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This is a beautiful but accessible theory with a wide range of applications.
The reader should be familiar with basic probability theory

The book for this course is J R Norris’ “Markov Chains”.
A preview of the highlight of this course; for a simple symmetric random

walk in 1D, the probability of returning to the origin is 1. Likewise, the same
is true for a 2D “drunkard’s walk”. However, in 3D the probability is <1.

1 Definitions and basic properties

A Markov chain with state space I and transition matrix P is a sequence of I-
valued RVs (Xn) s.t. P (X0 = i0, . . . , Xn = in, Xn+1 = in+1) = P (X0 = i0, . . . , Xn = in)Pinin+1∀i0, . . . , in, i
I∀n ≥ 0 [M1] (P (E) denote the probability of E to distinguish this from the
matrix P ).

If [M1] holds then inductively we have P (X0 = i0, . . . , Xn = in) = P (X0 = i0)Pi0i1 . . . Pin−1in
∀i0, . . . in ∈

I∀n ≥ 0 [M2]; clearly [M2]⇒[M1]
We call the elements of I states.
This definition is very nice - it is clearly very simple and describes reasonable

models for a huge range of phenomena, yet we shall see it is sufficient to prove
a huge number of useful properties.

Set λi = P (X0 = i); let λ = (λi : i ∈ I) be the initial distribution of (Xn),
i.e. λi = P (X0 = i) [check]. By [M2], λ, P determine the probabilities of any
event of the form {X0 = i0, . . . , Xn = in}, called an elementary event. So we
write (Xn) ∼ Markov (λ, P ). We usually take λ = δi for some i ∈ I, i.e. we
start in state i; in this case we can write Pi rather than P to indicate we are
conditioning on this.

A row vector (λi : i ∈ I) with λi ≥ 0∀i ∈ Iis a measure; its total mass is∑
i∈I λi. If this is 1 it is called a distribution or probability measure; the initial

distribution is of course a distribution.
In a slight abuse of notation, we also use λ to denote the function λ (A) =∑

i∈A λi defined on subsets A ⊂ I.
A matrix P = (Pij : i, j ∈ I) all of whose rows (Pij : j ∈ I) are distributions

is called a stochastic matrix; the transition matrix is stochastic.
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An example we shall be returning to frequently is P =





0 1 0 0 0 0 0
0 1

2
1
2 0 0 0 0

1
2 0 1

2 0 0 0 0
0 0 1

4
1
2

1
4 0 0

0 0 0 0 0 1
2

1
2

0 0 0 1 0 0 0
0 0 0 0 0 0 1





.

Probability revision (not part of this course)

For a set Ω and set F of subsets of Ω satisfying Ω ∈ F , A ∈ F ⇒ Ac ∈ F and,
for An all ∈ F ,

⋃
n∈N

An ∈ F , a probability measure is a PF → [0, 1] satisfying

P (Ω) = 1 and for disjoint An ∈ F , P
(⋃

n∈N
An

)
=

∑
n∈N

P (An).
Let I be a finite (all of its elements can be enumerated as i1, i2, . . . , in for

some n ∈ N) or countably infinite set. The theory we will be learning is valid
for countably infinite sets, since if we have µi ≥ 0∀i ∈ I then for any two
enumerations of I as i1, i2, . . . and j!, j2, . . . , if we set Sn =

∑n
k=1 µij

and
S =

∑∞
k=1 µik

, similarly Tn and T for the jk, then ∀n∃m : {i1, i2, . . . , in} ⊂
{j1, j2, . . . jn} so Sn ≤ Tm ≤ T , so S ≤ T , similarly T ≤ S and S = T .
Therefore

∑
i∈I µi is well defined even for (countably) infinite I.

For a random variable X : Ω → I we write {Xi} = {ω ∈ Ω : X (ω) = i} and
P (X = i) for P ({Xi}).

These definitions are usually just underlying what we do; we won’t normally
use them directly. However, if we encounter apparent paradoxes we can return
to these to resolve them.

Connection with Matrix Multiplication

If we treat λ as a row vector then for (Xn) ∼ Markov (λ, P ), P (X1 = j) =∑
i∈I P (X0 = i, X1 = j) =

∑
i∈I λiPij = (λP )j . Taking λ = δi we have Pi (X2 = j)

is similarly
(
P 2

)
ij

, and ultimately P (Xn = j) = (λPn)j and Pi (Xn = j) =

(δiP
n)ij or p

(n)
ij . Of course the best way to find these is diagonalising the ma-

trix, or rather simply find the eigenvalues λ1, λ2, . . . , and then we know that e.g
the first element of Pn is Aλn

1 +Bλn
2 . . . , and can find A, B, . . . by simultaneous

equations from the first |I| matricies calculated by hand [The lecturer is lame
and can’t diagonalise properly].

Thm (Markov Property)

Let (Xn) for n ≥ 0 be Markov (λ, P ). For each n ≥ 0 and i ∈ I, conditioning
on the “present” Xn = i the past (X0, . . . , Xn)and future (Xn+1, . . . ) are indep
with the latter ∼ Markov (δi, P ).
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Pf

We want to show P (Xn+1 = in+1, . . . , Xn+m = in+m | X0 = i0, . . . , Xn−1 = in−1, Xn = i) =∏m−1
r=0 Pjrjr+1 for j0 = i, jr = in+r∀r ∈ [1, m]. We prove this by simply sub-

stituting [M2], which also gives that the RHS is the definition of a Markov
distribution as required.

2 Class Structure

Consider the diagram of our example (graph with verticies representing states
and directed edges labelled with the transition probabilities existing if these
are > 0) with just the arrows, no numbers; it divides naturally into classes
where from any state in a class we can reach any other. Write i ∼ j if ∃n :
Pi (Xn = j) > 0; “i leads to j” or “j is accessible from i”. Equivalent [for
i 6= j] that i ∼ j, ∃n ≥ 1, i1, . . . in with Pikik+1

> 0∀0 ≤ k ≤ n (considering
i0 = i, in = j), or (Pn)ij > 0 for some n ≥ 0. If i ∼ j and j ∼ i we write
i ! j; “i communicates with j”, and this is an equiv rel so it partitions I into
“communicating classes”; we call a class C “open” if ∃i ∈ C, j /∈ C with i ∼ j,
“you can escape”, otherwise C is closed. If I is a class we say P is irreducible;
from every state we can reach every other state.

3 Hitting times and absorbtion probabilities

For a Markov chain and A ⊂ A we define an rv HA : Ω → N ∪ {0,∞} by
HA (ω) = infn≥0 {Xn (ω)}; note inf {} = ∞.

Let hA
i = Pi

(
HA < ∞

)
be the prob we hit A (called the absorbtion probabil-

ity if A is a closed class); kA
i = Ei

(
HA

)
=

∑
n<∞ nPi

(
HA = n

)
+∞Pi (HA = ∞)

taking the last term to be 0 if the probability is 0 is the mean time to hit A.
hA =

(
hA

i

)
and sim kA are i-vectors over the state space I.

hA is the minimal nonnegative solution to hA
i = 1∀i ∈ A, hA

i =
∑

j∈I pijh
A
j ∀i /∈

A; finding the minimal solution is generally the hard part rather than solving.
For i ∈ A, X0 = i ⇒ HA = 0 < ∞ so hA

i = 1, and for i /∈ A HA ≥ 1hA
i =

Pi

(
HA < ∞

)
=

∑
j P

(
HA < ∞ | X1 = j

)
Pi (X1 = j) =

∑
j Pj

(
HA < ∞

)
pij

and so by the Markov property hA
i = Pi

(
HA < ∞

)
=

∑
j P

(
HA < ∞ | X1 = j

)
Pi (X1 = j) =∑

j Pj

(
HA < ∞

)
pij , so h solves the given eqns; h is nonnegative as it is a

probability (or rather a vector therof). Now if x is any nonnegative sol to
the given eqns, hA

i = xi = 1 for i ∈ A; for i /∈ A, xi =
∑

j∈I pijxj =∑
j∈A pij +

∑
j /∈A pijxj ; substituting repeatedly for xj and rearranging we have

xi = Pi (X1 ∈ A)+Pi (X1 /∈ A, X2 ∈ A)+· · ·+Pi (X1 /∈ A, . . . , Xn−1 /∈ A, Xn ∈ A)+∑
j1 /∈A · · ·

∑
jn /∈A pij1pj1j2 . . . pjn−1jn

xjn
; x is non-negative so this last term is ≥

0 and so Pi

(
HA < n

)
≤ xi∀i, n so xi ≥ limn→∞ Pi

(
HA ≤ n

)
= Pi

(
HA ≤ ∞

)
=

hi.
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Example: Gambler’s Ruin

States 0, 1, . . . ; probability p of moving to the next state, q = 1 − p to the
previous state from any non-zero state, with 0 < p < 1; think of as a casino
where we win £1 each turn with probability p, lose £1 with prob q; what is
the probability we eventually go broke?. Set hi to be Pi (hit 0); this is then the
minimal non-negative sol to h0 = 1, hi = phi+1 + qhi−1 for i ≥ 1. For p 6= q the

general sol is hi = A + B
(

q
p

)i

; for p < q we must have B = 0 as hi ≤ 1∀i, so

hi = 1∀i; for p > q the sols are of the form
(

q
p

)i

+ A

(
1 −

(
q
p

)i
)

; the minimal

non-negative one of these is given by A = 0 so hi =
(

q
p

)i

; if q = p we have

hi = A + Bi = 1∀i. CPS

Example: Birth and Death chain

As above but with the probabilities from state i being pi to the next state and
qi = 1−pi to the previous one. Let Xn be the population size, hi = Pi (hit 0) so
have h0 = 1, hi = pihi+1 +qihi−i for i ≥ 1. We cannot solve this as a recurrence
since p, q are not constant; consider ui = hi−1 − hi (taking h−1 = 1) which is
clearly ≥ 0, then piui+1 = qiui for i ≥ 1, so ui+1 = qi

pi
ui = · · · = qi×···×q1

pi×···×p1
u1;

we let the fraction be γi and set γ0 = 1. We have u1 + · · · + ui = h0 − hi so
hi = 1 − A (γ0 + · · · + γi−1); by hi A is u1.

In the case
∑

γi = ∞ 0 ≤ hi ≤ 0 ⇒ A = 0 and hi = 1∀i
In the case

∑
i γi < ∞ the sol hi decreases as A increases, so we want the

largest A with hi ≥ 0; therefore we want 0 = limi→∞ hi = 1 − A (
∑∞

i=0 γi) and

so hi =
P

∞

j=i
γj

P

∞

j=0 γi
; in particular the population survives with probability > 0; we

can check our results by comparison with the above special case.

4 Strong Markov Property

Def a random time τ is an rv taking vals ∞, 0, 1, 2 . . . ; τ is a stopping time for
the Markov chain (Xn) if ∀n ≥ 0 the event {τ = n} is determined entirely by
the rvs X0, X1, . . . , Xn (ie is a function of them); informally “we know whether
to stop”; if we want to stop at time τ we can.

Conditional on (X0 = i0, . . . , Xn = in) the event τ = n is indep of (Xn+1, Xn+2, . . . ).

Examples

The first passage time to state i Ti = min {n : n ≥ 1, Xn = i} if such an n exists,
∞ otherwise. (Ti = n) = (X1 6= i, . . . , Xn−1 6= i, Xn = i) so Ti is a stopping
time; note that for Ti finite, XTi

= i.
The last time in state i, Li = sup {n : n ≥ 0, Xn = i} is not a stopping time.
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Thm (Strong Markov Property)

For Xn Markov (λ, P ) and τ a stopping time; conditional on τ < ∞ and Xτ = i,
(X0, X1, . . . , Xτ−1) and (Xτ+1, Xτ+2 . . . ) are indep with (Xτ , Xτ+1, Xτ+2 . . . ) ∼
Markov (δi, P )

Remarks

This is the markov property with n replaced by τ ; the point is that τ gives no
information about Xτ+1, Xτ+2, . . . other than that contained in Xτ . The proof
of this is non-examinable.

We can use this to easily solve the gambler’s ruin problem above: h1 = ph2+q
but h2 = h1 × h1 as it is the probability we hit 1 × the probability we hit 0
starting from 1; the time when we first hit 1 is a stopping time. So we have
h1 = ph2

1 + q meaning h1 = 1 or q
p ; we find which by minimality.

5 Recurrence and transience

Let Vi =
∑∞

n=0 IXn=i the no of visits to state i, Ti = inf (n ≥ 1 : Xn = i) return
time to state i; fi = Pi (Ti < ∞), mi = Ei (Ti) mean return time to state i.

Prop

∀k ≥ 0 Pi (Vi ≥ k + 1) = (fi)
k

- use strong markov after kth visit.
We say a state i is recurrent if fi = 1, otherwise i is transient. A recur-

rent state i is positive recurrent if mi < ∞, otherwise it is null recurrent. So
Pi (Vi = ∞) = 1 if i is recurrent, 0 otherwise, from that it is (fi)

k
.

T

A state i is recurrent iff
∑∞

n=0 (Pn)ii = ∞, by Ei (Vi) = Ei (
∑∞

n=1 IXn=i) =∑∞
n=1 EiIXn=i =

∑∞
n=0 Pi (Xn = i).

There is a recurrence/transience dichotomy: either fi = 1, Pi (Vi = ∞) =
1,

∑∞
n=0 (Pn)ii = ∞ and i is recurrent, or fi < 1, Pi (Vi = ∞) = 0,

∑∞
n=0 (Pn)ii <

∞ and i is transient.

T

Suppose i recurrent and i ∼ j, then:

1. Pj (Hi < ∞) = 1. Note {Vi < ∞} ⊃ ({Hj < ∞} ∩ {Xn 6= i∀n ≥ Hj}).
Now Hj is a stopping time, and given Hj < ∞ we have XHj

= j, so by
strong Markov Pi (Vi < ∞) ≥ Pi (Hj < ∞) Pj (Hi = ∞); the LHS is 0 by
recurrence of i. So 2.⇒ Pi (Hj < ∞) > 0 ⇒ Pj (Hi = ∞) = 0.
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2. Pi (Hj < ∞) = 1. Let T
(0)
i = 0, T

(1)
i = Ti and generally T

(k)
i = time of

kth return to i. We have Pi

(
T

(k)
i < ∞

)
= 1 as i recurrent, so X

T
(k)
i

= i.

Now define the events Ak =
{
Xn = j : T

(k−i)
i ≤ n < T

(k)
i

}
for k ≥ 1. By

strong Markov on T
(k−1)
i Pi (Ak) = Pi (Hj < Ti); say this is p. The Ak

are indep so P (
⋃

k Ak) is either 0 for p = 0 or 1 for p > 0, but this is
Pi (Hj < ∞) which is > 0 since i ∼ j so must be 1.

3. j is recurrent; this follows flom the above two and strong Markov; Pj (Tj < ∞) ≥
Pi (Hj < ∞) Pj (Hi < ∞) = 1. Note that this implies recurrence (and so
transience) are class properties; combined with 1. above this means every
recurent class is closed.

T

Every finite closed class C is recurrent; take any inital dist on C, then
∑

i∈C Vi =

∞ as C closed, so
∑

i∈C P (Vi = ∞) ≥ P
(⋃

i∈C {Vi = ∞}
)

= 1 so for some i,
0 < P (Vi = ∞) = P (Hi < ∞) Pi (Vi = ∞); Pi (Vi = ∞) is always 0 or 1 su must
be 1 and i is recurrent and C is recurrent.

Finite state spaces are “easy”; infinite state spaces are more interesting as
we can have closed classes but be uncertain whether they are recurrent.

6 Recurrence and Transience of random walks

Simple Symmetric random walk on Z

I = Z, Pii+1 = Pii−1 = 1
2 . Let h = P1 (hit 0) which is P−1 (hit 0) by symmetry;

by the homogeneity (probs the same ∀i) and strong Markov, P2 (hit 0) = h2

(P2 (hit 1)×P1 (hit 0); then h = 1
2 + 1

2h2 which gives (h − 1)
2

= 0 so h = 1 and
the walk is recurrent.

Simple biased random walk on Z

I = Z, Pii+1 = p, Pii−1 = q, p + q = 1. wlog take q < p, then P0 (T0 < ∞) =
ph+ + qh− where h± = P±1 (hit 0), but by an earlier example h+ = q

p , h− = 1

so P0 (T0 < ∞) = 2q < 1; the walk is transient, we are not certain to return to
0. The reader should now consider the simple symmetric random walk on the
plane, which can be reduced to the above by projection onto the axes x = ±y.

2D simple symmetric random walk

If (Xn) , (Yn) indep 1D simple symmetric random walks,
(

Xn+Yn

2 , Xn−Yn

2

)
is

clearly a 2D simple symmetric random walk. To return we must have each of

the 1D random walks return, i.e.
(
P 2m

)
(0,0)(0,0)

=

((
2m
m

) (
1
2

)2m
)2

since
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(
2m
m

) (
1
2

)2m
is the probability of a 1D simple symmetric random walk re-

turning to the origin after 2m steps (we must step left m times and right m

times). This tends to
(

1√
πm

)
by Stirling’s formula so

(
P 2m

)
(0,0)(0,0)

∼ 1
πm and

so as
∑

m
1

πm = ∞,
∑

m

(
P 2m

)
(0,0)(0,0)

= ∞ and the random walk is recurrent.

It is not so easy to express a 3D random walk in terms of 1D random walk
as each point has 6 6= 2n neighbours.

3D simple symmetric RW

(
P 2n

)
~0~0

=
∑

i,j,k≥0:i+j+k=n

(
2n

iijjkk

)
(this is a multinomial coefficient rather

than a binomial one with a product on the bottom)
(

1
6

)2n
; we write it as

(
2n
n

) (
1
2

)2n ∑
i,j,k≥0:i+j+k=n

(
n

ijk

)2 (
1
3

)2n
≤

(
2n
n

) (
1
2

)2n (
1
3

)n
maxi,j,k≥0:i+j+k=n

(
n

ijk

) (∑
i,j,k

this last bracketed term is 1 (consider the expansion of (1 + 1 + 1)n) so this is(
2n
n

) (
1
2

)2n (
1
3

)n
maxi,j,k≥0:i+j+k=n

(
n

ijk

)
. Now for n = 3m,

(
n

ijk

)
=

n!
i!j!k! ≤

(
n

mmm

)
, and a bound on

(
P 6n

)
~0~0

for 3m bounds all
(
P 2n

)
~0~0

by at most a constant times this bound, since
(
P 6n

)
~0~0

≥
(

1
6

)2 (
P 6n−2

)
~0~0

≥
(

1
6

)4 (
P 6n−4

)
~0~0

, as we can certainly return to 0 at time 6n by returning to 0
at time 6n − 2, then moving to (1, 0, 0) and back, and similarly. But we now

have
(
P 6n

)
~0~0

≤

(
2n
n

) (
1
2

)2n (
1
3

)n
(

n
mmm

)
∼ c

n
3
2

for some constant c as

n → ∞ so
∑

n (Pn)~0~0 (terms are clearly 0 for n odd) < ∞ and the random walk
is transient; this means it → ∞ as otherwise it returns to some ǫ-ball about the
origin infinitely often and it is recurrent.

7 Invariant Distributions

We say a dist or measure λ is invariant if λ = λP ; λ is a left evector of P with
eval 1. Proofs of the properties of these are quite technical so we shall cover
some examples first.

As notation we let Ti = inf {n ≥ 1 : Xn = i}; we call this the return time
even if we do not start in i. V i

j = Vj (Ti) the number of visits to j before

we first return to i, mi = Ei (Ti) and Y i
j = Ei

(
V i

j

)
. Under suitable conds

mi = 1
πi

, Y i
j =

πj

πk
for π an invariant dist (or Y i

j =
λj

λj
for λ an invariant

measure), (Pn)ij → πj and E

(
Vj(n)

n

)
→ πj as n → ∞. Note this means the 3D

simple symmetric RW has no invariant dist.
As well as directly calculating π by forming equations for each of its cpts,

we can try the detailled balance (DB) eqns πiPij = πjPji. If π solves these then
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πP = π as summing over j,
∑

j πjPij = πi

∑
j Pij = πi; however, sometimes

there is no solution to these eqns, even if an invariant dist exists, e.g. for

P =




0 1 0
0 1

2
1
2

1
2 0 1

2



.

If we know an invariant dist is unique and the chain has some symmetry we
can use this to find it. Note, however, there does not have to exist an invariant
dist by e.g. the infinite chain on N0 pii+1 = 1, pij = 0 otherwise, or even an
invariant measure, by e.g. the success run chain on N0 pii+1 = pi, pi0 = qi =
1−pi if we choose pi st pi < 1 for infinitely many i and r = limi→∞ ri > 0 where
r = p0p1 . . . pi−1. Invariant dists are not necessarily unique, e.g. all dists on(

1 0
0 1

)
are invariant, but even for an irreducible chain we have the chain on

Z given by pii+1 = p, pii−1 = q = 1 − p with p 6= q, then λi = 1 and µi =
(

p
q

)i

are both invariant measures.

7.1 Solidarity Property

P irredicible, 0 ≤ λi ≤ ∞∀i and λ = λP ⇒ λ ≡ 0 or 0 < λi < ∞∀i or λ ≡ ∞

Pf

λ = λP = λP 2 = · · · = λPn∀n; given (i, j), ∃n : (Pn)ij > 0 since P irredicible,
so λi =

∑
k λk (Pn)kj ≥ λi (Pn)ij so λj < ∞ ⇒ λi < ∞ and λi > 0 ⇒ λj > 0

7.2 Prop

Recall λi
j = Ei

(
V i

j

)
= Ei

(∑Ti−1
n=0 IXn=j

)
the expected no. of visits to j between

visits to i. γk =
(
γk

j : j ∈ I
)

is the minimal non-neg sol to λj = (λP )j for j 6= k
and λk = 1

Pf

For j 6= k, γk
j = Ek

(∑Tk

n=1 IXn=j

)
(⋆) since we are in state k 6= j at both time 0

and Tk; this is Ek

∑k
n=1 IXn=j,n≤Tk

=
∑∞

n=1 EkIXn=j,n≤Tk
=

∑∞
n=1 Pk (Xn = j, n ≤ Tk)

which crucially is
∑∞

n=1

∑
i∈I Pk (n ≤ Tk, Xn−1 = i, Xn = j); Tk being ≥ n de-

pends only on X1, . . . , Xn−1 so by [strong] Markov this is
∑∞

n=1

∑
i∈I Pk (n ≤ Tk, Xn−1 = i)Pij =∑

i∈I

∑∞
n=1 Pk (n ≤ Tk, Xn−1 = i)Pij which letting m = n−1 is

∑
i∈I

∑∞
m=0 Pk (m ≤ Tk, Xm = i)Pij =∑

i∈I γk
i Pij , so γk is a sol; suppose λ also a sol, then for j 6= k λj =

∑
i∈I λiPij =

Pkj+
∑

i6=k λiPij = · · · = Pkj+
∑

i1 6=k Pki1Pi1j+· · ·+
∑

i,i1,...,in−1 6=k Pkin−1 . . . Pi2i1Pi1j+∑
i1,...,in 6=k λin

Pinin−1 . . . Pi2i1Pi1j ; the second last term here is Pk (Xn = j, Tk ≥ n)

and sim the prev terms so if λ ≥ 0 then for k 6= j, λj ≥
∑n

m=0 Pk (Xm = j, Tk ≥ m)
by ommiting the final term, so letting n → ∞ λj ≥

∑∞
m=0 Pk (Xm = j, Tk ≥ m) =

γk
j and we are done.
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7.3 Thm

Suppose P irreducible and recurrent, then γk is the unique invariant measure λ
with λk = 1

Pf

Since P is recurrent ⋆ remains true for j = k so γk = γkP by the same argument
as in 7.2; since P irreducible and γk

k = 1 we have γk
j < ∞∀j by 7.1, thus γk is

an invariant measure; by 7.2 if λ an invariant measure w/ λk = 1 then λ ≥ γk

so λ − γk ≥ 0 and this is an invariant measure [since it is a lin comb of such] ,
but its k cpt is 0 so by 7.1 it is ≡ 0.

7.4 Thm

For P irreducible the following are equiv:

1. Every state is positive recurrent (i.e. mi = Ei (Ti) < ∞∀i)

2. Some state i is positive recurrent

3. ∃ an invariant dist π

and under these conds mi = 1
πi
∀i.

Pf

1 ⇒ 2 trivially; for 2 ⇒ 3 set πj =
γi

j

πi
and apply 7.3: Ti =

∑
j∈I

∑Ti

n=1 IXn=j

so mi = E

(∑
j∈I

∑Ti

n=1 IXn=j

)
=

∑
j∈I γi

j . For 3 ⇒ 1 fix k and set λj =
πj

πk
,

then λ ≥ γk by 7.2 so mk =
∑

j∈I γk
j ≤

∑
j∈I λj = 1

πk
< ∞ so mk finite and k

recurrent, so P is recurrent; by 7.3 λ = γk and so mk = 1
πk

.
If P is irreducible and I finite then as per chapter 5 P is recurrent and so

an invariant measure λ exists, then
∑

i∈I λi < ∞ since I is finite so we can
normalize λ to get an invariant dist.

Summary: existance and uniqueness of invariant measures
and dists

Without irreducibility we can find Markov chains with no or many invariant
dists, as above; assuming irreducibility, a finite state sp ⇒ a unique invariant
dist ⇔ positive recurrence; for a general state sp recurrence implies ∃ a “unique”
invariant measure up to scalar multiplication (since we found the unique invari-
ant measure with λk = 1). For transient chains even with irreducibility we can
find examples with no or many invariant measures.

If P is irreducible and an invariant dist exists then it is unique.
As an example, we can apply the above graph example to a knight moving

randomly on a chessboard; the corners have valence vC = 2, the squares next
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to them 3, the rest of the edge of the board and the corners of the “next square
in” have valence 4 and so forth; the average return time for a corner square is

mC = 1
πC

=
P

vi

vC
which we can find to be 168.

8 Conv to equilibrium

Main T

We shall not prove this as yet; if P is irreducible and aperiodic and has invariant
dist π then for any initial dist P (Xn = j) → πj as n → ∞.

We def a state i is aperiodic if ∃n1, . . . , nk ≥ 1 w/ no common factor s.t.
(Pn1)ii , . . . , (Pnk)ii all > 0; if n1, . . . , nk ≥ 1 with no common factor then
∃N : n ≥ N ⇒ n = a1n1 + · · · + aknk some a1, . . . , an ∈ N0 (of course the ai

depend on n).

Lemma

For P irreducible w/ an aperiodic state i, ∀j, k ∈ I (Pn)jk > 0 and all states are
aperiodic (periodicity is a class property), since can find r, s ≥ 0 w/ (P r)ji , (P s)ik >
0, then use aperiodicity of i.

The lecturer here performed a card trick; get n people to each think of a
number from 1 to 10, then turn through the cards in a deck; each person counts
their number of cards, then changes their number to the number on the card
which appears and repeats (treating court cards as 6s, iirc); we find that when
the pack has been exhausted everyone’s number is the same. This works by
coupling; observe that once two people reach the same state by chance (i.e.
finish counting to their current number on the same card) they will then remain
“locked together” forever, so it is likely all people will be in the same state by
the time the pack is finished.

T

This is the most subtle T in the course: for P irreducible and aperiodic w/
invariant dist π, for any initial dist, P (Xn = j) → πj as n → ∞, ∀j.

Pf (non-examinable)

Suppose (Xn)n≥0 ∼ Markov (λ, P ), (Yn)n≥0 indep ∼ Markov (π, P ). For a
fixed state b set T = inf {n ≥ 1 : Xn = Yn = b}. We first show P (T < ∞) = 1;

let (Wn)n≥0 be the Markov chain (Xn, Yn); it has trans mat P̃ with
(
P̃n

)

(i,j)(k,l)

and initial dist µ(i,k) = λiπk. It has an invariant dist π̃(i,k) = πiπk as we can
verify from the eqns defning an invariant dist; by aperiodicity from the previous

L
(
P̃n

)

(i,j)(k,l)
> 0 for sufficiently large n [the lecturer claimed how large n must
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be depends on (i, j, k, l) but this is not actually necessary], so P̃ is irreducible;
by 7.4 it is (positive) recurrent so P (T < ∞) = 1.

Now [conditioning on T < ∞] set Zn = Xn for n ≤ T , Yn for n >
T . (T is a stopping time for W so) By strong Markov (XT+n, YT+n)n≥0 is

Markov
(
δ(b,b), P̃

)
and indep of (X0, Y0) , . . . , (XT , YT ); by symmetry so is

(YT+n, XT+n). So W ′
n = (Zn, Z ′

n) is Markov
(
µ, P̃

)
(where Z ′

n = Yn for

n ≤ T, Xn for n > T ); in particular (Zn)n≥0 is Markov (λ, P ).
Now P (Zn = j) = P (Xn = j, n ≤ T )+P (Yn = j, n > T ) so |P (Xn = j) − πj | =

|P (Zn = j) − P (Yn = j)| since Zn and Xn have the same dist. But this is
|P (Xn = j, n ≤ T ) − P (Yn = j, n ≤ T )| ≤ P (n ≤ T ) → 0 as n → ∞ since
P (T < ∞) = 1.

Coupling is a very powerful technique

9 Time Reversal

Thm

Let P irreducible w/ invariant distn π; suppose (Xn)0≤n≤N ∼ Markov (π, P )

and set Yn = XN−n, then (Yn)0≤n≤N ∼ Markov
(
π, P̂

)
where P̂ given by

πjP̂ji = πjPij∀i, j; also P̂ is irreducible w/ invariant distn π.

Pf

For n = 0, 1, . . . , N P (Y0 = i0, Y1 = i1, . . . , Yn = in) = P (XN−n = in, . . . , XN = i0) =
πin

Pinin−1Pin−1in−2 . . . Pi1i0 = πi0 P̂i0i1 . . . P̂in−1in
; next XN−1 ∼ π and Y1 ∼ πP̂

but these are the same so π = πP̂ ; irreducibility by i ∼ j under P iff j ∼ i
under P̂ .

If the detailled balance conds are satisied i.e. πjPji = πiPij then P̂ = P ;
a Markov chain in the form of a line of states must satisfy DB if an invariant
exists; more generally this is true if the graph of the state space is a tree (i.e.
has no cycles).

10 Ergodic T

Ergodic generally means of or about averages over time.

T (Strong law of large numbers) (without proof)

For Y1, Y2, . . . non-neg i.i.d. rvs w/ EY1 = µ, P
(

Y1+Y2+···+Yn

n → µ as n → ∞
)

=
1. Any reader confused by this statement should return to their basic definitions;
any point ω in the state space Ω defines the value of all the Yi, so it is then a
simple fact whether or not Y1+Y2+···+Yn

n → µ. Of course there may exist sets
of values for Yi for which this is not the case, e.g. if the Yi are coin tosses (i.e.
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1 w/ prob 1
2 , 0 otherwise) Yi = 1∀i has Y1+Y2+···+Yn

n = 1 9
1
2 = µ - but the

statement is that the probability mass of all such states is 0; all the probability
is concentrated on the states where this does → µ.

Contrast this w/ the WLLN; that considers static times [before taking a
limit over them, as now], wheras this is an average over time.

Vi (n) =
∑n−1

m=0 IXm=i, the no. of visits to state i before time n.

Thm (Ergodic T for Markov Chains)

Let P be irredicible and λ any initial dist, then P

(
Vi(n)

n → 1
mi

as n → ∞
)

= 1;

the long run proportion of time spent in state i is 1
mi

. Often 1
mi

= πi where π
is an invariant dist (in fact, this is the case precisely when 0 < mi < ∞ - this
result is true for many chains without invariant dists), which gives a usefil way
to calculate 1

mi
.

If P is transient then Pi (Vi = ∞) = 0 and conditioning on Vi < ∞, Vi(n)
n → 0

as n → ∞; 0 = 1
mi

so we are done. Otherwise P is recurrent; P (Hi < ∞) = 1;

note that Vi(n)
n converges iff 1

n

∑n−1
m=0 IXHi+m=i does and with the same limit,

so by strong Markov at Hi it suffices to consider λ = δi.
Set T (0) = 0, let T (k)be the time of the kth return to state i. Set S(k) =

T (k)−T (k−1) so T (k) = S(1) + · · ·+S(k); by strong Markov the S(i) are i.i.d. rvs

w/ expectation Ei (Ti) = mi, so by SLLN Pi

(
S(1)+···+S(k)

k → mi as k → ∞
)

=

1; we have S(1)+· · ·+S(Vi(n)−1) = T (Vi(n)−1) the time of the last visit to i before
n so ≤ n−1, S(1)+· · ·+S(Vi(n)) = T (Vi(n)) the time of the first visit to i after time

n so ≥ n; then S(1)+···+S(Vi(n)−1)

Vi(n) < n
Vi(n) ≤ S(1)+···+S(Vi(n))

Vi(n) ; since P is recurrent

P (Vi (n) → ∞ as n → ∞) = 1, so P

(
n

Vi(n) → mi as n → ∞
)

= 1, but for any

state where n
Vi(n) → mi,

Vi(n)
n → 1

mi
(as n → ∞), so P

(
Vi(n)

n → 1
mi

as n → ∞
)

=

1.
This completes the content of this course. Related part II courses are ap-

plied probability, the continuation of this course to cnts time, and probability
and measure which looks at the mathematical foundations for this course; parts
of this course are applied in the courses Stochastic Financial Models and Math-
ematical Biology.
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