Number Theory

May 14, 2008

Number Theory is the study of the mysterious and hidden properties of Z
and Q; itis the oldest part of mathematics. To this day it is quite an experiment-
based field; we spot things which are happening by experiment, and then the
hard pard is proof; even today many great conjectures remain unproven, and
when they are proven this is usually as a result of great advances in seemingly
distant areas.

The great modern development in number theory has been the rise of com-
puter science; computer methods make numerical experiments much easier,
and conversely computer science is fundamentally dependent on number the-
ory.

There is one particularly recommended book for this course, Bomerance
and Grandall’s Primes - A Computational Approach.

1 Revision

1.1 Euclid’s Algorithm

Given integers a > 0,b we can find q,7 € Z such thatb = ag+r with0 <r < a:
consider {b — xa : x € Z}; this set clearly contains elements > 0 so it contains a
least element > 0; call this ¥ = b —qa; thenr <aaswerer >athenr—a >0
contradicting the definition of .

A consequence of this is the existence of the gcd of any two integers a, b not
both zero; given such a,b define I = {xa + yb : x,y € Z}

1.1.1 Lemma

dd > 0 € Z such that I = dZ: I contains elements > 0, take d to be the least such
element, then for any c € I we can write ¢ = gd + ¥ where 0 < r < d; then we
have r € I so r = 0 and we are done.

Note that d | a,d | b, and if e | a,e | b then e | every element of I; in
particular, e | d; hence d is the gcd of a and b, written (a,b). This argument
shows that every ideal in Z is principal; note that this is false in a general ring
eg. R={x+yvym:x,yeZ).

Now, given a, b both positive with a < b, Euclid’s algorithm gives us a very
efficient way of computing d = (a,b): we write b = agy + r1,a = r1iqy + 1o, 11 =
g3 + 13 etc. with vy < a,r, < rq etc. until #,-1 = #,gu41; this process must
terminate as the ; are a decreasing sequence of positive integers. Observe that



tw = (th —1,1) =--- = (r1,12) = (a,71) = (a,b). A fundamental consequence of
this, which bizzarely is never stated in Euclid, is:

1.2 Unique Prime Factorization

We define that an integer n > 1 is prime if n has no nontrivial factorization; i.e.
if n = ab fora,b € N then {a,b} = {1,n}.

1.2.1 Lemma

Let p be any prime number, then if p | ab then p | a or p | b; assume p 1 4, then
(a,p) =1 = dx,y € Z such that ax + py = 1 .. abx + pby = b; then p | the left
hand side since p | ab so p | the right hand side, i.e. b.

1.2.2 Fundamental Theorem of Arithmetic

Every integer n > 1 can be written as a product of primes, and this represen-
tation is unique up to order: n = n1n, where 0 < ny, 1y < n; by induction we
have existence. For uniqueness suppose p1...p, ==q1...q;, thenpi | q1...q; ..
either p1 = g1 orp1 | g2...gj, etc.

An algorithm is called polynomial if when applied to M it takes < c(log M)"
elementary operations, where ¢, W are positive constants. For example, if
M, R have m,r digits respectively, computing MR can be done in at most 2mr
elementary operations, and we clearly have m < logM + 1 etc. soif R < M
then the maximum number of operations required to multiply R and M is
< 2(logM + 1)*> - we have a polynomial algorithm for multiplication. The
obvious algorithm for factoring an integer N > 1 (or telling us it is prime) is
trial division by 2 and all odd integers < +/n, but this is not polynomial; a
fundamental question is whether a polynomial algorithm for factoring exists
(note that there are polynomial algorithms for primality testing, but these only
tell us whether N is prime, they do not find a factor of it).

The largest known prime is currently 232582657 — 1,

1.2.3 Theorem (Euclid)

There are infinitely many primes: let 2,3,...,p be the primes < p, then N =
2X 3 X ---Xp+1must have a prime factor > p.

1.2.4 Theorem

Let N be any integer > 2, then 3 blocks of consecutive composite numbers
whose length is > N: pick p > N + 2 prime, then consider the p — 1 numbers
M+2,M+3,...,M+pwhere M = 2x3 X --- X p; each of these integers must
be composite since they are divisible by a prime < p but > p.

1.2.5 Three unproven statements thought to be true

There are infinitely many twin primes.
There are infinitely many triple primes of the form (p,p +2,p +6) (or (p,p +
4,p + 6); note if we have (p,p + 2, p + 4) one of these is divisible by 3).



There are infinitely many primes of the form n? + 1.

1.2.6 Definition

For x > 2, m(x) = the number of primes < x; we have 7(10%) = 25,7(10%) =
168, 7(10%) = 1229, (105 = 78498,

1.2.7 Guess of Gauss

7i(x) is close to li(x) := zx %gtt ; this is remarkably accurate, see later.

The above Euclid implies 7(x) > loglog x for x > 2; we can do better than
this. Let S be any finite set of prime numbers, and define fs(x) = the number of
positive integers < x which are composed of primes in S.

Lemma: Vx > 2, fs(x) < vx x 2%9: if n is composed only of primes in S we
can write n = m?r where r is square-free; then n < x = m? < x = m < Vx so
there are at most \/E possible choices of m, while r is of the form p; ... ps where
the p; are distinct primes from S so the total number of choices of r is < 2#5).

Corollary: for x > 2, mt(x) > Zlffgxz by letting S be the set of all primes < x,

then fs(x) = x < Vx2™™; rearranging gives the result.
We can do still better than this, even by elementary methods; see Chebyshev.

1.3 Congruences

Take an integer m > 1. We definea = b mod mif m | a—b; this is an equivalence
relation on Z with equivalence classes a + mZ; we write Z/mZ. for the set of
such equivalence classes. Addition and multiplication of classes is defined in
the obvious way.

Lemma: a + mZ. is a unit in Z/mZ.iff (a, m) = 1: (a + mZ)(b + mZ) =1 + mZ.
for some b iff ab + mk = 1 for some b and k, iff (a2, m) = 1 by Euclid’s algorithm.

We define (Z/mZ)* to be the group of units of Z/mZ and Euler’s function
o(m) = #(Z/mZ)*).

1.3.1 Euler’s Theorem

If a is an integer prime to m then a?™ =1 mod m: this is true by Lagrange’s

theorem since ¢(m) is the order of the group of units modulo m so the order of
a must divide it. If m = p prime then ¢(m) = p — 1 so we have:

1.3.2 Corollary: Fermat’s Little Theorem

If (a,p) = 1thena?™' =1 mod p. Therefore for p an odd prime, 2~' =1 mod p.

When do we have 27! = 1 mod p*? There are only two known such
examples, 1093 and 3511, and these are known to be the only such p < 16 x10'2,
but it is unknown whether this is the case for infinitely many primes, or even
whether there are infinitely many primes for which 27! # 1 mod p?.



1.3.3 Chinese Remainder Theorem

For k > 1 and my, ..., my distinct with (m;, m;) = 1Vi # j, put M = my, ... my.
Given any integers a; ...ax, dx € Z with x = a; mod my,...,x = ar mod mg;
moreover any two such m are congruent modulo M. This last part is obvious;
if x, y are two solutions then m; | x — y¥i .. M | x — y, and for the existence of
such n x put M; = %, then (M;, m;) = 1 so Ju; : u;M; =1 mod m;, then take
X = Zi'(:l aiuiMi.

We can take a more abstract approach to the CRT: let R; = m’%, then define
the cartesian product Ry X --- X Ry = {(x1,...,xx) : x; € R;} by componentwise
addition and multiplication. Then R; X - - - X Ry is a ring and we can reformulate
the CRT as the following:

Theorem: Assume (m;,m;) = 1Vi # j, let M = my...m;. Then the map
0 : % — Ry X -+ X Ry defined by 6(a + MZ) = (a + mZ,...,a + mZ) is
an isomorphism of rings: the map is well defined and preserves addition and
multiplication; it is injective since O(a+MZ) = 0(b+Z) = m; | a—b¥i = M | a-b.
Then surjectivity is automatic as #(%) =m = #(Ry X --- X Ry); in practice this
proof is less useful than the previous one as it is nonconstructive.

Corollary: If (m,n) = 1 then ¢p(mn) = Pp(m)p(n) as ¢(r) = #((%)*) and 0
induces an isomorphism (mfz)* — (%)* X (%)*.

1.4 Solution of congruences of the form f(X) = 0 mod m where
f(X) € Z[X]

As a surprising example f(X) = X2 — 1 has four roots mod 8 (1,3,5,7); thus we
do not have a fundamental theorem of algebra like in C where a polynomial of
degree n has at most # roots.

Let R be a ring; define R[X] is the set of formal expressions ag + - - - + a,X"
for a; € R; add and multiply polynomials in the usual way. Then for f(X) €
R[X], « € R we define f(a) =ag + - -+ +a,a" € R.

Lemma: For f(X) € R[X],a € RIn(X) € R[x] such that f(X) — f(a) = (X -
ah(X): fX) =ao+-+a, X" .. f(X) - f(@) =a1(X —a) + -+ +a,(X" — a"), but
Xk +ak = (X —a)(XF! + x2a + -+ + aF1) (and this is true in any ring).

Corollary: f(a) =0  I(X) € R(X) : f(x) = (X — a)h(X).

Definition: a # 0 € R is a zero divisior if 38 # 0 € Rwithaf =0,e.g. 2+8Z
in Z.

8]ZZ)efini’cion: the ring R is an integral domain if R has no zero divisors; exam-

ples are Z and any field such as ;%. If f(X) =ap+---+a,X" wedefinedeg f =n;
deg(0 = —oc0

Lemma: if R is an integral domain then deg fg = deg f + deg g; let f(X) =
a4, X"+ +ag #0 # g(X) = by X™ + - -+ + by (the result trivially holds if f or g is
0), then fg(X) = a,b,, X™*" + ... witha,b,, # 0.

Proposition: let R be an ID and ay,...,as € R distinct roots of f(X) #
0 € R[X], then d¢(X) € R[X] such that f(X) = (X — a1)...(X — a5)g(X); in
particular s < deg f. We have already proven this for s = 1, then induction;
assuming this is true for s, take a1 distinct from a, ..., as with 0 = f(as41) =
(s41 — 1) . . (@s41 — @5)g(@s41); 541 — i # OVi, so since R is an ID the probuct
(541 — 1) ... (@s41 — as) # 0 and so g(as1) = 0 .. ¢(X) = (X — asr1)h(X) as
required.



Corollary: Lagrange’s theorem: let p be a prime and ay, .. ., a, integers with
a, # 0 mod p; then the congruence 4,X" + --- + a9 = 0 mod p has at most
n (incongruent) solutions mod p; take R = %, f(X) = a,X" + -+ + ap where
a; = a; + pZ; f # 0 since a, # 0 so there are at most # solutions in % by the
above.

For example, f(X) = XP 1 —=1-(X-1)x---X(X=(p—1));hasdeg f <p—1
but by Fermat’s little theorem it has p — 1 roots modulo p, so f = 0 (i.e. each of
its coefficients is 0 modulo p) by Lagrange’s Theorem.

Corollary: Wilson’s Theorem: for p prime, (p — 1)! = =1 mod p; note that
conversely if n > 1 is an integer, then (n — 1)! = -1 mod n = #n is a prime
(but this cannot be used for an efficient primality test). When do we have
(»—1)! = -1 mod p*? The known examples are p = 5,13,8563 and these are
the only such primes < 5 x 108, but as usual we don’t know whether there are
infinitely many such p.

1.5 Theorem of the Primitive Root

Theorem: If F isa field of finite cardinality (i.e. with finitely many elements)
then F* is cyclic, e.g. F, [l will write F, for % and a for a + pZ]. Any generator

of F;/ is called a primitive root mod p, e.g. 2 mod 11.

Artim’s (unproven) conjecture: n = 2 is a primitive root for infinitely many
primes p (in fact, Artim’s conjecture is that this is the case for any n # +1 which
is not a square).

Remark: if Gis any cyclic group of order d then G has precisely ¢(d) elements
of (exact) order d; let G = (g) (i.e. the group generated by g), then g’ generates
Ge (i,d)=1

Lemma: let n > 1 be an integer, then n = ¥, 551 ¢(d): for each d > 1 with
d | nlet C; be the unique subgroup of F;, of order d; let ®; be the set of generators
such that |®y4] = ¢(d). Then, and this is the key remark, C, = % is the disjoint
union of the ®; as d runs over all divisors of n > 1, s0 1 = #(Cyy) = Y4 1<, #(Pa)
and we have the result.

Proposition: Let H be any finite group of order n. Suppose that for all d | n,
{x e H:x% =1} <d, then H = C,: For each d | n let W, be the set of x € H :
with exact order d. For W; # 0 take y € Wy, then (y) = {1,y,.. .,yd’l} has d
elements, and ¥/ = 1¥d € (y) so W; = (y). And H has precisely ¢(d) elements
of exact order d so #(W,) = ¢(d). Or if W; = 0 for some d | n, this is impossible
since n = #(H) = ¥4, ¢(d) so we would have #(H) < n, a contradiction. Taking
d = n,H must be cyclic since W, # 0.

Corollary: If F is a finite field then F* is cyclic: X4 — 1 € F[X] has at most d
roots and they are € F* so H = F* must be cyclic.

For p prime, consider the ring r%; this is not a field forn > 1 as thenpisa
zero divisor.

Herafter p is an odd prime.

Theorem: Yn > 1, (l%)X is cyclic.

Proposition: 3 a primitive root ¢ mod p such that ¢#! = 1 + bp with
(b,p) = 1, and any such g generates (l%)x\ﬁl >1,eg 3forp =7 for the

first part take any primitive root g1, and consider g];_l =1+bip;if (by,p) =1
we are done, otherwise p | b1; then set ¢ = g1 + p and this is a primitive root



mod p but ¢! = 1+ bp with (b,p) = 1since g8 -1 = (g1 +plFt-1-=
gq_l -1+(p- l)gq_zp + p*a for somea € Z,ie. (p— 1)g;17_2p + p*c for ¢ € Z, but
this is ((p — 1) g‘fz + pc)p = bp with p 1 b. For the second part we will use the
following:

Lemma: Let w = 1+ pb where (p,b) = 1, then Vn > 0, wp" = 1 + b,p"*!
with (b,, p) = 1: induction, the n = 0 case is true by hypothesis, now assuming
it’s true for n then w”"" = (1+ byp™ 1Y . """ =1 = byp™? + X, ()bl pt+i =

bup™*? + @bﬁpz’”z + p?"*3¢, for some ¢, € Z, but since p is odd, p | @ )

this is b,p"*? + a,p*'*3 for some a, € Z, = p"**(b, + pa,); let the bracket be b1
and then p 1 p,+1 since p 1 b,.

Now to complete the proof we induct on #; the nn = 1 case is by hypothesis;
w = g~ must have order p in (}%)X, and we continue by induction.

2 Law of Quadratic Reciprocity

This was discovered by Legendre in c. 1785, but not proven until Gauss in 1796;
this is the form we shall proove (using a proof given by Gauss). In the 19th
century a major theme was to generalize this to cubic, quartic, etc. reciprocity;
in 1927 E. Artim proved the general abelian reciprocity law. Non-abelian reci-
procity has been studied since 1965 and remains an important research topic
today.

Lemma: In F;j there are precisely % squares: F;; ={l,g..., gp‘z} for some
primitive root g; ¢' is a square & i is even; the forward implication is trivial,
for the converse if ¢’ = y? then let y = g¥, then ¢% = ¢’ soi = 2k mod p — 1 so
since p — 1lis even, 2 | i.

Definition: let a be any integer with (a,p) = 1; we say a is a quadratic
nonresidue if it is a square in F, and a quadratic non-residue otherwise; we
define the legendre symbol (%) tobe 0if p|a, 1 for a a quadratic residue mod p
and -1 for a4 a quadratic non-residue mod p.

Lemma (Euler’s Criterion): Va € Z,(%) = 47 mod p; a corollary is that

aby — (ay(b : a : :
(?) = (5)(?)’ which shows thata — (5) cllefmes a group homomorphism Fj —
{£1}. Putting a = 1 we have (_71) =(-1)7,ie —lisa square modulop © p=1

mod 4. For the proof of the lemma let P = p;zl ; if p | a the result is trivial as
both sidesare0 mod p, otherwise we havea’™! =0 mod p by FLT so since the
LHS s (a” — 1)(a” + 1) we have eithra” =1 mod pora” = -1 mod p, but these
cannot simultaneously be true. Let g be a generator of F,, thena = ¢¢ mod p
for some k € Z so a” = ¢ mod p; if we assume k even, i.e. a is a quadratic
residue modulo p, i.e. (%) = +1, then kP = k% is an integer multiple of p — 1,
s0 ¢ =1 mod p and we have the result; otherwise k is odd i.e. (%) = -1, then
kP is not an integer multiple of p — 1, so ¢ # 1 mod p; since g is a primitive
root mod p this implies a” # 1 mod p; by the earlier remark a” = =1 mod p
as required.



2.1 Theorem (Law of Quadratic Reciprocity

Let p, g distinct odd primes, then (s) = (g) iff at least one of p and gis 1 mod 4;

equivalently (g)(g) = (—1);92;1%. This is perhaps the first nonobvious proof in
this course; we shall proove it in the next lecture.

Lemma of Gauss: Let a be an integer with (a,p) = 1; define P as before. For
j=1,...,Pleta;denote the unique integer witha; = ja mod pand —g <aj< g,
ie. aj € {£1,%2,...,+P}. Le v(a) denote the number of j for which a; < [; then
(8) = (-1)"@: if jia = joa mod p then p | j(a1 — a2) so ji = fo; if j1a = —joa
mod p thenp | (j1 +j2)a = p | j1 + j» which is impossible, so the P elements a; as
jruns from 1 to P consist of precisely {epsilon; 1, €;2, .. .,epP} wheree; =1 or —1.
Henceax2ax---XPa=1x2xxP(-1)"® mod P = a” = (-1)'® mod P, but
by the previous lemma this is = (%) ; both these are +1 and congruent mod p,
50 (4) = (-1)"0.

[After this lecture I dropped this course]



