Markov Chains

Frank Kelley

July 5, 2008

This is a beautiful but accessible theory with a wide range of applications. The reader should be familiar with basic probability theory

The book for this course is J R Norris' "Markov Chains".
A preview of the highlight of this course; for a simple symmetric random walk in 1 D , the probability of returning to the origin is 1 . Likewise, the same is true for a 2D "drunkard's walk". However, in 3D the probability is <1.

1 Definitions and basic properties

A Markov chain with state space I and transition matrix P is a sequence of I -
valued RVs $\left(X_{n}\right)$ s.t. $\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}, X_{n+1}=i_{n+1}\right)=\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) P_{i_{n} i_{n+1}} \forall i_{0}, \ldots, i_{n}$, $I \forall n \geq 0[\mathrm{M} 1](\mathbb{P}(E)$ denote the probability of E to distinguish this from the matrix P).

If [M1] holds then inductively we have $\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{0}=i_{0}\right) P_{i_{0} i_{1}} \ldots P_{i_{n-1} i_{n}} \forall i_{0}, \ldots i_{n}$ $I \forall n \geq 0$ [M2]; clearly [M2] $\Rightarrow[\mathrm{M} 1]$

We call the elements of I states.
This definition is very nice - it is clearly very simple and describes reasonable models for a huge range of phenomena, yet we shall see it is sufficient to prove a huge number of useful properties.

Set $\lambda_{i}=\mathbb{P}\left(X_{0}=i\right) ;$ let $\lambda=\left(\lambda_{i}: i \in I\right)$ be the initial distribution of $\left(X_{n}\right)$, i.e. $\lambda_{i}=\mathbb{P}\left(X_{0}=i\right)$ [check]. By [M2], λ, P determine the probabilities of any event of the form $\left\{X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right\}$, called an elementary event. So we write $\left(X_{n}\right) \sim \operatorname{Markov}(\lambda, P)$. We usually take $\lambda=\delta_{i}$ for some $i \in I$, i.e. we start in state i; in this case we can write \mathbb{P}_{i} rather than \mathbb{P} to indicate we are conditioning on this.

A row vector ($\lambda_{i}: i \in I$) with $\lambda_{i} \geq 0 \forall i \in I$ is a measure; its total mass is $\sum_{i \in I} \lambda_{i}$. If this is 1 it is called a distribution or probability measure; the initial distribution is of course a distribution.

In a slight abuse of notation, we also use λ to denote the function $\lambda(A)=$ $\sum_{i \in A} \lambda_{i}$ defined on subsets $A \subset I$.

A matrix $P=\left(P_{i j}: i, j \in I\right)$ all of whose rows $\left(P_{i j}: j \in I\right)$ are distributions is called a stochastic matrix; the transition matrix is stochastic.

An example we shall be returning to frequently is $P=\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.

Probability revision (not part of this course)

For a set Ω and set \mathcal{F} of subsets of Ω satisfying $\Omega \in \mathcal{F}, A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$ and, for A_{n} all $\in \mathcal{F}, \bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{F}$, a probability measure is a $\mathbb{P F} \rightarrow[0,1]$ satisfying $\mathbb{P}(\Omega)=1$ and for disjoint $A_{n} \in \mathcal{F}, \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)$.

Let I be a finite (all of its elements can be enumerated as $i_{1}, i_{2}, \ldots, i_{n}$ for some $n \in \mathbb{N}$) or countably infinite set. The theory we will be learning is valid for countably infinite sets, since if we have $\mu_{i} \geq 0 \forall i \in I$ then for any two enumerations of I as i_{1}, i_{2}, \ldots and $j_{!}, j_{2}, \ldots$, if we set $S_{n}=\sum_{k=1}^{n} \mu_{i_{j}}$ and $S=\sum_{k=1}^{\infty} \mu_{i_{k}}$, similarly T_{n} and T for the j_{k}, then $\forall n \exists m:\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} \subset$ $\left\{j_{1}, j_{2}, \ldots j_{n}\right\}$ so $S_{n} \leq T_{m} \leq T$, so $S \leq T$, similarly $T \leq S$ and $S=T$. Therefore $\sum_{i \in I} \mu_{i}$ is well defined even for (countably) infinite I.

For a random variable $X: \Omega \rightarrow I$ we write $\left\{X_{i}\right\}=\{\omega \in \Omega: X(\omega)=i\}$ and $\mathbb{P}(X=i)$ for $\mathbb{P}\left(\left\{X_{i}\right\}\right)$.

These definitions are usually just underlying what we do; we won't normally use them directly. However, if we encounter apparent paradoxes we can return to these to resolve them.

Connection with Matrix Multiplication

If we treat λ as a row vector then for $\left(X_{n}\right) \sim \operatorname{Markov}(\lambda, P), \mathbb{P}\left(X_{1}=j\right)=$ $\sum_{i \in I} \mathbb{P}\left(X_{0}=i, X_{1}=j\right)=\sum_{i \in I} \lambda_{i} P_{i j}=(\lambda P)_{j}$. Taking $\lambda=\delta_{i}$ we have $\mathbb{P}_{i}\left(X_{2}=j\right)$ is similarly $\left(P^{2}\right)_{i j}$, and ultimately $\mathbb{P}\left(X_{n}=j\right)=\left(\lambda P^{n}\right)_{j}$ and $\mathbb{P}_{i}\left(X_{n}=j\right)=$ $\left(\delta_{i} P^{n}\right)_{i j}$ or $p_{i j}^{(n)}$. Of course the best way to find these is diagonalising the matrix, or rather simply find the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$, and then we know that e.g the first element of P^{n} is $A \lambda_{1}^{n}+B \lambda_{2}^{n} \ldots$, and can find A, B, \ldots by simultaneous equations from the first $|I|$ matricies calculated by hand [The lecturer is lame and can't diagonalise properly].

Thm (Markov Property)

Let $\left(X_{n}\right)$ for $n \geq 0$ be Markov (λ, P). For each $n \geq 0$ and $i \in I$, conditioning on the "present" $X_{n}=i$ the past $\left(X_{0}, \ldots, X_{n}\right)$ and future (X_{n+1}, \ldots) are indep with the latter $\sim \operatorname{Markov}\left(\delta_{i}, P\right)$.

Pf

We want to show $\mathbb{P}\left(X_{n+1}=i_{n+1}, \ldots, X_{n+m}=i_{n+m} \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i\right)=$ $\prod_{r=0}^{m-1} P_{j_{r} j_{r+1}}$ for $j_{0}=i, j_{r}=i_{n+r} \forall r \in[1, m]$. We prove this by simply substituting [M2], which also gives that the RHS is the definition of a Markov distribution as required.

2 Class Structure

Consider the diagram of our example (graph with verticies representing states and directed edges labelled with the transition probabilities existing if these are >0) with just the arrows, no numbers; it divides naturally into classes where from any state in a class we can reach any other. Write $i \sim j$ if $\exists n$: $\mathbb{P}_{i}\left(X_{n}=j\right)>0 ;$ " i leads to j " or " j is accessible from i ". Equivalent [for $i \neq j$] that $i \sim j, \exists n \geq 1, i_{1}, \ldots i_{n}$ with $P_{i_{k} i_{k+1}}>0 \forall 0 \leq k \leq n$ (considering $i_{0}=i, i_{n}=j$, or $\left(P^{n}\right)_{i j}>0$ for some $n \geq 0$. If $i \sim j$ and $j \sim i$ we write $i \nrightarrow j$; " i communicates with j ", and this is an equiv rel so it partitions I into "communicating classes"; we call a class C "open" if $\exists i \in C, j \notin C$ with $i \sim j$, "you can escape", otherwise C is closed. If I is a class we say P is irreducible; from every state we can reach every other state.

3 Hitting times and absorbtion probabilities

For a Markov chain and $A \subset A$ we define an $\operatorname{rv} H^{A}: \Omega \rightarrow \mathbb{N} \cup\{0, \infty\}$ by $H^{A}(\omega)=\inf _{n \geq 0}\left\{X_{n}(\omega)\right\} ;$ note $\inf \}=\infty$.

Let $h_{i}^{A}=\mathbb{P}_{i}\left(H^{A}<\infty\right)$ be the prob we hit A (called the absorbtion probability if A is a closed class $) ; k_{i}^{A}=\mathbb{E}_{i}\left(H^{A}\right)=\sum_{n<\infty} n \mathbb{P}_{i}\left(H^{A}=n\right)+\infty \mathbb{P}_{i}\left(H_{A}=\infty\right)$ taking the last term to be 0 if the probability is 0 is the mean time to hit A. $h^{A}=\left(h_{i}^{A}\right)$ and $\operatorname{sim} k^{A}$ are i-vectors over the state space I.
h^{A} is the minimal nonnegative solution to $h_{i}^{A}=1 \forall i \in A, h_{i}^{A}=\sum_{j \in I} p_{i j} h_{j}^{A} \forall i \notin$ A; finding the minimal solution is generally the hard part rather than solving. For $i \in A, X_{0}=i \Rightarrow H_{A}=0<\infty$ so $h_{i}^{A}=1$, and for $i \notin A H^{A} \geq 1 h_{i}^{A}=$ $\mathbb{P}_{i}\left(H^{A}<\infty\right)=\sum_{j} \mathbb{P}\left(H^{A}<\infty \mid X_{1}=j\right) \mathbb{P}_{i}\left(X_{1}=j\right)=\sum_{j} \mathbb{P}_{j}\left(H^{A}<\infty\right) p_{i j}$ and so by the Markov property $h_{i}^{A}=\mathbb{P}_{i}\left(H^{A}<\infty\right)=\sum_{j} \mathbb{P}\left(H^{A}<\infty \mid X_{1}=j\right) \mathbb{P}_{i}\left(X_{1}=j\right)=$ $\sum_{j} \mathbb{P}_{j}\left(H^{A}<\infty\right) p_{i j}$, so h solves the given eqns; h is nonnegative as it is a probability (or rather a vector therof). Now if x is any nonnegative sol to the given eqns, $h_{i}^{A}=x_{i}=1$ for $i \in A$; for $i \notin A, x_{i}=\sum_{j \in I} p_{i j} x_{j}=$ $\sum_{j \in A} p_{i j}+\sum_{j \notin A} p_{i j} x_{j}$; substituting repeatedly for x_{j} and rearranging we have $x_{i}=\mathbb{P}_{i}\left(X_{1} \in A\right)+\mathbb{P}_{i}\left(X_{1} \notin A, X_{2} \in A\right)+\cdots+\mathbb{P}_{i}\left(X_{1} \notin A, \ldots, X_{n-1} \notin A, X_{n} \in A\right)+$ $\sum_{j_{1} \notin A} \cdots \sum_{j_{n} \notin A} p_{i j_{1}} p_{j_{1} j_{2}} \ldots p_{j_{n-1} j_{n}} x_{j_{n}} ; x$ is non-negative so this last term is \geq 0 and so $\mathbb{P}_{i}\left(H^{A}<n\right) \leq x_{i} \forall i, n$ so $x_{i} \geq \lim _{n \rightarrow \infty} \mathbb{P}_{i}\left(H^{A} \leq n\right)=\mathbb{P}_{i}\left(H^{A} \leq \infty\right)=$ h_{i}.

Example: Gambler's Ruin

States $0,1, \ldots$; probability p of moving to the next state, $q=1-p$ to the previous state from any non-zero state, with $0<p<1$; think of as a casino where we win $£ 1$ each turn with probability p, lose $£ 1$ with prob q; what is the probability we eventually go broke?. Set h_{i} to be $\mathbb{P}_{i}($ hit 0$)$; this is then the minimal non-negative sol to $h_{0}=1, h_{i}=p h_{i+1}+q h_{i-1}$ for $i \geq 1$. For $p \neq q$ the general sol is $h_{i}=A+B\left(\frac{q}{p}\right)^{i}$; for $p<q$ we must have $B=0$ as $h_{i} \leq 1 \forall i$, so $h_{i}=1 \forall i$; for $p>q$ the sols are of the form $\left(\frac{q}{p}\right)^{i}+A\left(1-\left(\frac{q}{p}\right)^{i}\right)$; the minimal non-negative one of these is given by $A=0$ so $h_{i}=\left(\frac{q}{p}\right)^{i}$; if $q=p$ we have $h_{i}=A+B_{i}=1 \forall i$. CPS

Example: Birth and Death chain

As above but with the probabilities from state i being p_{i} to the next state and $q_{i}=1-p_{i}$ to the previous one. Let X_{n} be the population size, $h_{i}=\mathbb{P}_{i}$ (hit 0) so have $h_{0}=1, h_{i}=p_{i} h_{i+1}+q_{i} h_{i-i}$ for $i \geq 1$. We cannot solve this as a recurrence since p, q are not constant; consider $u_{i}=h_{i-1}-h_{i}$ (taking $h_{-1}=1$) which is clearly ≥ 0, then $p_{i} u_{i+1}=q_{i} u_{i}$ for $i \geq 1$, so $u_{i+1}=\frac{q_{i}}{p_{i}} u_{i}=\cdots=\frac{q_{i} \times \cdots \times q_{1}}{p_{i} \times \cdots \times p_{1}} u_{1}$; we let the fraction be γ_{i} and set $\gamma_{0}=1$. We have $u_{1}+\cdots+u_{i}=h_{0}-h_{i}$ so $h_{i}=1-A\left(\gamma_{0}+\cdots+\gamma_{i-1}\right)$; by $h_{i} A$ is u_{1}.

In the case $\sum \gamma_{i}=\infty 0 \leq h_{i} \leq 0 \Rightarrow A=0$ and $h_{i}=1 \forall i$
In the case $\sum_{i} \gamma_{i}<\infty$ the sol h_{i} decreases as A increases, so we want the largest A with $h_{i} \geq 0$; therefore we want $0=\lim _{i \rightarrow \infty} h_{i}=1-A\left(\sum_{i=0}^{\infty} \gamma_{i}\right)$ and so $h_{i}=\frac{\sum_{j=1}^{\infty} \gamma_{j}}{\sum_{j=0}^{\infty} \gamma_{i}}$; in particular the population survives with probability >0; we can check our results by comparison with the above special case.

4 Strong Markov Property

Def a random time τ is an rv taking vals $\infty, 0,1,2 \ldots ; \tau$ is a stopping time for the Markov chain $\left(X_{n}\right)$ if $\forall n \geq 0$ the event $\{\tau=n\}$ is determined entirely by the rvs $X_{0}, X_{1}, \ldots, X_{n}$ (ie is a function of them); informally "we know whether to stop"; if we want to stop at time τ we can.

Conditional on $\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)$ the event $\tau=n$ is indep of $\left(X_{n+1}, X_{n+2}, \ldots\right)$.

Examples

The first passage time to state $i T_{i}=\min \left\{n: n \geq 1, X_{n}=i\right\}$ if such an n exists, ∞ otherwise. $\left(T_{i}=n\right)=\left(X_{1} \neq i, \ldots, X_{n-1} \neq i, X_{n}=i\right)$ so T_{i} is a stopping time; note that for T_{i} finite, $X_{T_{i}}=i$.

The last time in state $i, L_{i}=\sup \left\{n: n \geq 0, X_{n}=i\right\}$ is not a stopping time.

Thm (Strong Markov Property)

For $X_{n} \operatorname{Markov}(\lambda, P)$ and τ a stopping time; conditional on $\tau<\infty$ and $X_{\tau}=i$, $\left(X_{0}, X_{1}, \ldots, X_{\tau-1}\right)$ and $\left(X_{\tau+1}, X_{\tau+2} \ldots\right)$ are indep with $\left(X_{\tau}, X_{\tau+1}, X_{\tau+2} \ldots\right) \sim$ Markov $\left(\delta_{i}, P\right)$

Remarks

This is the markov property with n replaced by τ; the point is that τ gives no information about $X_{\tau+1}, X_{\tau+2}, \ldots$ other than that contained in X_{τ}. The proof of this is non-examinable.

We can use this to easily solve the gambler's ruin problem above: $h_{1}=p h_{2}+q$ but $h_{2}=h_{1} \times h_{1}$ as it is the probability we hit $1 \times$ the probability we hit 0 starting from 1 ; the time when we first hit 1 is a stopping time. So we have $h_{1}=p h_{1}^{2}+q$ meaning $h_{1}=1$ or $\frac{q}{p}$; we find which by minimality.

5 Recurrence and transience

Let $V_{i}=\sum_{n=0}^{\infty} I_{X_{n}=i}$ the no of visits to state $i, T_{i}=\inf \left(n \geq 1: X_{n}=i\right)$ return time to state $i ; f_{i}=\mathbb{P}_{i}\left(T_{i}<\infty\right), m_{i}=\mathbb{E}_{i}\left(T_{i}\right)$ mean return time to state i.

Prop

$\forall k \geq 0 \mathbb{P}_{i}\left(V_{i} \geq k+1\right)=\left(f_{i}\right)^{k}$ - use strong markov after k th visit.
We say a state i is recurrent if $f_{i}=1$, otherwise i is transient. A recurrent state i is positive recurrent if $m_{i}<\infty$, otherwise it is null recurrent. So $\mathbb{P}_{i}\left(V_{i}=\infty\right)=1$ if i is recurrent, 0 otherwise, from that it is $\left(f_{i}\right)^{k}$.

T

A state i is recurrent iff $\sum_{n=0}^{\infty}\left(P^{n}\right)_{i i}=\infty$, by $\mathbb{E}_{i}\left(V_{i}\right)=\mathbb{E}_{i}\left(\sum_{n=1}^{\infty} I_{X_{n}=i}\right)=$ $\sum_{n=1}^{\infty} \mathbb{E}_{i} I_{X_{n}=i}=\sum_{n=0}^{\infty} \mathbb{P}_{i}\left(X_{n}=i\right)$.

There is a recurrence/transience dichotomy: either $f_{i}=1, \mathbb{P}_{i}\left(V_{i}=\infty\right)=$ $1, \sum_{n=0}^{\infty}\left(P^{n}\right)_{i i}=\infty$ and i is recurrent, or $f_{i}<1, \mathbb{P}_{i}\left(V_{i}=\infty\right)=0, \sum_{n=0}^{\infty}\left(P^{n}\right)_{i i}<$ ∞ and i is transient.

T

Suppose i recurrent and $i \sim j$, then:

1. $\mathbb{P}_{j}\left(H_{i}<\infty\right)=1$. Note $\left\{V_{i}<\infty\right\} \supset\left(\left\{H_{j}<\infty\right\} \cap\left\{X_{n} \neq i \forall n \geq H_{j}\right\}\right)$. Now H_{j} is a stopping time, and given $H_{j}<\infty$ we have $X_{H_{j}}=j$, so by strong Markov $\mathbb{P}_{i}\left(V_{i}<\infty\right) \geq \mathbb{P}_{i}\left(H_{j}<\infty\right) \mathbb{P}_{j}\left(H_{i}=\infty\right)$; the LHS is 0 by recurrence of i. So $2 . \Rightarrow \mathbb{P}_{i}\left(H_{j}<\infty\right)>0 \Rightarrow \mathbb{P}_{j}\left(H_{i}=\infty\right)=0$.
2. $\mathbb{P}_{i}\left(H_{j}<\infty\right)=1$. Let $T_{i}^{(0)}=0, T_{i}^{(1)}=T_{i}$ and generally $T_{i}^{(k)}=$ time of k th return to i. We have $\mathbb{P}_{i}\left(T_{i}^{(k)}<\infty\right)=1$ as i recurrent, so $X_{T_{i}^{(k)}}=i$. Now define the events $A_{k}=\left\{X_{n}=j: T_{i}^{(k-i)} \leq n<T_{i}^{(k)}\right\}$ for $k \geq 1$. By strong Markov on $T_{i}^{(k-1)} \mathbb{P}_{i}\left(A_{k}\right)=\mathbb{P}_{i}\left(H_{j}<T_{i}\right) ;$ say this is p. The A_{k} are indep so $\mathbb{P}\left(\bigcup_{k} A_{k}\right)$ is either 0 for $p=0$ or 1 for $p>0$, but this is $\mathbb{P}_{i}\left(H_{j}<\infty\right)$ which is >0 since $i \sim j$ so must be 1 .
3. j is recurrent; this follows flom the above two and strong Markov; $\mathbb{P}_{j}\left(T_{j}<\infty\right) \geq$ $\mathbb{P}_{i}\left(H_{j}<\infty\right) \mathbb{P}_{j}\left(H_{i}<\infty\right)=1$. Note that this implies recurrence (and so transience) are class properties; combined with 1 . above this means every recurent class is closed.

T

Every finite closed class C is recurrent; take any inital dist on C, then $\sum_{i \in C} V_{i}=$ ∞ as C closed, so $\sum_{i \in C} \mathbb{P}\left(V_{i}=\infty\right) \geq \mathbb{P}\left(\bigcup_{i \in C}\left\{V_{i}=\infty\right\}\right)=1$ so for some i, $0<\mathbb{P}\left(V_{i}=\infty\right)=\mathbb{P}\left(H_{i}<\infty\right) \mathbb{P}_{i}\left(V_{i}=\infty\right) ; \mathbb{P}_{i}\left(V_{i}=\infty\right)$ is always 0 or 1 su must be 1 and i is recurrent and C is recurrent.

Finite state spaces are "easy"; infinite state spaces are more interesting as we can have closed classes but be uncertain whether they are recurrent.

6 Recurrence and Transience of random walks

Simple Symmetric random walk on \mathbb{Z}

$I=\mathbb{Z}, P_{i i+1}=P_{i i-1}=\frac{1}{2}$. Let $h=\mathbb{P}_{1}$ (hit 0) which is $\mathbb{P}_{-1}($ hit 0$)$ by symmetry; by the homogeneity (probs the same $\forall i$) and strong Markov, $\mathbb{P}_{2}($ hit 0$)=h^{2}$ $\left(\mathbb{P}_{2}(\right.$ hit 1$) \times \mathbb{P}_{1}($ hit 0$)$; then $h=\frac{1}{2}+\frac{1}{2} h^{2}$ which gives $(h-1)^{2}=0$ so $h=1$ and the walk is recurrent.

Simple biased random walk on \mathbb{Z}

$I=\mathbb{Z}, P_{i i+1}=p, P_{i i-1}=q, p+q=1$. wlog take $q<p$, then $\mathbb{P}_{0}\left(T_{0}<\infty\right)=$ $p h_{+}+q h_{-}$where $h_{ \pm}=\mathbb{P}_{ \pm 1}$ (hit 0$)$, but by an earlier example $h_{+}=\frac{q}{p}, h_{-}=1$ so $\mathbb{P}_{0}\left(T_{0}<\infty\right)=2 q<1$; the walk is transient, we are not certain to return to 0 . The reader should now consider the simple symmetric random walk on the plane, which can be reduced to the above by projection onto the axes $x= \pm y$.

2D simple symmetric random walk

If $\left(X_{n}\right),\left(Y_{n}\right)$ indep 1D simple symmetric random walks, $\left(\frac{X_{n}+Y_{n}}{2}, \frac{X_{n}-Y_{n}}{2}\right)$ is clearly a 2 D simple symmetric random walk. To return we must have each of the 1D random walks return, i.e. $\left(P^{2 m}\right)_{(0,0)(0,0)}=\left(\binom{2 m}{m}\left(\frac{1}{2}\right)^{2 m}\right)^{2}$ since
$\binom{2 m}{m}\left(\frac{1}{2}\right)^{2 m}$ is the probability of a 1D simple symmetric random walk returning to the origin after $2 m$ steps (we must step left m times and right m times). This tends to $\left(\frac{1}{\sqrt{\pi m}}\right)$ by Stirling's formula so $\left(P^{2 m}\right)_{(0,0)(0,0)} \sim \frac{1}{\pi m}$ and so as $\sum_{m} \frac{1}{\pi m}=\infty, \sum_{m}\left(P^{2 m}\right)_{(0,0)(0,0)}=\infty$ and the random walk is recurrent.

It is not so easy to express a 3 D random walk in terms of 1 D random walk as each point has $6 \neq 2^{n}$ neighbours.

3D simple symmetric RW

$\left(P^{2 n}\right)_{\overrightarrow{0} \overrightarrow{0}}=\sum_{i, j, k \geq 0: i+j+k=n}\binom{2 n}{i i j j k k}$ (this is a multinomial coefficient rather than a binomial one with a product on the bottom) $\left(\frac{1}{6}\right)^{2 n}$; we write it as $\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} \sum_{i, j, k \geq 0: i+j+k=n}\binom{n}{i j k}^{2}\left(\frac{1}{3}\right)^{2 n} \leq\binom{ 2 n}{n}\left(\frac{1}{2}\right)^{2 n}\left(\frac{1}{3}\right)^{n} \max _{i, j, k \geq 0: i+j+k=n}\binom{n}{i j k}\left(\sum_{i, j, k}\right.$ this last bracketed term is 1 (consider the expansion of $(1+1+1)^{n}$) so this is $\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n}\left(\frac{1}{3}\right)^{n} \max _{i, j, k \geq 0: i+j+k=n}\binom{n}{i j k}$. Now for $n=3 m,\binom{n}{i j k}=$ $\frac{n!}{i!j!k!} \leq\binom{ n}{m m m}$, and a bound on $\left(P^{6 n}\right)_{\overrightarrow{0} \overrightarrow{0}}$ for $3 m$ bounds all $\left(P^{2 n}\right)_{\overrightarrow{0} \overrightarrow{0}}$ by at most a constant times this bound, since $\left(P^{6 n}\right)_{\overrightarrow{0} \overrightarrow{0}} \geq\left(\frac{1}{6}\right)^{2}\left(P^{6 n-2}\right)_{\overrightarrow{0} \overrightarrow{0}} \geq$ $\left(\frac{1}{6}\right)^{4}\left(P^{6 n-4}\right)_{\overrightarrow{0} 0}$, as we can certainly return to 0 at time $6 n$ by returning to 0 at time $6 n-2$, then moving to $(1,0,0)$ and back, and similarly. But we now have $\left(P^{6 n}\right)_{\overrightarrow{0} \overrightarrow{0}} \leq\binom{ 2 n}{n}\left(\frac{1}{2}\right)^{2 n}\left(\frac{1}{3}\right)^{n}\binom{n}{m m m} \sim \frac{c}{n^{\frac{3}{2}}}$ for some constant c as $n \rightarrow \infty$ so $\sum_{n}\left(P^{n}\right)_{\overrightarrow{0} 0}$ (terms are clearly 0 for n odd) $<\infty$ and the random walk is transient; this means it $\rightarrow \infty$ as otherwise it returns to some ϵ-ball about the origin infinitely often and it is recurrent.

7 Invariant Distributions

We say a dist or measure λ is invariant if $\lambda=\lambda P ; \lambda$ is a left evector of P with eval 1. Proofs of the properties of these are quite technical so we shall cover some examples first.

As notation we let $T_{i}=\inf \left\{n \geq 1: X_{n}=i\right\}$; we call this the return time even if we do not start in $i . \quad V_{j}^{i}=V_{j}\left(T_{i}\right)$ the number of visits to j before we first return to $i, m_{i}=\mathbb{E}_{i}\left(T_{i}\right)$ and $Y_{j}^{i}=\mathbb{E}_{i}\left(V_{j}^{i}\right)$. Under suitable conds $m_{i}=\frac{1}{\pi_{i}}, Y_{j}^{i}=\frac{\pi_{j}}{\pi_{k}}$ for π an invariant dist (or $Y_{j}^{i}=\frac{\lambda_{j}}{\lambda_{j}}$ for λ an invariant measure), $\left(P^{n}\right)_{i j} \rightarrow \pi_{j}$ and $\mathbb{E}\left(\frac{V_{j}(n)}{n}\right) \rightarrow \pi_{j}$ as $n \rightarrow \infty$. Note this means the 3D simple symmetric RW has no invariant dist.

As well as directly calculating π by forming equations for each of its cpts, we can try the detailled balance (DB) eqns $\pi_{i} P_{i j}=\pi_{j} P_{j i}$. If π solves these then
$\pi P=\pi$ as summing over $j, \sum_{j} \pi_{j} P_{i j}=\pi_{i} \sum_{j} P_{i j}=\pi_{i}$; however, sometimes there is no solution to these eqns, even if an invariant dist exists, e.g. for $P=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2}\end{array}\right)$.

If we know an invariant dist is unique and the chain has some symmetry we can use this to find it. Note, however, there does not have to exist an invariant dist by e.g. the infinite chain on $\mathbb{N}_{0} p_{i i+1}=1, p_{i j}=0$ otherwise, or even an invariant measure, by e.g. the success run chain on $\mathbb{N}_{0} p_{i i+1}=p_{i}, p_{i 0}=q_{i}=$ $1-p_{i}$ if we choose p_{i} st $p_{i}<1$ for infinitely many i and $r=\lim _{i \rightarrow \infty} r_{i}>0$ where $r=p_{0} p_{1} \ldots p_{i-1}$. Invariant dists are not necessarily unique, e.g. all dists on $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are invariant, but even for an irreducible chain we have the chain on \mathbb{Z} given by $p_{i i+1}=p, p_{i i-1}=q=1-p$ with $p \neq q$, then $\lambda_{i}=1$ and $\mu_{i}=\left(\frac{p}{q}\right)^{i}$ are both invariant measures.

7.1 Solidarity Property

P irredicible, $0 \leq \lambda_{i} \leq \infty \forall i$ and $\lambda=\lambda P \Rightarrow \lambda \equiv 0$ or $0<\lambda_{i}<\infty \forall i$ or $\lambda \equiv \infty$

Pf

$\lambda=\lambda P=\lambda P^{2}=\cdots=\lambda P^{n} \forall n$; given $(i, j), \exists n:\left(P^{n}\right)_{i j}>0$ since P irredicible, so $\lambda_{i}=\sum_{k} \lambda_{k}\left(P^{n}\right)_{k j} \geq \lambda_{i}\left(P^{n}\right)_{i j}$ so $\lambda_{j}<\infty \Rightarrow \lambda_{i}<\infty$ and $\lambda_{i}>0 \Rightarrow \lambda_{j}>0$

7.2 Prop

Recall $\lambda_{j}^{i}=\mathbb{E}_{i}\left(V_{j}^{i}\right)=\mathbb{E}_{i}\left(\sum_{n=0}^{T_{i}-1} I_{X_{n}=j}\right)$ the expected no. of visits to j between visits to i. $\gamma^{k}=\left(\gamma_{j}^{k}: j \in I\right)$ is the minimal non-neg sol to $\lambda_{j}=(\lambda P)_{j}$ for $j \neq k$ and $\lambda_{k}=1$

Pf

For $j \neq k, \gamma_{j}^{k}=\mathbb{E}_{k}\left(\sum_{n=1}^{T_{k}} I_{X_{n}=j}\right)(\star)$ since we are in state $k \neq j$ at both time 0 and T_{k}; this is $\mathbb{E}_{k} \sum_{n=1}^{k} I_{X_{n}=j, n \leq T_{k}}=\sum_{n=1}^{\infty} \mathbb{E}_{k} I_{X_{n}=j, n \leq T_{k}}=\sum_{n=1}^{\infty} \mathbb{P}_{k}\left(X_{n}=j, n \leq T_{k}\right)$ which crucially is $\sum_{n=1}^{\infty} \sum_{i \in I} \mathbb{P}_{k}\left(n \leq T_{k}, X_{n-1}=i, X_{n}=j\right) ; T_{k}$ being $\geq n$ depends only on X_{1}, \ldots, X_{n-1} so by [strong] Markov this is $\sum_{n=1}^{\infty} \sum_{i \in I} \mathbb{P}_{k}\left(n \leq T_{k}, X_{n-1}=i\right) P_{i j}=$ $\sum_{i \in I} \sum_{n=1}^{\infty} \mathbb{P}_{k}\left(n \leq T_{k}, X_{n-1}=i\right) P_{i j}$ which letting $m=n-1$ is $\sum_{i \in I} \sum_{m=0}^{\infty} \mathbb{P}_{k}\left(m \leq T_{k}, X_{m}=i\right) P_{i j}=$ $\sum_{i \in I} \gamma_{i}^{k} P_{i j}$, so γ^{k} is a sol; suppose λ also a sol, then for $j \neq k \lambda_{j}=\sum_{i \in I} \lambda_{i} P_{i j}=$ $P_{k j}+\sum_{i \neq k} \lambda_{i} P_{i j}=\cdots=P_{k j}+\sum_{i_{1} \neq k} P_{k i_{1}} P_{i_{1} j}+\cdots+\sum_{i, i_{1}, \ldots, i_{n-1} \neq k} P_{k i_{n-1}} \ldots P_{i_{2} i_{1}} P_{i_{1} j}+$ $\sum_{i_{1}, \ldots, i_{n} \neq k} \lambda_{i_{n}} P_{i_{n} i_{n-1}} \ldots P_{i_{2} i_{1}} P_{i_{1} j}$; the second last term here is $\mathbb{P}_{k}\left(X_{n}=j, T_{k} \geq n\right)$ and sim the prev terms so if $\lambda \geq 0$ then for $k \neq j, \lambda_{j} \geq \sum_{m=0}^{n} \mathbb{P}_{k}\left(X_{m}=j, T_{k} \geq m\right)$ by ommiting the final term, so letting $n \rightarrow \infty \lambda_{j} \geq \sum_{m=0}^{\infty} \mathbb{P}_{k}\left(X_{m}=j, T_{k} \geq m\right)=$ γ_{j}^{k} and we are done.

7.3 Thm

Suppose P irreducible and recurrent, then γ^{k} is the unique invariant measure λ with $\lambda_{k}=1$

Pf

Since P is recurrent \star remains true for $j=k$ so $\gamma^{k}=\gamma^{k} P$ by the same argument as in 7.2 ; since P irreducible and $\gamma_{k}^{k}=1$ we have $\gamma_{j}^{k}<\infty \forall j$ by 7.1 , thus γ^{k} is an invariant measure; by 7.2 if λ an invariant measure $\mathrm{w} / \lambda_{k}=1$ then $\lambda \geq \gamma^{k}$ so $\lambda-\gamma^{k} \geq 0$ and this is an invariant measure [since it is a lin comb of such], but its k cpt is 0 so by 7.1 it is $\equiv 0$.

7.4 Thm

For P irreducible the following are equiv:

1. Every state is positive recurrent (i.e. $\left.m_{i}=\mathbb{E}_{i}\left(T_{i}\right)<\infty \forall i\right)$
2. Some state i is positive recurrent
3. \exists an invariant dist π
and under these conds $m_{i}=\frac{1}{\pi_{i}} \forall i$.

Pf

$1 \Rightarrow 2$ trivially; for $2 \Rightarrow 3$ set $\pi_{j}=\frac{\gamma_{j}^{i}}{\pi_{i}}$ and apply 7.3: $T_{i}=\sum_{j \in I} \sum_{n=1}^{T_{i}} I_{X_{n}=j}$ so $m_{i}=\mathbb{E}\left(\sum_{j \in I} \sum_{n=1}^{T_{i}} I_{X_{n}=j}\right)=\sum_{j \in I} \gamma_{j}^{i}$. For $3 \Rightarrow 1$ fix k and set $\lambda_{j}=\frac{\pi_{j}}{\pi_{k}}$, then $\lambda \geq \gamma^{k}$ by 7.2 so $m_{k}=\sum_{j \in I} \gamma_{j}^{k} \leq \sum_{j \in I} \lambda_{j}=\frac{1}{\pi_{k}}<\infty$ so m_{k} finite and k recurrent, so P is recurrent; by $7.3 \lambda=\gamma^{k}$ and so $m_{k}=\frac{1}{\pi_{k}}$.

If P is irreducible and I finite then as per chapter $5 \stackrel{\pi_{k}}{P}$ is recurrent and so an invariant measure λ exists, then $\sum_{i \in I} \lambda_{i}<\infty$ since I is finite so we can normalize λ to get an invariant dist.

Summary: existance and uniqueness of invariant measures and dists

Without irreducibility we can find Markov chains with no or many invariant dists, as above; assuming irreducibility, a finite state $\mathrm{sp} \Rightarrow$ a unique invariant dist \Leftrightarrow positive recurrence; for a general state sp recurrence implies \exists a "unique" invariant measure up to scalar multiplication (since we found the unique invariant measure with $\lambda_{k}=1$). For transient chains even with irreducibility we can find examples with no or many invariant measures.

If P is irreducible and an invariant dist exists then it is unique.
As an example, we can apply the above graph example to a knight moving randomly on a chessboard; the corners have valence $v_{C}=2$, the squares next
to them 3, the rest of the edge of the board and the corners of the "next square in" have valence 4 and so forth; the average return time for a corner square is $m_{C}=\frac{1}{\pi_{C}}=\frac{\sum v_{i}}{v_{C}}$ which we can find to be 168 .

8 Conv to equilibrium

Main T

We shall not prove this as yet; if P is irreducible and aperiodic and has invariant dist π then for any initial dist $\mathbb{P}\left(X_{n}=j\right) \rightarrow \pi_{j}$ as $n \rightarrow \infty$.

We def a state i is aperiodic if $\exists n_{1}, \ldots, n_{k} \geq 1 \mathrm{w} /$ no common factor s.t. $\left(P^{n_{1}}\right)_{i i}, \ldots,\left(P^{n_{k}}\right)_{i i}$ all >0; if $n_{1}, \ldots, n_{k} \geq 1$ with no common factor then $\exists N: n \geq N \Rightarrow n=a_{1} n_{1}+\cdots+a_{k} n_{k}$ some $a_{1}, \ldots, a_{n} \in \mathbb{N}_{0}$ (of course the a_{i} depend on n).

Lemma

For P irreducible w/ an aperiodic state $i, \forall j, k \in I\left(P^{n}\right)_{j k}>0$ and all states are aperiodic (periodicity is a class property), since can find $r, s \geq 0 \mathrm{w} /\left(P^{r}\right)_{j i},\left(P^{s}\right)_{i k}>$ 0 , then use aperiodicity of i.

The lecturer here performed a card trick; get n people to each think of a number from 1 to 10, then turn through the cards in a deck; each person counts their number of cards, then changes their number to the number on the card which appears and repeats (treating court cards as 6 s , iirc); we find that when the pack has been exhausted everyone's number is the same. This works by coupling; observe that once two people reach the same state by chance (i.e. finish counting to their current number on the same card) they will then remain "locked together" forever, so it is likely all people will be in the same state by the time the pack is finished.

T

This is the most subtle T in the course: for P irreducible and aperiodic $\mathrm{w} /$ invariant dist π, for any initial dist, $\mathbb{P}\left(X_{n}=j\right) \rightarrow \pi_{j}$ as $n \rightarrow \infty, \forall j$.

Pf (non-examinable)

Suppose $\left(X_{n}\right)_{n \geq 0} \sim \operatorname{Markov}(\lambda, P),\left(Y_{n}\right)_{n \geq 0}$ indep $\sim \operatorname{Markov}(\pi, P)$. For a fixed state b set $T=\inf \left\{n \geq 1: X_{n}=Y_{n}=b\right\}$. We first show $\mathbb{P}(T<\infty)=1$; let $\left(W_{n}\right)_{n \geq 0}$ be the Markov chain $\left(X_{n}, Y_{n}\right)$; it has trans mat \tilde{P} with $\left(\tilde{P}^{n}\right)_{(i, j)(k, l)}$ and initial dist $\mu_{(i, k)}=\lambda_{i} \pi_{k}$. It has an invariant dist $\tilde{\pi}_{(i, k)}=\pi_{i} \pi_{k}$ as we can verify from the eqns defning an invariant dist; by aperiodicity from the previous $\mathrm{L}\left(\tilde{P}^{n}\right)_{(i, j)(k, l)}>0$ for sufficiently large n [the lecturer claimed how large n must
be depends on (i, j, k, l) but this is not actually necessary], so \tilde{P} is irreducible; by 7.4 it is (positive) recurrent so $\mathbb{P}(T<\infty)=1$.

Now [conditioning on $T<\infty$] set $Z_{n}=X_{n}$ for $n \leq T, Y_{n}$ for $n>$ T. (T is a stopping time for W so) By strong Markov $\left(X_{T+n}, Y_{T+n}\right)_{n \geq 0}$ is Markov $\left(\delta_{(b, b)}, \tilde{P}\right)$ and indep of $\left(X_{0}, Y_{0}\right), \ldots,\left(X_{T}, Y_{T}\right)$; by symmetry so is $\left(Y_{T+n}, X_{T+n}\right)$. So $W_{n}^{\prime}=\left(Z_{n}, Z_{n}^{\prime}\right)$ is $\operatorname{Markov}(\mu, \tilde{P})$ (where $Z_{n}^{\prime}=Y_{n}$ for $n \leq T, X_{n}$ for $\left.n>T\right)$; in particular $\left(Z_{n}\right)_{n>0}$ is $\operatorname{Markov}(\lambda, P)$.

$$
\text { Now } \mathbb{P}\left(Z_{n}=j\right)=\mathbb{P}\left(X_{n}=j, n \leq T\right)+\mathbb{P}\left(Y_{n}=j, n>T\right) \text { so }\left|\mathbb{P}\left(X_{n}=j\right)-\pi_{j}\right|=
$$ $\left|\mathbb{P}\left(Z_{n}=j\right)-\mathbb{P}\left(Y_{n}=j\right)\right|$ since Z_{n} and X_{n} have the same dist. But this is $\left|\mathbb{P}\left(X_{n}=j, n \leq T\right)-\mathbb{P}\left(Y_{n}=j, n \leq T\right)\right| \leq \mathbb{P}(n \leq T) \rightarrow 0$ as $n \rightarrow \infty$ since $\mathbb{P}(T<\infty)=1$.

Coupling is a very powerful technique

9 Time Reversal

Thm

Let P irreducible w/ invariant distn π; suppose $\left(X_{n}\right)_{0 \leq n \leq N} \sim \operatorname{Markov}(\pi, P)$ and set $Y_{n}=X_{N-n}$, then $\left(Y_{n}\right)_{0 \leq n \leq N} \sim \operatorname{Markov}(\pi, \hat{P})$ where \hat{P} given by $\pi_{j} \widehat{P}_{j i}=\pi_{j} P_{i j} \forall i, j$; also \hat{P} is irreducible $\mathrm{w} /$ invariant distn π.

Pf

For $n=0,1, \ldots, N \mathbb{P}\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{n}=i_{n}\right)=\mathbb{P}\left(X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)=$ $\pi_{i_{n}} P_{i_{n} i_{n-1}} P_{i_{n-1} i_{n-2}} \ldots P_{i_{1} i_{0}}=\pi_{i_{0}} \hat{P}_{i_{0} i_{1}} \ldots \hat{P}_{i_{n-1} i_{n}}$; next $X_{N-1} \sim \pi$ and $Y_{1} \sim \pi \hat{P}$ but these are the same so $\pi=\pi \hat{P}$; irreducibility by $i \sim j$ under P iff $j \sim i$ under \hat{P}.

If the detailled balance conds are satisied i.e. $\pi_{j} P_{j i}=\pi_{i} P_{i j}$ then $\hat{P}=P$; a Markov chain in the form of a line of states must satisfy DB if an invariant exists; more generally this is true if the graph of the state space is a tree (i.e. has no cycles).

10 Ergodic T

Ergodic generally means of or about averages over time.

T (Strong law of large numbers) (without proof)

For Y_{1}, Y_{2}, \ldots non-neg i.i.d. rvs w $/ \mathbb{E} Y_{1}=\mu, \mathbb{P}\left(\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n} \rightarrow \mu\right.$ as $\left.n \rightarrow \infty\right)=$ 1. Any reader confused by this statement should return to their basic definitions; any point ω in the state space Ω defines the value of all the Y_{i}, so it is then a simple fact whether or not $\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n} \rightarrow \mu$. Of course there may exist sets of values for Y_{i} for which this is not the case, e.g. if the Y_{i} are coin tosses (i.e.
$1 \mathrm{w} / \operatorname{prob} \frac{1}{2}, 0$ otherwise) $Y_{i}=1 \forall i$ has $\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n}=1 \nrightarrow \frac{1}{2}=\mu$ - but the statement is that the probability mass of all such states is 0 ; all the probability is concentrated on the states where this does $\rightarrow \mu$.

Contrast this w/ the WLLN; that considers static times [before taking a limit over them, as now], wheras this is an average over time.
$V_{i}(n)=\sum_{m=0}^{n-1} I_{X_{m}=i}$, the no. of visits to state i before time n.

Thm (Ergodic T for Markov Chains)

Let P be irredicible and λ any initial dist, then $\mathbb{P}\left(\frac{V_{i}(n)}{n} \rightarrow \frac{1}{m_{i}}\right.$ as $\left.n \rightarrow \infty\right)=1$; the long run proportion of time spent in state i is $\frac{1}{m_{i}}$. Often $\frac{1}{m_{i}}=\pi_{i}$ where π is an invariant dist (in fact, this is the case precisely when $0<m_{i}<\infty$ - this result is true for many chains without invariant dists), which gives a usefil way to calculate $\frac{1}{m_{i}}$.

If P is transient then $\mathbb{P}_{i}\left(V_{i}=\infty\right)=0$ and conditioning on $V_{i}<\infty, \frac{V_{i}(n)}{n} \rightarrow 0$ as $n \rightarrow \infty ; 0=\frac{1}{m_{i}}$ so we are done. Otherwise P is recurrent; $\mathbb{P}\left(H_{i}<\infty\right)=1$; note that $\frac{V_{i}(n)}{n}$ converges iff $\frac{1}{n} \sum_{m=0}^{n-1} I_{X_{H_{i}+m}=i}$ does and with the same limit, so by strong Markov at H_{i} it suffices to consider $\lambda=\delta_{i}$.

Set $T^{(0)}=0$, let $T^{(k)}$ be the time of the k th return to state i. Set $S^{(k)}=$ $T^{(k)}-T^{(k-1)}$ so $T^{(k)}=S^{(1)}+\cdots+S^{(k)}$; by strong Markov the $S^{(i)}$ are i.i.d. rvs w/ expectation $\mathbb{E}_{i}\left(T_{i}\right)=m_{i}$, so by SLLN $\mathbb{P}_{i}\left(\frac{S^{(1)}+\cdots+S^{(k)}}{k} \rightarrow m_{i}\right.$ as $\left.k \rightarrow \infty\right)=$ 1; we have $S^{(1)}+\cdots+S^{\left(V_{i}(n)-1\right)}=T^{\left(V_{i}(n)-1\right)}$ the time of the last visit to i before n so $\leq n-1, S^{(1)}+\cdots+S^{\left(V_{i}(n)\right)}=T^{\left(V_{i}(n)\right)}$ the time of the first visit to i after time n so $\geq n$; then $\frac{S^{(1)}+\cdots+S\left(V_{i}(n)-1\right)}{V_{i}(n)}<\frac{n}{V_{i}(n)} \leq \frac{S^{(1)}+\cdots+S^{\left(V_{i}(n)\right)}}{V_{i}(n)}$; since P is recurrent $\mathbb{P}\left(V_{i}(n) \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)=1$, so $\mathbb{P}\left(\frac{n}{V_{i}(n)} \rightarrow m_{i}\right.$ as $\left.n \rightarrow \infty\right)=1$, but for any state where $\frac{n}{V_{i}(n)} \rightarrow m_{i}, \frac{V_{i}(n)}{n} \rightarrow \frac{1}{m_{i}}($ as $n \rightarrow \infty)$, so $\mathbb{P}\left(\frac{V_{i}(n)}{n} \rightarrow \frac{1}{m_{i}}\right.$ as $\left.n \rightarrow \infty\right)=$ 1.

This completes the content of this course. Related part II courses are applied probability, the continuation of this course to cnts time, and probability and measure which looks at the mathematical foundations for this course; parts of this course are applied in the courses Stochastic Financial Models and Mathematical Biology.

