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Introduction

Recall the features of elementary QM:
We have the wave-particle duality: waves can behave like matter particles

(quanta of light, i.e. photons) and vice versa.
Matter is described by a wavefunction ψ(x), which gives a probability dis-

tribution |ψ(x)|2 for the position of the particle.
In IB, once we had established this, we forgot about light and followed

through on this approach to particles (with successful results):
Observables become operators on wavefunctions; their general lack of com-

mutation leads to the uncertainty principle.
The Schrödinger equation specifies the dynamics, predicts energy levels and

so on.
All this is enough to understand the Hydrogen atom, which we should not

forget is a great triumph, totally beyond classical physics.
The aims of this course are:
To reformulate QM in a more abstract, but more powerful and useful form,

the Dirac formalism.
To use this for a simpler solution of known problems such as the simple

oscillator, but also new problems.
To consider atoms with many electrons - to do this we need to understand

the implications of the uncertainty principle for indistinguishable particles (elec-
trons); we then want to cover:

Spin of elementary particles
Symmetries, e.g. translations and rotations
Ultimately this approach allows a proper QM treatment of the EM field,

which covers all non-gravitational physics outside the nucleus; we can then ex-
tend to the weak and strong nuclear forces too, thus covering all nongravitational
physics.

1 Dirac Formalism

1.1 States and Operators

A quantum system is described at each instant by a state |ψ〉, which belongs
to a complex vector space V ; thus linear combinations of states are also valid
states; we can see this as a superposition principle which will lead to wavelike
behaviour (but these states are not wavefunctions). There are also dual states
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〈φ| belonging to the dual space V †; by definition we can combine states and duals
to give a complex number, so we have a map V †×V → C 〈φ|, |ψ〉 7→ 〈φ|ψ〉; this
last symbol is a bracket, so Dirac referred to the first and second as a “bra”
and “ket” respectively (a very lame joke), but these terms are now somewhat
obsolete. This combination is linear in both arguments.

The spaces V, V † also come with an inner product which is best described as
a one-to-one correspondence V ↔ V † |ψ〉 7→ 〈ψ| or (|ψ〉)†; then α|ψ〉 + β|φ〉 7→
α⋆〈ψ| + β⋆〈φ|; the inner product is then the V × V → C map |φ〉, |ψ〉 7→ 〈φ|ψ〉.
It is assumed to be Hermitian (〈φ|ψ〉 = 〈ψ|φ〉⋆; we define ‖|ψ〉‖2 = 〈ψ|ψ〉 ≥ 0
and this is real by the above; we also assume ‖|ψ〉‖2 = 0 ⇔ |ψ〉 = 0 the zero
state, i.e. the inner product is positive definite. From these assumptions we
have that if 〈φ|ψ〉 is specified for all 〈φ|, this uniquely determines |ψ〉, and vice
versa.

An operator Q is a linear map on states V → V |ψ〉 7→ Q|ψ〉; in ad-
dition to acting “to the right on states” in this fashion we can also regard
Q as acting “to the left on dual states”, by defining 〈φ|Q by defining that
〈φ|Q|ψ〉 is unambiguous; then we can consider Q : V † → V † 〈φ| 7→ 〈φ|Q.
For any Q the hermitian conjugate or adjoint Q† is an operator defined by

〈φ|Q† = (Q|φ〉)† (or equivalently 〈φ|Q†|ψ〉 = 〈ψ|Q|φ〉⋆; the simple consequences
of this are (αA+ βB)† = α⋆A† + β⋆B†, (AB)† = B†A†.

As an excersise, the reader should verify that if we let the |φ〉 be complex
column vectors, the 〈ψ| be complex row vectors, and theQ be complex matricies,
“everything works”.

Note that any state |ψ〉 is physically equivalent to α|ψ〉 for any constant
α 6= 0; we usually require ‖|ψ〉‖2 = 1 but we still have the freedom to shift
|ψ〉 → eiθ|ψ〉.

Commutation relations of operators are particularly important (in some ways
more important than multiplication of the operators); we consider the com-
mutator [A,B] = AB − BA = −[B,A]. Note that [A,B1B2] = [A,B1]B2 +
B1[A,B2], [A1A2, B] = [A1, B]A2 +A1[A2, B].

For an operator Q we call |ψ〉 6= 0 an eigenstate with eigenvalue λ if Q|ψ〉 =

λ|ψ〉 (or equivalently 〈ψ|Q† = λ⋆〈ψ|.

1.2 Observables and Measurements

An operator Q is called hermitian or self-adjoint if Q† = Q; such operators are
also called observables since they correspond to physically measurable quan-
tities such as position, momentum, energy and angular momentum. The key
properties of a Hermitian Q are that all eigenvalues are real, eigenstates with
distinct eigenvalues are orthogonal, and any state can be expanded (i.e. written
as a linear combination) in terms of eigenstates: for the first of these, Q|ψ〉 =
λ|ψ〉 ∴ 〈ψ|Q = λ⋆ψ| since Q† = Q but then 〈ψ|Q|ψ〉 = λ〈ψ|ψ〉 = λ⋆〈ψ|ψ〉 so
λ⋆ = λ since |ψ〉 6= 0. For the second, let |n〉 denote the eigenstates of Q with
respective eigenvalues qn (note that in general we have infinitely many eigen-
values). Then Q|n〉 = qn|n〉, Q|m〉 = qm|m〉 ∴ 〈m|Q = qm〈m| ⇒ 〈m|Q|n〉 =
qn〈m|n〉 = qm〈m|n〉 ∴ qn 6= qm ⇒ 〈m|n〉 = 0. We shall leave a proof of the final
property to the Functional Analysis course.

Combining these properties we have: for any observableQ, ∃ an orthonormal
basis of eigenstates {|n〉} for the space V with Q|n〉 = qn|n〉, 〈m|n〉 = δmn i.e.
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any state |ψ〉 can be written as
∑

n αn|n〉 with αn = 〈n|ψ〉. If |ψ〉 is normalized
(i.e. ‖|ψ〉‖2 = 1 then (

∑

n α
⋆
n〈n|)(

∑

m αm|m〉) =
∑

n |αn|2 = 1.
Note that there may be many states with the same eigenvalue λ; the number

of such states is called the degeneracy of the eigenvalue λ; in the case where this
is 1 we also say λ is non-degenerate.

1.2.1 Postulates for measurements

Measurements are assumed to be instantaneous. Consider measuring Q with the
system in the state |ψ〉 immediately before. Then the result is some eigenvalue
of Q; this is obtained with probability p(λ) =

∑

n:qn=λ |αn|2, and immediately
afterwards the system is left in the state c

∑

n:qn=ψ αn|n〉 (where c is just a
normalization constant). Often we have the case where λ is non-degenerate, in
which case p(λ) = |αn|2 and the system is left in the state |n〉.

Note that in general (if ‖|ψ〉‖2 = 1) the sum of all probabilities is
∑

λ p(λ) =
∑

n |αn|2 = 1; we define the expectation value (mean) of X (in the state |ψ〉)
is 〈Q〉ψ = 〈ψ|Q|ψ〉 =

∑

λ λp(λ) =
∑

n qn|αn|2, and uncertainty (variance)

(∆Q)2ψ = 〈(Q − 〈Q〉ψ)2〉ψ = 〈Q2〉ψ − 〈Q〉2ψ. Note |ψ〉 is an eigenstate of Q

with eigenvalue λ⇔ 〈Q〉ψ = λ, (∆Q)2ψ = 0.

1.3 Time evolution and Schrödinger Equation

This is in principle the last part of the actual content of this course; then we just
need to learn more about its applications. States evolve in time, so are more
properly written |ψ(t)〉. When the system is undisturbed (i.e. no measurements
are made) this is governed by the Schrödinger equation i~ ∂

∂t
|ψ(t)〉 = H |ψ(t)〉

whereH = H† is the Hamiltonian (equivalently we have −i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H ;

the - is simply from complex conjugation of the constant factor). Note that
∂
∂t

(〈ψ(t)|ψ(t)〉) = 〈ψ(t) 1
i~
H |ψ(t)〉 − 1

i~
〈ψ(t)|H |ψ(t)〉 = 0; this is crucial for the

probability interpretation, since it means we can normalise ψ at one time and
it will remain normalized at subsequent times.

H is an observable, the energy, and can introduce eigenstates H |n〉 = En|n〉;
if H is independent of time then so are these |n〉 and En, so we have solu-

tions of the Schrödinger equation |ψ(t)〉 = e−
iEnt

~ |n〉 and these are the usual
stationary states.

The SE is linear and first order in time, so if we can express |ψ(0)〉 =
∑

n αn|n〉, then by the uniqueness of solutions to first order DEs we have a

unique solution |ψ(t) =
∑

n αne
− iEnt

~ |n〉.

1.4 Bases and Representations

Consider a set of orthonormal states {|n〉} (where n is a discrete label, for
simplicity) so 〈n|m〉 = δnm. This set is a basis iff

∑

n |n〉〈n| = 1 (as an operator);
this condition is sometimes called the completeness condition or resolution of
unity.

Generally, operators |a〉〈b| are defined in the obvious way; (|a〉〈b|)|ψ〉 =
|a〉(〈b|ψ〉) where the last term is just a number.

Now consider an observable Q and let |n〉 be its eigenstates as usual, Q|n〉 =
qn|n〉. The basis of eigenstates is usefil to define functions of Q; we can define
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polynomials or functions with a power series like sinQ without reference to a
basis, but for e.g. 1

Q
or logQ we cannot do this. So for any f defined on all qn

we define f(Q) by f(Q)|n〉 = f(qn)|n〉, so we can e.g. define 1
Q

if Q has no zero
eigenvalues.

The general definition can be written f(Q) =
∑

n f(qn)|n〉〈n| (we can check
the correctness of this by applying it to an arbitrary basis state). Once we’ve
chosen a basis {|n〉} as above we can represent any state as a complex column
(or row) vector |ψ〉 =

∑

n αn|n〉 → {αn}; each αn = 〈n|ψ〉. Then if βn = 〈n|φ〉
we have 〈φ|ψ〉 =

∑

n β
⋆
nαn as we would expect for complex vectors. Operators

are represented as matricies A|n〉 =
∑

m |m〉Amn, where Amn are the matrix
elements 〈m|A|n〉.

Now “everything works”: if |φ〉 = A|ψ〉 then βm =
∑

nAmnαn and (AB)mn =
∑

pAmpBpn. This approach is most useful for dealing with a finite basis; we
can use it for infinite ones too, but doing so requires more care.

Until now we have considered bases as being discretely labelled. To make
the label continuous we must replace

∑

n with
∫

dn; 〈n|m〉 = δmn becomes
〈n|m〉 = δ(n −m) and |ψ〉 =

∑

n αn|n〉 becomes |ψ〉
∫

dnαn|n〉. We still have
αn = 〈n|ψ〉, but this is now a function of n rather than a discrete set of numbers.

Measurements involve |αn|2, which is now a probability density rather than
a discrete probability. This is exactly the right setup for a particle in one dimen-
sion with position and momentum x̂, p̂, with eigenstates x̂|x〉 = x|x〉, p̂|p〉 = p|p〉
(i.e. we label the states by their corresponding eigenvalues). Then |ψ〉 =
∫

ψ(x)|x〉dx where ψ(x) = 〈x|ψ〉 is the familiar position space wavefunction.
However, something new coming out of this theory is that we could also use
momentum space wavefunctions.

1.5 Position and Momentum Representations

The essential features of these are all shown by considering a particle in 1D; it
has position and momentum operators x̂, p̂ obeying [x̂, p̂] = i~. Le |x〉 be a set of
position eigenstates x̂|x〉 = x|x〉; x is the continuous eigenvalue labelling states,
and 〈x|x′〉 = δ(x − x′),

∫

dx|x〉〈x| = 1. Any state can be expanded as |ψ〉 =
∫

dxψ(x)|x〉 where ψ(x) = 〈x|ψ〉. The usual interpetation of ψ(x) in terms of the
probability density |ψ(x)|2 now follows from the measurement postulates in sec-
tion 1.2: 〈φ|ψ〉 = (

∫

φ(x)⋆〈x|dx)(
∫

ψ(x′)|x′〉dx′) =
∫

dx
∫

dx′φ(x)⋆ψ(x′)〈x|x′〉,
but this last term is just δ(x− x′), so this becomes simply

∫

dxφ(x)⋆ψ(x) as we
would expect; in particular ‖|ψ〉‖2 = 〈ψ|ψ〉 =

∫

dx|ψ(x)|2.
But, alternatively, we could equally well work with momentum eigenstates

p̂|p〉 = p|p〉 with 〈p|p′〉 = δ(p − p′),
∫

dp|p〉〈p| = 1; now if we expand |ψ〉 =
∫

dpψ̃(p)|p〉 where ψ̃(p) = 〈p|ψ〉, then |ψ̃(p)|2 is the probability density for
finding the particle’s momentum to be in some specified range. It is an important
fact (which we shall justify later) that we can choose the |x〉 and |p〉 eigenstates

to obey 〈x|p〉 = 1√
2π~

e
ixp

~ or 〈p|x〉 = 1√
2π~

e−
ixp

~ (⋆).

What are the position wavefurctions for x̂|ψ〉 and p̂|ψ〉? The x̂|ψ〉 wave-
function is 〈x|x̂|ψ〉 = x〈x|ψ〉 = xψ(x); the p̂|ψ〉 wavefunction is 〈x|p̂|ψ〉 =
∫

dp〈x|p̂|p〉〈p|ψ〉 =
∫

dpp〈x|p〉〈p|ψ〉 =
∫

dp − i~ ∂
∂x

(〈x|p〉)〈p|ψ〉 using (⋆); this is

−i~ ∂
∂x

∫

dp〈x|p〉〈p|ψ〉 = −i~ ∂
∂x

〈x|ψ〉 = −i~ ∂
∂x
ψ(x).

By exactly similar calculations we have the momentum space wavefunctions
for the same states: x̂|ψ〉 has wavefunction i~ ∂

∂p
ψ̃(p) and p̂|ψ〉 has wavefunction
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pψ̃(p), so we have two possible representations. In either representation we have
[x̂, p̂] = i~.

To relate ψ(x), ψ̃(p) directly we have ψ̃(p) = 〈p|x〉 =
∫

dx〈p|x〉〈x|ψ〉 =
1√
2π~

∫

dxe−
ixp

~ ψ(x), a Fourier transform [note in this course we define the FT

with some different constant factors to in the methods course; this is the defini-

tion of which ψ̃ corresponds to which ψ]; similarly ψ(x) = 1√
2π~

∫

dpe
ixp

~ ψ̃(p).

Consider corresponding representations of a Hamiltonian of the formH(x̂, p̂) =
p̂2

2m + V (x̂); on ψ(x) this becomes − ~
2

2m
∂2

∂x2 + V (x), on ψ̃(p) it becomes p2

2m +

V (i~ ∂
∂p

; we can easily interpret the last term for e.g. V (x̂) = λx̂n, but in general

we need to take the following approach: 〈p|V (x̂)|ψ〉 =
∫

dx〈p|V (x̂)|x〉〈x|ψ〉 =
∫

dxV (x)〈p|x〉
∫

dp′〈x|p′〉〈p′|ψ〉 =
∫

dp′(
∫

dxV (x) 1
2π~

e
ix(p′−p)

~ )ψ̃(p′), but the bracket

in the middle is just 1√
2π~

Ṽ (p−p′) so the SE H |ψ〉 = E|ψ〉 (which is (− ~
2

2m
∂2

∂x2 +

V (x))ψ(x) = Eψ(x) in position space) becomes p2

2m ψ̃(p) + 1√
2π~

∫

dpṼ (p −
p′)ψ̃(p′) = Eψ̃(p) in momentum space. Of course with Fourier theory we see
this is just a special case of the convolution theorem, but we have derived it
rather than appealing to results from a previous course.

For the generalisation to 3D, a particle has position operators x̂i and mo-
mentum operators p̂i obeying [x̂i, p̂j ] = i~δij , and these can introduce joint
eigenstates |~x〉 with x̂i|~x〉 = xi|~x〉, and similarly for momentum; the only place
this differs from the 1D case is if we wanted to use wavefunctions in some pe-
verse space where some directions represented position and others momentum.
The position space wavefunction is ψ(~x) = 〈~x|ψ〉, the momentum space wave-

function is ψ̃(~p) = 〈~p|ψ〉, and in place of (⋆) we have 〈~x|~p〉 = 1

(2π~)
3
2
e

i~x·~p
~ ; the

only other change when moving from 1D to 3D is to replace
√

2π~ with (2π~)
3
2

in all our FT formulae.
Example: A one dimensional particle in V (x) = −~

2λ
m

δ(x) (the constants
other than λ are there to make the solution simple); in momentum space the SE

becomes p2

2m ψ̃(p)+ 1√
2π~

∫

dp′Ṽ (p−p′)ψ̃(p′) = Eψ̃(p), and here 1√
2π~

Ṽ (p−p′) =

1
2π~

∫ ∞
−∞ dxe−

ixp
~ δ(x)~

2λ
m

; rearranging ( p
2

2m − E)ψ̃(p) = ~λ
2πm

∫ ∞
−∞ dp′ψ̃(p′); this

is easy to solve since this last integral is going to be a constant; the solution is

of the form ψ̃(p) = N
p2+α2 where E = − α2

2m ; as always the solution to the SE is
only determined up to multiplication by a constant factor since the equation is
linear.

As a verification, we have that ( p
2

2m + α2

2m ) N
p2+α2 = ~λ

2πmN
∫ ∞
−∞ dp′ 1

p2+α2 =
~λ

2πmN
π
a
, so α = ~λ,E = −~

2λ2

2m ; this is the unique bound state solution.
We compare this with the position space solution, which has wavefunction

ψ(x) =
√
λe−λ|x|, and we can verify that the FT of this is ψ̃ as given above

(note that we have N =
√

2λ3~3

π
from the condition that

∫ ∞
−∞ dp|ψ̃(p)|2 = 1).

Now we will justify (⋆), above, the claim that we can choose our position

and momentum eigenstates to obey 〈x|p〉 = 1√
2π~

e
ixp

~ : let |x0〉 be a fixed po-

sition eigenstate, and define all other position eigenstates in terms of it by
u(a)|x0〉 where u(a) = exp(− ia

~
p̂), i.e.

∑∞
n=0

1
n! (

−ia
~

)np̂n. We first verify
that this is an eigenstate of x̂ using that [x̂, p̂] = i~: we have that [x̂, p̂2] =
[x̂, p̂]p̂+ p̂[x̂, p̂] = 2i~p̂, and inductively [x̂, p̂n] = ni~p̂n−1. Therefore [x̂, u(a)] =
∑∞

n=0(
−ia

~
)n 1
n!ni~p̂

n−1 = au(a); then x̂|u(a)|x0〉 = (u(a)x̂ + [x̂, u(a)])|x0〉 =
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(u(a)x0 + au(a))|x0〉 = (x0 + a)u(a)|x0〉; this is a general technique for calcu-
lating AB|x〉 when we know A|x〉 but not B|x〉.

So this is an eigenstate of x̂ with eigenvalue x0 + a; thus we can define
all the position eigenstates by |x0 + a〉 = u(a)|x0〉, and it is easy to verify that
〈x′|x〉 = 〈x′+a|x+a〉 = δ(x−x′); we similarly define the momentum eigenstates

by |p0 + b〉 = e
ipx̂

~ |p0〉 relative to some “reference” state p0. Now we have

〈x0 + a|p0 + b〉 = 〈x0|e
iap̂

~ |p0 + b〉 = e
ia(p0+b)

~ 〈x0|p0 + b〉 = e
ia(p0+b)

~ 〈x0|e
ibx̂
~ |p0〉 =

e
i(ap0+ab+bx0)

~ 〈x0|p0〉; now we set 〈x0|p0〉 = 1√
2π~

and take reference values x0 =

p0 = 0 (the explanation was clearer with these values included). Note that
the modulus of 〈x0|p0〉 ensures the momentum states are correctly normalized:

〈p|p′〉 =
∫

dx〈p|x〉〈x|p′ =
∫

dx 1
2π~

e−
ix(p−p′

~ = δ(p− p′).

1.6 Simultaneous Measurements and Commutators

Observables which don’t commute cannot be simultaneously measured; we have
the generalised uncertainty principle (∆A)ψ(∆B)ψ ≥ 1

2 |〈[A,B]〉ψ | (the proof is
exactly the same as last year, by using the fact that ‖(A + iλB)|ψ〉‖2 ≥ 0∀λ
and considering this as a quadratic in λ.

If Q,Q′, Q′′, . . . do all commute they can be simultaneously measured, and
there is a basis of joint eigenstates |λ, λ′, . . . 〉 labelled by eigenvalues. We
call {Q,Q′, . . . } a complete commuting set (CCS) if these eigenvalues label the
base states uniquely; an equivalent criterion is that any observable A which
commutes with each of Q,Q′, . . . must be some function of them. Note that
in 1D we can take {x̂} or {p̂} as a CCS if the particle truly is structureless
(or we are approximating it as such); in 3D there are various possibilities like
{x̂1, x̂2, x̂3}, {p̂1, p̂2, x̂3} etc.

2 The Harmonic Oscillator

This is not just a “toy” example; it is useful for a huge amount of physics.

2.1 Analysis Using Creation/Annihilation and Number
Operators

The oscillator is a particle in 1D with H = p̂2

2m + 1
2mω

2x̂2, with [x̂, p̂] = i~. We

define a =
√

mω
2~

(x̂ + ip̂
mω

); a† =
√

mω
2~

(x̂ − ip̂
mω

) and note that these are both

dimensionless. Then x̂ =
√

~

2mω (a+ a†), p̂ =
√

~mω
2 i(a† − a). These operators

are motivated by trying to write H in terms of a, a†, analagously to writing x, y
in terms of z, z.

Notice that aa† = mω
2~
x̂2 + 1

2mω~
p̂2 − i

2~
[x̂, p̂] = 1

~ω
H + 1

2 - this “almost
works” [in terms of giving us H ], but just fails because x̂, p̂ do not commute.
However, we similarly have a†a = 1

~ω
H − 1

2 , so [a, a†] = 1 and H = ~ω(N + 1
2 )

where N is the number operator defined by N = a†a.
Consider any eigenstate |λ〉 of N (or equivalently of H); N |λ〉 = λ|λ〉 ⇔

H |λ〉 = E|λ〉 with E = ~ω(λ + 1
2 ), by the above. There is at least one such

eigenstate since N is Hermitian. For any eigenstate, normalized by ‖|λ〉‖2 = 1
as usual, we have λ = 〈λ|N |λ〉 = 〈λ|a†a|λ〉 = ‖a|λ〉‖2, hence λ ≥ 0 with equality
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iff a|λ〉 = 0; this is unsurprising since H “looks like” a sum of squares (but of
course that alone does not proove this result).

We claim that a, a† act on eigenstates of N by lowering and raising the eigen-
value by 1 - they represent annihilation and creation of energy - provided the
new states are nonzero; to show this, consider [N, a†] = [a†a, a†] = a†[a, a†] = a†;
similarly [N, a] = −a. Then N(a†|λ〉) = (a†N + [N, a†])|λ〉 = (a†λ + a†)|λ〉 =
(λ + 1)a†|λ〉; similarly N(a|λ〉) = (λ − 1)a|λ〉. So a†|λ〉, a|λ〉 are new eigen-
states provided they are nonzero; to verify when they are 0 we calculate norms;
as per above, ‖a|λ〉‖2 = λ, so a|λ〉 = 0 ⇔ λ = 0; ‖a†|λ〉‖2 = 〈λ|aa†|λ〉 =
〈λ|(a†a+ 1)|λ〉 = λ+ 1; which is never 0 since we have λ ≥ 0 always.

Therefore the eigenvalues ofN are precisely the nonnegative integers 0, 1, . . . ;
if |λ〉 is an eigenstate then a|λ〉, a2|λ〉, . . . are, as above, and if λ is not an integer
then all of these are nonzero states, with respective eigenvalues λ− 1, λ− 2, . . . ,
and eventually one of these is an eigenvalue < 0, a contradiction; since at least
one eigenvalue exists, it must be an integer n, and then we have eigenstates
a|n〉, a2|n〉, . . . , an|n〉 with eigenvalues n−1, n−2, . . . , 0 but then am|n〉 = 0∀m >
n, so we have no states with negative eigenvalues; we also have eigenstates
a†|n〉, a†2|n〉, . . . with eigenvalues n + 1, n+ 2, . . . , so the eigenvalues of N are
precisely the nonnegative integers; thus the energy levels of the oscillator are
En = ~ω(n+ 1

2 ) for n = 0, 1, . . . .
From our calculations of norms, we can introduce normalised eigenstates

related by a†|n〉 =
√
n+ 1|n+1〉, a|n〉 =

√
n|n−1〉∀n; in particular we can start

from a ground state |0〉 characterised by a|0〉 = 0, and then define |n〉 = (a†)n

√
n!

|0〉.
We usually call a†, a the creation, annihilation operators; sometimes the two

together are called the ladder operators, since they move us “up” and “down”
“rungs” on a “ladder” of energy levels.

Note that the energy levels are non-degenerate if we define the system by
saying that all observables are constructed from x̂ and p̂ (or equivalently, and
more easily for proof, a and a†), since there is no function of them which com-
mutes with N other than functions of N itself; {N} is a CCS and its eigen-
values label basis states uniquely; alternatively we can view {x̂} as a CCS
and show that we have a unique solution for the wavefunction for any cho-
sen state, e.g. the ground state: Consider wavefunctions in e.g. position
space; |0〉 → ψ0(x) = 〈x|0〉, a =

√

mω
2~

(x̂ + ip̂
mω

) →
√

mω
2~

(x + ~

mω
∂
∂x

). So

a|0〉 = 0 ⇔ (x + ~

mω
∂
∂x

)ψ0(x) = 0 ⇔ ψ0(x) = Ne−
1
2

mω
~
x2

, where N is a nor-

malization factor which we can calculate to be 4
√

mω
π~

; similarly |1〉 = a†|0〉 ⇔
ψ1(x) =

√

mω
2~

(x− ~

mω
∂
∂x

)ψ0(x) =
√

2mω
~
xψ0(x), etc.

2.2 Importance of the Oscillator

Together with the Hydrogen atom, the oscillator is one of relatively few QM
systems we can solve exactly, and it can be applied in many different contexts:
for any potential V (x) with an equilibrium point at x = x0 (i.e. V ′(x0) = 0) we
can expand V (x) = V (x0) + 1

2V
′′(x0)(x − x0)

2 + O((x − x0)
3) and the system

behaves like an oscillator provided the higher order terms can be neglected; for
example, a diatomic molecule has a vibrational mode, and this appears when
we study the internal energy or heat capacity of a gas of such as a function of
temperature (see part II statistical physics).
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More complicated systems can be analysed in terms of normal modes, co-
herent behaviour in which all oscillations are at the same frequency. Consider
the general classical solution of the oscillator x(t) = Ae−iωt + A⋆eiωt for some
A ∈ C; then a crystal of 1023 atoms has (approximate) normal mode solu-
tions xI(t) = AuIe

−iωt + A⋆u⋆Ie
iωt, where I runs over all the atoms and all

three directions in which they can oscillate; this gives us information about the
thermodynamics of the crystal.

Similarly, the electromagnetic field can be treated using normal modes ~E(~x, t) =
A~u(~x)e−iωt + A⋆~u(~x)⋆eiωt. Now the oscillations are in EM field space rather
than position, but the energy levels can still be inferred and this gives us the
thermodynamics of radiation (which is the original source of planck’s constant).

The above remarks refer to applications where we only consider the energy
levels; consider the meaning of a, a† for these examples. For a crystal or EM
field we have a pair of ladder operators for each normal mode; acting on a
ground state |0〉 we find a†|0〉 has a definite energy (of course) and momentum;
it behaves just like a particle, so a†, a create and destroy particles. The relevant
particles are called phonons in crystals and photons in the EM field; see part II
Applications of Quantum Mechanics.

Finally, the modern view is that all particles (e.g. electrons, quarks, pi-
ons) arise from quantizing some field; see part III Quantum Field Theory and
Advanced Quantum Field Theory.

3 Pictures and Quantisation

3.1 Unitary operators

The physical predictions of QM are given by probability amplitudes, eigenvalues,
expectation values etc, all of which are given by expressions like 〈φ|ψ〉, 〈φ|A|ψ〉.
An operator u is unitary if u† = u−1, i.e. uu† = u†u = 1. Given such a u

we can map states |ψ〉 7→ |ψ′〉 = u|ψ〉, 〈ψ| 7→ 〈ψ′| = 〈ψ|u† and operators A 7→
A′ = uAu†, and all physical predictions remain unaltered: 〈φ|ψ〉 7→ 〈φ′|ψ′〉 =
〈φ|u†u|ψ〉 = 〈φ|ψ〉 and 〈φ|A|ψ〉 7→ 〈φ′|A′|ψ′〉 = 〈φ|u†uAu†u|ψ〉 = 〈φ|A|ψ〉;
furthermore C = [A,B] 7→ C′ = [A′, B′] and Q′ is hermitian iff Q is; Q|ψ〉 =
λ|ψ〉 7→ Q′|ψ′〉 = λ|ψ′〉 so eigenvalues are unchanged. This process is calleda
change of picture.

3.2 Schrödinger and Heisenberg Pictures

The Schrödinger equation i~ ∂
∂t
|ψ(t)〉 = H |ψ(t)〉 has solution |ψ(t)〉 = u(t)|ψ(0)〉

where u(t) = e−
iHt

~ , assuming H is independent of t (of course this is no help in
actually calculating the solution). Formally this u(t) =

∑∞
n=0

(

− it
~

)n Hn

n! , and

we observe that indeed i~ ∂
∂t
u(t) = Hu(t). Note that u(t)† = u(t)−1 = u(−t)

and u(t1)u(t2) = u(t1 + t2); the time-evolution operator u(t) is unitary.
We can use this to transform from the Schrödinger picture, herafter referred

to with subscripts S, which we have used exclusively until now, to the Heisen-
berg picture (subscripts H): states |ψ(t)〉S → |ψ〉H = e

iHt
~ |ψ(t)〉S = |ψ(0)〉S ,

operators AS → AH(t) = e
iHt

~ ASe
− iHt

~ ; S〈φ(t)|AS |ψ(t)〉S =H 〈φ|AH(t)|ψ〉H .
This picture “looks a lot more like classical mechanics”; instead of position,
momentum etc. becoming fixed operators and the “strange objects” of states
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evolving in time, we have a fixed state and the operators for position, momentum
etc. change in time.

Note that HH = HS = H (All of what we are doing here depends entirely
on H being independent of time in the S-picture); also note we have free choice
of the “reference time” at which the pictures coincide; we have taken t = 0 here,
t = −∞ is another common choice useful in some problems.

Dynamics in theH-picture involves the operators: i~ d
dt

(AH(t)) = i~ d
dt

(e
iHt

~ ASE
− iHt

~ ) =

i~( i
~
e

iHt
~ HAse

− iHt
~ − i

~
e

iHt
~ ASHe

− iHt
~ ) = −[H,AH(t)]. So instead of the SE we

have the Heisenberg equation of motion i~ d
dt
AH(t) = [AH(t), H ]. For example,

consider a particle in 1D with H = p̂2

2m+V (x̂); we will work in the H-picture and

drop the subscripts, so we have x̂(t), p̂(t). d
dt
x̂(t) = 1

i~
[x̂(t), H ] = 1

m
p̂(t), d

dt
=

1
i~

[p̂(t), H ] = −V ′(x̂(t)) (assuming V has a power series). Thus, unlike in the
Schrödinger picture where it was a significant amount of work to obtain, Ehren-
fest’s theorem that d

dt
〈x̂〉 = 1

m
〈p̂〉, d

dt
〈p̂〉 = −〈V ′(x̂)〉 is now immediate; recall

that these are the results that show the reduction to classical mechanics.
As a subexample, for the harmonic oscillator V (x̂) = 1

2mω
2x̂2, the Heisen-

berg equations can be easily solved and the solution can be expressed as x̂(t) =
√

~

2mω (ae−iωt + a†eiωt), p̂(t) =
√

~mω
2

1
i
(ae−iωt − a†eiωt), where a, a† are the

annihilation and creation operators defined in terms of x̂(0), p̂(0).

3.3 Quantization

This section is non-examinable: normally we form a QM system by translating
a classical system into QM, rather than creating something entirely new. Often
the most important question in this process is how the operators relate to each
other; specifically, what are the commutators? This is the final step in Dirac’s
systematic formulation of QM.

The Hamiltonian formulation of any classical system involves a set of gen-
eralised coordinates and momenta xi(t), pi(t) for 1 ≤ i ≤ N and a Hamil-
tonian H(xi, pi). The Poisson bracket of two functions f(xi, pi), g(xi, pi) is
defined as {f, g} =

∑

i
∂f
∂xi

∂g
∂pi

− ∂f
∂pi

∂g
∂xi

; then the equation of motion for any

f(xi, pi) = df
dt

= {f,H}. Furthermore we have {xi, pj} = δij .
In canonical quantization (this is not the only quantization scheme; cf Feyn-

mann) we define the quantum mechanics of this system by mapping classical

functions f, g to quantum operators f̂ , ĝ with [f̂ , ĝ] = i~{̂f, g}; in particular this
implies [x̂i, p̂j ] = i~δij . Then Hamiltonian’s equation becomes the Heisenberg
equation.

4 Composite Systems and Identical Particles

4.1 Tersor Products

This is a general approach to constructing quantum systems from simpler sub-
systems: suppose |ψ〉 ∈ V1, |φ〉 ∈ V2 are states in spaces for two systems. Then
the tensor product space V = V1 ⊗V2 consists of all linear combinations of ten-
sor product states |ψ〉⊗ |φ〉 (with duals 〈ψ|⊗ 〈φ|) subject to (|ψ〉+ |ψ′〉)⊗|φ〉 =
|ψ〉 ⊗ |φ〉 + |ψ′〉 ⊗ |φ〉, |ψ〉 ⊗ (|φ〉 + |φ′〉) = |ψ〉 ⊗ |φ〉 + |ψ〉 ⊗ |φ′〉, (α|ψ〉) ⊗ |φ〉 =
|ψ〉 ⊗ (α|φ〉) = α(|ψ〉 ⊗ |φ〉) and similarly for duals. The inner product is
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(〈ψ′| ⊗ 〈φ′|)(|ψ〉 ⊗ |φ〉) = 〈ψ′|ψ〉〈φ′|φ〉, extended by linearity. If {|n〉}, {|m〉}
are bases for V1, V2 then {|n〉 ⊗ |ψ〉} is a basis for V1 ⊗ V2.

For operators A,B on V1, V2 respectively we define A ⊗ B on V1 ⊗ V2 by
(A ⊗ B)(|ψ〉 ⊗ |φ〉) = (A|ψ〉) ⊗ (B|φ〉); in particular A corresponds to A ⊗ 1
acting just on “the V1 part of” a composite state; and similarly B corresponds
to 1⊗B; operators of these forms automatically commute [that is, A on V1 and
B on V2 commute; A1 and A2 both on V1 do not in general].

Common abuses of notation are to write |ψ〉|φ〉 for |ψ〉 ⊗ |φ〉, and to leave
out the ⊗1 or 1⊗ for operators acting on just one subsystem.

Example: consider a particle in 2D with position operators x̂1, x̂2. We con-
struct simustaneous eigenstates |x1, x2〉 = |x1〉⊗|x2〉, then x̂1 7→ x̂1⊗1, x̂2 7→ 1⊗
x̂2, and the wavefunction for |ψ〉⊗|φ〉 is (〈x1|⊗〈x2|)(|ψ〉⊗|φ〉) = 〈x1|ψ〉〈x2|φ〉 =
ψ(x1)φ(x2). Note that, just as when we solve an equation with separation of
variables, the general wavefunction is not a product of wavefunctions but a
linear combination of such products.

Example: the 2D oscillator, H = 1
2m (p̂2

1 + p̂2
2) + 1

2mω
2(x̂2

1 + x̂2
2) =: H1 +H2

where Hi = ~ω(Ni + 1
2 ), wher Ni = a†iai, [ai, a

†
j ] = δij. Take simultaneous

eigenstates of as many commuting observables as possible - in this case, we
take simultaneous eigenstates of N1, N2, constructed as |n1, n2〉 = |n1〉 ⊗ |n2〉.
H |n1, n2〉 = (H1|n1〉) ⊗ |n2〉 + |n1〉 ⊗ (H2|N2〉) = En1n2 |n1, n2〉 with En1n2 =
~ω(n1 + n2 + 1).

4.2 Spin

Experiment shows that particles generally carry an internal degree of freedom,
called spin or intrinsic angular momentum; thus even if a particle appears “el-
ementary” or pointlike, its space of states will be of the form Vspace ⊗ Vspin

with basis states |~x, r〉 = |~x〉 ⊗ |r〉 where r takes finitely many values. So the
particle is not “structureless” and the position operators x̂i are not a CCS by
themselves; there are observables Q acting on Vspin with [x̂i, Q] = 0. We shall
return to actually study these observables in section 6; for now we concentrate
on states.

Each kind of particle has a definite total spin s ∈ 0, 1
2 , 1,

3
2 , . . . , which is a

characteristic of the particle like its mass or electric charge. For a particle of
spin s we have 2s + 1 basis states in Vspin, labelled |s〉, |s − 1〉, . . . , | − s〉. For
example, an s = 0 particle has basis states |0〉 and we can almost entirely ignore
spin; however, no known elementary particles have s = 0. For s = 1

2 there are
two basis states | 12 〉, |− 1

2 〉 also labelled as | ↑〉, ↓〉 (spin “up” and “down”); most
particles currently believed to be elementary have s = 1

2 . For s = 1 there are
three base states |1〉, |0〉, | − 1〉, and so on.

The existence of spin states is revealed by (among many experiments) the
Stern-Gerlach experiment: we pass a beam of particles between magnets shaped
to give an inhomogenous field, which affects particles in different spin states
differently; thus the beam splits into one beam for each spin state, e.g. two
beams if the particles have spin 1

2 .
A state |ψ〉 in V has a (2s+ 1)-component wavefunction ψ(~x, r) = 〈~x, r|ψ〉;

we’ll also use mixed notation with state
∑

r ψ(~x, r)|r〉.
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4.3 Multiparticle States: Bosons and Fermions

Consider N particles, labelled by 1 ≤ α ≤ N , with Vα the space of states for
each, with basis {|~xα, rα〉}. In general, multiparticle states belong to V1 ⊗ V2 ⊗
· · · ⊗ VN with basis states |~x1, r1, ~x2, r2, . . . , ~xN , rN 〉 = |~x1, r1〉 ⊗ · · · ⊗ |~xN , rN 〉.

If the particles are identical, Vα ∼= some fixed V , we can say more; first
consider the simple case N = 2. Introduce the operator u which exchanges
particles, u|~x1, r1, ~x2, r2〉 = |~x2, r2, ~x1, r1〉. Clearly we have u2 = 1. For a
general state |Ψ〉 we must have u|Ψ〉 = η|Ψ〉 for some constant η as |Ψ〉, u|Ψ〉
are physically indistinguishable. But u2|Ψ〉 = |Ψ〉 ⇒ η2 = 1 ⇒ η = ±1. So for
two identical particles the two-particle states do not belong merely to V ⊗ V
but rather to either (V ⊗ V )S (where the S denotes “symmetrised”) spanned
by {|ψ〉 ⊗ |φ〉 + |φ〉 ⊗ |ψ〉}, for which η = 1, or (V ⊗ V )A (the A standing for
“antisymmetrised”) spanned by {|ψ〉 ⊗ |φ〉 − |φ〉 ⊗ |ψ〉}, for which η = −1.

More generally, for multiparticle states N ≥ 2 we can define u(a,b), an
operator exchanging particles a and b, and on a general multiparticle state,
u(a,b)|Ψ〉 = η(a,b)|Ψ〉, with η(a,b) = ±1. Now for any permutation π of {1, . . . , N}
we can define uπ|~x1, r1, . . . , ~xN , rN 〉 = |~xπ(1), rπ(1), . . . , ~xπ(N), rπ(N)〉, and on a
general state, uπ|Ψ〉 = ηπ|Ψ〉. But the algebra of transpositions implies η(a,b)
has the same value ∀a, b, and so since any π can be obtained by a sequence of
transpositions, if this is 1 then ηπ = 1∀π, and if this is -1 then ηπ = sgn(π)
(:= (−1)#( transpositions in π).

Hence, we have two fundamentally different kind s of particles: Bosons,
obeying Bose-Einstein statistics, for which the interchange of identical particles
leaves the state unchanged, and Fermions, obeying Fermi-Dirac statistics, for
which the interchange of identicle particles changes the state by a sign. In
addition, there is the following important fact:

Spin-statistics relation: All integral spin particles (s = 0, 1, 2, . . . ) are bosons,
all 1

2 -integral spin particles (s = 1
2 ,

3
2 , . . . ) are fermions; this is confirmed by ex-

periment, but somewhat mysterious at this stage; we can only derive it using
relativistic QM as is done in the part III QFT course, wheer it becomes the
spin-statistics theorem. This makes it an unusual example of a relativistic ef-
fect which is enormously important in “everyday”, low speed situations.

Most common elementary particles are fermions, e.g. protons, neutrons,
electrons and neutrinos are all spin 1

2 ; Pions, kaons and the theoretical Higgs
are spin 0, while photons, gluons, and the weak-nuclear-force-carrying particles
w±, z are spin 1.

4.4 Two-particle examples

The states of two identical particles belong to (V ⊗V )S for bosons or (V ⊗V )A for
fermions, where V = Vspace⊗Vspin; it is useful to construct the states we require
by taking (Vspace ⊗Vspace)S or A and (Vspin ⊗Vspin)S or A and then recombining.

Let H(~̂x,~̂p) be a Hamiltonian (spin-independent) for a single particle, with
non-degenerate energiesE0 < E1 < . . . with respective wavefunctions ψ0(~x), ψ1(~x), . . .
for states in Vspace (e.g. a particle in a box). The Hamiltonian for the two-

particle system (assuming the particles don’t interact) is then H(~̂x1,~̂p1) +

H(~̂x2,~̂p2), so a basis for Vspace ⊗ Vspace is given by the energy eigenfunctions
ψ0(~x1)ψ0(~x2) =: Ψ0 with eigenvalue 2E0, ψ0(~x1)ψ1(~x2), ψ1(~x1)ψ0(~x2) with en-
ergyE0+E1, and so on. Form combinations with definite symmetry: ΨS

1 (~x1, ~x2) =
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1√
2
(ψ0(~x1)ψ1(~x2)+ψ1(~x1)ψ0(~x2)),Ψ

A
1 (~x1, ~x2) = 1√

2
(ψ0(~x1)ψ1(~x2)−ψ1(~x1)ψ0(~x2))

and so on to higher energies.
For (Vspin ⊗ Vspin)S or A consider first s = 0, then there is only one state in

Vspin, and Vspin⊗Vspin is the single state |0〉⊗|0〉. So for identical spin 0 particles
the allowed states are Ψ0(~x1, ~x2),Ψ

S
1 (~x1, ~x2), . . . as these are symmetric, and not

ψA1 (~x1, ~x2).
Now we consider spin 1

2 ; Vspin is {| ↑〉, | ↓〉} so Vspin ⊗ Vspin has basis {| ↑〉| ↑
〉, | ↑〉| ↓〉, | ↓〉| ↑〉, | ↓〉| ↓〉} (dropping the ⊗ between states). Combinations with
definite symmetry (appropriately normalized) are | ↑〉| ↑〉, 1√

2
(| ↑〉| ↓〉 + | ↓〉| ↑

〉), | ↓〉| ↓〉 symmetric and 1√
2
(| ↑〉| ↓〉 − | ↓〉| ↑〉) antisymmetric, giving bases for

(Vspin ⊗ Vspin)S , (Vspin ⊗ Vspin)A respectively.
Identical spin 1

2 particles obey Fermi statistics; the lowest possible energy
state is Ψ0(~x1, ~x2)

1√
2
(| ↑〉| ↓〉 − | ↓〉| ↑〉) with energy E0, and this is the unique

state with this energy. At the next level we have one state ΨS
1 (~x1, ~x2) (× the

antisymmetric spin state) and three states given by ΨA
1 (~x1, ~x2)× the symmetric

spin states, giving 4 states in total with energy E0 + E1.

4.5 Pauli Exclusion Principle and Atomic Structure

A state of N identical fermions must be totally antisymmetric, so it can be
specified completele by giving N distinct 1-particle states - then we take the
tensor product and antisymmetrise to obtain the states. For the result of the
antisymmetrisation to be nonzero the N particles must occupy different one-
particle states.

The original application of this was to atomic structure: considerN electrons
bound to a nucleus with Z protons. Ignoring the electrons’ interactions with
each other the Hamiltonian isH(~̂x1,~̂p1)+· · ·+H(~̂xN ,~̂pN ) withH(~̂x,~̂p) = 1

2m
~̂p2−

Ze2

4πǫ0
1

|~̂x| . The one particle energy eigenstates are |n, l,m〉, labelled according

to their eigenvalues with respect to the commuting set H, ~L2, L3 which are

respectively En, ~
2l(l + 1), ~m where en = −M

2 ( Ze2

4πǫ0~
)2 1
n2 .

n is called the principal quantum number; for fixed n (and hence En) the
possible values for the others are l = 0, 1, . . . , n − 1,m = 0,±1, . . . ,±l, giving
2l + 1 total states for each l, so the total degeneracy ignoring electron spin is
1 + 3 + · · · + (2n − 1) = n2; with the two possible states for electron spin the
degeneracy is 2n2.

For electrically neutral atoms N = Z; as this number increases, more levels
are filled up by the Pauli principle, and we have the broad features of the periodic
table, e.g. especially unreactive elements for filled levels N = 2 (Helium) or
N = 10) (Neon), and even valences of elements, from thinking about partially
filled levels.

5 Perturbation Theory

Few QM systems can be solved exactly; in perturbation theory we start with a
known, soluble systemH |n〉 = En|n〉 where the {|n〉} form an ON basis of eigen-
states, and then calculate energies and eigenstates for a perturbed Hamiltonian
(H + λv)|ψ〉 = E|ψ〉(⋆) order-by-order in the parameter λ (Note that V may
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be some general Hermitian operator, not just a potential). Our key assumption
here is that everything depends smoothly on λ.

5.1 Non-Degenerate Case

Suppose that as λ → 0, |ψ〉 → |r〉, E → Er where |r〉 is the unique eigenstate
with this energy, i.e. Er is a non-degenerate energy level. The states {|n〉}
are still a basis for λ 6= 0, so we write |ψ〉 = α|r〉 +

∑

j 6=r βj |j〉 (the standard
approach is to first expand in terms of λ and then use our basis like this, but the
lecturer for this course considers this approach superior) = α(|r〉 +

∑

j 6=r γj |j〉)
where α, βj , γj =

βj

α
are power series in λ such that λ → 1, βj , γj → 0 as

λ → 0. We are aiming to calculate some early coefficients in expansions: E =
Er + E′

rλ+ E′′
r λ

2 + . . . , α = 1 + aλ+ . . . , γj = cjλ+ . . . .
First we just substitute for |ψ〉 in (⋆): (Er +λv)|r〉+

∑

j 6=r γj(Ej +λv)|j〉 =
E(|r〉+

∑

j 6=r γj |j〉) or (E−Er)|r〉 =
∑

j 6=r γj(E−Ej)|j〉 = λv|r〉+λ
∑

j 6=r γjv|j〉(⋆⋆);
from 〈r|(⋆⋆) we have E − Er = λ〈r|v|r〉 + λ

∑

j 6=r γj〈r|v|j〉. So far this is ex-

act in λ; now comparing the LHS=E′
rλ + E′′

r λ
2 + . . . with the RHS we see by

comparing the terms of order λ that the first order energy shift E′
r = 〈r : v : r〉.

Comparing terms of order λ2 we have E′′
r λ

2 = λ
∑

j 6=r cjλ〈r : v : j〉.
To find the cj we return to (⋆⋆): 〈i|(⋆⋆) gives us γi(E − Ei) = λ〈i|v|r〉 +

λ
∑

j 6=r γj〈i|v|j〉; again this equation is exact, but taking just the leading terms

(i.e. dropping all terms of order λ2 or higher) we ahve λci(Er − Ei) = λ〈i|v|r〉
so ci = 〈i|v|r〉

Er−Ei
(and this is why we needed Er to be non-degenerate, so that

we can divide by Er − Ei and know it is nonzero) and E′′
r =

∑

j 6=r
|〈j|v|r〉|2
Er−Ej

; in

summary E = Er + λ〈r|v|r〉 + λ2
∑

j 6=r
|〈j|v|r〉|2
Er−Ej

+ O(λ3); this is second order

non-degenerate perturbation theory.

Example: H = p̂2

2m + 1
2mω

2x̂2 = ~ω(a†a+ 1
2 ; we have states |n〉 with energies

En = ~ω(n+ 1
2 ) for n = 0, 1, . . . . Consider a perturbation v = mω2x̂2 which can

be found to = 1
2~ω(a2+a†2 +2a†a+1) (the 1 being a result of the noncommuta-

tion of a, a†); note 〈n|v|n〉 = 1
2~ω(2n+1), 〈n+2|v|n〉 = 1

2~ω
√
n+ 1

√
n+ 2, 〈n−

2|v|n〉 = 1
2~ω

√
n
√
n− 1 and all other 〈m|v|n〉 are 0; the perturbed energy

of the nth level (to order λ2) is then En + λ〈n|v|n〉 + λ2
∑

m 6=n
|〈m|v|n〉|2
En−Em

=

~ω(n+ 1
2 )+λ~ω(n+ 1

2 )+λ2(~ω
2 )2( (n+1)(n+2

−2~ω
+ n(n−1)

2~ω
) = ~ω(n+ 1

2 )(1+λ− λ2

2 ).

But the effect of adding λv to H is clearly just ω 7→ ω′ = ω
√

1 + 2λ, so the new
energies (exactly) are ~ω′(n+ 1

2 ), whuch = ~ω(n+ 1
2 )(1 + λ− 1

2λ
2 +O(λ3)), so

everything works.
Now we consider validity/usefulness of perturbation theory: of course it is

meaningless to say a dimensional quantity is small (except in comparison to
another quantity of the same dimension), but since λ is dimensionless we might
expect λ≪ 1 to suffice for good (or even rapid) convergence of the power series
(but a moment’s thought will show this to be nonsense, since we can multiply v
by e.g. 10000 and reduce λ by the same factor); however, our expansion is really

in |λ〈i|v|j〉|
|Ej−Ej| and similar quantities. So the condition for accuracy is therefore a

very natural condition from the physical problem, which is that the size of the
energy shifts from v, the numerator, must be ≪ the original energy differences,
the denominator in that expression.
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Example: the ground state energy for Helium. The unperturbed prob-

lem has H = H (̂~x1 ,̂~p1) + H (̂~x2 ,̂~p2) where H(~x, ~p) = ~p2

2m − 2e2

4πǫ0|~x| (the nu-

cleus has charge +2e). As we saw in section 4.5, we introduce single-electron

states |n, l,m〉 with wavefunctions ψnlm(~x) and En = −M
2 ( 2e2

4πǫ0~
)2 1
n2 ; the low-

est energy eigenstate for two electrons is |Ψ〉 = |1, 0, 0, 〉 ⊗ |1, 0, 0〉 ⊗ |χ〉, where
|χ〉 = 1√

2
(| ↑〉| ↓〉 − | ↓〉| ↑〉), obeying Fermi statistics; the two-electron wave-

function is Ψ(~x1, ~x2) = ψ100(~x1)ψ100(~x2) where ψ100(~x) = 1√
π
( 2
a2

)
3
2 e−

|~x|
a2 where

a2 = 1
2

4πǫ0
e2

~
2

M
; the energy of this is 2E1 ≈ −108.8eV .

Experimentally, we find the ground state energy is −79.0eV . Restoring the
electron-electron interaction and treating it as a perturbation we can have λ =
e2

4πǫ0
, V (~x1, ~x2) = 1

|~x1−~x2| ; the first-order correction to the ground state energy is

then λ〈Ψ|v|Ψ〉 = λ
∫

d3~x1

∫

d3~x2Ψ(~x1, ~x2)
⋆V (~x1, ~x2)Ψ(~x1, ~x2) = λ

∫

d3~x1

∫

d3~x2|ψ100(~x1)|2|ψ100(~x2)|2|~x1−
~x2|−1, which we can integrate by writing ~x2 in spherical polars with the axis
in the direction of ~x1 (but the mechanics of this calculation is really irrelevant
to the theory) and find to be ≈ 34.0eV , so the corrected ground state energy
is −108.8eV + 34.0eV ≈ 74.8eV , which is much better, though can still be
improved upon; we could take more terms in the expansion to increase the ac-
curacy of this, but shall see later there is a superior technique for solving this
problem. The physics of this situation is that if we have one electron around the
nucleus and introduce a second one, the potential of the nucleus is “screened”
somewhat to the second electron by the presence of the first electron, so the
second electron “sees” a smaller potential and as such has a smaller (and hence,
since it is negative, higher) binding energy than that of a single electron around
a Helium nucleus.

5.2 Degenerate Case

Consider (⋆) again, but suppose that as λ → 0, E → Er = Es = . . . , a
degenerate energy level with states |r〉, |s〉, . . . ; we shall use r, s to label states
in this degenerate set and j to label other basis states. Then as λ → 0, |ψ〉 →
∑

r ar|r〉.
Expand |ψ〉 =

∑

r αr|r〉 +
∑

j βj |j〉 with αr(λ = ar + O(λ), βj(λ) = O(λ;
substitute this into (⋆):

∑

r αr(Er+λv)|r〉+∑

j βj(Ej+λv)|j〉 = E(
∑

r αr|r〉+
∑

j βj |j〉), or, rearranging,
∑

r αr(E−Er)|r〉+
∑

j βj(E−Ej)|j〉 = λ
∑

r αrv|r〉+
λ

∑

j βjv|j〉(⋆⋆). We seek E = Er + λE′ + . . . ; note the correction is no longer
associated with some particular basis state |r〉 (since in general it will be asso-
ciated with some linear combination of |r〉, |s〉, . . . ). 〈s|(⋆⋆) gives (E −Es)αs =
λ

∑

r αr〈s|v|r〉+λ
∑

j βj〈s|v|j〉; comparing coefficients of order λ,
∑

r〈s|v|r〉ar =
E′as; thus E′ is an eigenvalue of the matrix 〈s|v|r〉 and ar are the components of
a corresponding eigenvector; if there were originally N degenerate states there
will be N possible eigenvalues (counted with multiplicity); thus the typical effect
of the perturbation is to split up the originally degenerate levels by O(λ).

Example: a particle in a box in two dimensions 0 ≤ x, y ≤ a: for the unper-
turbed problem we have states |p, q〉 with wavefunctions ψpq(x, y) = 2

a
sin pπx

a
sin qπy

a

and energy Epq = ~
2π2

2ma2 (p2 + q2) for p, q ∈ 1, 2, . . . ; the lowest energy level is

E11 = ~
2π2

ma2 which is non-degenerate, but the next level is E12 = E21 = 5~
2π2

2ma2

with degeneracy 2. Consider a perturbation V (x, y) = xy
a2 (with the constant fac-

tor chosen so that λ has the dimensions of energy); the shift in the lowest energy
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level λ〈11|v|11〉 = λ
∫ a

0
dx

∫ a

0
dy xy

a2 |ψ11(x, y)|2 = λ( 2
a
)2 1
a2 (

∫ a

0
dxx sin2 πx

a
)(

∫ a

0
dyy sin2 πy

a
) =

· · · = λ
4 (which has the correct dimensions); the shifts in the next value are

given by the eigenvalues of

(

〈12|v|12〉 〈12|v|21〉
〈21|v|12〉 〈21|v|21〉

)

; this matrix is of the form
(

α β
β α

)

and we can find α = 1
4 , β = ( 16

9π2 )2 (the reader may of course verify

the calculations, but they are really irrelevant to an understanding of the QM);
the eigenvalues of the matrix are α± β, so the energy shifts are λ

4 + λ( 4
3π )4 to

first order in λ.

6 Angular Momentum

6.1 Recap of Orbital Angular Momentum

For a particle with position and momentum~̂x,̂~p the orbital angular momentum
(about the origin) is ~L =~̂x×̂~p or Li = ǫijkx̂j p̂k, and ~L2 = LiLi. Since [x̂i, p̂j ] =

i~δij , [Li, Lj] = i~ǫijkLk, [~L
2, Li] = 0; additionally [Li, x̂j ] = i~ǫijkx̂k, [Li, p̂j ] =

i~ǫijkp̂k.

Joint eigenstates of ~L2, L3 (say) can be yound in terms of wavefunctions:
~L2Ylm = ~2l(l+1)Ylm, L3Ylm = ~mYlm where Ylm(θ, φ) are the so-called spher-
ical harmonics (for θ, φ angles in spherical polars); these solutions exist for the
entire physical range of θ, φ only if l ∈ 0, 1, 2, . . . ,m ∈ 0,±1, . . . ,±l. If the SE
for a particular problem has a spherically symmetric potential V (r) then we
have separable solutions ψlm(~x) = Rl(r)Ylm(θ, φ) where Rl(r) is a solution of
the radial SE. Note (we can take this as a known property of the Ylm that under
~x 7→ −~x we have r 7→ r, φ 7→ φ + π, θ 7→ π − θ, ψlm(−~x) = (−1)lψlm(~x). For

example, consider a two-particle system with H =
~̂p21
2m1

+
~̂p22
2m3

+ V (|̂~x1 −~̂x2|);
this is ~̂P

2

2M + ~̂p2

2m + V (|̂~x|) where the unused~̂X = m1̂~x1+m2̂~x2

M
,̂~P =~̂p1 +~̂p2 ,̂~x =

~̂x1 −~̂x2 ,̂~p = m2̂~p1−m1̂~p2
M

(this last can be found by the fact that it is the unique

p̂ satisfying the canonical commutation relation between ~̂x,̂~p with [̂~X,̂~p] = 0.
The CM dynamics are esentially trivial; if we take a state with definite CM

momentum~̂p = ~~k the wavefunction for the system is Ψ( ~X, ~x) = ei
~k· ~Xψlm(~x);

notice that for this system ~x 7→ −~x is exchange of particles.

6.2 General Analysis of Angular Momentum Eigenstates

Consider ~J = (J1, J2, J3) with J†
i = Ji, obeying [Ji, Jj ] = i~ǫijkJk. Define

~J2 = JiJi; then [Ji, ~J
2] = 0, and so we look for joint eigenstates of J3, ~J

2. If
~J2|ψ〉 = λ|ψ〉 for some normalized |ψ〉, λ = 〈ψ| ~J2|ψ〉 = ‖J1|λ〉‖2 + ‖J2|λ〉‖2 +
‖J3|λ〉‖2 ≥ 0; it is convenient to let λ = ~2j(j+1), and we may wlog take j ≥ 0.

Label the joint eigenstates by ~J2|j,m〉 = ~2j(j + 1)|j,m〉, J3|j,m〉 = ~m|j,m〉;
we have j,m real and j ≥ 0. Introduce J± = J1 ± iJ2; we have J†

± = J∓,

and it is easy to verify [J3, J±] = ±~J±, [J+, J−] = 2~J3, [ ~J
2, J±] = 0; we also

have J+J− = ~J2 − J2
3 + ~J3, J−J+ = ~J2 − J2

3 − ~J3. Now given any state
|j,m〉, J±|j,m〉 are eigenstates of J3 with eigenvalues ~(m ± 1), provided the
new states are nonzero: J3(J±|j,m〉) = (J±J3 + [J3, J±])|j,m〉 = (J±~m +
(±~J±))|j,m〉 = ~(m ± 1)J±|j,m〉; to find out whether the new states vanish
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we compute ‖J+|j,m〉‖2 = 〈j,m|J−J+|j,m〉 = 〈j,m| ~J2 − J2
3 − ~J3|j,m〉 =

~2(j(j+1)−m(m+1)) = ~2(j−m)(j+m+1), and this must be ≥ 0; similarly
‖J−|j,m〉‖2 = ~2(j +m)(j −m + 1) ≥ 0, and the states can only vanish when
these inequalities become equalities. So j ≥ m ≥ −j and J+|j,m〉 = 0 ⇔ m =
j, J−|j,m〉 = 0 ⇔ m = −j.

Starting from any given |j,m〉, if Jn+|j,m〉 is non-vanishing we have an eigen-
value ~(m+n) of J3. But we also have j ≥ m+n, so there must be some integer
k with j = m + k; similarly we have J3 eigenvalues ~(m − n) so −j = m − k′

for some integer k′; combining these, 2j = k + k′, an integer.
Thus angular momentum states {|j,m〉} have either j an integer and m ∈

0,±1, . . . ,±j, or j a half-integer and m ∈ ± 1
2 ,± 3

2 , . . . ,±j; in either case there
are 2j + 1 states.

The first case (j an integer) is realised in orbital angular momentum ~J = ~L =

~̂x×~̂p; the states |j,m〉 are elements of Vspace since they were constructed from

~̂x,̂~p, and correspond to wavefuctions ψjm(~x) = R(r)Yjm(θ, φ). The second case
cannot arise in this way; there are no well-behaved solutions of the diferential
equations with j not an integer.

However, we have a new realisation of the second possibility as intrinsic
angular momentum or spin, ~J = ~S, with states |s,m〉 in Vspin, where j = s
is fixed for a given particle and can be either an integer or half-integer. This
matches our earlier description of spin, in section 4.2; we are now identifying
the operators acting on it as Si.

So a particle of spin s has both orbital and intrinsic angular momentum, with
[Si, x̂j ] = [Si, P̂j ] = [Si, Lj] = 0 (recall that the total space is Vspace ⊗Vspin): we

have various CCSs of observables, e.g. {x̂i, ~S2, S3} or {~L2, L3, ~S
2, S3, . . . }.

In general, the joint eigenstates {|j,m〉} for ~J2, J3 are called an angular mo-
mentum multiplet or representation. From our calculations of ‖J±|j,m〉‖2 above

we can define an orthonormal basis of states with J±|j,m〉 = ~
√

(j ∓m)(j ±m+ 1)|j,m±
1〉; the whole multiplet will then be generated by this relation from a single state.
Usually we work from the top state m = j, characterised by J+|j, j〉 = 0.

Note that we could use joint eigenstates of ~J2, ~n · ~J for any unit vector ~n, e.g.
J1, J2; we would have the same eigenvalues (though of course the m-eigenstate
of J3 is not the same as the m-eigenstate of J2, and similarly; the relationship
between the eigenstates of different ~n · ~J is quite involved).

6.3 Matrix Representations - Pauli Matricies

Recall from section 1.4 that given a basis {|n〉} we can represent each operator
A by a matrix Amn = 〈m|A|n〉. Consider j = 1, giving a 3-dimensional state

space with states |1, 1〉 →





1
0
0



 , |1, 0〉 →





0
1
0



 , |1,−1〉 →





0
0
1



. Then

we can calculate J3 → ~





1
0

−1



 , J+ → ~
√

2





0 1
0 1

0



 , J− →

~
√

2





0
1 0

1 0



 (where the matrix elements not written are 0).
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This technique is actually most widely used for spin j = 1
2 ; recall | 12 , 1

2 〉 =

| ↑〉 and similarly, then we have | ↑〉 →
(

1
0

)

, | ↓〉 →
(

0
1

)

, then S3 →

1
2~

(

1 0
0 −1

)

, S+ → ~

(

0 1
0 0

)

, S− → ~

(

0 0
1 0

)

; expressing S1, S2 as

linear combinations of S± we have Si → 1
2~σi where σ1 =

(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

are the Pauli matricies; note that these are

Hermitian traceless 2 × 2 matricies. They obey σ2
1 = σ2

2 = σ2
3 = 1, σ1σ2 =

−σ2σ1 = iσ3, and cyclic permutations therof; we can express this by σiσj =
δij1 + iǫijkσk (the antisymmetric part of this is equivalent to the statement
that [Si, Sj ] = i~ǫijkSk, as then [σi, σj ] = 2iǫijkσk). The Pauli matricies can

be seen as components of a vector ~σ = (σ1, σ2, σ3); If ~a,~b are vectors (defining
~a · ~σ = aiσi as usual) then contracting this identity with aibj we can express it

as (~a · ~σ)(~b · ~σ) = (~a ·~b)1 + i(~a×~b) · ~σ.
Note in particular (~n · ~σ)2 = 1 for any unit vector ~n, ⇔ ~n · ~σ has eigenvalues

±1 ⇔ ~n · ~S has eigenvalues ±~

2 , as we would expect. Also we have ~σ2 =

σ2
1 + σ2

2 + σ2
3 = 3 ⇔ ~S2 = ~2 1

2 (1
2 + 1) = 3

4~2.

6.4 Physical predictions involving Angular Momentum and
Spin

From basic EM theory, we compre the standard electric and magnetic interac-
tions, respectively qφ(~x) where q is electric charge and φ electrostatic potential,

and −~µ · ~B(~x) where ~µ is the magnetic dipole moment and ~B is the magnetic
field. These are interaction enegies, i.e. the terms in the Hamiltonian. In the
magnetic case this interaction means ~µ tends to point along ~B, so as to min-
imise the energy. From EM we have that for a particle of charge q moving with
orbital angular momentum ~L there is a dipole moment µ proportional to q and
~L, so the interaction energy is −γL~L · ~B; this remains the case in QM, but now
we also have spin, which gives a similar interaction −γS ~S · ~B.

Some examples of effects based on these interactions:
The Zeeman Effect: consider a Hydrogen-like atom with states |n, l,m〉 for

the unperturbed system. Apply a magnetic field of size B along the 3-direction;
the states |n, l,m〉 are still eigenstates when the interaction terms are added,
but the energy En changes by −γL~mB or ∓γS ~

2B (−l ≤ m ≤ l as always); this
effect is observed, and the latter term gives direct evidence that the electron is
spin- 1

2 (This effect is the reason m is called the magnetic quantum number).

Stern-Gerlach, as described in section 4.2: a field ~B(~x) can split a beam of
particles into beams of different spin states.

Returning to the nature of the intetracions, just as φ(~x) can be proodduccee

by a second charge, ~B may arise from a second dipole; then the dipole-dipole
interaction is of the form ~J (1) · ~J (2) for independent angular momenta J (i). Then
another example is:

Spin-orbit coupling: For a Hydrogen atom (and no external field), we have

an interaction term proportional to ~L · ~S (where ~L, ~S are the orbital and spin
angular momenta; we shall leave out the position dependence). This produces
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effects of the same order as the first relativistic correction, 3
8

p4

m3c2
; together these

produce the fine structure in Hydrogen energy levels.
There is a very weak interaction of proton-electron spins ~I · ~S; there are two

levels, since the only two possibilities are that ~I, ~S are aligned or anti-aligned
(since both are the spins of spin- 1

2 particles). There is a very small energy
gap detween them, giving the hyperfine structure of Hydrogen. This gives a
21cm wavelength emission for transitions between them, which is observed from
interstellar hydrogen, and important in astrophysics.

The orders of the effects discussed are that the Bohr energies are of order
(mc2)α2, the fine structure is of order (mc2)α4, and the hyperfine structure is
of order (mc2)α4 m

mp
where m is the electron mass, mp is the proton mass and

α = e2

4πǫ0~c
≈ 1

137 .

6.5 Addition of angular momenta

We set ~ = 1 in this section. The standard relations for joint eigenstates are
~J2|j,m〉 = j(j+1)|j,m〉, J3|j,m〉 = m|j,m〉; J±|j,m〉 =

√

(j ∓m)(j ±m+ 1)|j,m±
1〉. Consider two independent systems, angular momentum operators ~J (1), ~J (2)

acting on a space of states V (1)⊗V (2), with bases {|ji,mi〉} for spaces V (i). Fix
j1, j2; a basis of V (1) ⊗ V (2) is then defined by |m1;m2〉 = |j1,m1〉 ⊗ |j2,m2〉;
we will sometimes write this as |m1〉|m2〉.

The sum of angular momenta is ~J = ~J (1) ⊗ 1 + 1⊗ ~J (2), written ~J (1) + ~J (2);

our aim is to find eigenstates |J,M〉 of ~J2 and J3. Since J3 = J
(1)
3 + J

(2)
3 ,

we have J3|m1;m2〉 = (J
(1)
3 |m1〉)|m2〉 + |m1〉(J (2)

3 |m2〉 = M |m1〉|m2〉 where
M = m1 + m2. Note we have |m1| ≤ j1, |m2| ≤ j2 so −(j1 + j2) ≤ M ≤
j1 + j2. We want to write |J,M〉 =

∑

m1+m2=M
CJm1m2

|m1;m2〉 for some

Clebsch-Gordon coefficients CJm1m2
. We have CJm1m2

= 〈m1;m2|J,M〉.
The key idea for finding these is to identify the top-states M = J , which

are found by the fact that J+|J,M〉 = 0 ⇔ M = J . Consider the simplest
nontrivial example, j1 = j2 = 1

2 . |m1;m2〉 = |m1〉|m2〉 with mi = ± 1
2 , so

there are 4 states in total. The state with the largest walue of M is |12 〉|12 〉; we
claim this is |1, 1〉 as there is no state with a higher value of M , so this must

be a top state. Now apply J− = J
(1)
− + J

(2)
− to both sides (recall J−|j,m〉 =

√

(j +m)(j −m+ 1)|j,m − 1〉), to get
√

2|1, 0〉 = | − 1
2 〉|12 〉 + | 12 〉| − 1

2 〉, i.e.
|1, 0〉 = 1√

2
(| − 1

2 〉|12 〉 + |12 〉| − 1
2 〉); note that this state is correctly normalized.

Applying J− again,
√

2|1,−1〉 = 1√
2
(| − 1

2 〉| − 1
2 〉 + | − 1

2 〉| − 1
2 〉), i.e. |1,−1〉 =

| − 1
2 〉| − 1

2 〉; this completes the J = 1 multipliet. But we have an additional
state with M = 0: |0, 0〉 = 1√

2
(| 12 〉| − 1

2 〉 − | − 1
2 〉|12 〉); this cannot be raised to

any other state as there are no other possible state, so it must be a top state
and we have J = 0 (or we can check this directly by applying J+. So we have
a triplet with J = 1 and a singlet with J = 0; adding j1 = 1

2 , j2 = − 1
2 gives

J = 1, 0.
Now we return to the general case; we begin with (2j1 + 1)(2j2 +1) product

states |m1〉|m2〉. There is a unique state with J = M = j1+j2: |j1+j2, j1+j2〉 =
|j1〉|j2〉. Applying J−, we obtain that

√

2(j1 + j2)|j1 + j2, j1 + j1〉 =
√

2j1|j1 −
1〉|j2〉 +

√
2j2|j1〉|j2 − 1〉; hence |j1 + j2, j1 + j2 − 1〉 =

√

j1
j1+j2

|j1 − 1〉|j2〉 +
√

j2
j1+j2

|j1〉|j2 − 1〉 (correctly normalized); applying J− repeatedly we obtain a
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multiplet |j1 + j2,M〉 with j1 + j2 ≥ M ≥ −(j1 + j2), but at the level M =

j1+j2−1 we also have an orthogonal state
√

j1
j1+j2

|j1−1〉|j2〉−
√

j2
j1+j2

|j1〉|j2−1〉,
which must then be |j1+j2−1, j1+j2−1〉; this is a top state for a multiplet with
J = j1+j2−1. We can continue in this fashion, forming complete multiplets and
then taking a state orthogonal to all the states with successively smaller values of
M to get new top states; by counting states, this process stops with J = |j1−j2|:
∑j1+j2

J=|j1−j2|(2J + 1) =
∑j1+j2

J=|j1−j2|((J + 1)2 − J2) = (j1 + j2 + 1)2 − (j1 − j2)
2 =

(2j1 + 1)(2j2 + 1), which is the correct number of states.
The top states |ψ〉 so found can be confirmed as such by applying J+ directly,

but they are guaranteed to be top states anyway, as |ψ〉 ⊥ J−|φ〉∀|φ〉 with the
correct M eigenvalue, so 〈φ|J+|ψ〉 = 0∀ such |φ〉 and J+|ψ〉 = 0.

In summary, addition of j1 and j2 gives J = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|;
this makes intuitive sense if we visualise the ji as the lengths of vectors ~J (i).

7 Transformations and Symmetries

Given a unitary operator u, we define a transformation of a quantum system
to be either a map of states alone by |φ〉 7→ u|φ〉, 〈φ| 7→ 〈φ|u†, or a map of
operators only, A 7→ u†Au (these are equivalent); this results in a change of

matrix elements, and thus of physical quantities, by 〈φ|A|ψ〉 7→ 〈φ|u†Au|ψ〉.
A symmetry of a QM system is a transformation which obeys u†Hu = H ,

or equivalently [u,H ] = 0; this implies that in the S-picture, |ψ(t)〉 is a solution
of the SE ⇒ u|ψ(t)〉 is also a solution, or in the H-picture, if A(t) is a solution
of the Heisenberg equations then u†A(t)u is too.

7.1 Transformation groups and an example

Consider a (possibly infinite) group G and associated transformations of a
QM system, u(g) for each g ∈ G, with u(g1)u(g2) = u(g1g2), u(1G) = 1 and
(therefore) u(g−1) = u(g)−1 = u(g)†. We will aim to find u(g) when G is
a gorup of translations, rotations or reflections; in these cases we know how
G acts geometrically on position, ~x 7→ g(~x) (or similarly we know how G
acts on momentum ~p); we can then infer how u(g) acts on position eigen-
states: u(g)|~x〉 = |g(~x)〉 (or considering u(g) as acting on operators instead,

u(g)†̂~xu(g) = g(̂~x)). On a general state, |ψ〉 7→ u(g)|ψ〉, and the position
space wavefunction of the new state is then 〈~x : u(g)|ψ〉 = (u(g)†|~x〉)†|ψ〉 =
(u(g−1)|~x〉)†|ψ〉 = (|g−1(~x)〉)†|ψ〉 = 〈g−1(x)|ψ〉 = ψ(g−1(x). So for e.g. a trans-
lation in one dimension x 7→ ga(x) = x + a, writing u(a) for u(ga) we have
u(a)|x〉 = |x + a〉 and u(a)†x̂u(a) = x̂ + a, but we showed in section 1 that
u(a) = exp(− ia

~
p̂) has exactly these properties.

Now notice taht the effect of a translation on a wavefunction ψ(x) is to send
it to ψ(x−a); note that the graph of this is precisely the graph of ψ(x) translated
to the right by a, as we would expect; thus the appearance of ψ(g−1(x)) rather
than ψ(g(x)) above really was correct.

Also, acting on wavefunctions, p̂ → i~ ∂
∂x

and hence u(a) → exp(−a ∂
∂x

),

so acting on a wavefunction, u(a)ψ(x) = exp(−a ∂
∂x

)ψ(x) = ψ(x) − aψ′(x) +
1
2!a

2ψ′′(x) + . . . , which = ψ(x− a) by Taylor’s theorem.
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7.2 Generators and Conservation Laws

Consider a general continuous group and let gα for α real be a one-parameter
family of elements with gαgβ = gβgα = gα+β, g0 = 1G, and assume we know
gα(A) = A + αf(A) + O(α2) for our quantities of interest A, e.g. position
and momentum. The corresponding unitary operators u(α) = u(gα) then obey
u(α)u(β) = u(β)u(α) = u(α + β), u(0) = 1; u(α)†Au(α) = gα(A). Define Q =

i~∂u(α)
∂α

|α=0, so that u(δα) = 1− i
~
δαQ+O(δα2), u(−δα) = 1+ i

~
δαQ+O(δα2);

then u(−δα) = u(δα)−1 = u(δα)†, so Q† = Q and Q is an observable. But we
also have u(α+ δα) = u(α)u(δα) = u(δα)u(α), so [Q, u(α)] = 0 and, taking the

limit as δα → 0, ∂u(α)
∂α

= − i
~
Qu(α), for any value of α. Integrating, u(α) =

exp(− iα
~
Q) (the constant factor being determined since we know u(0) = 1). Q

is called the generator of this family of transformations within G.

To find Q, we equate gα(A) = A + αf(A) + O(α2) with u(α)†Au(α) =
(1 + i

~
αQ+ . . . )A(1 − i

~
αQ+ . . . ) = A+ i

~
α[Q,A] +O(α2); we obtain [Q,α] =

−i~f(A), so a transformation of any quantity is fixed by its commutation rela-
tions with a generator Q.

Now suppose gα is actually a symmetry, [u(α), H ] = 0 ⇔ [Q,H ] = 0, i.e.
the observable Q is a conserved quantity; in the S picture, Q|ψ(0)〉 = q|ψ(0)〉 ⇒
Q|ψ(t)〉 = q|ψ(t)〉, or in the H picture ∂Q(t)

∂t
= 0.

Noether’s Theorem

For each continuous family of transformations of a quantum system, there is
a hermitian generator, Q, and if the transformation is a symmetry then Q is
conserved; Q is often called the Noether charge.

Example: consider a system of particles r, s, . . . with positions~̂x(r) and mo-

menta ~̂p(r) obeying [x̂
(r)
i , p̂

(s)
j ] = i~δijδrs. Our transformation is a translation

along the k direction (k ∈ 1, 2, 3): ga(x̂
(r)
i ) = x̂

(r)
i + aδij ∴ f(x̂

(r)
i ) = δik.

ga(p̂
(r)
i ) = p̂

(r)
i , f(p̂

(r)
i = 0, ∀r. So the generator Q must obey [Q, x̂

(r)
i ] =

−i~δik, [Q, p̂(r)
i ] = [ (and this will define Q uniquely); hence Q = P̂k =

∑

p̂
(r)
k ,

total momentum in the k direction. in general, translation through ~a is gener-
ated by total momentum~̂P and u(~a) = exp(− i

~
~a ·~̂P ). Noether’s theorem thus

gives that for particles interacting only through a potential depending only on
relative positions~̂x(r) −~̂x(s), H is translation invariant and~̂P is conserved.

7.3 Angular Momentum and Rotations

Rotations form a non-abelian group, but for a fixed axis ~n we have an abelian
subgroup of rotations gθ through angle θ about ~n. For A a scalaro, gθ(A) = A

unchanged, so f(A) = 0; if ~V = (V1, V2, V3) is a vector then gθ(~V ) = ~V +

θ~n × ~V + O(θ2) so f(~V ) = ~n × ~V . The corresponding unitary operator is
u(θ~n) = 1 − i

~
θQ+O(θ2).

For a single particle, both~̂x and~̂p are vectors, so [Q,̂~x] = −i~~n×~̂x, [Q,̂~p] =

−i~~n×~̂p. Recall [Li, x̂j ] = i~ǫijkx̂j , [Li, p̂j ] = i~ǫijkp̂k for ~L =~̂x×~̂p, so [dotting

with ~n it follows that Q = ~n · ~L is our generator.
For a spinless particle this is all we need. For ~L itself, we have [Q, ~L] =

i~~n× ~L, i.e. ~L transforms as a vector, from the commutation relations for ~L.
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Now for a particle with spin, ~S must also transform as a vector; we must
have [Q, ~S] = −i~~n× ~S. This is achieved by taking Q = ~n · ~J where ~J is total

angular momentum ~L+~S (recall [Si, x̂j ] = [Si, p̂j ] = [Si, Lj ] = 0, so the previous
equations still hold).

This analysis can be generalised to many-particle systems, and the unitary
operator for rotation through ~θ = θ~n is u(~θ) = exp(− i

~
θ~n · ~J) where ~J is the

total angular momentum. The Noether’s theorem gives that for a rotationally-
invariant quantum system, total angular momentum is conserved (e.g. a single

particle with H = 1
2m~̂p

2 +V (|̂~x|)+U(|̂~x|)~L · ~S (e.g. the Hydrogen atom) clearly

has a rotationally invariant hamiltonian, so [Ji, H ] = 0 and ~J is conserved - but

note that ~L, ~S are not separately conserved unless u(|̂~x|) = 0).
Now that we have identified angular momentum as the generator of rotations

we can view the relations [Ji, A] = 0, [Ji, Vj ] = i~ǫijkVk as the definition of what

it means to be a scalar or vector operator; we can then see that~̂x,̂~p, ~L, ~S, ~J are
all vector operators as they obey the second of these commutation relations.

7.4 Rotations on States

On angular momentum eigenstates |j,m〉 for fixed j, the operators Ji are re-

alised as (2j + 1) × (2j + 1) matricies. Then u(~θ) = exp(− i
~
~θ · ~J) can be

computed in some cases. For j = 1 we have a single state |0, 0〉 on which
~J = ~0, then by this formula u(~θ) = 1 and |0, 0〉 7→ |0, 0〉 under rotations,
as we would expect. We will study the j = 1

2 case below. For j = 1,
we have states |1,m〉 with m ∈ 0,±1. Generators are 3 × 3 matricies; con-

sider J3 = ~





1
0

−1



; a rotation about the 3 (i.e. z) axis is given by

u(θ̂~z) = exp(− i
~
θJ3) = exp(−iθ





1
0

−1



) =





e−iθ

1
eiθ



, so the

states transform by |1,±1〉 7→ e∓iθ|1,±1〉, |1, 0〉 7→ |1, 0〉, which is the transfor-
mation of a vector; cf the behaviour of x± iy in R3.

For j = 2 there are 5 states, which transform like a symmetric, traceless [rank
2] tensor (we can split a general rank 2 tensor into the antisymmetrised part,
which acts like a vector, the trace, which acts like a scalar, and the symmetric
traceless part). For j = 1

2 we have states |12 ,± 1
2 〉 or | ↑〉, | ↓〉, on which ~J = ~

2~σ.

The property (~n · ~σ)2 = 1 means we can compute u(~θ) = exp(− i
~
θ~n · ~J) =

exp(− i
2θ~n·~σ) =

∑∞
p=0

1
p! (− iθ

2 )p(~n·~σ)p = cos θ2−i~n·~σ sin σ
2 (because (~n·~σ)2n = 1

etc.). The effect of this rotation on any state is |χ〉 7→ u(~θ)|χ〉 = (cos θ2 −
i~n · ~σ sin θ

2 )|χ〉; note that the θ
2 here implies that under any rotation by 2π,

|χ〉 7→ u(2π~n)|χ〉 = −|χ〉; the state is changed by a sign. This does not worry
us overmuch, since −|χ〉, |χ〉 have the same physical content; nevertheless, this
change is detectable, because changes in relative sign between states lead to
measurable effects. Under a rotation by 4π we do get exactly the same state
back. This same effect is observed in any particle with half-integral spin. The
origin of the - sign here is that a “loop” of rotations starting at θ = 0 and
ending at θ = 2π cannot be smoothy deformed to a point, but a loop beginning
at θ = 0 and ending at θ = 4π can. QM keeps track of this, and this kind of
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transformation is called a spinnor

7.5 Reflections and Parity

Spatial reflection or parity is defined by P : ~x 7→ −~x, ~p 7→ −~p; reflections in
planes may be obtained by composing this with rotations. The corresponding
unitary operator acts on position eigenstates by u|~x〉 = | − ~x〉; hence u2 = 1.
Since u is unitary we have u† = u−1 = u. There is no one-parameter family
here so no generator, but u itself is observable. If u|ψ〉 = ηψ |ψ〉 then from
u2 = 1, η2

ψ = 1 so the eigenvalues are ηψ = ±1, called the parity oyf the state

|ψ〉. Action on operators has û~xu = −̂~x, û~pu = −̂~p, which imply u~Lu = ~L as
~L =~̂x ×~̂p. We have u~Su = ~S, u ~Ju = ~J . This transformation is a symmetry of
a QM system if uHu = H , and in this case there are joint eigenstates of H and
U .

This is familiar in 1D; if H = p̂2

2m + V (x̂) where V (−x̂) = V (x̂) then we
can choose our eigenfunctions ψ(x) of H to be even or odd. In 3D with H =
p̂2

2m + V (|̂~x|) we have definite orbital angular momentum states ψlm(~x) with
ψlm(−~x) = (s − 1)lψlm(~x), so these are already parity eigenstates with parity
η = (−1)l.

There is also a notion of intrinsic parity, whereby a single particle state |a〉
changes by u|a〉 = ηa|a〉 with ηa = ±1. In general, for a system of particles,
the total parity is the product of the spatial parity with the product of all

intrinsic parities, e.g. suppose we have particles a, b with
−→
ab = ~x, in an angular

momentum state ψlm(~x). Then the total parity is (−1)lηaηb.
If parity is conserved (as is the case in EM and strong nuclear, but not

weak nuclear (e.g. β-decay n → peν̄), interactions), we have a multiplicative
conservation law; physically, we cannot distinguish systems observed directly
from those viewed in a mirror.

7.6 Example of use of conservation laws

Consider the process πd → nn, where π is a pion, d a “deuteron” (a pn bound
state) and n a neutron. Total momentum is conserved, so we work in the center
of mass frame. This is a strong interaction, so total angular momentum and
parity are conserved. For the πd system, assume we know sπ = 0, sd = 1, and
the experimenters have found or arranged the situation such that we initially
have the orbital angular momentum l = 0, so total spin is 1 and total angular
momentum j = 1. Then for the nn system, we know sn = 1

2 ; the orbital
angular momentum is unknown at first. We know the spatial wavefunction
must have symmetry (−1)l. The total spin s must be 0 or 1; if it is 0, we have
an antisymmetric spin state, so Fermi statistics will be obeyed implying l is
even, so j = l is even contradicting conservation of j. So we must have s = 1,
a symmetric combination of spin states, so l is odd. Then j ∈ l − 1, l, l + 1, so
we must have j = l = s = 1.

Now consider parity; it was initially (−1)0ηπηd, and now is (−1)1η2
n, but

whatever ηn is we must have η2
n = 1, so if we know ηd = 1 we can deduce that

ηπ = −1.
Other discrete symmetries are time reversal T and “charge conjugation” C,

which exchanges particles with their corresponding antiparticles (it is a pre-
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diction of relativistic QM that every particle has an “antiparticle” (which is
occasionally the same particle) with the same mass and spin but opposite elec-
tric charge). Combining these with parity P we have the CPT theorem, which
is that the product transformation CPT is always a symmetry in relativistic
QM.

8 Time-dependent perturbation theory

Consider a system with Hamiltonian H0 + V (t) where H0 is time-independent
with known eigenstates and eigenvalues, and V (t) is small in comparison. We
aim to calculate a probability for transition between eigenstates of H0 (order-by-
order in V ), e.g. consider H0 an atomic Hamiltonian and V (t) representing the
EM field, then we would like to calculate the probability of an atomic transition
(accompanied by the emission or absorption of a photon).

8.1 The interaction picture

Start in the Schrödinger picture, with states obeying i~ ∂
∂t
|ψ(t)〉 = H |ψ(t)〉 =

(H0+V (t))|ψ(t)〉. The interaction picture is defined by “moving the known part

of the time evolution into operators”: |ψ(t)〉 = e
iH0t

~ |ψ(t)〉, A(t) = e
iH0t

~ Ae−
iH0t

~

(where x denotes things in the interaction picture). Then the remaining time-

dependence of states is given by i~ ∂
∂t
|ψ(t)〉 = e

iH0t

~ (−H0 +H0 + V (t))|ψ(t)〉 =

e
iH0t

~ V (t)|ψ(t)〉 = V (t)|ψ(t)〉; this can be re-cast as |ψ(t)〉 = |ψ(0)〉− i
~

∫ t

0
dt′V (t′)|ψ(t′)〉,

which is well suited to approximation order-by-order in V ((t): consider iterating

the equation. |ψ(t)〉 = |ψ(0)〉− i
~

∫ t

0 dt
′V (t)|ψ(0)〉+(− i

~
)2

∫ t

0 dt
′ ∫ t′

0 dt′′V (t′)V (t′′)|ψ(t′′)〉.
The unknown |ψ(t)〉 still appears on the RHS, but if we work to first order in

V (t) we have |ψ(t)〉 = |ψ(0)〉 − i
~

∫ t

0
dt′V (t′)|ψ(0)〉 + O(V 2).

Now let |a〉, |b〉 be eigenstates of H0 with [respective] energies Ea, Eb and
let 〈b|a〉 = 0. A transition from a state [initially] |ψ(0)〉 = |ψ(0)〉 = |a〉 at
t = 0 (when the Schrödinger and interaction pictures coincide) to state |b〉
occurs at time t with probability |〈b|ψ(t)〉|2 = |〈b|ψ(t)〉|2 (since 〈b|ψ(t)〉 =

〈b|e− iH0t

~ |ψ(t)〉 = e−
iEbt

~ 〈b|ψ(t)〉. Hence, working to order V , we have ampli-

tude 〈b|ψ(t)〉 = 〈b|a〉 − i
~

∫ t

0
dt′〈b|V (t′)|a〉 = − i

~

∫ t

0
dt′〈b|e iH0t′

~ V (t)e−
iH0t′

~ |a〉 =

− i
~

∫ t

0
dt′e

i(Eb−Ea)t′

~ 〈b|V (t′)|a〉; thus the probability is (to order V 2) 1
~2 |

∫ t

0
eiωt

′〈b|V (t′)|a〉|2
where ω = Eb−Ea

~
.

An important special case is when V (t′) is constant (at least for t′ from 0 to

t); the amplitude then becomes − i
~

∫ t

0 e
iωt′dt′〈b|V |a〉 = 1

~ω
(1 − eiωt)〈b : V : a〉,

and the probability becomes P (t) = 1
~2 (

sin ωt
2

ω
2

)2|〈b : V : a〉|2 (to order V 2); for

fixed ω we have a periodic function of time.

8.2 Transition rates and Fermi’s Golden Rule

The probability for a transition a→ b, above, is P (t) = t
~2 ft(ω) : 〈b|V |a〉|2 with

ft(ω) = 1
t
(
sin ωt

2
ω
2

)2; if we graph ft(ω) against ω, observe that limω→0 ft(ω) = t;

above 0, the graph oscillates with period 2π
t

, with oscillations bounded by 0 and

the curve 4
tω2 . Observe that

∫ ∞
−∞ ft(ω)dω = 2

∫ ∞
−∞

sin2 x
x2 dx = 2π, independent
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of t. As t increases, ft(ω) is concentrated more and more around ω = 0 [in fact
the function tends towards 2πδ(ω); the lecturer promised us more detail on this
later, but appears to have failed to deliver on this] and the probability for a
transition becomes neglegible unless ω ≈ 0 or Eb ≈ Ea.

The total probability for a transition to one of a number of possible final
states is P (t) =

∑

b
t
~
ft(

Eb−Ea

~
)|〈b|V |a〉|2. In many applications we encounter a

closely packed [i.e. approximatable by a continuum] set of final states, e.g. for
atom → atom + photon there is a continuous range of possible photon states.
Suppose the possible final states have certain parameters fixed, but the energy
Eb is a variable. Define the density of states ρ(Eb) by ρ(Eb)δE = # states (with
suitable parameters) with energy between Eb and Eb + ∆. The probability of a
transition to a state in some band B of final states is obtained from the above
equation by replacing

∑

b with
∫

B
dEbρ(Eb).

For t sufficiently large, ft(ω) ≈ 2πδ(ω) = 2π~δ(Eb−Ea) [lol what?], and then
P (t) = t

~2

∫

B
dEρ(Eb)2π~δ(Eb−Ea)|〈b|V |a〉|2 = 0 ifEa /∈ B, 2πt

~
ρ(Ea)|〈b|V |a〉|2 |Eb=Ea

if Ea ∈ B.
For this to be a good approximation, we must have t not so large that first

order perturbation theory breaks down, but large enough that the δ-function
approximation is valid. So the changes in ρ(Eb)|〈b|V |a〉|2 must be shall for
changes in Eb of order ~

t
. Under these conditions we have a constant transition

rate dP (t)
dt

= 2π
~
ρ(Ea)|〈b|V |a〉|2 - Fermi’s Golden Rule.

8.3 Interaction of radiation/EM field with atoms

Take the Hydrogen hamiltonian H0 and a perturbation V (t) = ê~x ·~ǫ cosω0t; this
represents interaction with a classical EM wave of frequency ω > 0; take the
wavelength 2πc

ω0
to be >> the Bohr radius. This is a very good approximation

for visible light.

The first order transition amplitude a→ b is − i
~

∫ t

0
dt′e

i(Eb−Ea)t′

~ 〈b|V (t′)|a〉 =

− ie
~

∫ t

0
dt′e

i(Eb−Ea)t′

~ cosω0t
′〈b|~ǫ ·̂~x|a〉. We shall analyse this formula in two steps:

first we shall consider the time dependence, then the time independent matrix
element.

i) Time dependence: split the cos into exponentials, giving two terms
∫ t

0 dt
′e

i(Eb−Ea)t′

~ e∓iω0t
′

.
Evaluating these and taking the modulus squared to get the probability gives us

terms
sin2 (ω∓ω0)t

2
(ω∓ω0)2

4

(where ω = Eb−Ea

~
as usual), and a cross term which we shall

see is irrelevant: for t large, these functions are peaked around ω = ±ω0, re-
spectively, and the cross term is then small in comparison [and the cross term,
and in fact all terms, are small away from these]. Proceeding just as in our
derivation of the Golden Rule, we could derive the precise transition rates in
the two cases Eb − Ea = ±~ω0; note that the rate is the same in each case.

ii) The matrix element ~ǫ · 〈b|̂~x|a〉; we need this to be nonzero for a transition
to be possible. When it is nonzero, the probability will be proportional to |~ǫ|2,
and therefore proportional to the intensity of EM radiation.

Consider Hydrogen atom states |a〉 = |n, l,m〉, |b〉 = |n′, l′,m′〉, labelled in

the usual way by principal quantum number, ~L2 eigenvalue and L3 eigenvalue.
Information on whether 〈b|x̂i|a〉 vanishes can be obtained from parity and an-
gular momentum arguments. The parity operator u obeys u2 = 1, u|n, l,m〉 =
(−1)l|n, l,m〉, ux̂iu = −x̂i. So 〈n′, l′,m′|x̂i|n, l,m〉 = 〈n′, l′,m′|uux̂iuu|n, l,m〉 =
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(−1)l+l
′+1〈n′, l′,m′|x̂i|n, l,m〉, which must therefore = 0 if l+ l′ is even. So our

first selection rule is that l + l′ is odd.
Now consider the consequences of angular momentum (i.e. rotational sym-

metry): we claim that the states x̂i|n, l,m〉 behave exactly as [addition of an-
gular momentum] states with j1 = 1, j2 = l, since the x̂i are components of
vectors so transform like states with angular momentum 1: recall [Li, x̂j ] =
i~ǫijkx̂k, i.e. x̂i is a vector operator. Define X1 = − 1√

2
(x̂1 + ix̂2), X0 =

x̂3, X−1 = 1√
2
(x̂1 − ix̂2); it is easy to verify that [L3, Xq] = ~qXq, [L±, Xj] =

~
√

(1 ∓ q)(1 ± q + 1)Xq±1; compare this with our standard formulas for L3, L±
(in section 6) on states with j = 1.

This implies Xq|n, l,m〉 behave just like product states |1, q〉|l,m〉, since
~L(Xq|n, l,m〉) = [~L,Xq]|n, l,m〉+Xq(~L|n, l,m〉) corresponds precisely to ~L(|1, q〉|l,m〉) =

(~L|1, q〉)|l,m〉 + |1, q〉(~L|l,m〉).
Now by standard results on addition of angular momenta, Xq|n, l,m〉 has

angular momentum quantum numbers ∈ l + 1, l, l − 1 for ~L2 and = m + q for
L3. Hence for 〈n′, l′,m′|Xq|n, l,m〉 to be nonzero, we need l′ ∈ l+ 1, l, l− 1 and
m′ = m+ q (recall q ∈ 0,±1). Recall we have l 6= l′ by parity.

So in summary, i) the time-dependence: contributions from e−iω0t, eiω0t in
cosω0t dominate as t becomes sufficiently large, with En′ − En = ±~ω0. This
is the classical version of photon absorption/emission (still classical since we as-

sumed a classical EM field - see later), ii) the matrix element ~ǫ·〈n′, l′,m′ |̂~x|n, l,m〉
- we have selection rules, this is non-zero only if l′ = l ± 1 and m′ = m + q, so
m′ = m [is possible] if ǫ3 6= 0, and m′ [can] = m ± 1 if ǫ1 or ǫ2 is 6= 0. The
probability or transition rate is proportional to |~ǫ|2, i.e. proportional to the
intensity of radiation.

8.4 Emission and absorption of photons (non-examinable
outline)

Quantisation of the EM field is done by expanding in normal modes, reducing
it to a set of oscillators (see section 2.2). Here we’ll consider just one mode, of
frequency ω0. The EM field is then a single oscillator, and the electric field in
the Heisenberg picture is ∝ ae−iω0t + a|daggereiω0t. The initial and final states
are now |a〉 = |n, l,m〉|N〉, |b〉 = |n′, l′,m′〉|N ′〉, where N,N ′ are oscillator levels
(or equivalently numbers of photons, or the quantum version of the intensity
of the EM field). Terms involving e∓iω0t now have factors in their amplitudes
of 〈N ′|a|N〉 (which =

√
N if N ′ = N − 1, 0 otherwise) or 〈N ′|a†|N〉 (which

=
√
N + 1 if N ′ = N +1, 0 otherwise) respectively. Hence the probabilities and

transition rates for absorption and emission of photons are equal except for the
factors N,N + 1; N is the intensity in “photon units”, and the 1 is the new
effect due to quantizing the EM field. So we can now have spontaneous emission
- emission when N = 0.

In general, for atomic energy levels with EM radiation of frequency
|Ei−Ej |

~
,

we have transitions from Ei down to Ej at a photon emission rate Ai→j+Bi→j×
intensity, and transitions from Ej up to Ei at absorption rate Bj→i× intensity.
A and B are called the Einstein A and B coefficients; it is a general result that
Bi→j = Bj→i, and if intensity is measured as the number of photons then these
= Ai→j as well.
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9 Quantum Basics

QM is inherently probabilistic, wheras classical mechanics is not. We ask, could
the probabilities in QM actually just be the manifestation of our ignorance of
some “hidden” degrees of freedom [in the same way that e.g. the probabilistic
Boltzmann distribution of a classical gas arises from entirely deterministic me-
chanics]? We will address this question via Bell’s inequality (there are many
other interesting, and even open, questions in QM, e.g. a more satisfactory
treatment of the role of the observer, but we won’t discuss these).

9.1 Classical and Quantum Data

Consider the simplest possible system, a single measurable quantity S with
outcomes 0 or 1. Classically, specifying S gives one bit of information. In QM
S is an operator with eigenstates |0〉, |1〉; a general state is |ψ〉 = α|0〉+ β|1〉 for
some |α|2 + |β|2 = 1, so there is an (uncountably) infinite set of possible states.
This is called a quantum bit or qbit; it seems to contain vastly more information
than a classical bit. However, if we measure S we destroy the state |ψ〉, forcing
it into the state |0〉 or |1〉. To find |α|2, |β|2 by making many measurements,
we would need a large number of copies of |ψ〉. Could we find a mechanism for
copying |ψ〉 as many times as we need? No, this is forbidden by the no-cloning
theorem. As a simple version of this, suppose we have a device which copies
any unknown state |ψ〉 onto a previously “blank” state |b〉 by a linear, unitary

change |ψ〉⊗ |b〉 u7→ |ψ〉⊗ |ψ〉; similarly for another state |φ〉, |φ〉⊗ |b〉 u7→ |φ〉⊗ |φ〉
(all states here being taken to be normalized). Since u is unitary, we then have
〈φ|ψ〉〈b|b〉 = 〈φ|ψ〉〈φ|ψ〉, implying 〈φ|ψ〉 must be 0 or 1. So we cannot copy a
general linear combination of two independent states.

9.2 Hidden sectors and density operators

Consider a space of states V = U ⊗W where the states of U are “observed”
and those of W are “hidden”. A general state is |Ψ〉 =

∑

ia αia|ψi〉⊗ |φa〉 where
{|ψi〉}, {|φa〉} are orthonormal bases for U,W , and ‖|Ψ〉‖2 =

∑

ia |αia|2 = 1.
If an observableQ acts only on U , then 〈Q〉 = 〈Ψ|Q|Ψ〉 =

∑

ia

∑

jb α
⋆
jbαia〈ψj |Q|ψi〉〈φb|φa〉.

This last bracket is δab and the result becomes
∑

ij βij〈ψj |Q|ψi〉, where the ma-
trix βij =

∑

a αiaα
⋆
ja, which is clearly Hermitian, positive definite, and of trace

1. There is a unitary matrix Uij with UβU † = diag(pi) (i.e. the diagonal
matrix Aii = pi, Aij = 0 otherwise), and

∑

i pi = 1 (each pi ≥ 0), and if we
define new orthonormal states |χi〉 =

∑

j uij |ψj〉, then 〈Q〉 =
∑

i pi〈Q〉χi
where

〈Q〉χi
= 〈χi|Q|χi〉. The effect of the hidden sector is to produce a probability

distribution pi for states |χi〉 in U .
It is often convenient to write this using density operators ρ = |Ψ〉〈Ψ|, a

“pure state” in V . Defining the trace of any operator by trA =
∑

n〈n|A|n〉
for any orthonormal basis {|n〉}, we have 〈Q〉 = trV (Qρ). The reduced density
operator is ρ̄ =

∑

ij αiaα
⋆
ja|ψi〉〈ψj |, a “mixed state”, =

∑

i pi|χi〉〈χi|, so 〈Q〉 =
trV (Qρ̄).
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9.3 EPR Experiments and Bell’s Inequality

The Einstein-Podolsky-Rosen thought experiment: in modern language, con-
sider two spin- 1

2 particles being created in the state |ψ〉 = 1√
2
(| ↑〉| ↓〉− | ↓〉| ↑〉).

Let the spin operators on the first and second particles be ~σ(A), ~σ(B) respectively.
Imagine the particles are carried far apart in space by [respective] experimenters
Alice (A) and Bob (B), without altering |ψ〉.

Suppose Alice measures σ
(A)
z ; she gets the result +1 or −1, each with prob-

ability | 1√
2
|2 = 1

2 . Say Alice measures 1 - then aftarwards, the state has become

| ↑〉| ↓〉. Now if Bob measures σ
(B)
z he gets the result -1 with probability 1; Alice

knows this in advance, but Bob doesn’t. Einstein termed this “spooky action
at a distance”. But note that there is no actual inconsistency, nor violation of
causality.

The unexpected correlation arises because there was entanglement of two

systems in the state |ψ〉; |ψ〉 was not a simple product |ψ(A)〉 ⊗ |ψ(B)〉.
Could the correlation be explained in a deterministic fashion, by some hidden

variables which take definite values (according to some probability distribution)
when the particle pair is created?

First consider a single particle, and think of measuring a single component

of spin along the direction ~n. σθ = ~n · ~σ =

(

cos θ sin θ
sin θ − cos θ

)

where ~n =

(sin θ, 0, cos θ). This has eigenstates | ↑ θ〉 = cos θ2 | ↑〉 + sin θ
2 | ↓〉 =

(

cos θ2
sin θ

2

)

with eigenvalue 1, | ↓ θ〉 = − sin θ
2 | ↑〉+cos θ2 | ↓〉 =

(

− sin θ
2

cos θ2

)

with eigenvalue

−1. Note the inner products |〈↑ θ| ↑〉|2 = |〈↓ θ| ↓〉|2 = cos2 θ
2 , |〈↑ θ| ↓〉|2 = |〈↓

θ| ↑〉|2 = sin2 θ
2 . But these results could only depend on the angle between the

directions of~̂z, ~n, as the choice of axes is arbitrary. So |〈↑ θ| ↑ φ〉|2 = |〈↓ θ| ↓
φ〉|2 = cos2 θ−φ

2 , |〈↑ θ| ↓ φ〉|2 = sin2 θ−φ
2 .

Now we return to a two-particle system, in state |ψ〉 = 1√
2
(| ↑〉| ↓〉 − | ↓〉| ↑

〉) = 1√
2
(| ↑ θ〉| ↓ θ〉−| ↓ θ〉| ↑ θ〉). Suppose Alice measures one of σ

(A)
z , σ

(A)
θ , σ

(A)
φ

and then Bob measures one of σ
(B)
z , σ

(B)
θ , σ

(B)
φ , e.g. σ

(A)
z = +1 (which occurs

with probability 1
2 ), so |ψ〉 becomes | ↑〉| ↓〉. Then σ

(B)
θ = −1 with probability

|〈↓ θ| ↓〉|2 = cos2 θ
2 . So we write P (σ

(A)
z = +1, σ

(B)
θ = −1) = 1

2 cos2 θ
2 ; similarly

P (σ
(A)
z = −1, σ

(B)
φ = +1) = 1

2 cos2 φ
2 and P (σ

(A)
θ = 1, σ

(B)
φ = 1) = 1

2 sin2 θ−φ
2 .

Suppose these results were produced by some classical variables S
(A)
z , S

(A)
θ , S

(A)
φ , S

(B)
z , S

(B)
θ , S

(B)
φ ,

with each Si = ±1 according to some probability distribution [and this value

being fixed when |ψ〉 is created]. Since we know s
(A)
z = ±1 ⇔ S

(B)
z = ∓1

and similarly, we can write the distribution as a function of Alice’s variables

alone, as p(S
(A)
z , s

(A)
θ , s

(A)
φ ). Suppose this is possible; then P (S

(A)
θ , S

(B)
φ =

1) = P (S
(A)
θ = 1, S

(A)
φ = −1) = p(1, 1,−1) + p(−1, 1,−1) ≤ p(1, 1,−1) +

p(1, 1, 1)+p(−1,−1,−1)+p(−1, 1,−1) (since probabilities are always ≥ 0), but

this = P (S
(A)
z = 1, S

(A)
θ = 1)+P (S

(A)
z = −1, S

(A)
φ = −1) = P (S

(A)
z = 1, S

(B)
θ =

−1) + P (S
(A)
z = −1, S

(B)
φ = 1).

So we have (a version of) Bell’s inequality: P (S
(A)
θ , S

(B)
φ = 1) ≤ P (S

(A)
z =
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1, S
(B)
θ = −1)+P (S

(A)
z = −1, S

(B)
φ = 1). This implies sin2 θ−φ

2 ≤ cos2 θ
2 +cos2 φ

2
by comparison with the results above. But this must hold ∀θ, φ, and it does
not, e.g. for θ = 3π

4 , φ = 3π
2 it would mean − cos2 3π

8 − sin2 3π
8 ≤ cos2 3π

4 , i.e.
− cos 3π

4 ≤ cos3 3π
4 , implying 1√

2
≤ 1

2 , a contradiction.

[This is the end of the course]
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