jB

and Λn(A⊕B) =
⊕n

j=0 ΛjA⊗C Λn−jB.

In our case, W1 |S2= L−2⊕L0⊕L2 where La ≃ C with S1 acting by z 7→ za,
for S1 ⊂ SU(2) ։ SO(3) [No, I have no idea].

We read off that (as representations of SU(2)) S2(S2V ) ≃ S4V ⊕ C. So in
terms of SO(3), S2W1 ≃ W2 ⊕ C. Geometrically, we can think of W1 as the
vector space of R-linear functions R3 → C, so S2W1 is the space of homogenous
polynomials R3 → C of degree 2, C · {x2, y2, z2, xy, xz, yz}. This contains the
trivial representation of dimension 1 spanned by the function x2 + y2 + z2 (as
SO(3) preserves lengths).

The irreducible representations of U(2) have the form: an irreducible repre-
sentation of SU(2)⊗C an irreducible representation of S1, such that (−1,−1) ∈

38



SU(2)×S1 acts as the identity. These will be SnV ⊗Lm for some n ≥ 0,m ∈ Z;
for such a representation (−1,−1) acts by (−1)n(−1)m = (−1)m+n, so the irre-
ducible representations of U(2) are indexed by (n,m) for n ≥ 0,m ∈ Z, n+m ≡ 0
mod 2. It seems reasonable to write A for V ⊗C L1; this representation A is the

standard 2D representation of U(2):

(

eiθ

e−iθ

)

acts on A by the scalar eiθ.

We get some other irreducible representations of U(2) as SnA for n ≥ 0.
SnA = SnV ⊗ Ln¿ For U(2), ΛnA is not a trivial representation, though it is
1D; it is L2 in the above notation, because det 6= 1 on U(2). Notice that for a
1D representation B of any group, B⊗n is a 1D representation for any n ∈ Z
(where we consider B⊗−1 = B⋆).

Conclusion: the irreducible representations of U(2) are exactly SnA⊗(Λ2A)⊗m

for any n ≥ 0 and m ∈ Z (this = SnV ⊗ Ln+2m as a representation of
SU(2) × S1).

In short: all linear algebra constructions applied to a 2D vector space are
“built up from” Sn and Λ2.

We could similarly describe the representations of SO(4) in detail, but we
will not.

Representations of SU(n) (especially SU(3))

A character of a representation of SU(n) is determined by its restriction to the

maximal torus T = {





z1
. . .

zn



 : zi ∈ S1, z1 . . . zn = 1}. The complex

irreducible representations of T ≃ (S1)n−1 are 1D since (S1)n−1 is abelian. The
irreducible representations of (S1)n−1 are of the form (z1, . . . , zn) 7→ za1

1 . . . zan
n

for ai ∈ Z, where za1+1
1 . . . zan+1

n gives the same representation since z1 . . . zn = 1
(so we could describe all representations as (z1, . . . , zn) 7→ za1

1 . . . z
an−1

n−1 ). So
the character of any finite dimensional representation of (S1)n−1 is a Laurent
polynomial in z1, . . . , zn−1 (or in z1, . . . , zn if we remember z1 . . . zn = 1).

Let W be a representation of SU(n). Its character (restricted to (S1)n−1)
is a Laurent polynomial in z1, . . . , zn; in fact, it must be a symmetric function
in z1, . . . , zn (but remember that z1 . . . zn = 1, so functions which might not
initially appear symmetric can still be symmetric, e.g. z1 + z2 + z−1

1 z−1
2 below).

Example: the character of the standard 3D representation of SU(3) is z1 +
z2 + z3 = z1 + z2 + z−1

1 z−1
2 .

For SU(3), we can visualize the representations of SU(3): each “Laurent
monomial” za1

1 za2
2 , ai ∈ Z can be viewed as a point in a lattice ≃ Z2: draw

a “triangular” or “hexagonal” lattice, in which z1 is the point 1, z1z2 the
point π

3 around a circle, z2 the point 2π
3 around, then z−1

1 , z−1
1 z − 2−1, z−1

2

respectively. So the character of a representation of SU(3) is determined by
its “multiplicities” (∈ Z, 6= 0 at each of the “weights” za1

1 za2
2 , and it will be

symmetric under the action of S3. We can draw representations by dots on
the lattice, e.g. the character of the trivial representation is a dot at the
origin. The (3D) standard representation has character a triangle of three
dots at z1, z2, z3 = z−1

1 z−1
2 ; the dual V ⋆, also of dimension 3, has represen-

tation the reflection of this in the y axis, z−1
1 + z−1

2 + z1z2. The charac-
ter of Λ2V , using that Λ2(A1 ⊕ · · · ⊕ An) =

⊕

i Λ2Ai ⊕
⊕

i<j Ai ⊗ Aj , is
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χΛ2V = z1z2 + z1(z
−1
1 z−1

2 ) + z2(z
−1
1 z−1

2 ) = z1z2 + z−1
1 + z−1

2 = χV ⋆ and in
fact Λ2V ≃ V ⋆ (dimΛ2V =

(

3
2

)

= 3, so dimensions are correct). The isomor-
phism between them comes from the natural product Λ2V ⊗C V → Λ3V ≃ C,
(v1∧v2)⊗ v3 7→ v1∧v2∧v3, which is a dual pairing; that is, the associated map

Λ2V → V ⋆ is an isomorphism.
Remark: V (and V ⋆) are irreducible representation of SU(3), because each

of their weights forms a single orbit under S3.
The symmetric power S2V has character a large triangle, i.e. the three points

z2
1 , z

2
2 , z

−2
1 z−2

2 and also the three “edge” points z1z2, z
−1
1 , z−1

2 (using S1(A1 ⊕
· · · ⊕An) =

⊕

i S
2Ai ⊕

⊕

i<j Ai ⊗Aj). This is irreducible (one way to see this
is that Weyl’s integration formula generalizes, with ∆(z) =

∏

1≤i<j≤3(zi − zj).

S2(V ⋆) ≃ (S2V )⋆ of dimension 6 is also irreducible, with character the reflection
in the y axis of the above.

Now look at V ⊗ V ⋆, of dimension 0. This is reducible, snice it contains
a trivial representation: (V ⊗ V ⋆)SU(3) = HomSU(3)(V, V ) ≃ C (since V is
irreducible). But “V ⊗ V ⋆” is an 8D irreducible representation of SU(3); its
character is a weight 2 point at the origin and then 6 points (of weight 1) in a
hexagon: z2

1z2, z1z
2
2 , z

−1
1 z2

2 , z
−2
1 z−1

2 , z−1
1 z−2

2 , z1z
−1
2 .

[It is] easy to check that the characters of the representations SaV ⊗ SbV ⋆

span (the abelian group of) all symmetric Laurent polynomials in z1, z2, z3 =
z−1
1 z−1

2 , so every irreducible representation of SU(3) occurs inside one of these
representations.

Any character of a representation of SU(3) is determined by its part in the
“cone of dominant weights” spanned by z1 and z1z2. Each irreducible represen-
tation has a unique “highest weight” [by which I *think* the lecturer means the
one furthest from the origin] in this cone. The character of SaV ⊗SbV ⋆ contains
the monomial za

1 (z1z2)
b with coefficient 1,and all other weights occuring in this

representation are “smaller”; they are contained within the hexagon about the
origin with vertices S3· that vertex. So there is a unique irreducible representa-
tion Γa,b of SU(3) for any a, b ≥ 0, contained in SaV ⊗ SbV ⋆, whose character
contains za

1 (z1z2)
b. So SaV ⊗ SbV ⋆ = Γa,b⊕ (some

⊕

(a′,b′)<(a,b) Γ⊕?
a′,b′).

Characters of the irreducible representation of SU(3), Γa,b for a, b ≥ 0, are
known (Weyl). In particular (Weyl dimension formula) dim Γa,b = 1

2 (a+ 1)(b+
1)(a+ b + 2).

Examples: Γ0,0 is the trivial representation of dimension 0, Γ1,0 = V,Γ0,1 =
V ⋆,Γ2,0 = S2V,Γ0,2 = S2V

⋆,Γ1,1/V ⊗ V ⋆ − C.
[The lecturer realised at this point that he had to stop talking as it was

noon, so I guess this is the end of the course.]
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