
Quantum Mechanics

July 5, 2008

The mathematical content of this course is actually quite simple, though the
reader should ensure they are comfortable with the solution of DEs by seperation
of variables, and also series solutions, as we shall do both with the Schrödinger
equation in this course. The concepts form the more difficult part.

There is some crossover with other courses in this part of the tripos, espe-
cially Methods; this is useful to bear in mind and might otherwise only become
apparent in retrospect.

Course outline

• Some physical background (1+ lectures)

– Why do we need QM?

• The Schödinger equation and its solutions (6 lectures)

– basic equation

– physical meaning

– solutions for various potentials in 1D. These are not purely toy exam-
ples, as some physical problems have symmetry which reduces them
to a problem in 1 dimension.

• Ways in which QM differes from classical mechanics (5 lectures)

– mathematical representation of physical concepts

– uncertainty principle

• The Hydrogen atom (5 lectures)

– a real 3D application of the rest of the course

– introduction of angular momentum operators

There will be 3 example sheets for this course.
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Recommended books

Landshoff, Methnell and Rees’ “Essential Quantum Physics” is probably the best
text for this course; alternatively Rae’s “Quantum Mechanics” is also good. The
relevant section of “The Feynman Lectures on Physics” is of course excellent. For
more advanced texts Schiff’s “Quantum Mechanics” and Gasiorowicz’ “Quantum
Physics” are both good ways of going beyond this course.

1 Physical background

Much of this appeared in A-level Physics, but it is nevertheless good to know
how the theory originated. New theories in general arise because the existing
theory is either contradicted experimentally, or has internal problems (in that
it is inconsistent or simply incomplete).

1.1 Classical physics

At the end of the 19th Century there were two basic theories of the physical
world.

1.1.1 Newtonian mechanics

• This treats matter as made of point particles moving according to New-
ton’s laws e.g. ~F = m~a.

– Every particle has definite, measurable energy and momentum

• When combined with the law of gravity, this gives a very succesful de-
scription of electrically neutral macroscopic systems, e.g. the motion of
planets

1.1.2 Maxwell’s electromagnetic theory

• Maxwell’s Equations - the electric and magnetic fields ~E, ~B in empty space

satisfy the wave equation, i.e.
(

1
c2

d2

dt2
− ~∇2

) (
~E
~B

)
= ~0 for some constant

c (the speed of light).

– These fields propogate as waves with speed c

• Clearly separate from the above - EM radiation and matter are distinct

However, at the microscopic level, experiments challenge this neat division be-
tween particles and waves.
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1.2 Atomic structure

Matter is composed of molecules, on a scale of 10−10−10−8m. These are them-
selves made up of attoms, on the 10−10m scale, which are generally electrically
neutral. An atom consists of a central positively charged nucleus, on a scale of
around 10−15m, and orbiting electrons. A typical atom will have some number
Z of electrons, giving a charge of −Ze (e being standard notation for the charge
on an electron) so the nucleus has a charge of +Ze. The electrons are held in
orbit by their EM attraction to the nucleus; if some are missing we say the atom
is ionized

The nucleus itself contains Z protons each with charge +e and also A − Z

neutral neutrons, where A is the mass number of this atom. The electrostatic
forces between the protons are repulsive, but the nucleus is held together by
nuclear forces, which are strong but short ranged so do not affect the electrons.
We have mp ≈ mn ≈ 2000me for the respective ms the masses of the proton,
neutron and electron, so the mass of the atom is approximately the mass of the
nucleus. Therefore we can treat the nucleus as fixed with the electrons moving
around it when making calculations.

Even before the experiments below challenged the particle-wave division,
there was an issue with this model: the electrons are accelerating (as they are
orbiting in a circle or ellipse) and charged, so they should radiate energy, losing
speed and collapsing into the nucleus, meaning all atoms should be unstable.

1.3 The photoelectric effect

Initially discovered by Hertz in an 1887 experiment to verify the existence of EM
wave, there is an effect whereby light shone on certain metals means electrons
escape from the metal. Experimentally it was found that the energy of these
electrons is ∝ the frequency ν of the light, not its intensity; the number of
electrons is proportional to the intensity. Also, there is a threshold frequency;
with light below this frequency no electrons escape, no matter how intese the
light is. This is a problem for classical physics - we would expect the energy
of the electrons to depend on the intensity of the light, so there could be a
threshold in intensity for electron emmission, but intense enough light of any
frequency should work.

Einstein’s 1904 explanation, which would win him a Nobel prize, was that
EM radiation is composed of lumps of energy, “photons”, of energy hν where h
is Planck’s constant. If we use the angular frequency ω = 2πν, the number of
radians per second rather than cycles per second, we instead write this as h̄ω,
where h̄ = h

2π . Experimentally this can be found to be about 1.05 × 10−34Js.
(h or h̄ are found a lot in QM, and often one can derive the classical result from
the quantum one by having h→ 0.)

Each emitted electron is knocked out of place by a single photon. It will have
energy E = hν−W where W is the energy needed to escape. If this would give
E ≤ 0, no electrons escape. This model gives a threshold frequency, ν = W

h
,

and also gives that the number of electrons emitted should be ∝ the number of
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photons hitting the metal, which is of course ∝ the intensity of the light.

1.4 Compton Effect

This shows light exhibits particcle behaviour when scattering as well as when
being absorbed. Compton in 1922 found X-rays scattered off electrons in atoms
had their frequency change proportionally to the scattering angle. Clasically we
would not only expect the radiation to be isotropic (the same in all directions)
but we would expect no frequency change at all. The solution is to treat this
scattering as a photon-electron collision with these both particles, behaving like
“relativistic billiards”. If we perform the conservation of energy and momentum
calculation as in the Special Relativity course, taking the electron initially at
rest and the photon colliding with it and scattering at angle θ from its original
path, we find ν1 − ν2 = nν1ν2

mc2
(1 − cos θ), where m is the mass of the electron.

In terms of wavelengths we have λ2 − λ1 = h
mc

(1 − cos θ). h
mc

is called the
Compton wavelength of the electron.

1.5 Electron Diffraction

Waves diffract as per Young’s slits. In 1927 both Thompson and a collaberation
of Davisson and Germer separately found that electrons also display diffraction;
even more unexpectedly, we find the same effect with a beam so weak only one
electron is in the system at any time. Experimentally we find the wavelength
relates to the electron’s momentum in the same way as for a photon, i.e. by
λ = c

γ
= h

p
where p is the momentum (for a photon this is hν

c
). This shows that

particles have a wave aspect.

1.6 Line Spectra and the Bohr Atom

We have already covered instability; another issue with the classical model of
the atom is discrete line spectra. Classically we would expect electrons to emit
radiation at all wavelengths, but experimentally we find they only do so in dis-
crete lines (which occur in bunches). This observation fits the rule that radiated
wavelengths satisfy 1

λ
= R

(
1
m2 − 1

n2

)
for n > m ∈ Z, where the Rydberg con-

stantR was found experimentally to be around 1.0967758×10−7m−1, suggesting
electrons can only orbit an atom at various fixed radii.

Bohr’s Explanation

From the diffraction experiment we know the electron has some kind of wave
associated with it. We postulate that the circumference of the electron orbit
must be a whole number of wavelengths so that this wave does not interfere
destructively with itself; 2πr = nλ = nh

p
, so rp = n h

2π = nh̄; this is called
Bohr’s quantization condition. We then just apply the classical equations of

motion and EM force, obtaining m v2

r
= e2

4πǫ0r2
or p2

m
= e2

4πǫ0r
. Solving these two

equations for r, we have r = 4πǫ0n
2h̄2

me2
; the electron energy is E = 1

2mv
2− e2

4πǫ0r
=
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p2

2m − e2

4πǫ0r
; substituting from above this is −e2

8πǫ0r
, and substituting for r this

becomes −e2
8πǫ0

me2

4πǫ0n2h̄2 which we can express (using EN to denote that this energy

depends on n) as En = −mc2

2n2 α
2 where α is the (dimensionless) fine structire

constant e2

4πǫ0h̄c
, which experimentally is found to be ≈ 1

137 .
The electron is confined to orbits with discrete values of r, and for the

atom to radiate it makes a quantum jump to a lower orbit, emitting the energy
thereby lost as a photon of frequency ν. Energy is conserved so the electron

energy E = hν is mc2α2

2

(
1
n2

2

− 1
n2

1

)
, which gives discrete wavelengths satisfying

1
λ

= ν
c

= mcα2

2h

(
1
n2

2

− 1
n2

1

)
, which agrees with the experimental results, as does

R = mcα2

2h .
While this is a successful theory, it fails to addres how or why the electron

makes these jumps; while it makes accurate predictions, it is not a fundamental
theory.

2 Schrödiger eqn

Rather than deriving this equation from a particular experiment we shall justify
it - it leads to a consistent theory which makes predictions which agree with a
huge variety of experiments.

2.1 de Broglie Wavelength and the SE

In 1923 de Broglie associated waves with particles. A plane wave is generally

given by Ψ = Aei(
~k·~x−ωt). The wavelength is 2π

|~k| ; we identify this with h
|~p| ;

assuming the vectors are parallel this means ~p = h̄~k. ω is found via the energy-

momentum 4-vector - since
(
ω
c
, ~k

)
is a valid 4-vector it makes sense to say

E = h̄ω, especially since this is the same as for a photon. Then the wave
satisfies ~p ·Ψ = −ih̄∇Ψ and ~E ·Ψ = ih̄∂Ψ

∂t
. This is a simple wave; it corresponds

to constant momentum, i.e. a free particle, but we will generalise later to a
particle moving in a general potential. In non-relativistic physics the energy

of a free particle is its KE so E = ~p2

2m which combined with the previous two

equations suggests Ψ has ih∂Ψ
∂t

= − h̄2

2m∇2Ψ. This is easily generalised; for a

potential V the particle’s energy is ~p2

2m+V and we have ih∂Ψ
∂t

= − h
2

2m∇2Ψ+VΨ;
this is the time-dependent SE; it is the central and basic eqn in non-relativistic
QM. In principle V can be any time-dependent vector field, but we shall consider
the simpler case where V is a function only of position; this is true unless energy
is being fed into the system. Note that this is an operator eqn, not algebraic;
operators play an important role in QM
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2.2 Probability interpretation, probability density and cur-
rent

For V non-constant the sols are no longer simple plane waves; we shall still
call them wavefunctions. There was a lot of discussion over how to interpret
these, but it is now generally accepted that |Ψ (~x, t)|2 (note this is always real

even though ~λ may be cplx) represents the (relativ) prob density of finding the

particle ~λnear the point ~x at time t; the prob of finding the particle in a volume

V at time t is
R

V
|Ψ(~x,t)|2d3~x

R

all space
|Ψ(~x,t)|2d3~x . We often normalise Ψ (since if Ψ is a sol of

the SE so is λΨ∀λ ∈ R) so that
∫
all space

|Ψ (~x, t)|2 d3~x = 1.

Conservation eqn

We find one of these by assuming the potential is real, i.e V ⋆ = V . Let ρ (~x, t)

be the pdf |Ψ (~x, t)|2; we have − h
2

2m∇2Ψ + VΨ = ih∂Ψ
∂t

so taking the conjugate

− h
2

2m∇2Ψ⋆ + VΨ⋆ = −ih∂Ψ⋆

∂t
; by taking Ψ⋆× the previous eqn −Ψ× this we

have − h
2

2m

(
Ψ⋆∇2Ψ − Ψ∇2Ψ⋆

)
= ih

(
Ψ⋆ ∂Ψ

∂t
+ Ψ∂Ψ⋆

∂t

)
= ih ∂

∂t
(Ψ⋆Ψ). So ih∂ρ

∂t
+

h
2

2m
~∇ ·

(
Ψ⋆∇2Ψ − Ψ∇2Ψ⋆

)
= 0 meaning ∂ρ

∂t
+ ~∇ ·~j = 0 (this is the conservation

eqn) with a probability current ~j defined by − ih
2m (Ψ⋆Ψ′ − ΨΨ⋆′).

Proof that total probability remains constant

Consider d
dt

∫
|~x|≤R |Ψ (~x, t)|2 d3~x = d

dt

∫
|~x|≤R ρ (~x, t) d3~x =

∫
|~x|≤R

∂ρ
∂t
d3~x =

∫
|~x|≤R−∇·

~jd3~x from the above, which is
∫
|x|=R

~j ·d~S by the div thm. As R→ ∞ the LHS

of this becomes d
dt

∫
all space

|Ψ (~x, t)|2 d3~x; the RHS → 0 provided Ψ (and so

~j) → 0 fast enough as ~x → ∞, so d
dt

∫
all space

|Ψ (~x, t)|2 d3~x = 0 and the total
probability is constant.

Going back a step, for a given volume V we have d
dt

∫
V
ρ (~x, t) d3~x =

∫
∂V
~j ·d~S

- ~j is the rate of flow of probability, ~j ·d~S represents the rate at which probability
is flowing into V , equal to the rate of change of the probability of finding the
particle represented by Ψ in V .

2.3 Stationary States and the superposition principle

We want to solve the SE to find the energy of a system; one common approach
to solving PDEs is by separation of variables, i.e. we look for a sol to the SE of
the form Ψ (~x, t) = ψ (~x)T (t); substituding into the SE and dividing by ψT we

have − h
2

2m
∇2ψ
ψ

+ V (~x) = ih
T
dT
dt

; the LHS is purely a func of ~x and the RHS one

of t, so they must both be equal to some constant E. Then we have ihdT
dt

= ET

so T (t) = T (0) e−
ieT

h , and − h
2

2m∇2ψ+V (~x)ψ = Eψ; this last is the time-indep

SE. The LHS is the total energy operator p2

2m + V acting on ψ, so the obvious
interpretation of the separation constant E is as total energy; a ψ satisfying this
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the spatial wave funcction of a state with definite energy E and time dependence

e−
iEt

h .
Ψ (~x, t) = ψ (~x) e−

iEt

h ; for such a state the prob density is clearly |Ψ|2 = |ψ|2
indep of t; states with definite energy are called stationary states.

The time-indep SE in 1D, h
2

2m
d2ψ
dx2 + V (x)ψ = Eψ is a Sturm-Liouville eqn

so several nice results apply; in particular sols corresponding to different vals
of E are orthogonal,

∫ ∞
−∞ ψ⋆mψndx = δmn (assuming the ψn are normalised so∫ ∞

−∞ |ψn|2 dx = 1) where ψn means a sol ψ for a distinct energy value En; to see

this we have h
2

2m
d2ψn

dx2 +V (x)ψn = Enψn and h
2

2m
d2ψm

dx2 +V (x)ψm = Emψm; we
then have (since V,E ∈ R) taking the conjugate of the second and multiplying

by ψ⋆m, ψn respectively that h
2

2mψ
⋆
m
d2ψn

dx2 +V (x)ψnψ
⋆
m = Enψnψ

⋆
m,

h
2

2mψn
d2ψ⋆

m

dx2 +

V (x)ψnψ
⋆
m = Emψnψ

⋆
m, then subtracting h

2

2m

(
ψ⋆m

d2ψn

dx2 − ψn
d2ψ⋆

m

dx2

)
= (En − Em)ψnψ

⋆
m

and integrating h
2

2m

∫ ∞
−∞

(
ψ⋆m

d2ψn

dx2 − ψn
d2ψ⋆

m

dx2

)
dx = (En − Em)

∫ ∞
−∞ ψnψ

⋆
mdx;

integrating by parts and knowing ψn, ψm → 0 as x → ±∞ we have that the
LHS is 0, therefore the RHS is also 0 so for En 6= Em,

∫ ∞
−∞ ψ⋆mψndx = 0.

If we have only a discrete spectrum of possible energy variables (which is not
the most general situation), furthermore the ψn are complete - the most general
wave function at t = 0 is Ψ (x, 0) =

∑
n cnψn (x) for constants ci, which we find

for a given Ψ (x, 0) by multiplying both sides by ψ⋆i , integrating and using the
orthogonality:

∫ ∞
−∞ ψ⋆iΨ (x, 0) dx =

∑
n cn

∫ ∞
−∞ ψ⋆i ψndx =

∑
n cnδin = ci; now

we can obtain Ψ (x, t) from this; let Ψ (x, t) =
∑

n bn (t)ψn (x) with H (ψn) =

Enψn where H = − h
2

2m
d2

dx2 + V . Ψ satisfies the time-dep SE HΨ = ih∂Ψ
∂t

so∑
bnHψn =

∑
bnEnψn =

∑
ihdbn

dt
ψn; by orthogonality of ψn Enbn = ihdbn

dt

and bn (t) = bn (0) e−
iEt

h , so Ψ (x, t) =
∑

n bn (0) e−
iEt

h ψn (x); putting t = 0 and

comparing with the above we have bn (0) = cn and Ψ (x, t) =
∑

n cne
− iEt

h ψn (x).
This is a useful technique for several PDEs; that we can take linear combina-
tions of states with different energies to obtain the general state is called the
superposition principle.

The state of a system is therefore in general a linear combination of many
different states with definite energies - a superposition. The larger the value of
|cn|2 the more likely the system is to have energy En; in fact for Ψ normalised

the reader may verify
∑ |cn|2 = 1 so |cn|2 =

∣∣∣
∫ ∞
−∞ ψ⋆n (x) Ψ (x, t) dx

∣∣∣
2

is precisely

the probability of the system being in the nth state. We sumetimes call this
integral an overlay integral.

In the special case Ψ (x, 0) = ψn (x) for some n, we have Ψ (x, t) = ψn (x) e−
iEnt

h ;
a particular energy eigenstate remains the same state over time. This is another
reason we call the states with definite energies stationary states.
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3 Sols of the SE in 1D

3.1 The free particle

The wave fn for the free partcile satisfies the SE w/ V = 0; in 1D, − h
2

2m
∂2Ψ
∂x2 =

ih∂Ψ
∂t

; we make no assumption of separability due to definite energy. This eqn
is the diffusion eqn so can be solved by Fourier anal; taking FTs wrt x we say

Ψ̃ (p, t) = 1√
2πh

∫ ∞
−∞ e−

ipx

h Ψ (x, t) dx,Ψ (x, t) = 1√
2πh

∫ ∞
−∞ e

ipx

h Ψ̃ (p, t) dp; note

that we have split the constant A and are using p

h
in place of k in comparison

to the Methods course. Recall that the FT of ∂Ψ
∂x

is ip

h
Ψ̃, so the FT of the SE

is − h
2

2m

(
ip

h

)2

Ψ̃ (p, t) = ih ∂
∂t

Ψ (p, t); ∂eΨ
∂t

= − ip2

2mh
Ψ̃ so Ψ̃ (p, t) = Ψ̃ (p, 0) e−

ip2t

2mh ;

taking the IFT Ψ (x, t) = 1√
h

∫ ∞
−∞ e

ipx

h e−
ip2t

2mh Ψ̃ (p, 0)dp (as h = 2πh); we can

find this for a given Ψ (x, 0) as Ψ̃ (p, 0) = 1√
h

∫ ∞
−∞ e−

ipx

h Ψ (x, 0) dt.

3.2 The Gaussian wave packet

For Ψ (x, 0) = Ne−
x2

a2 , assuming this is normalised we must have 1 =
∫ ∞
−∞ |Ψ (x, 0)|2 dx =

|N |2
∫ ∞
−∞ e−2 x2

a2 dx = |N |2 a√
2

√
π, so N = a−

1
2

(
π
2

)− 1
4 . Now we find Ψ (x, t) by

the same method as above; Ψ̃ (p, 0) = N√
h

∫ ∞
−∞ e−

ipx

h e−
x2

a2 dx = N√
h

∫ ∞
−∞ e

−p2
“

a2

4h2 + it

2mh

”

+ ipx

h dx =
(

2h
a

)− 1
2 (

π
2

)− 1
4 e−

p2a2

4π2 . Therefore Ψ (x, t) = 1√
h

∫ ∞
−∞

a
1
n

(2π)
3
4 h
e
−p2

“

a2

4h2 + it

2mh

”

+ ipx

h ;

we let β2

4h
2 = a2

4h
2 + it

2mh
so −p2

(
a2

4h
2 + it

2mh

)
+ ipx

h
= −β2p2

4h
2 + ipx

h
= −

(
βp

2h
− ix

)2

−
x2

β
[check all of this, I’m zonked] and then this becomes a

1
2

(2π)
3
4 h

√
π 2h
β
e
− x2

β2 =

√
α

β

(
π
2

)− 1
4 e

− x2

β2 ; notice that |Ψ (x, t)|2 =
(
π
2

)− 1
2 a

|β|2 e
−2x2 a2

|β|4 which is the ex-

pression for |Ψ (x, 0)|2 but with a replaced by |β|2
a

(note β is complex) which is
(
a2 + 4h

2
t2

m2a2

) 1
2

so > a for t > 0 - the height of the Gaussian is 1
a

at t = 0 and

then a
|β|2 < a for t > 0, while the distance from the centre at which the height

is 1
2 the peak is a log

√
2 for t = 0 but then |β|2

a
log

√
2 [sqrt ommited in lecture]

- over time the wave packet spreads out, as we would expect for a free particle.

3.3 Motion in 1D potentials, parity

The neatest way to obtain Ψ (x, t) is by expansion in terms of sols ψ of the time-
indep SE with definite E; usually we have |ψ| → 0 as |x| → ∞or alternatively
|ψ| ∼ 1 for wavelike sols; we are not interested in sols which behave badly (i.e.
→ ∞) at ∞. Typically for a given potential V (x) which → V∞ at ∞ there
are 3 classes of possible vals of E: for some vals between Vmin and V∞ ∃ sols of
the SE which → 0 fairly rapidly at ∞, while for other E in this range the sols
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behave badly at ∞ so are of no interest to us. Finally for any E > V∞ ∃ sols
which behave like plane waves at ∞.

In general the potential will take some minimum value V0 at, around or near
the origin and tend towards its maximum value V∞ at ∞. In the range between
V0 and V∞ there will be a finite or countable number of possible values for E
which give class i solutions (→ 0 at ∞); these form the discrete part of the
energy spectrum, while the others give class ii solutions (badly behaved at ∞)
which we are not interested in. E > V∞ always has a class iii solution (∼ 1
(i.e. behaved like plane waves) at ∞); these form the cnts part of the energy
spectrum. We need both classes i and iii to form a complete set of ψ in terms
of which we can expand a general Ψ (~x, t).

Recall that vals of E are the possible results of measuring the energy of the
system, and the ψ are the corresponding energy eigenfunctions.

Summary: properties of and requirements on the wf

The WF is a sol of the SE satisfying appropriate BCs; if it is normalizable we
have the prob interpretation. For motion in a smooth potential we need only
apply the BCs as |x| → ∞ which are ψ → 0 for bound states (the discrete
part of the spectrim) or |ψ| ∼ 1 for the cnts part. For a merely piecewise cnts
potential we also need BCs at the points of discontinuity; ψ must be a cnts

(single-vald) func ∀x, t as otherwise ∂2ψ
∂x2 would blow up, and ∂ψ

∂x
must be cnts

everywhere except where there is an infinite jump in V , since this is precisely

where ∂2ψ
∂x2 may be infinite to balance the SE.

Parity

WFs are odd or even wrt ~x by the usual definitions; we can write any wf as a
sum of even and odd parts as usual.

3.4 The infinite square well

This is a model of a particle confined to a finite region or “box” 0 < x < a;
V (x) = 0 for 0 < x < a, ∞ otherwise. We can assume ψ (x, t) = 0 for x < 0 or
> a as otherwise the V ψ term in the SE is undefined. We look for states with

definite energies by solving the time-indep SE: for 0 < x < a − h
2

2m
∂2ψ
∂x2 = Eψ

with ψ (0) = ψ (a) = 0; ψ′ may be discnts at these points as there is an infinite
jump in V . We always assume V > Vmin, in this case 0. Now to simplify notation

we define k2 = 2mE

h
2 so the SE becomes ∂2ψ

∂x2 +k2ψ = 0 so ψ = A cos kx+B sin kx

for A,B constants. Applying the BCs A = 0 and B sin ka = 0; we assume B 6= 0
as otherwise the sol is trivial so k = nπ

a
for n ∈ Z; note this determines E so

we have quantized (discrete) energy levels s a direct result of the BCs. We then

have ψn = B sin nπx
a

and normalizing (
∫ ∞
−∞ |ψ|2 dx = 1) we find B =

√
2
a

so

ψn =
√

2
a

sin nπx
a

for n = 1, 2, . . . w/ En = h
2
k2

2m = n2π2h
2

2ma2 ; we only have the the

discrete spectrum since V∞ is ∞ (we can also take the well being from −a to
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+a in which case we get alternating (as n increases) odd solutions in terms of
sin and even ones in terms of cos; the reader may wish to explore this further).
The GS will be a lin comb of these energy eigenstates; if Ψ (x, 0) =

∑
n cnψn (x)

then Ψ (x, t) =
∑
n cne

− iEnt

h ψn (x).

3.5 The (finite) square well

This is somewhat close to a model of the potential produced by the nucleus:
V (x) = −V0 for |x| < a, 0 otherwise. Since V is symmetric, if ψ (x) is a sol
for a given E so is ψ (−x), as the reader may verify by substitution into the
SE. Then ψ± (x) = ψ (x) ± ψ (−x) are also sols for this same value of E; we
therefore only need to look for sols of definite parity, as our GS will be a sin
comb of these. Note if these two sols are lin dep we have ψ (−x) = ηψ (x) so
η2 = 1 and η = ±1 so ψ has definite parity. We will consider the two types of
sol in term.

For bound states (normalizable sols) we need ψ → 0 as |x| → ∞ and have

−V0 < E < 0. For |x| > a − h
2

2m
d2ψ
dx2 = Eψ, for |x| < a − h

2

2m
d2ψ
dx2 − V0ψ = Eψ.

We define β2 = −2mE

h
2 , k2 = 2m

h
2 (E + V0); note β, k real. Then for |x| > a,

ψ′′ −β2ψ = 0 with sols e±βx and for |x| < a ψ′′ + k2ψ = 0 w/ sols cos kx, sin kx
(we use these forms rather than exponentials since we want to consider parity).

Even sols

ψ = Ae−β|x| for |x| > a, B cos kx for |x| < a. At x = a ψ is cnts so Ae−βa =
B cos ka and ψ′ is also cnts so −βAe−βa = −kB sin ka (since ψ is even x = −a
gives us exactly the same boundary conds); dividing these we have β = k tan ka;
this is an implicit eqn for E but somewhat horrible when we substitute for β, k
and not soluble in closed form. However, we can still ask whether it has sols
and what form they take. We have from their defns that β2 + k2 = 2mV0

h
2 ; let

ξ = βa, η = ka. Then ξ = η tan η, ξ2 + η2 = 2mV0a
2

h
2 . If we plot ξ against η we

have streched tan curves the first eqn ξ and a circle for the second; as V0 gets
larger there are more sols as the circle’s radius increases so it intersects the near
periodic tanlike curve more times in the first quadrant (we are taking β, k > 0),
but there is always at least one sol where the two curves intersect.

Odd sols

ψ = Ce−βx for x > a, D sin kx for |x| < a and −Ceβx for x < −a; continuity
at join (again, we will get the same conds from both joins) gives Ce−βa =
D sinka,−βCe−βa = kD cos ka (if we want to find the actual sol we must
return to this stage; we can find one constant in terms of the other from these
BCs and then use that ψ is normalized to find the final constant); dividing, for

ξ, β as before we have ξ = −η cot η, ξ2 + η2 = 2mV0a
2

h
2 . This time the first graph

starts from −1, curves up through 0 at π
2 , and therafter behaves as a tanlike

curve shifted π
2 to the right, while the second is of course a circle as before. This
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means there are no sols if the radius of the circle is < π
2 , i.e. 2mV0a

2

h
2 <

(
π
2

)2
or

V0 <
π2h

2

8ma2 ; again we have more sols as V0 gets larger, but the results are clearly
all discrete and have discrete values of E.

Continuum states

For E > V∞ = 0 define k2 = 2mE

h
2 , l2 = 2m

h
2 (E + V0), then for |x| > a ψ′′+k2ψ =

0 and for |x| < a, ψ′′ + l2ψ = 0 so the sols are A cos kx + B sin kx for |x| > a

(with some changes of sign for x < 0 to make ψ odd or even) and C cos lx for
even ψ, D sin lx for odd ψ, for |x| < a; the BCs give no constraints on k, l, we
find a sol for general E > 0 since both A,B are free to satisfy that ψ, ψ′ cnts
at x = ±a, so we have a continuum of energy eigenvals. These sols have an
interpretation in terms of scattering; see below.

3.6 Scattering from a finite barrier

Consider a potential barrier of height V0 from x = 0 to x = a, with V = 0
elsewhere; the symmetric version of this reduces to the previous problem when
V0 < 0. Classically, if a beam of particles arrives from the left with energy < V0

it will not be able to cross the barrier. For E > V0 we get continuum states as
above, so take 0 < E < V0:

For x < 0 or x > a, − h
2

2m
d2ψ
dx2 = Eψ; for 0 < x < a, − h

2

2m
d2ψ
dx2 + V0ψ = Eψ.

We define k2 = 2mE

h
2 , β2 = 2m

h
2 (V0 − E), then for x < 0 or > a ψ′′ + k2ψ = 0

and for 0 < x < a, ψ′′ − β2ψ = 0. For x < 0 or > a we have sols of the form
e±ikx; if we let ψ = Aeikx

∫
|ψ|2 dx = |A|2 per unit length; we interpret this as

a beam of particles with density |A|2; they have momentum hk so velocity hk
m

and the flux of particles per unit time is |A|2 hk
m

. The reader can verify this is

exactly the probability current given by j = − ih
2m

(
ψ⋆ dψ

dx
− ψ dψ

⋆

dx

)
.

Now let ψ = Aeikx + Be−ikx and j = hk
m

(
|A|2 + |B|2

)
. We say eikx is a

wave moving to the right as when we consider time dependence this becomes

ei(kx−
Et
k ) so a point of certain height moves to the right as t increases, similarly

e−ikx moves to the left, so this represents two beams of particles, one moving
to the right with density |A|2, the other to the left with density |B|2.

We look for a sol of the SE of the form ψ = Aeikx + Be−ikx for x < 0,
Ceβx + De−βx for 0 < x < a, and Feikx for x > a - there is no wave coming
from the right for x > a (though there is a reflected wave moving to the right
for x < 0) because we are assuming there is no source of particles at +∞.

Energy in this problem is continuous and uninteresting; a more interesting
problem is the probabilities of reflection and transmission, which are given by

the reflection coefficient R = reflected flux
incident flux

= |jR|
|jI | =

hk|B|2

m

hk|A|2

m

= |B|2
|A|2 (this formula

is true in general) and transmission coefficient T = transmitted flux
incident flux

= |jT |
|jI | =

11



hk|F |2

m

hk|A|2

m

= |F |2
|A|2 (the specifics of this formula depend on the problem); to calculate

these we need to relate B,F,A which we do by using the BCs; at x = 0 ψ cnts
gives A + B = C + D and ψ′ cnts implies ik (A−B) = β (C −D). Solving
these for A,B in terms of C,D we have A = 1

2 ((1 + λ)C + (1 − λ)D) , B =
1
2 ((1 − λ)C + (1 + λ)D) where λ = β

ik
is simply notation. Then at x = a ψ

cnts gives us Feika = Ceβa+De−βa, ψ′ cnts gives 1
λ
Feika = Ceβa−De−βa from

which we find Ceβa = 1
2

(
1 + 1

λ

)
Feika, De−βa = 1

2

(
1 − 1

λ

)
Feika, then substi-

tuting into our expressions forA,B we haveA = 1
2ikβ

(
−

(
β2 − k2

)
sinhβα + 2ikβ coshβα

)
Feika, B =

1
2ikβ

(
β2 + k2

)
sinhβαFeika so B

A
=

(β2+k2) sinh βα

2ikβ cosh βα−(β2−k2) sinh βα ,
F
A

= 2ikβe−ika

2ikβ cosh βα−(β2−k2) sinh βα

so the reflection and transmission coeffs areR =
(β2+k2)2

sinh2 βa

4k2β2 cosh2 βα+(β2−k2)2 sinh2 βα
, T =

4k2β2

4k2β2 cosh2 βα+(β2−k2)2 sinh2 βα
. R+T = 1 as we would expect; the probability is

conserved, all particles are either reflected or transmitted.
Note that the trans prob is nonzero - this is the phenomenon of tunelling.

It is especially important for e.g. emission of α particles in radioactive decay -
particles can escape the nucleus even with energies < the height of the potential
barrier in their way. Note that as V0 → ∞ β → ∞, R → 1 and T → 0 - all
particles are reflected if the barrier is infinitely high.

To study scattering from a well we put V0 = −U0 but still take E > 0;
we have k2 = 2mE

h
2 as before but β2 = − 2m

h
2 (E + U0) = −γ2 for γ real

so we replace β by iγ above and have R =
(k2−γ2)

2
sin2 γa

4k2γ2 cos2 γα+(k2+γ2)2 sin2 γα
, T =

4k2γ2

4k2γ2 cos2 γα+(k2+γ2)2 sin2 γα
; in general (i.e. except for some particular vals of γ

and k) R is nonzero, a nonintuitive result; we still have R+ T = 1. It is in fact
the case that only constant potentials have 0 prob of reflection.

3.7 Potential Step

There are various varieties of potential steps. First we consider V = V0 > 0

for x > 0, 0 for x < 0 with E > V0. For x < 0 − h
2

2mψ
′′ = Eψ, for x > 0

− h
2

2mψ
′′ + V0ψ = Eψ. We put k2 = 2mE

h
2 , l2 = 2m

h
2 (E − V0), then for x < 0

ψ = Aeikx + Be−ikx and for x > 0 ψ = Ceilx (as before we assume there is no
source of particles at +∞). Then at x = 0 ψ cnts so A + B = C, ψ′ cnts so

k (A−B) = lC so (k − l)A = (k + l)B, 2kA = (k + l)C. Then R = (k−l)2
(k+l)2

but

this time T =
hl|C|2

m

hk|A|2

m

= l|C|2
k|A|2 ; this is different from last time since the potentials

are different at +∞ and −∞. If we forget to include the factors of k, l we find
R+T 6= 1. In this case we have T = 4kl

(k+l)2
; note that clasically all the particles

are transmitted.
For the case 0 < E < V0 in the same potential we have k2 as before but

put β2 = 2m

h
2 (V0 − E); for x < 0 ψ = Aeikx + Be−ikx but now for x > 0

ψ = Ceβx + De−βx; C = 0 as ψ is finite as x → ∞. Then by continuity at
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x = 0, A+B = D, ik (A−B) = −βD; we find (ik + β)A = (ik − β)B, 2ikA =

(ik − β)D so R = 1, and T = |jT |
|jI | = 0 as jT = 0, because j ∼ (ψ⋆ψ′ + ψψ⋆′).

So R+T = 1 and all particles are reflected, but the probability density for x > 0

is |D|2 e−2βx = 4|A|2k2e−2βx

k2+β2 [check]; while this is not 0 it falls off exponentially
with distance, so the result makes sense; T measures the probability of being
transmitted all the way to +∞.

Finally we consider the case of a potential drop, V = 0 for x < 0, −V0 for x >
0, for E > 0. As before we solve the SE; if we put k2 = 2mE

h
2 , l2 = 2m

h
2 (E + V0)

then this reduces to the first case in this section, so we have R 6= 0, T 6= 0.
This is very surprising; classically no particles would be reflected by a drop in
potential.

3.8 The Harmonic Oscillator

This plays a basic role in both classical and quantum physics; even for a forcing
f not ∝ x we can take the first term of the Taylor series about the point of
equilibrium if the oscillations are small.

For the SHO we take V (x) = 1
2mω

2x2 (since F = − dV
dx

should be ∝ −x,
so V ∝ x2

2 ); we find ω is the freq of the oscillator. V → ∞ as |x| → ∞, so
we only expect to find discrete sols of the SE, and V is cnts so the only BCs

are those at ±∞. The SE is − h
2

2mψ
′′ + 1

2mω
2x2ψ = Eψ; we change vars by

x = µy,E = hω
2 λ, where µ =

√
h
mω

. Then we have ψ′′−y2ψ = −λψ [I probably

should have used explicit x and y derivatives for clarity; apologies].

For large y we have ψ′′−y2ψ ∼ 0 so ψ ∼ e±
1
2
y2

(the reader should check this
is the sol; remember to ignore non-dominant terms); we have ψ finite as y → ±∞
so ψ ∼ e−

1
2
y2

. We then extract this large y behaviour by ψ = e−
1
2
y2

H (y) in
the hope of obtaining an easier eqn for H ; we find H ′′ − 2yH ′ + (λ− 1)H = 0;
then we solve this by series; y = 0 is not a singular point so we can simply
use H (y) =

∑∞
n=0 any

n; substituting this in and equating coefficients of y we

have an+2 (n+ 2) (n+ 1) − 2ann + (λ− 1)an = 0 giving an+2 = (2n−λ+1)
(n+1)(n+2)an;

so we have a2n in terms of a0 and a2n+1 in terms of a1, giving our two lin
ind sols, a sories of even powers and a series of odd powers. We should at
this point be concerned about the BCs; although e−

1
2
y2 → 0 as y → ±∞,

a sufficiently large H could dominate this meaning ψ 9 0. The even series

is given by a2n+2 = (4n−λ+1)
(2n+1)(2n+2)a2n; for large n a2n+2 ∼ 1

n
a2n which is the

same behaviour as that of the coeffs in the expansion of ey
2

=
∑

n n!y2n, so

H ∼ ey
2

and ψ = He−
1
2
y2 ∼ e

1
2
y2

9 0 as y → ∞; we avoid this problem iff
the series terminates, since then ψ = p (y) e−

1
2
y2

for some poly p. The series
terminates if a2n+2 = 0 for some n ∈ N0, meaning λ = 4n + 1; H will then

be a poly of deg 2n. Sim for odd series a2n+1 = (4n−λ−1)
2n(2n+1) a2n−1 and this must

terminate so λ = 4n − 1 and H is a poly of deg 2n − 1; combining these
two sols for λ = 2N + 1 we have a sol H = HN (y) a poly of deg N . These
are Hermite polys; for even N they contain only even powers and vv. So the
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energy eigenvals are EN = hω
2 λN =

(
N + 1

2

)
hω for N ≥ 0 w/ corresponding

efuncs ψN (x) = Hn

(√
Nω

h
x
)

exp
(
−mωx2

2h

)
; we have only a discrete spectrum

of energy vals as we would expect. The ground state (state w/ lowest energy)
is here given by N = 0, i.e. E0 = 1

2hω; this is sometimes called the zero point
energy. Classically an energy of 0 would be possible, but in QM a particle of
definite location must have some momentum, so some energy, by the uncertainty

principle. The corresponding WF is ψ0 = H0e
− 1

2h
mωx2

; H0 is a poly of deg 0

so a constant; normalization gives 1 =
∫ ∞
−∞ |ψ|2 dx = |H0|2

∫ ∞
−∞ e−

1

h
mωx2

dx =

|H0|2
√

πh
mω

so ψ0 (x) = 4

√
mω

πh
e−

mωx2

2h ; H1 ∝ y, H2 ∝ 2y2 − 1 and so on. We

don’t need to go through the entire series sol for small N , we can find e.g. H3

by trying a poly of the right form (Ay+By3) in the DE for H with λ = 2n+ 1
(7 in this case).

Interpretation of wave functions

As stated before, |ψ (x)|2 represents the prob of finding the particle represented

by ψ between x and x + dx. In the infinite sqare well example, |ψn (x)|2 =
2
a

sin2 nπx
a

; for n = 1 this is a central bump, for n = 2 there are two bumps and
the probability is in fact 0 at the origin; for all n it is 0 at the boundary of the
well; contrast this with classical mechanics where the prob density would be 1

a

for the whole of the well. For the finite sqare well we have similar oscillations
within the well but we have exponential decay outside the well rather than zero
probability; the particle may be outside the well. For a potential step upwards
from 0 to V0 with 0 < E < V0 we have sinusodal oscillations approaching from
−∞ with a maximum at 0, then exponential decay; there is a nonzero prob
of crossing the step but the probability of reaching +∞ decays exponentially;
jT = 0. For SHO we have a gaussian or similar for n = 0, a similar wave but
with two bumps for n = 1, and for n large many oscillations in the middle but
again exponential decay at both ends.

4 Observables and expectation values

We need to set up our basic postulates to put the theory on a firm conceptual
basis; we also want to relate the theory to experiment so we consider the process
of measurement, observables and so forth.

4.1 Basic postulates of QM

Postulate I: The wave function

At any given time the states of a physical system correspond to nonzero cplx-
vald funcs (wavefuncs) ψ of the position coordinates ~x with ψ (~x) and λψ (x)
for λ 6= 0 ∈ C corresponding to the same state; furthermore the wavefunc of
a physical state is square integrable so we may def ‖ψ‖ =

∫
|ψ (~x)|2 d~x [LHS
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squared in lecture]; to give meaning to this for a plane wave sol we consider it
as being confined to a large but finite region.

Def a complex inner (scalar) product in the space of wavefunctions by
(φ, ψ) =

∫
all space

φ⋆ (~x)ψ (~x) d3~x (we could equally well use φψ⋆ but must take

one or the other). Note:

1. Since ψ(x)
‖ψ‖ represents the same physical state as ψ (x) we can usually take

‖ψ‖ = 1; in this case we say the wf is normalized.

2. For two particles at −→x1,
−→x2 we have a wf ψ (−→x1,

−→x2), and similarly for n
particles

3. We have the usual cplx scalar prod props: (φ, ψ) = (ψ, φ)
⋆
, (φ, λ1ψ1 + λ2ψ2) =

λ1 (φ, ψ1) + λ2 (φ, ψ2) , (λ1φ1 + λ2φ2, ψ) = λ⋆1 (φ1, ψ) + λ⋆2 (φ2, ψ)

Postulate II: Observables and operators

The observables (measureable dynamical variables) such as position, momen-
tum and energy correspond to Hermitian (i.e. self-adjoint) linear (possibly
differential) operators Q on the sp of wfs; since these are lin we may form
lin combs of wfs; again this is the superposition prinzip. The evals are the
possible results of measuring the corresponding observable; the expectation
value of Q, the average result of measuring Q in a normalized state ψ, is

〈Q〉 = (ψ,Qψ)
(ψ,ψ) = (ψ,Qψ) =

∫
ψ⋆Qψd3~x. Note the hermitian conj Q† of Q is

defd by (φ,Qψ) =
(
Q†φ, ψ

)
; since Q is Hermitian we have (φ,Qψ) = (Qφ,ψ)

which implies that the evals of Q are real; suppose Qψi = qiψi, then (ψi, Qψi) =

(Qψi, ψi) ∴ (ψi, qiψi) = (qiψi, ψi) so qi (ψi, ψi) = q⋆i (ψi, ψi); ‖ψi‖2 6= 0 since
ψi is an estate so qi = q⋆i meaning qi ∈ R. Also (ψi, Qψj) = (Qψi, ψj) so
(qj − qi) (ψi, ψj) = 0; (ψi, ψj) = 0 for qi 6= qj and the estates are orthog. Finally
(ψ,Qψ)
(ψ,ψ) is invariant under ψ 7→ λψ, supporting the claim that ψ, λψ represent

the same physical state.

Postulate III: Dynamics

If Ψ (~x, t) is the wf of the system at time t then ih∂Ψ
∂t

= HΨ determines Ψ (~x, t)
in terms of Ψ (~x, 0) where H is the Hamiltonian of the system, in general the

energy operator − h
2

2m∇2 +V (~x), so this eqn is simply the normal SE. Note that

H is Hermitian, since we shall later show −ih ∂
∂x

is Hermitian so −h ∂2

∂x2 is, and
so forth.

4.2 Position and momentum operators

Position is represented by the Hermitian operator ~x or ~̂x (theˆindicating this is
an operator); this is Hermitian since (φ, ~xψ) =

∫
φ⋆~xψd~x =

∫
~xφ⋆ψd~x = (~xφ, ψ)

since ~x is real. The expectation of this is 〈~x〉 = (ψ, ~xψ) =
∫
~x |ψ|2 d3~x (if
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‖ψ‖ = 1); this agrees with our interpretation of |ψ|2 as the p.d.f. of finding the
particle near ~x.

The operator corresponding to momentum p is −ih̄∇, as was assumed in
2.1. We shall only show it is Hermitian in 1D, but the generalisation to 3D
is straightforward: p = −ih ∂

∂x
and then (φ, pψ) = −ih̄

∫ ∞
−∞ φ⋆ ∂ψ

∂x
dx which

integrating by parts is −ih̄ [φ⋆ψ]
∞
−∞ + ih̄

∫ ∞
−∞

∂ψ⋆

∂x
ψdx; the first term is 0 for

the class of functions we are considering (ψ, φ → 0 as |x| → ∞) so this is
∫ ∞
−∞

(
−ih̄∂φ

∂x

)⋆
ψdx and done.

The expectation of ~p at any time is 〈~p〉 = (ψ, ~pψ) = −ih̄
∫
ψ⋆∇ψd3~x (where

we normalize so ‖ψ‖ = 1 as always).
For example, consider the following generalisation of the Gaussian wave

packet (sol for free particle) at t = 0: Ψ (x, 0) = 4

√
2
πa2 e

−x2

a2 +i
p0x

h̄ ; the reader

may verify this is normalized; want to find 〈x〉 , 〈p〉.
〈x〉 =

∫ ∞
−∞ Ψ⋆xΨ =

√
2
a2π

∫ ∞
−∞ xe−2 x2

a2 dx = 0 since the integrand is odd, as

we would expect since |ψ|2 is symmetric.

〈p〉 =
∫ ∞
−∞ Ψ⋆pΨ = −ih̄

√
2
a2π

∫ ∞
−∞ e−

x2

a2 −i p0x

h̄ d
dx

(
e−

x2

a2 +i
p0x

h̄

)
dx = −ih̄

√
2
a2π

∫ ∞
−∞ e−

x2

a2 −i p0x

h̄ d
dx

(
e−

x2

a2 +i

−ih̄
√

2
a2π

∫ ∞
−∞

(
− 2x
a2 + i p0

h̄

)
e−2 x2

a2 dx which is −ih̄i p0
h̄

= p0; this gives a physical

interpretation of p0 in our original wave packet.
We want to find the variance as well as the mean, so we calculate

〈
x2

〉
=√

2
a2π

∫ ∞
−∞ x2e−2x2

a2 dx which integrating by parts we find is a2

4 and
〈
p2

〉
=

−h̄2
√

2
a2π

∫ ∞
−∞ e−

x2

a2 −i p0x

h̄
d2

dx2

(
e−

x2

a2 +i
p0x

h̄

)
dx = h̄2

√
2
a2π

∫ ∞
−∞

(
4x4

a2 − 4ip0x
a2h̄

− p20
h̄2 − 2

a2

)
e−2 x2

a2 dx =

−h̄2
(

4
a4

a2

4 − p20
h̄2 − 2

a2

)
= p2

0+ h̄2

a2 . We then define spread or variance in the usual

way as (δx)
2

=
〈
(x− 〈x〉)2

〉
and similar; as in probability this is

〈
x2 − 2x 〈x〉 + 〈x〉2

〉
=

〈
x2

〉
− 2 〈x〉 〈x〉 + 〈x〉2 =

〈
x2

〉
− 〈x〉2 and sim for δp; here we find (δx)

2
=

a2

4 , (δp)
2

= h̄2

a2 , so (δx) (δp) = h̄
2 . δx measures the “spread” of the wave packet

or wf in position, δp the spread in momentum, so this means the particle cannot
be completely localised in both position and momentum at the same time; if we
know the position very accurately δx is small so δp = h̄

2δx must be large and
vv. This is an example of the famous uncertainty principle; in general it states
(δp) (δx) ≥ h̄

2 , so this is the best case in that we have the minimum possible
uncertainty.

4.3 Ehrenfest’s T, correspondence prinz (not directly ex-
aminable, but useful in exams)

A good new physical theory should reproduce the results of that it repstacklaces
where these were accurate; QM is important in microscopic problems where h̄ is
not small compared with the other quantities (of same dimensions, those of ac-
tion) involved, but classical mechanics is accurate and successful in macroscopic
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problems where h̄ is small, so we should recover its results by letting h̄→ 0.

Ehrenfest’s Thm

Certain expectations satisfy the classical eqns of motion (without taking h̄→ 0)
and give these classical eqns when we let h̄→ 0.

We shall obtain the eqns of motion for 〈x〉 , 〈p〉 in 1D; again the generali-
sation to 3D is straightforward. We consider the time derivs (and assume x, t
indep variables); d

dt
〈x〉 = d

dt
(Ψ, xΨ) =

(
∂Ψ
∂t
, xΨ

)
+

(
Ψ, x∂Ψ

∂x

)
which using the SE

ih̄∂Ψ
∂t

= HΨ becomes
(
− i
h̄
HΨ, xΨ

)
+

(
Ψ,− i

h̄
xHΨ

)
= 1

h̄
((HΨ, xΨ) − (Ψ, xHΨ))

(remember we take the conj of the first term as we are taking a cplx scalar
prod); the first of the inner terms is (Ψ, HxΨ) since H Hermitian so this is
i
h̄

(Ψ, (Hx− xH)Ψ) and this much is true for any Hermitian operatior in place

of x, we have not yet used any special properties of x: ih̄ d
dt
〈Q〉 = (ψ, [H,Q]ψ) =

〈[H,Q]〉 where [H,Q] is the commutator HQ−QH .

Now we evaluate (Hx− xH)Ψ; we assume H = − h̄2

2m
∂2

∂x2 + V as in the SE

and have ∂2

∂x2 (xΨ) = 2∂Ψ
∂x

+ x∂
2Ψ
∂x2 and the reader may verify (Hx− xH)Ψ =

− h̄2

2m
∂Ψ
∂x

.

So d
dt

〈x〉 = i
h̄
× − h̄2

m

(
Ψ, ∂Ψ

∂x

)
= 1

m

(
Ψ,−ih̄∂Ψ

∂x

)
= 1

m
(Ψ, pΨ) = 1

m
〈p〉 as we

would expect since classically we have dx
dt

= 1
m
p.

Similarly we have d
dt
〈p〉 = −ih̄ d

dt

(
Ψ, ∂Ψ

∂x

)
=

(
ih̄∂Ψ

∂t
, ∂Ψ
∂t

)
+

(
Ψ,−ih̄ ∂

∂x

(
∂Ψ
∂t

))

(again assuming [x, t independent so] we can exchange the order of differentia-

tion) which is
(
HΨ, ∂Ψ

∂x

)
+

(
Ψ,− ∂

∂x
(HΨ)

)
; now ∂

∂x
(HΨ) = ∂

∂x

((
− h̄2

2m
∂2

∂x2 + V
)

Ψ
)

=
(
H ∂
∂x

+ ∂V
∂x

)
Ψ [unchecked] so d

dt
〈p〉 = −

(
Ψ, ∂V

∂x
Ψ

)
= −

〈
∂V
∂x

〉
; this is the ana-

logue of dp
dt

= F = − dV
dx

.
As h̄ → 0, Ψ centres on 〈x〉, the spread of x and p → 0 and their mean

points (which become their only points) move according to the classical eqns of
motion.

4.4 The process of measurement

Suppose Q an observable and {ψi} a basis of evecs of Q Qψi = qiψi; if qi 6= qj
(ψi, ψj) = 0 and in fact we can arrange that (ψi, ψj) = δij even when qi = qj by
taking linear combinations where necessary (this is the Gram-Schmidt Process;
see Lin Al)

Consider measuring Q in some normalized state ψ; write ψ =
∑
ciψi; we

can find the ci by (ψi, ψ) (reader may verify - substitute expansion of ψ and use
linearity and orthogonality); note the ψi are not generally energy eigenstates.

‖ψ‖2
= 1 [the lecturer appears to use ‖‖ and ‖‖2

interchangeably] means

1 = (ψ, ψ) = (
∑
cjψj ,

∑
ciψi) =

∑
c⋆jciδij =

∑ |ci|2. Then 〈Q〉 = (ψ,Qψ) =

(
∑
cjψj ,

∑
ciqiψi) =

∑
qi |ci|2; the prob of getting the result qi when we mea-

sure Q on ψ is |ci|2, assuming for now the qi are all distinct, in which case we
say the eigenstates are nondegenerate.
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Now say we measure Q at t = 0 when the wf is ψ (x); then the prob of getting

qi is |ci|2 = |(ψi, ψ)|2; we evaluate the “overlap integral” [
∫
ψ⋆i ψ]. Suppose we

then measure Q again just after t = 0; were the wf still ψ (or cntsly near it)

prob of getting qi again would be ≈ |ci|2, but experimentally we find the second
measurement almost always gives the same result as the first; this forces us
to conclude that ψ changes discntsly at the time of measurement into ψi so qi
co the certain result of the next measurement; as long as no measurement is
made a quantum system evolves according to the SE (ih̄∂Ψ

∂t
= HΨ) but when

a measurement is made the system jumps w/ prob |ci|2 into the state ψi w/
qi being the result of the measurement; after this it again evolves according to
the SE. This phenomenon is called the collapse of the wf and its interpretation
remains somewhat controversial.

For example, suppose an observable represented by Q has just two estates
(forming a complete basis) φ1, φ2 w/ respective evals q1, q2; for t < 0 the system
is in a lin comb of φ1, φ2; then at t = 0 Q is measured w/ result q1, so Ψ (x, 0) =
φ1 (x); we want the prob of obtaining q2 when we measure Q at time t > 0. For
this we need to calculate Ψ (x, t) so need to express Ψ (x, 0) in terms of energy
estates; suppose the system has only two energy estates ψ1, ψ2 w/ respective
evals E1, E2 (so Hψ1 = E1ψ1 etc); write Ψ (x, 0) = φ1 = c1ψ1 + c2ψ2 with

ci = (ψi, φ1). Then Ψ (x, t) = c1ψ1e
−iE1t

h̄ + c2ψ2e
−iE2t

h̄ , as normal; the prob

of obtaining q2 at time t (i.e. of being in state φ2 at t) is |(φ2,Ψ (x, t))|2 =∣∣∣c1 (φ2, ψ1) e
−iE1t

h̄ + c2 (φ2, ψ2) e
−iE2t

h̄

∣∣∣
2

.

4.5 Pairs of observables

Let α, β observables; if we measure α, then β, then α again the final result
for α will not in general be the same as the initial one even if we perform the
measurements in very quick succession [measuring β forces ψ to jump into an
eigenstate for β, which will not in general be the same as the eigenstate of α
we jump into after measuring that]. The cond for the measurement of β not
to change the result of α, i.e. for α, β to be simultaneously measurable, is that
α, β commute; α, β are simultaneously measureable iff [α, β] = αβ − βα = 0;
this follows from our assumptions abot measurement and reflects the following:

Thm

If two Herm ops α, β commute, ∃ a basis of simultaneous estates (i.e. evecs of
both α and β); the proof is in the Lin Al course. This makes sense since for
a simultaneous estate|a, b〉 (where its evals are a wrt α, b wrt β) αβ |a, b〉 =
αb |a, b〉 = bα |a, b〉 = ba |a, b〉 = ab |a, b〉 = · · · = βα |a, b〉.

As an example consider the position and momentum operators x and p =
−ih̄ ∂

∂x
in 1D; [x, p] = −ih̄

[
x, ∂

∂x

]
= −ih̄

(
x ∂
∂x

− ∂
∂x
x
)
; recall this is an operator

acting on wfs so this is −ih̄
(
x ∂
∂x

− 1 − x ∂
∂x

)
= ih̄; this is the canonical com-

mutation relation for x and p; it is nonzero so we cannot measure position and
momentum simultaneously. This makes sense from the physics - if we try and
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measure the position of a particle by firing photons at it then on the microscopic
scale these will disturb the particle and change its momentum.

In 3D the canonical CRs are [xi, xj ] = 0, [pi, pj ] = 0, [xi, pj ] = ih̄δij .

4.6 The Uncertainty Principle

Another way of considering the relation between simultaneous measurability and
the commutator [α, β] of two observables is to consider the variance (or “spread”)
of measurements of α and β in the same state ψ: ((α+ iλβ)ψ, (α+ iλβ)ψ) =

‖((α+ iλβ)ψ)‖2 ≥ 0 but this is
(
ψ, (α+ iλβ)

†
(α+ iλβ)ψ

)
which since α, β are

observables so Hermitian is (ψ, (α− iλβ) (α+ iλβ)ψ) =
(
ψ,

(
α2 + iλαβ − iλβα+ λ2β2

)
(α− iλβ)ψ

)
=(

ψ, α2ψ
)
+ (ψ, iλ [α, β]ψ) +

(
ψ, λ2β2ψ

)
=

〈
α2

〉
+λi 〈[α, β]〉+ λ2

〈
β2

〉
; consider-

ing this as a quadratic in λ since it is always ≥ 0 its discriminant must be ≤ 0
i.e. 4

〈
α2

〉 〈
β2

〉
≥ |i 〈[α, β]〉|2. Now if we replace α by α−〈α〉 and sim. for β we

have (δα)2 (δβ)2 ≥ 1
4 |〈[α, β]〉|2; since all the quantities here are +ve we can take

the square root (δα) (δβ) ≥ 1
2 |〈[α, β]〉|; if α, β commute we may simultaneously

reduce their spreads to arbitrarily small i.e. we may simultaneously measure
α, β, but if not this gives a limit on how accurately we can measure the two
quantities simultaneously - the uncertainty principle. The classic example of
this is of course to take α = x, β = p = −ih̄ ∂

∂x
and then we have [x, p] = ih̄ so

(δx) (δp) ≥ h
2 .

5 3D problems w/ spherical symmetry

5.1 Sep of vars

We solved the 1D SHO and particle in a box; the corresponding probs in 3D
are easily solved by sep of vars in Cartesian coords; see Exs3. Now we consider

other potentials V (~r) where this fails; the time-indep SE in 3D is − h
2

2m∇2ψ (~x)+
V (~r)ψ (~x) = Eψ (~x) (of course ~r = ~x). We take the special case where V (~r) =
V (r), a function purely of the radius r = |~r|. Although the potential is spheri-
cally symmetric, the solutions will not necessarily all be; we use spherical polars

and separate variables; ∇2ψ = 1
r2

∂
∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂ψ

∂θ

)
+ 1

r2 sin θ
∂2ψ
∂φ2 ;

we are looking for sols of the form ψ (~r) = R (r) Θ (θ)Φ (φ) so the SE be-
comes (multiplying by 2M

h
2 ) − 1

r2R
d
dr

(
r2 dR

dr

)
+ 2M

h̄2 V (r)− 1
r2Θsin θ

d
dθ

(
sin θ dΘ

dθ

)
−

1
r2Φsin2 θ

d2Φ
dφ2 = 2ME

h
2 (we use M for the mass of the particle since we shall later

want to use m for another number), so we have − 1
Φ
d2Φ
dφ

= sin2 θ
R

d
dr

(
r2 dR

dr

)
+

r2 sin2 θ 2M

h
2 (E − V ) + sin θ

Θ
d
dθ

(
sin θ dΘ

dθ

)
and these must = some separation con-

stantm2, then m2

sin2 θ
− 1

Θ sin θ
d
dθ

(
sin θ dΘ

dθ

)
= 2M

h
2 r

2 (E − V )+ 1
R
d
dr

(
r2 dR

dr

)
which =

another separation constant which we take to be l (l + 1). So we have equations

for our three functions Φ′′ + m2Φ = 0, 1
sin θ (sin θΘ′)′ +

(
l (l + 1) − m2

sin θ

)
Θ =
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0,− h
2

2m
1
r2

(
r2R′)′ +

(
V + h

2

2Mr2
l (l + 1)

)
R = ER; this is the radial SE in 3D.

The sols for Φ are Φ = e±imφ with Φ (φ+ 2π) = Φ (φ) i.e. we must have m ∈
Z; we take wlog eimφ since we allow m < 0 so would otherwise have duplicate
solutions. Since we want a sol for Θ well behaved at θ = 0, π we must have l ∈ Z

and l ≥ |m| [|l| ≥ m in lectures but I think this must be wrong], then Θ (θ) =
Pml (cos θ) for some polys Pml ; we can write the entire angular dependence as
Ylm (θ, φ) = NlmP

m
l (cos θ) eimφ for some normalization constants Nlm. There

are 2l + 1 spherical harmonics for each l, i.e. m = −l,−l + 1, . . . , 0, . . . , l. For

example the first few are Y00 = 1√
4π
, Y10 =

√
3
4π cos θ, Y1±1 = ∓

√
3
8π sin θe±iφ.

The energy levels Eln for n ≥ l + 1 are the evals of the radial SE; they have
degeneracy 2l+1 since they each correspond to this many possible values of m.

We shall se later that l (l + 1)h
2

can be interpreted as the square of the orbital
angular momentum and mh̄ as the z cpt therof. The sols for l = 0, 1, 2, 3, . . .
are called S,P,D,F,... wave sols.

5.2 The Spherical Well

V (r) = −V0 for |r| < a, 0 for |r| > a - this is the generalization of the 1D square
well. We have a constant −ve potential within some square and zero potential
elsewhere.

We shall only look at the spherically symmetric sols for now, though in
fact not all sols of this are. Put ψ (~r) = R (r) Φlm (θ, φ), then put l = m =
0 for a spherically symmetric sol and we only need to solve the radial eqn

− h
2

2m
1
r2

d
dr

(
r2 dR

dr

)
+V (r)R = ER; we have 1

r2
d
dr

(
r2 dR

dr

)
= 1

r
d2

dr2
(rR) so putting

χ = rR we obtain − h
2

2M
d2χ
dr2

−V0χ = Eχ for 0 < r < a, − h
2

2M
d2χ
dr2

= Eχ for r > a.

We look for bound state sols −V0 < E < 0 so def k2 = 2M

h
2 (E + V0) , β

2 =

− 2ME

h
2 , then for 0 < r < a χ′′ + k2χ = 0 ⇒ χ = A cos kr + B sin kr ⇒ ψ =

A cos kr
r

+ B sin kr
r

and for r > a χ′′ − β2χ = 0 ⇒ χ = Ceβr + De−βr ⇒ ψ =
Ceβr

r
+ De−βr

r
; there is no question of odd or even sols since r > 0 covers the

whole domain, but we can apply BCs: ψ finite at r = 0 ⇒ A = 0, ψ → 0 as
r → ∞ ⇒ C = 0, and since ψ, ψ′ are cnts at r = a so are χ, χ′ so B sin ka =
De−βa, kB cos ka = −βDe−βa; dividing these k cotka = −β and from the def
of k, β we have k2 + β2 = 2mV0

h
2 ; these are the same as the eqns for odd parity

bound states in the 1D potential well, so as then we have that if 2mV0a
2

h
2 < π2

4

there are no bound states, if π2

4 < 2mV0a
2

h
2 < 9π2

4 there is one bound state etc.

5.3 The Hydrogen Atom

We will look at the simplest case rather than giving a complete treatment at this
stage; we have 1 proton w/ charge +e, 1 electron w/ charge −e held together by
Coulomb attraction; to a good approximation we can treat the nucleus as fixed
at the origin since mp ≈ 1836me, and consider the motion of the electron in a
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potential V (r) = − e2

4πǫ0r
; were we being completely accurate we would separate

vars and calculate centre of mass motion and relative motion w/ reduced mass
[and this is necessary to accurately consider muonic hydrogen]; we look at the
simplest sol, i.e. the spherically symmetric sol l = m = 0. We only need to solve

the radial eqn w/ l = 0: − h
2

2M
1
r2

(
r2R′)′ − e2

4πǫ0r
R = ER; the form of the sol is

non-obvious so we might solve this by series (and will do later when considering

the general problem), but for now try R = e−
r
a for some a, then 1

r2

(
r2R′)′ =

1
r2

(
r2

a
e−

r
a

)′
= − 1

ar2

(
2re−

r
a − r2

a
e−

r
a

)
=

(
1
a2 − 2

ar

)
e−

r
a ; substituting this into

the SE we have− h
2

2M

(
1
a2 − 2

ar

)
e−

r
a − e2

4πǫ0r
e−

r
a = Ee−

r
a ; dividing out e−

r
a and

equating coeffs of powers of r we have − h
2

2M

(
− 2
a

)
− e2

4πǫ = 0 so a = 4πǫ0h
2

Me2
from

the r−1 terms and − h
2

2M
1
a2 = E so E = − h

2

2M

(
Me2

4πǫ0h
2

)2

= −Mc2

2

(
e2

4πǫ0hc

)2

=

−Mc2α2

2 from the r0 terms, which is exactly the same energy as the lowest
energy state (n = 1) of the Bohr atom; ψ ∝ e−

r
a in fact does correspond to the

ground state (state with lowest energy) since any angular momentum (l 6= 0
states) will only increase energy. To find the normalived ground state wf we put

P = Ne−
r
a and use 1 =

∫
all space

|R|2 dV = |N |2
∫ ∞
0
e−2 r

a 4πr2dr (since in 3D w/

spherical symmetry dV = 4πr2dr) = 4π |N |2
∫ ∞
0
e−2 r

a r2dr; integrating by parts

we find
∫ ∞
0 r2e−βrdr = 2

β3 so 1 = 4π |N |2 2a
3

8 ; taking N real N = 1√
πa3

and

ψ (~r) = 1√
πa3

e−
r
a ; for a hydrogen-like atom w/ Z protons and just one electron

the potential is − Ze2

4πǫ0r2
so we just replace e2 by Ze2 in the sol.

6 Angular momentum operators and general sol
for the hydrogen atom

We want to interpret the l (l + 1) which appears in the radial SE when separating
vars in spherical polars.

6.1 Def of angular momentum and CRs

Classically angular momentum is ~L = ~x × ~p; Li = ǫijkxjpk. In QM we
use the same def, but ~x, ~p are now operators satisfying the canonical CRs
[xi, pj ] = ihδij ; from this we can find the CRs for cpts of L. [L1, L2] =
[x2p3 − x3p2, x3p1 − x1p3] = [x2p3, x3p1]−[x2p3, x1p3]−[x3p2, x3p1]+[x3p2, x1p3];
the second and third terms are 0 [since x1, x2, p3 all commute, likewise p1, p2, x3]
and this is x2p1 [p3, x3] + p2x1 [x3, p3] = x1p2ih− x2p1ih = ihL3. By symmetry
we have that the general relation is [Li, Lj ] = ihǫijkLk.

Now consider
[
L3, ~L

2
]

=
[
L3, L

2
1 + L2

2 + L2
3

]
=

[
L3, L

2
1

]
+

[
L3, L

2
2

]
+

[
L3, L

2
3

]
.

We have some useful formulae: [A,BC] = [A,B]C + B [A,C] since RHS=
(AB −BA)C+B (AC − CA) = ABC−BCA =LHS, and [AB,C] = [A,C]B+
A [B,C] by a similar proof left as an exercise. So

[
L3, L

2
1

]
= [L3, L1]L1 +
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L1 [L3, L1] = ih (L2L1 + L1L2) ,
[
L3, L

2
2

]
= [L3, L2]L2+L2 [L3, L2] = ih (−L1L2 − L2L1)

(
[
L3, L

2
3

]
= 0) so

[
L3, ~L

2
]

= 0 and by symmetry
[
Li, ~L

2
]

= 0; the cpts of ~L do

not commute w/ each other, but each commutes w/ ~L2 so we can measure one

and ~L2 simultaneously; we usually take this one to be L3 and have simultaneous
estates of L3 and ~L2.

6.2 Relation between ~L
2 and the Laplacian

We express ~L2 in spherical polars and relate it to the Laplacian, allowing us
to interpret the separation constants l (l + 1) ,m. There are several ways to do
this all of which are in some way hard.

Method 1

Use Li = −ihǫijkxj∇k [my notation: ∇k = ∂
∂xk

] (using that pk = −ih∇k; we

could have used this to find the CR for [Li, Lj ] but the method we used was eas-

ier), then ~L2 [using summation convention] = LiLi = −h2
ǫijkxj∇kǫirsxr∇s =

−h2
(δjrδks − δjsδkr)xj∇kxr∇s = −h2

(xj∇kxj∇k − xj∇kxk∇j) and using the

product rule this = −h2
(xjδjk∇k + xjxj∇k∇k − xjδkk∇j − xjxk∇k∇j) = −h2 (

xj∇j + r2∇2 − 3xj∇j − (

Now xj∇j = r ∂
∂r

since xj∇j = xj
∂r
∂j

∂
∂r

by chain rule, and ∂r
∂xj

= ∂
∂xj

(xkxk)
1
2 =

1
2r2xkδjk =

xj

r
so xj

∂
∂xj

= xj
xj

r
∂
∂r

= r ∂
∂r

. So ~L2 = −h2 (
r2∇2 − r ∂

∂r
− r ∂

∂r
r ∂
∂r

)
=

−h2 (
r2∇2 − ∂

∂r
r2 ∂
∂r

)
; rearranging −h2∇2 = −h

2

r2
∂
∂r
r2 ∂
∂r

+
~L2

r2
. We have as per

5.1 −h2∇2 = −h
2

r2
∂
∂r

(
r2 ∂
∂r

)
−h

2

r2

(
1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)
so ~L2 = −h

2

r2

(
1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)
.

Method 2

This makes calculation of ~L2 very difficult but is useful for finding L3: put
x1 = r sin θ cosφ, x2 = r cos θ cosφ, x3 = r sin θ and use the chain rule to express

Li in terms of ∂
∂θ
, ∂
∂φ

; we find L3 = −ih
(
x1

∂
∂x2

− x2
∂
∂x1

)
= −ih ∂

∂φ
since ∂

∂φ
=

∂x1

∂φ
∂
∂x1

+ ∂x2

∂φ
∂
∂x2

+ ∂x3

∂φ
∂
∂x3

; ∂x1

∂φ
= −r sin θ sinφ = −x2,

∂x2

∂φ
similarly = x1

(∂x3

∂φ
= 0) so this is −x2

∂
∂x1

+ x1
∂
∂x2

as required.

Now we consider ~L2, L3 acting on ψ (~r) = R (r) Ylm (θ, φ), where Ylm =

NlmP
m
l (cos θ) eimφ (where Nlm are normalization constants); ~L2R = 0 since ~L2

contains only θ and φ derivatives, ~L2Ylm (θ, φ) = −h2
Nlm

(
1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)
Pml (cos θ) eimφ =

h
2
Nlm

(
m2

sin2 θ
− 1

sin θ
∂
∂θ

sin θ ∂
∂θ

)
Pml (cos θ) eimφ. Recall Θ = Pml (cos θ) satisfies

1
sin θ (sin θΘ′)′+

(
l (l + 1) − m2

sin θ

)
Θ = 0, so this is simply l (l + 1)h

2
NlmP

m
l (cos θ) eimφ =

l (l + 1)h
2
Ylm (θ, φ). [L3R of course = 0] L3Ylm (θ, φ) = −ih ∂

∂φ

(
NlmP

m
l (cos θ) eimφ

)
=

mhYlm (θ, φ). So the evals of the square of total angular momentum ~L2 are
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l (l + 1)h
2

for l = 0, 1, 2, . . . and the corresponding evals for L3 are mh with
m ∈ Z, |m| ≤ l i.e. m = −l,−l+ 1, . . . , l.

Returning to the radial eqn − h
2

2M
1
r2

d
dr

(
r2 dR

dr

)
+

(
V (r) + h

2

2Mr2
l (l+ 1)

)
R =

ER. In practice we use that the first term is − h
2

2M
1
r
d2

dr2
(rR); substituting χ =

rR as in the spherical well we obtain − h
2

2M
d2χ
dr2

+
(
V (r) + h

2

2Mr2
l (l + 1)

)
χ = Eχ,

which reduces to the usual 1D SE when l = 0. The effect of angular momentum
or angular motion is to add a term to the potential in this 1D eqn; since l ≥ 0
this term is always +ve so its effect is to increase the energy, which makes sense.
Note that R finite at r = 0 ⇒ χ (0) = 0 and

∫
|ψ|2 d3~r converges ⇒

∫ ∞
0

|χ|2 dr
[guessing limits] must converge.

6.3 GS of the hydrogen atom

We look for bound states of the H atom; these satisfy the 3D time-indep SE

− h
2

2M∇2ψ − e2

4πǫ0r
ψ = Eψ; V∞ = 0 so since we want bound states we take

E < 0; E > 0 gives a continuum of scattering states.We seperate vars by

ψ (~r) = R (r) Ylm (θ, φ) where R (r) is a sol of the radial SE − h
2

2M
1
r2

d
dr

(
r2 dR

dr

)
−

e2

4πǫ0r
R + l(l+1)h

2
R

2Mr2
= ER; putting χ = rR this becomes − h

2

2M
d2χ
dr2

− e2

4πǫ0r
χ +

l(l+1)h
2
χ

2Mr2
= Eχ; define β2 = − 8ME

h
2 , ρ = βr, then d

dr
= dρ

dr
d
dρ

= β d
dρ

and sim-

ilarly and the eqn becomes − h
2

2M β2 d
2χ
dρ2

− e2

4πǫ0ρ
βχ + l(l+1)h

2

2Mρ2
β2χ = −h

2
β2χ

8M or

d2χ
dρ2

− l(l+1)
ρ2

χ− 1
4χ+ λ

ρ
χ = 0 where λ = 2Me2

4πǫ0h
2
β

= 2Me2h

4πǫ0h
2√−8ME

= e2

4πǫ0h

√
−M

2E

i.e. E = −Mc2

2λ2

(
e2

4πǫ0hc

)2

= −Mc2α2

2λ2 ; we want to compare this with the previ-

ous formula for the energy levels of the H atom, but first we must determine

the values of λ. We proceed as we did for the SHO: for large ρ d2χ
dρ2

≈ χ
4 i.e.

χ ∼ e±
ρ
2 as p → ∞; we want R bounded as r → ∞ so χ ∼ e−

1
2
ρ. Then

for general ρ we put χ = e−
1
2
ρf (ρ) and have dχ

dρ
=

(
− 1

2f + f ′) e− 1
2
ρ, d

2χ
dρ2

=
(

1
4f − f ′ + f ′′) e− 1

2
ρ; substituting this into the DE and dividing by e−

1
2
ρ we

have f ′′ − f ′ + 1
4f − l(l+1)f

ρ2
− 1

4f + λ
ρ
f = 0 or multiplying by ρ2, ρ2f ′′ − ρ2f ′ +

(λρ− l (l + 1)) f = 0; we solve this by series; ρ = 0 is a regular singular point
so we look for a sol of the form f (ρ) =

∑∞
k=0 akρ

k+σ w/ a0 6= 0; substitut-
ing into the DE

∑∞
k=0 ak (k + σ) (k + σ − 1) ρk+σ − ∑∞

k=0 ak (k + σ) ρk+σ+1 +
λ

∑∞
k=0 akρ

k+σ+1−l (l+ 1)
∑∞

k=0 akρ
k+σ; equating coeffs of ρk+σ ak (k + σ) (k + σ − 1)−

ak−1 (k + σ − 1)+λak−1 − l (l + 1)ak = 0 i.e. ak = k+σ−1−λ
(k+σ)(k+σ−1)−l(l+1)ak−1 for

k > 0; the coeffs of ρσ give a0σ (σ − 1) − a0l (l + 1) = 0; since a0 6= 0 we must
have σ = −l or l + 1. We want ρ to be bounded at r = 0 so we must have
σ = l + 1. Now unless ak = 0 for some k then ak

ak+1
∼ 1

k
for large k so ak ∼ 1

k!

and f ∼ eρ so χ ∼ e−
1
2
ρeρ = e

1
2
ρ → ∞ as ρ→ ∞, so the series must terminate;

ak+1 = 0 for some k ∈ N0 so f is a poly of deg k, i.e. k + 1 + σ − 1 − λ = 0;

λ = k + σ = l + k + 1, k ∈ N0 so λ ∈ N; λ = n > l ≥ 0. Recall E = −Mc2α2

2λ2 so
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for a given l we have En = −Mc2α2

2n2 for n = l + 1, l+ 2, . . . . The corresponding

energy efuncs are ψnlm (r, θ, φ) = χ
r
Ylm (θ, φ) = ρle−

1
2
ρL2l+1

n+l (ρ)Ylm (θ, φ) where

ρ = βnr, βn = −8MEn

h
2 and L2l+1

n+1 is a poly of degree n − l − 1,
∑n−l−1
k=0 akρ

k

(n = l+ k + 1 ⇒ k = n− l − 1).

Notation

Because of these results for V (r) ∝ 1
r

it is traditional to label the energy levels
for any V (r) as Enl for n > l; for Hydrogen Enl is independent of l. How many
states correspond to En for the hydrogen atom? For a given n the possible
values of l are 0, 1, . . . , n − 1; for each l there are 2l + 1 possible values of m,
namely −l,−l+ 1, . . . , l, so the total degeneracy (no. of states with that value

of E) is
∑n−1

l=0 (2l + 1) = 2(n−1)n
2 + n = n2; the degeneracy for En seems to be

n2 at this stage (but see below).

Jargon

n is called the principal quantum number; as we have seen it labels the energy
levels. l is the angular momentum quantum number. m is the magnetic quantum
number, since if a uniform magnetic field is applied in the z direction states with
different m acquire different energy shifts, breaking the degeneracy.

The ground state is non-degenerate; it is called the 1s state. The first excited
state is called either 2s for l = 0 or 2p for l = 1, so there are 4 possible states
(since there are 3 possible values of m for l = 1); the second excited state is 3s
for l = 0, 3p for l = 1 and 3d for l = 2, giving 9 states. We label the states in
general by nq where q [is a letter] indicating the value of l.

The Pauli exclusion principle states that only one electron can occupy each
state, but there are actually 2 electron states corresponding to each of those
listed; electrons with the same n, l,m may have spin up or spin down giving
distinct states, so the degeneracies of the energy levels are really 2n2.

Since electrons can move to lower states by emitting photons, the lowest
energy levels are filled first; atoms with levels filled exactly are inert while those
with just one electron missing from a level or one in a new level are the most
reactive.
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