Number Theory

May 14, 2008

Number Theory is the study of the mysterious and hidden properties of \mathbb{Z} and \mathbb{Q}; it is the oldest part of mathematics. To this day it is quite an experimentbased field; we spot things which are happening by experiment, and then the hard pard is proof; even today many great conjectures remain unproven, and when they are proven this is usually as a result of great advances in seemingly distant areas.

The great modern development in number theory has been the rise of computer science; computer methods make numerical experiments much easier, and conversely computer science is fundamentally dependent on number theory.

There is one particularly recommended book for this course, Bomerance and Grandall's Primes - A Computational Approach.

1 Revision

1.1 Euclid's Algorithm

Given integers $a>0, b$ we can find $q, r \in \mathbb{Z}$ such that $b=a q+r$ with $0 \leq r<a$: consider $\{b-x a: x \in \mathbb{Z}\}$; this set clearly contains elements ≥ 0 so it contains a least element ≥ 0; call this $r=b-q a$; then $r<a$ as were $r \geq a$ then $r-a \geq 0$ contradicting the definition of r.

A consequence of this is the existence of the gcd of any two integers a, b not both zero; given such a, b define $I=\{x a+y b: x, y \in \mathbb{Z}\}$

1.1.1 Lemma

$\exists d>0 \in \mathbb{Z}$ such that $I=d \mathbb{Z}: I$ contains elements >0, take d to be the least such element, then for any $c \in I$ we can write $c=q d+r$ where $0 \leq r<d$; then we have $r \in I$ so $r=0$ and we are done.

Note that $d|a, d| b$, and if $e|a, e| b$ then $e \mid$ every element of I; in particular, $e \mid d$; hence d is the gcd of a and b, written (a, b). This argument shows that every ideal in \mathbb{Z} is principal; note that this is false in a general ring e.g. $R=\{x+y \sqrt{m}: x, y \in \mathbb{Z}\}$.

Now, given a, b both positive with $a<b$, Euclid's algorithm gives us a very efficient way of computing $d=(a, b)$: we write $b=a q_{1}+r_{1}, a=r_{1} q_{2}+r_{2}, r_{!}=$ $r_{2} q_{3}+r_{3}$ etc. with $r_{1}<a, r_{2}<r_{1}$ etc. until $r_{n-1}=r_{n} q_{n+1}$; this process must terminate as the r_{i} are a decreasing sequence of positive integers. Observe that
$r_{n}=\left(r_{n}-1, r_{n}\right)=\cdots=\left(r_{1}, r_{2}\right)=\left(a, r_{1}\right)=(a, b)$. A fundamental consequence of this, which bizzarely is never stated in Euclid, is:

1.2 Unique Prime Factorization

We define that an integer $n>1$ is prime if n has no nontrivial factorization; i.e. if $n=a b$ for $a, b \in \mathbb{N}$ then $\{a, b\}=\{1, n\}$.

1.2.1 Lemma

Let p be any prime number, then if $p \mid a b$ then $p \mid a$ or $p \mid b$; assume $p \nmid a$, then $(a, p)=1 \Rightarrow \exists x, y \in \mathbb{Z}$ such that $a x+p y=1 \therefore a b x+p b y=b$; then $p \mid$ the left hand side since $p \mid a b$ so $p \mid$ the right hand side, i.e. b.

1.2.2 Fundamental Theorem of Arithmetic

Every integer $n>1$ can be written as a product of primes, and this representation is unique up to order: $n=n_{1} n_{2}$ where $0<n_{1}, n_{2}<n$; by induction we have existence. For uniqueness suppose $p_{1} \ldots p_{r}==q_{1} \ldots q_{j}$, then $p_{1} \mid q_{1} \ldots q_{j} \therefore$ either $p_{1}=q_{1}$ or $p_{1} \mid q_{2} \ldots q_{j}$, etc.

An algorithm is called polynomial if when applied to M it takes $\leq c(\log M)^{W}$ elementary operations, where c, W are positive constants. For example, if M, R have m, r digits respectively, computing $M R$ can be done in at most 2 mr elementary operations, and we clearly have $m \leq \log M+1$ etc. so if $R \leq M$ then the maximum number of operations required to multiply R and M is $\leq 2(\log M+1)^{2}$ - we have a polynomial algorithm for multiplication. The obvious algorithm for factoring an integer $N>1$ (or telling us it is prime) is trial division by 2 and all odd integers $\leq \sqrt{n}$, but this is not polynomial; a fundamental question is whether a polynomial algorithm for factoring exists (note that there are polynomial algorithms for primality testing, but these only tell us whether N is prime, they do not find a factor of it).

The largest known prime is currently $2^{32582657}-1$.

1.2.3 Theorem (Euclid)

There are infinitely many primes: let $2,3, \ldots, p$ be the primes $\leq p$, then $N=$ $2 \times 3 \times \cdots \times p+1$ must have a prime factor $>p$.

1.2.4 Theorem

Let N be any integer ≥ 2, then \exists blocks of consecutive composite numbers whose length is $\geq N$: pick $p \geq N+2$ prime, then consider the $p-1$ numbers $M+2, M+3, \ldots, M+p$ where $M=2 \times 3 \times \cdots \times p$; each of these integers must be composite since they are divisible by a prime $\leq p$ but $>p$.

1.2.5 Three unproven statements thought to be true

There are infinitely many twin primes.
There are infinitely many triple primes of the form $(p, p+2, p+6)$ (or $(p, p+$ $4, p+6)$; note if we have $(p, p+2, p+4)$ one of these is divisible by 3).

There are infinitely many primes of the form $n^{2}+1$.

1.2.6 Definition

For $x \geq 2, \pi(x)=$ the number of primes $\leq x$; we have $\pi\left(10^{2}\right)=25, \pi\left(10^{3}\right)=$ $168, \pi\left(10^{4}\right)=1229, \pi\left(10^{6}\right)=78498$.

1.2.7 Guess of Gauss

$\pi(x)$ is close to $\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}$; this is remarkably accurate, see later.
The above Euclid implies $\pi(x)>\log \log x$ for $x>2$; we can do better than this. Let S be any finite set of prime numbers, and define $f_{S}(x)=$ the number of positive integers $\leq x$ which are composed of primes in S.

Lemma: $\forall x \geq 2, f_{S}(x) \leq \sqrt{x} \times 2^{\#(S)}$: if n is composed only of primes in S we can write $n=m^{2} r$ where r is square-free; then $n \leq x \Rightarrow m^{2} \leq x \Rightarrow m \leq \sqrt{x}$ so there are at most \sqrt{x} possible choices of m, while r is of the form $p_{1} \ldots p_{s}$ where the p_{i} are distinct primes from S so the total number of choices of r is $\leq 2^{\#(S)}$.

Corollary: for $x \geq 2, \pi(x) \geq \frac{\log x}{2 \log 2}$ by letting S be the set of all primes $\leq x$, then $f_{S}(x)=x \leq \sqrt{x} 2^{\pi(x)}$; rearranging gives the result.

We can do still better than this, even by elementary methods; see Chebyshev.

1.3 Congruences

Take an integer $m>1$. We define $a \equiv b \bmod m$ if $m \mid a-b$; this is an equivalence relation on \mathbb{Z} with equivalence classes $a+m \mathbb{Z}$; we write $\mathbb{Z} / m \mathbb{Z}$ for the set of such equivalence classes. Addition and multiplication of classes is defined in the obvious way.

Lemma: $a+m \mathbb{Z}$ is a unit in $\mathbb{Z} / m \mathbb{Z}$ iff $(a, m)=1:(a+m \mathbb{Z})(b+m \mathbb{Z})=1+m \mathbb{Z}$ for some b iff $a b+m k=1$ for some b and k, iff $(a, m)=1$ by Euclid's algorithm.

We define $(\mathbb{Z} / m \mathbb{Z})^{\star}$ to be the group of units of $\mathbb{Z} / m \mathbb{Z}$ and Euler's function $\phi(m)=\#\left((\mathbb{Z} / m \mathbb{Z})^{\star}\right)$.

1.3.1 Euler's Theorem

If a is an integer prime to m then $a^{\phi(m)} \equiv 1 \bmod m$: this is true by Lagrange's theorem since $\phi(m)$ is the order of the group of units modulo m so the order of a must divide it. If $m=p$ prime then $\phi(m)=p-1$ so we have:

1.3.2 Corollary: Fermat's Little Theorem

If $(a, p)=1$ then $a^{p-1} \equiv 1 \bmod p$. Therefore for p an odd prime, $2^{p-1} \equiv 1 \bmod p$.
When do we have $2^{p-1} \equiv 1 \bmod p^{2}$? There are only two known such examples, 1093 and 3511, and these are known to be the only such $p<16 \times 10^{12}$, but it is unknown whether this is the case for infinitely many primes, or even whether there are infinitely many primes for which $2^{p-1} \not \equiv 1 \bmod p^{2}$.

1.3.3 Chinese Remainder Theorem

For $k \geq 1$ and m_{1}, \ldots, m_{k} distinct with $\left(m_{i}, m_{j}\right)=1 \forall i \neq j$, put $M=m_{1}, \ldots m_{k}$. Given any integers $a_{1} \ldots a_{k}, \exists x \in \mathbb{Z}$ with $x \equiv a_{1} \bmod m_{1}, \ldots, x \equiv a_{k} \bmod m_{K}$; moreover any two such m are congruent modulo M. This last part is obvious; if x, y are two solutions then $m_{i}|x-y \forall i \therefore M| x-y$, and for the existence of such $\mathrm{n} x$ put $M_{i}=\frac{M}{m_{i}}$, then $\left(M_{i}, m_{i}\right)=1$ so $\exists u_{i}: u_{i} M_{i} \equiv 1 \bmod m_{i}$, then take $x=\sum_{i=1}^{k} a_{i} u_{i} M_{i}$.

We can take a more abstract approach to the CRT: let $R_{i}=\frac{\mathbb{Z}}{m_{i} \mathbb{Z}}$, then define the cartesian product $R_{1} \times \cdots \times R_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \in R_{i}\right\}$ by componentwise addition and multiplication. Then $R_{1} \times \cdots \times R_{k}$ is a ring and we can reformulate the CRT as the following:

Theorem: Assume $\left(m_{i}, m_{j}\right)=1 \forall i \neq j$, let $M=m_{1} \ldots m_{k}$. Then the map $\theta: \frac{\mathbb{Z}}{M \mathbb{Z}} \rightarrow R_{1} \times \cdots \times R_{k}$ defined by $\theta(a+M \mathbb{Z})=\left(a+m_{1} \mathbb{Z}, \ldots, a+m_{k} \mathbb{Z}\right)$ is an isomorphism of rings: the map is well defined and preserves addition and multiplication; it is injective since $\theta(a+M \mathbb{Z})=\theta(b+\mathbb{Z}) \Rightarrow m_{i}|a-b \forall i \Rightarrow M| a-b$. Then surjectivity is automatic as $\#\left(\frac{\mathbb{Z}}{M \mathbb{Z}}\right)=m=\#\left(R_{1} \times \cdots \times R_{k}\right)$; in practice this proof is less useful than the previous one as it is nonconstructive.

Corollary: If $(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$ as $\phi(r)=\#\left(\left(\frac{\mathbb{Z}}{r \mathbb{Z}}\right)^{\star}\right)$ and θ induces an isomorphism $\left(\frac{\mathbb{Z}}{m n \mathbb{Z}}\right)^{\star} \rightarrow\left(\frac{\mathbb{Z}}{m \mathbb{Z}}\right)^{\star} \times\left(\frac{\mathbb{Z}}{n \mathbb{Z}}\right)^{\star}$.

1.4 Solution of congruences of the form $f(X) \equiv 0 \bmod m$ where $f(X) \in \mathbb{Z}[X]$

As a surprising example $f(X)=X^{2}-1$ has four roots $\bmod 8(1,3,5,7)$; thus we do not have a fundamental theorem of algebra like in \mathbb{C} where a polynomial of degree n has at most n roots.

Let R be a ring; define $R[X]$ is the set of formal expressions $a_{0}+\cdots+a_{n} X^{n}$ for $a_{i} \in R$; add and multiply polynomials in the usual way. Then for $f(X) \in$ $R[X], \alpha \in R$ we define $f(\alpha)=a_{0}+\cdots+a_{n} \alpha^{n} \in R$.

Lemma: For $f(X) \in R[X], \alpha \in R \exists h(X) \in R[x]$ such that $f(X)-f(\alpha)=(X-$ $\alpha) h(X): f(X)=a_{0}+\cdots+a_{n} X^{n} \therefore f(X)-f(\alpha)=a_{1}(X-\alpha)+\cdots+a_{n}\left(X^{n}-\alpha^{n}\right)$, but $X^{k}+\alpha^{k}=(X-\alpha)\left(X^{k-1}+x^{k-2} \alpha+\cdots+\alpha^{k-1}\right)$ (and this is true in any ring).

Corollary: $f(\alpha)=0 \Leftrightarrow \exists h(X) \in R(X): f(x)=(X-\alpha) h(X)$.
Definition: $\alpha \neq 0 \in R$ is a zero divisior if $\exists \beta \neq 0 \in R$ with $\alpha \beta=0$, e.g. $2+8 \mathbb{Z}$ in $\frac{\mathbb{Z}}{8 \mathbb{Z}}$.

Definition: the ring R is an integral domain if R has no zero divisors; examples are \mathbb{Z} and any field such as $\frac{\mathbb{Z}}{p \mathbb{Z}}$. If $f(X)=a_{0}+\cdots+a_{n} X^{n}$ we define $\operatorname{deg} f=n$; $\operatorname{deg} 0=-\infty$

Lemma: if R is an integral domain then $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$; let $f(X)=$ $a_{n} X^{n}+\cdots+a_{0} \neq 0 \neq g(X)=b_{m} X^{m}+\cdots+b_{0}$ (the result trivially holds if f or g is 0), then $f g(X)=a_{n} b_{m} X^{m+n}+\ldots$ with $a_{n} b_{m} \neq 0$.

Proposition: let R be an ID and $\alpha_{1}, \ldots, \alpha_{s} \in R$ distinct roots of $f(X) \not \equiv$ $0 \in R[X]$, then $\exists g(X) \in R[X]$ such that $f(X)=\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{s}\right) g(X)$; in particular $s \leq \operatorname{deg} f$. We have already proven this for $s=1$, then induction; assuming this is true for s, take α_{s+1} distinct from $\alpha_{1}, \ldots, \alpha_{s}$ with $0=f\left(\alpha_{s+1}\right)=$ $\left(\alpha_{s+1}-\alpha_{1}\right) \ldots\left(\alpha_{s+1}-\alpha_{s}\right) g\left(\alpha_{s+1}\right) ; \alpha_{s+1}-\alpha_{i} \neq 0 \forall i$, so since R is an ID the probuct $\left(\alpha_{s+1}-\alpha_{1}\right) \ldots\left(\alpha_{s+1}-\alpha_{s}\right) \neq 0$ and so $g\left(\alpha_{s+1}\right)=0 \therefore g(X)=\left(X-\alpha_{s+1}\right) h(X)$ as required.

Corollary: Lagrange's theorem: let p be a prime and a_{0}, \ldots, a_{n} integers with $a_{n} \not \equiv 0 \bmod p$; then the congruence $a_{n} X^{n}+\cdots+a_{0} \equiv 0 \bmod p$ has at most n (incongruent) solutions $\bmod p$; take $R=\frac{\mathbb{Z}}{p \mathbb{Z}}, f(X)=\overline{a_{n}} X^{n}+\cdots+\overline{a_{0}}$ where $\overline{a_{i}}=a_{i}+p \mathbb{Z} ; f \not \equiv 0$ since $\overline{a_{n}} \neq 0$ so there are at most n solutions in $\frac{\mathbb{Z}}{p \mathbb{Z}}$ by the above.

For example, $f(X)=X^{p-1}-1-(X-1) \times \cdots \times(X-(p-1))$; has $\operatorname{deg} f<p-1$ but by Fermat's little theorem it has $p-1$ roots modulo p, so $f \equiv 0$ (i.e. each of its coefficients is 0 modulo p) by Lagrange's Theorem.

Corollary: Wilson's Theorem: for p prime, $(p-1)!\equiv-1 \bmod p$; note that conversely if $n>1$ is an integer, then $(n-1)!\equiv-1 \bmod n \Rightarrow n$ is a prime (but this cannot be used for an efficient primality test). When do we have $(p-1)!\equiv-1 \bmod p^{2}$? The known examples are $p=5,13,8563$ and these are the only such primes $<5 \times 10^{8}$, but as usual we don't know whether there are infinitely many such p.

1.5 Theorem of the Primitive Root

Theorem: If F isa field of finite cardinality (i.e. with finitely many elements) then F^{\times}is cyclic, e.g. F_{p} [I will write F_{p} for $\frac{\mathbb{Z}}{p \mathbb{Z}}$ and a for $a+p \mathbb{Z}$]. Any generator of F_{p}^{\times}is called a primitive root $\bmod p$, e.g. $2 \bmod 11$.

Artim's (unproven) conjecture: $n=2$ is a primitive root for infinitely many primes p (in fact, Artim's conjecture is that this is the case for any $n \neq \pm 1$ which is not a square).

Remark: if G is any cyclic group of order d then G has precisely $\phi(d)$ elements of (exact) order d; let $G=\langle g\rangle$ (i.e. the group generated by g), then g^{i} generates $G \Leftrightarrow(i, d)=1$.

Lemma: let $n \geq 1$ be an integer, then $n=\sum_{d \mid n, d \geq 1} \phi(d)$: for each $d \geq 1$ with $d \mid n$ let C_{d} be the unique subgroup of F_{n} of order d; let Φ_{d} be the set of generators such that $\left|\Phi_{d}\right|=\phi(d)$. Then, and this is the key remark, $C_{n}=\frac{\mathbb{Z}}{n \mathbb{Z}}$ is the disjoint union of the Φ_{d} as d runs over all divisors of $n \geq 1$, so $n=\#\left(C_{n}\right)=\sum_{d \mid d, d \leq n} \#\left(\Phi_{d}\right)$ and we have the result.

Proposition: Let H be any finite group of order n. Suppose that for all $d \mid n$, $\left|\left\{x \in H: x^{d}=1\right\}\right| \leq d$, then $H \cong C_{n}$: For each $d \mid n$ let W_{d} be the set of $x \in H$: with exact order d. For $W_{d} \neq \emptyset$ take $y \in W_{d}$, then $\langle y\rangle=\left\{1, y, \ldots, y^{d-1}\right\}$ has d elements, and $x^{d}=1 \forall d \in\langle y\rangle$ so $W_{d}=\langle y\rangle$. And H has precisely $\phi(d)$ elements of exact order d so $\#\left(W_{d}\right)=\phi(d)$. Or if $W_{d}=\emptyset$ for some $d \mid n$, this is impossible since $n=\#(H)=\sum_{d \mid n} \phi(d)$ so we would have $\#(H)<n$, a contradiction. Taking $d=n, H$ must be cyclic since $W_{n} \neq \emptyset$.

Corollary: If F is a finite field then F^{\times}is cyclic: $X^{d}-1 \in F[X]$ has at most d roots and they are $\in F^{\times}$so $H=F^{\times}$must be cyclic.

For p prime, consider the ring $\frac{\mathbb{Z}}{p^{n} \mathbb{Z}}$; this is not a field for $n>1$ as then p is a zero divisor.

Herafter p is an odd prime.
Theorem: $\forall n \geq 1,\left(\frac{\mathbb{Z}}{p^{\mathbb{Z}}}\right)^{\times}$is cyclic.
Proposition: \exists a primitive root $g \bmod p$ such that $g^{p-1}=1+b p$ with $(b, p)=1$, and any such g generates $\left(\frac{\mathbb{Z}}{p^{n} \mathbb{Z}}\right)^{\times} \forall n \geq 1$, e.g. 3 for $p=7$: for the first part take any primitive root g_{1}, and consider $g_{1}^{p-1}=1+b_{1} p$; if $\left(b_{1}, p\right)=1$ we are done, otherwise $p \mid b_{1}$; then set $g=g_{1}+p$ and this is a primitive root
$\bmod p$ but $g^{p-1}=1+b p$ with $(b, p)=1$ since $g^{p-1}-1=\left(g_{1}+p\right)^{p-1}-1=$ $g_{1}^{p-1}-1+(p-1) g_{1}^{p-2} p+p^{2} a$ for some $a \in \mathbb{Z}$, i.e. $(p-1) g_{1}^{p-2} p+p^{2} c$ for $c \in \mathbb{Z}$, but this is $\left((p-1) g_{1}^{p-2}+p c\right) p=b p$ with $p \nmid b$. For the second part we will use the following:

Lemma: Let $w=1+p b$ where $(p, b)=1$, then $\forall n \geq 0, w p^{n}=1+b_{n} p^{n+1}$ with $\left(b_{n}, p\right)=1$: induction, the $n=0$ case is true by hypothesis, now assuming it's true for n then $w^{p^{n+1}}=\left(1+b_{n} p^{n+1}\right)^{p} \therefore w^{p^{n+1}}-1=b_{n} p^{n+2}+\sum_{i=2}^{p}\binom{p}{i} b_{n}^{i} p^{(n+1) i}=$ $b_{n} p^{n+2}+\frac{p(p-1)}{2} b_{n}^{2} p^{2 n+2}+p^{2 n+3} c_{n}$ for some $c_{n} \in \mathbb{Z}$, but since p is odd, $p \left\lvert\, \frac{p(p-1)}{2}\right.$ so this is $b_{n} p^{n+2}+a_{n} p^{2 n+3}$ for some $a_{n} \in \mathbb{Z}$, $=p^{n+2}\left(b_{n}+p a_{n}\right)$; let the bracket be b_{n+1} and then $p \nmid p_{n+1}$ since $p \nmid b_{n}$.

Now to complete the proof we induct on n; the $n=1$ case is by hypothesis; $w=g^{p-1}$ must have order p in $\left(\frac{\mathbb{Z}}{p^{2} \mathbb{Z}}\right)^{\times}$, and we continue by induction.

2 Law of Quadratic Reciprocity

This was discovered by Legendre in c. 1785, but not proven until Gauss in 1796; this is the form we shall proove (using a proof given by Gauss). In the 19th century a major theme was to generalize this to cubic, quartic, etc. reciprocity; in 1927 E. Artim proved the general abelian reciprocity law. Non-abelian reciprocity has been studied since 1965 and remains an important research topic today.

Lemma: In F_{p}^{\times}there are precisely $\frac{p-1}{2}$ squares: $F_{p}^{\times}=\left\{1, g, \ldots, g^{p-2}\right\}$ for some primitive root $g ; g^{i}$ is a square $\Leftrightarrow i$ is even; the forward implication is trivial, for the converse if $g^{i}=y^{2}$ then let $y=g^{k}$, then $g^{2 k}=g^{2}$ so $i \equiv 2 k \bmod p-1$ so since $p-1$ is even, $2 \mid i$.

Definition: let a be any integer with $(a, p)=1$; we say a is a quadratic nonresidue if it is a square in F_{p} and a quadratic non-residue otherwise; we define the legendre symbol $\left(\frac{a}{p}\right)$ to be 0 if $p \mid a, 1$ for a a quadratic residue $\bmod p$ and -1 for a a quadratic non-residue $\bmod p$.

Lemma (Euler's Criterion): $\forall a \in \mathbb{Z},\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$; a corollary is that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, which shows that $a \mapsto\left(\frac{a}{p}\right)$ defines a group homomorphism $F_{P}^{\times} \rightarrow$ $\{ \pm 1\}$. Putting $a=1$ we have $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$, i.e. -1 is a square modulo $p \Leftrightarrow p \equiv 1$ $\bmod 4$. For the proof of the lemma let $P=\frac{p-1}{2}$; if $p \mid a$ the result is trivial as both sides are $0 \bmod p$, otherwise we have $a^{p-1} \equiv 0 \bmod p$ by FLT so since the LHS is $\left(a^{P}-1\right)\left(a^{P}+1\right)$ we have eithr $a^{P} \equiv 1 \bmod p$ or $a^{P} \equiv-1 \bmod p$, but these cannot simultaneously be true. Let g be a generator of F_{p}, then $a \equiv g^{k} \bmod p$ for some $k \in \mathbb{Z}$ so $a^{P}=g^{k p} \bmod p$; if we assume k even, i.e. a is a quadratic residue modulo p, i.e. $\left(\frac{a}{p}\right)=+1$, then $k P=k \frac{p-1}{2}$ is an integer multiple of $p-1$, so $g^{k P} \equiv 1 \bmod p$ and we have the result; otherwise k is odd i.e. $\left(\frac{a}{p}\right)=-1$, then $k P$ is not an integer multiple of $p-1$, so $g^{k P} \neq 1 \bmod p$; since g is a primitive root $\bmod p$ this implies $a^{P} \not \equiv 1 \bmod p$; by the earlier remark $a^{P} \equiv-1 \bmod p$ as required.

2.1 Theorem (Law of Quadratic Reciprocity

Let p, q distinct odd primes, then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$ iff at least one of p and q is $1 \bmod 4$; equivalently $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}$. This is perhaps the first nonobvious proof in this course; we shall proove it in the next lecture.

Lemma of Gauss: Let a be an integer with $(a, p)=1$; define P as before. For $j=1, \ldots, P$ let a_{j} denote the unique integer with $a_{j}=j a \bmod p$ and $-\frac{p}{2}<a_{j}<\frac{p}{2}$, i.e. $a_{j} \in\{ \pm 1, \pm 2, \ldots, \pm P\}$. Le $v(a)$ denote the number of j for which $a_{j}<[$; then $\left(\frac{a}{p}\right)=(-1)^{v(a)}:$ if $j_{1} a=j_{2} a \bmod p$ then $p \mid j\left(a_{1}-a_{2}\right)$ so $j_{1}=j_{2}$; if $j_{1} a=-j_{2} a$ $\bmod p$ then $p\left|\left(j_{1}+j_{2}\right) a \Rightarrow p\right| j_{1}+j_{2}$ which is impossible, so the P elements a_{j} as j runs from 1 to P consist of precisely $\left\{\right.$ epsilon $\left.11, \epsilon_{2} 2, \ldots, \epsilon_{P} P\right\}$ where $\epsilon_{i}=1$ or -1 . Hence $a \times 2 a \times \cdots \times P a=1 \times 2 \times \dot{\times} P(-1)^{v(a)} \bmod P \Rightarrow a^{P} \equiv(-1)^{\nu(a)} \bmod P$, but by the previous lemma this is $\equiv\left(\frac{a}{p}\right)$; both these are ± 1 and congruent $\bmod p$, so $\left(\frac{a}{p}\right)=(-1)^{p(a)}$.
[After this lecture I dropped this course]

