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Number Theory is the study of the mysterious and hidden properties of Z
andQ; it is the oldest part of mathematics. To this day it is quite an experiment-
based field; we spot things which are happening by experiment, and then the
hard pard is proof; even today many great conjectures remain unproven, and
when they are proven this is usually as a result of great advances in seemingly
distant areas.

The great modern development in number theory has been the rise of com-
puter science; computer methods make numerical experiments much easier,
and conversely computer science is fundamentally dependent on number the-
ory.

There is one particularly recommended book for this course, Bomerance
and Grandall’s Primes - A Computational Approach.

1 Revision

1.1 Euclid’s Algorithm

Given integers a > 0, b we can find q, r ∈ Z such that b = aq + r with 0 ≤ r < a:
consider {b − xa : x ∈ Z}; this set clearly contains elements ≥ 0 so it contains a
least element ≥ 0; call this r = b − qa; then r < a as were r ≥ a then r − a ≥ 0
contradicting the definition of r.

A consequence of this is the existence of the gcd of any two integers a, b not
both zero; given such a, b define I = {xa + yb : x, y ∈ Z}

1.1.1 Lemma

∃d > 0 ∈ Z such that I = dZ: I contains elements > 0, take d to be the least such
element, then for any c ∈ I we can write c = qd + r where 0 ≤ r < d; then we
have r ∈ I so r = 0 and we are done.

Note that d | a, d | b, and if e | a, e | b then e | every element of I; in
particular, e | d; hence d is the gcd of a and b, written (a, b). This argument
shows that every ideal in Z is principal; note that this is false in a general ring
e.g. R = {x + y

√
m : x, y ∈ Z}.

Now, given a, b both positive with a < b, Euclid’s algorithm gives us a very
efficient way of computing d = (a, b): we write b = aq1 + r1, a = r1q2 + r2, r! =

r2q3 + r3 etc. with r1 < a, r2 < r1 etc. until rn−1 = rnqn+1; this process must
terminate as the ri are a decreasing sequence of positive integers. Observe that
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rn = (rn − 1, rn) = · · · = (r1, r2) = (a, r1) = (a, b). A fundamental consequence of
this, which bizzarely is never stated in Euclid, is:

1.2 Unique Prime Factorization

We define that an integer n > 1 is prime if n has no nontrivial factorization; i.e.
if n = ab for a, b ∈N then {a, b} = {1, n}.

1.2.1 Lemma

Let p be any prime number, then if p | ab then p | a or p | b; assume p ∤ a, then
(a, p) = 1 ⇒ ∃x, y ∈ Z such that ax + py = 1 ∴ abx + pby = b; then p | the left
hand side since p | ab so p | the right hand side, i.e. b.

1.2.2 Fundamental Theorem of Arithmetic

Every integer n > 1 can be written as a product of primes, and this represen-
tation is unique up to order: n = n1n2 where 0 < n1, n2 < n; by induction we
have existence. For uniqueness suppose p1 . . .pr == q1 . . . q j, then p1 | q1 . . . q j ∴

either p1 = q1 or p1 | q2 . . . q j, etc.
An algorithm is called polynomial if when applied to M it takes ≤ c(log M)W

elementary operations, where c,W are positive constants. For example, if
M,R have m, r digits respectively, computing MR can be done in at most 2mr
elementary operations, and we clearly have m ≤ log M + 1 etc. so if R ≤ M
then the maximum number of operations required to multiply R and M is
≤ 2(log M + 1)2 - we have a polynomial algorithm for multiplication. The
obvious algorithm for factoring an integer N > 1 (or telling us it is prime) is
trial division by 2 and all odd integers ≤

√
n, but this is not polynomial; a

fundamental question is whether a polynomial algorithm for factoring exists
(note that there are polynomial algorithms for primality testing, but these only
tell us whether N is prime, they do not find a factor of it).

The largest known prime is currently 232582657 − 1.

1.2.3 Theorem (Euclid)

There are infinitely many primes: let 2, 3, . . . , p be the primes ≤ p, then N =
2 × 3 × · · · × p + 1 must have a prime factor > p.

1.2.4 Theorem

Let N be any integer ≥ 2, then ∃ blocks of consecutive composite numbers

whose length is ≥ N: pick p ≥ N + 2 prime, then consider the p − 1 numbers
M + 2,M + 3, . . . ,M + p where M = 2 × 3 × · · · × p; each of these integers must
be composite since they are divisible by a prime ≤ p but > p.

1.2.5 Three unproven statements thought to be true

There are infinitely many twin primes.
There are infinitely many triple primes of the form (p, p+ 2, p+ 6) (or (p, p+

4, p + 6); note if we have (p, p+ 2, p + 4) one of these is divisible by 3).
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There are infinitely many primes of the form n2 + 1.

1.2.6 Definition

For x ≥ 2, π(x) = the number of primes ≤ x; we have π(102) = 25, π(103) =
168, π(104) = 1229, π(106) = 78498.

1.2.7 Guess of Gauss

π(x) is close to li(x) :=
∫ x

2
dt

log t ; this is remarkably accurate, see later.

The above Euclid implies π(x) > log log x for x > 2; we can do better than
this. Let S be any finite set of prime numbers, and define fS(x) = the number of
positive integers ≤ x which are composed of primes in S.

Lemma: ∀x ≥ 2, fS(x) ≤
√

x × 2#(S): if n is composed only of primes in S we
can write n = m2r where r is square-free; then n ≤ x ⇒ m2 ≤ x ⇒ m ≤

√
x so

there are at most
√

x possible choices of m, while r is of the form p1 . . . ps where
the pi are distinct primes from S so the total number of choices of r is ≤ 2#(S).

Corollary: for x ≥ 2, π(x) ≥ log x

2 log 2 by letting S be the set of all primes ≤ x,

then fS(x) = x ≤
√

x2π(x); rearranging gives the result.
We can do still better than this, even by elementary methods; see Chebyshev.

1.3 Congruences

Take an integer m > 1. We define a ≡ b mod m if m | a−b; this is an equivalence
relation on Z with equivalence classes a + mZ; we write Z/mZ for the set of
such equivalence classes. Addition and multiplication of classes is defined in
the obvious way.

Lemma: a+mZ is a unit in Z/mZ iff (a,m) = 1: (a+mZ)(b+mZ) = 1 +mZ
for some b iff ab +mk = 1 for some b and k, iff (a,m) = 1 by Euclid’s algorithm.

We define (Z/mZ)⋆ to be the group of units of Z/mZ and Euler’s function
φ(m) = #((Z/mZ)⋆).

1.3.1 Euler’s Theorem

If a is an integer prime to m then aφ(m) ≡ 1 mod m: this is true by Lagrange’s
theorem since φ(m) is the order of the group of units modulo m so the order of
a must divide it. If m = p prime then φ(m) = p − 1 so we have:

1.3.2 Corollary: Fermat’s Little Theorem

If (a, p) = 1 then ap−1 ≡ 1 mod p. Therefore for p an odd prime, 2p−1 ≡ 1 mod p.
When do we have 2p−1 ≡ 1 mod p2? There are only two known such

examples, 1093 and 3511, and these are known to be the only such p < 16×1012,
but it is unknown whether this is the case for infinitely many primes, or even
whether there are infinitely many primes for which 2p−1

. 1 mod p2.
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1.3.3 Chinese Remainder Theorem

For k ≥ 1 and m1, . . . ,mk distinct with (mi,m j) = 1∀i , j, put M = m1, . . .mk.
Given any integers a1 . . . ak, ∃x ∈ Z with x ≡ a1 mod m1, . . . , x ≡ ak mod mK;
moreover any two such m are congruent modulo M. This last part is obvious;
if x, y are two solutions then mi | x − y∀i ∴ M | x − y, and for the existence of
such n x put Mi =

M
mi

, then (Mi,mi) = 1 so ∃ui : uiMi ≡ 1 mod mi, then take

x =
∑k

i=1 aiuiMi.
We can take a more abstract approach to the CRT: let Ri =

Z
miZ

, then define
the cartesian product R1 × · · · × Rk = {(x1, . . . , xk) : xi ∈ Ri} by componentwise
addition and multiplication. Then R1× · · ·×Rk is a ring and we can reformulate
the CRT as the following:

Theorem: Assume (mi,m j) = 1∀i , j, let M = m1 . . .mk. Then the map

θ : Z
MZ → R1 × · · · × Rk defined by θ(a + MZ) = (a + m1Z, . . . , a + mkZ) is

an isomorphism of rings: the map is well defined and preserves addition and
multiplication; it is injective sinceθ(a+MZ) = θ(b+Z)⇒ mi | a−b∀i⇒M | a−b.
Then surjectivity is automatic as #( ZMZ ) = m = #(R1 × · · · × Rk); in practice this
proof is less useful than the previous one as it is nonconstructive.

Corollary: If (m, n) = 1 then φ(mn) = φ(m)φ(n) as φ(r) = #(( ZrZ )⋆) and θ

induces an isomorphism ( ZmnZ )⋆ → ( ZmZ )⋆ × ( ZnZ )⋆.

1.4 Solution of congruences of the form f (X) ≡ 0 mod m where
f (X) ∈ Z[X]

As a surprising example f (X) = X2 − 1 has four roots mod 8 (1,3,5,7); thus we
do not have a fundamental theorem of algebra like in Cwhere a polynomial of
degree n has at most n roots.

Let R be a ring; define R[X] is the set of formal expressions a0 + · · · + anXn

for ai ∈ R; add and multiply polynomials in the usual way. Then for f (X) ∈
R[X], α ∈ R we define f (α) = a0 + · · · + anα

n ∈ R.
Lemma: For f (X) ∈ R[X], α ∈ R∃h(X) ∈ R[x] such that f (X) − f (α) = (X −

α)h(X): f (X) = a0 + · · · + anXn
∴ f (X) − f (α) = a1(X − α) + · · · + an(Xn − αn), but

Xk + αk = (X − α)(Xk−1 + xk−2α + · · · + αk−1) (and this is true in any ring).
Corollary: f (α) = 0⇔ ∃h(X) ∈ R(X) : f (x) = (X − α)h(X).
Definition: α , 0 ∈ R is a zero divisior if ∃β , 0 ∈ R with αβ = 0, e.g. 2+ 8Z

in Z
8Z .
Definition: the ring R is an integral domain if R has no zero divisors; exam-

ples areZ and any field such as ZpZ . If f (X) = a0+ · · ·+anXn we define deg f = n;

deg 0 = −∞
Lemma: if R is an integral domain then deg f g = deg f + deg g; let f (X) =

anXn + · · ·+ a0 , 0 , g(X) = bmXm + · · ·+ b0 (the result trivially holds if f or g is
0), then f g(X) = anbmXm+n + . . . with anbm , 0.

Proposition: let R be an ID and α1, . . . , αs ∈ R distinct roots of f (X) .
0 ∈ R[X], then ∃g(X) ∈ R[X] such that f (X) = (X − α1) . . . (X − αs)g(X); in
particular s ≤ deg f . We have already proven this for s = 1, then induction;
assuming this is true for s, take αs+1 distinct from α1, . . . , αs with 0 = f (αs+1) =
(αs+1 − α1) . . . (αs+1 − αs)g(αs+1); αs+1 − αi , 0∀i, so since R is an ID the probuct
(αs+1 − α1) . . . (αs+1 − αs) , 0 and so g(αs+1) = 0 ∴ g(X) = (X − αs+1)h(X) as
required.
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Corollary: Lagrange’s theorem: let p be a prime and a0, . . . , an integers with
an . 0 mod p; then the congruence anXn + · · · + a0 ≡ 0 mod p has at most
n (incongruent) solutions mod p; take R = Z

pZ , f (X) = anXn
+ · · · + a0 where

ai = ai + pZ; f . 0 since an , 0 so there are at most n solutions in Z
pZ by the

above.
For example, f (X) = Xp−1 − 1− (X − 1)× · · · × (X− (p− 1)); has deg f < p− 1

but by Fermat’s little theorem it has p − 1 roots modulo p, so f ≡ 0 (i.e. each of
its coefficients is 0 modulo p) by Lagrange’s Theorem.

Corollary: Wilson’s Theorem: for p prime, (p − 1)! ≡ −1 mod p; note that
conversely if n > 1 is an integer, then (n − 1)! ≡ −1 mod n ⇒ n is a prime
(but this cannot be used for an efficient primality test). When do we have
(p − 1)! ≡ −1 mod p2? The known examples are p = 5, 13, 8563 and these are
the only such primes < 5 × 108, but as usual we don’t know whether there are
infinitely many such p.

1.5 Theorem of the Primitive Root

Theorem: If F isa field of finite cardinality (i.e. with finitely many elements)
then F× is cyclic, e.g. Fp [I will write Fp for Z

pZ and a for a + pZ]. Any generator

of F×p is called a primitive root mod p, e.g. 2 mod 11.

Artim’s (unproven) conjecture: n = 2 is a primitive root for infinitely many
primes p (in fact, Artim’s conjecture is that this is the case for any n , ±1 which
is not a square).

Remark: if G is any cyclic group of order d then G has preciselyφ(d) elements
of (exact) order d; let G = 〈g〉 (i.e. the group generated by g), then gi generates
G⇔ (i, d) = 1.

Lemma: let n ≥ 1 be an integer, then n =
∑

d|n,d≥1 φ(d): for each d ≥ 1 with
d | n let Cd be the unique subgroup of Fn of order d; letΦd be the set of generators
such that |Φd| = φ(d). Then, and this is the key remark, Cn =

Z
nZ is the disjoint

union of the Φd as d runs over all divisors of n ≥ 1, so n = #(Cn) =
∑

d|d,d≤n #(Φd)
and we have the result.

Proposition: Let H be any finite group of order n. Suppose that for all d | n,
|{x ∈ H : xd = 1}| ≤ d, then H � Cn: For each d | n let Wd be the set of x ∈ H :
with exact order d. For Wd , ∅ take y ∈ Wd, then 〈y〉 = {1, y, . . . , yd−1} has d
elements, and xd = 1∀d ∈ 〈y〉 so Wd = 〈y〉. And H has precisely φ(d) elements
of exact order d so #(Wd) = φ(d). Or if Wd = ∅ for some d | n, this is impossible
since n = #(H) =

∑

d|n φ(d) so we would have #(H) < n, a contradiction. Taking
d = n,H must be cyclic since Wn , ∅.

Corollary: If F is a finite field then F× is cyclic: Xd − 1 ∈ F[X] has at most d
roots and they are ∈ F× so H = F× must be cyclic.

For p prime, consider the ring Z
pnZ

; this is not a field for n > 1 as then p is a

zero divisor.
Herafter p is an odd prime.
Theorem: ∀n ≥ 1, ( ZpnZ

)× is cyclic.

Proposition: ∃ a primitive root g mod p such that gp−1 = 1 + bp with
(b, p) = 1, and any such g generates ( ZpnZ

)×∀n ≥ 1, e.g. 3 for p = 7: for the

first part take any primitive root g1, and consider g
p−1

1
= 1 + b1p; if (b1, p) = 1

we are done, otherwise p | b1; then set g = g1 + p and this is a primitive root
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mod p but gp−1 = 1 + bp with (b, p) = 1 since gp−1 − 1 = (g1 + p)p−1 − 1 =

g
p−1

1
− 1 + (p − 1)g

p−2

1
p + p2a for some a ∈ Z, i.e. (p − 1)g

p−2

1
p + p2c for c ∈ Z, but

this is ((p − 1)g
p−2

1
+ pc)p = bp with p ∤ b. For the second part we will use the

following:
Lemma: Let w = 1 + pb where (p, b) = 1, then ∀n ≥ 0, wpn = 1 + bnpn+1

with (bn, p) = 1: induction, the n = 0 case is true by hypothesis, now assuming

it’s true for n then wpn+1
= (1 + bnpn+1)p

∴ wpn+1 − 1 = bnpn+2
+
∑p

i=2

(p
i

)

bi
np(n+1)i

=

bnpn+2 +
p(p−1)

2 b2
np2n+2 + p2n+3cn for some cn ∈ Z, but since p is odd, p | p(p−1)

2 so
this is bnpn+2 + anp2n+3 for some an ∈ Z, = pn+2(bn + pan); let the bracket be bn+1

and then p ∤ pn+1 since p ∤ bn.
Now to complete the proof we induct on n; the n = 1 case is by hypothesis;

w = gp−1 must have order p in ( Z
p2Z

)×, and we continue by induction.

2 Law of Quadratic Reciprocity

This was discovered by Legendre in c. 1785, but not proven until Gauss in 1796;
this is the form we shall proove (using a proof given by Gauss). In the 19th
century a major theme was to generalize this to cubic, quartic, etc. reciprocity;
in 1927 E. Artim proved the general abelian reciprocity law. Non-abelian reci-
procity has been studied since 1965 and remains an important research topic
today.

Lemma: In F×p there are precisely
p−1

2 squares: F×p = {1, g, . . . , gp−2} for some

primitive root g; gi is a square ⇔ i is even; the forward implication is trivial,
for the converse if gi = y2 then let y = gk, then g2k = g2 so i ≡ 2k mod p − 1 so
since p − 1 is even, 2 | i.

Definition: let a be any integer with (a, p) = 1; we say a is a quadratic
nonresidue if it is a square in Fp and a quadratic non-residue otherwise; we
define the legendre symbol ( a

p ) to be 0 if p | a, 1 for a a quadratic residue mod p

and -1 for a a quadratic non-residue mod p.

Lemma (Euler’s Criterion): ∀a ∈ Z, ( a
p ) ≡ a

p−1
2 mod p; a corollary is that

( ab
p ) = ( a

p )( b
p ), which shows that a 7→ ( a

p ) defines a group homomorphism F×
P
→

{±1}. Putting a = 1 we have (−1
p ) = (−1)

p−1

2 , i.e. −1 is a square modulo p⇔ p ≡ 1

mod 4. For the proof of the lemma let P =
p−1

2 ; if p | a the result is trivial as

both sides are 0 mod p, otherwise we have ap−1 ≡ 0 mod p by FLT so since the
LHS is (aP− 1)(aP+ 1) we have eithr aP ≡ 1 mod p or aP ≡ −1 mod p, but these
cannot simultaneously be true. Let g be a generator of Fp, then a ≡ gk mod p

for some k ∈ Z so aP = gkp mod p; if we assume k even, i.e. a is a quadratic

residue modulo p, i.e. ( a
p ) = +1, then kP = k

p−1

2 is an integer multiple of p − 1,

so gkP ≡ 1 mod p and we have the result; otherwise k is odd i.e. ( a
p ) = −1, then

kP is not an integer multiple of p − 1, so gkP
, 1 mod p; since g is a primitive

root mod p this implies aP
. 1 mod p; by the earlier remark aP ≡ −1 mod p

as required.
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2.1 Theorem (Law of Quadratic Reciprocity

Let p, q distinct odd primes, then (
p

q ) = (
q

p ) iff at least one of p and q is 1 mod 4;

equivalently (
p

q )(
q

p ) = (−1)
p−1

2
q−1

2 . This is perhaps the first nonobvious proof in

this course; we shall proove it in the next lecture.
Lemma of Gauss: Let a be an integer with (a, p) = 1; define P as before. For

j = 1, . . . ,P let a j denote the unique integer with a j = ja mod p and− p

2 < a j <
p

2 ,
i.e. a j ∈ {±1,±2, . . . ,±P}. Le ν(a) denote the number of j for which a j < [; then

( a
p ) = (−1)ν(a): if j1a = j2a mod p then p | j(a1 − a2) so j1 = j2; if j1a = − j2a

mod p then p | ( j1+ j2)a⇒ p | j1 + j2 which is impossible, so the P elements a j as
j runs from 1 to P consist of precisely {epsilon11, ǫ22, . . . , ǫPP}where ǫi = 1 or −1.
Hence a × 2a × · · · × Pa = 1 × 2 × ×̇P(−1)ν(a) mod P⇒ aP ≡ (−1)ν(a) mod P, but
by the previous lemma this is ≡ ( a

p ); both these are ±1 and congruent mod p,

so ( a
p ) = (−1)ν(a).

[After this lecture I dropped this course]
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