
Linear Algebra

July 5, 2008

This course is related to last year’s Algebra and Geometry, but takes a more
abstract approach. See the website for example sheets.

Books

CW Curtis has written a good book with a title along the lines of “Linear Alge-
bra...”, as have K Hoffman and R Kuhze; there are generally a lot of reasonable
books on this subject.

Part I

Vector Spaces

We use F to denote the field R or C; recall that a field F is an abelian group
under “+” with identity “0” such that F\ {0} is an abelian group under “×”
which is distributive over “+”. The identity for × is called “1”; Fp the integers
modulo p is a good example of a field

Definition

A vector space V over the field F is a set which forms an abelian group under
“+” with identity ~0 and is closed under scalar multiplication, which satisfies
∀v, vi ∈ V, λ, λi ∈ F (note nonzero vectors are not underlined in this course):

1. λ (v1 + v2) = λv1 + λv2

2. (λ1 + λ2) v = λ1v + λ2v

3. (λ1λ2) v = λ1 (λ2v)

4. 1v = v

This is not the most basic set of axioms, but it is easy enough to check. Tech-
nically we should talk about (V, F,+,×) where the latter two are the vector
addition and scalar multiplication operations.
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Proposition

If V is a vector space over F then for λ ∈ F, v ∈ V , λv = ~0 ⇔ λ = 0 or v = 0.

Proof

~0 + 0v = (0 + 0) v = 0v+ 0v so 0v = ~0∀v ∈ V . ~0 + λ~0 = λ
(

~0 +~0
)

= λ~0 + λ~0 so

λ~0 = ~0∀λ ∈ F .
Now if λv = ~0 with λ 6= 0, ∃λ−1 ∈ F so v = λ−1λv = λ−1~0 = ~0.
As an excercise the reader should show that −1v = v.

Example

For a set X , the set FX = {f : X → F} with (f1 + f2) (x) defined as f1 (x) +
f2 (x) and (λf) (x) defined as λ (f (x)) is a vector space, as we can prove by
checking our definition.

Definition

For V a vec sp over a field F , U ⊂ V , is a subspace, written U ≤ V , if ~0 ∈ U ,
u1 + u2 ∈ U and λu ∈ U , ∀u, u1, u2 ∈ U, λ ∈ F . For example, RRhas a subspace
C (R), the set of cnts real-vald funcs.

Lemma

Any such U forms a vector space over F with the restrictions of + and × to U

Linear Combinations

The empty lin comb is valid and ~0. Take finite;
∑

i∈I λivi for an arbitrary
indexing set I is only a valid lin comb if all but finitely many of the λi are 0.

Spans or generates defined; V is finite dimensional if it is spanned by a finite
set. Lin indep defined; vi for i ∈ I is lin ind if every finite subcollection therof
is. Bases defined; S ⊂ V is a basis if it spans and is lin ind.

v1, . . . , vn are a basis iff each v ∈ V has a unique expression in terms of them;
if two such expressions for any v when vi span, difference is ~0 so differences of
coeffs must be 0 so they are the same; if each v has such an expression, the vi
span and uniqueness means lin ind (else two expressions for ~0) so form a basis.

If v1, . . . , vm span, some subset therof is a basis, as if they are lin ind we are
done, otherwise we have some l for which vl = α1v1 + · · · + αl−1vl−1, so can
remove it and continue.

The steinitz exchange lemma: given v1 . . . vn lin ind and w1 . . . wm spanning,
can replace n of the wi with vi and still have them spanning - write v1 in terms
of wi, rewrite to have one of the wi in terms of the other wi and v1, continue.
This implies n ≤ m.
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Main thm: if V is a fin dim vec sp any two bases v1, . . . vn and w1, . . . , wm
have the same number dimF V of elts, as the vi are indep and the wi span so
n ≤ m and vice versa, so n = m. Note that dimC C = 1 but dimR C = 2.

An immediate corollary of Steinitz is that if V is a fin dim vec sp over F and
w1, . . . , wl a lin ind set of vectors of V we can extend it to form a basis. For an n
dim vec sp, any lin ind set has ≤ n elts with equality only if it is a basis; likewise
any spanning set has ≥ n elts with equality only if it is a basis. For v1, . . . , vn it
is equivalent that this is a basis, spanning set or linearly indep. For V a vec sp
over F and S ⊂ V we write 〈S〉 for the smallest subspace of V which contains
S; this is clearly the set of all finite lin combs of elts of S. The intersections of
subspaces are subspaces, but their unions almost never; we define for U,W ≤ V
U +W = {u+ w : u ∈ U,w ∈W} = 〈U ∪W 〉. This is a subspace, and if U,W
fin dim then it is fin dim with dim dimU + dimW − dimU ∩W . We prove all
these results using bases. V = U⊕W if every elt of V can be expressed uniquely
as u + w; W is called the direct complement of U in V . This is equivalent to

V = U + W and U ∩W =
{

~0
}

or that for any bases B1 of U and B2 of W ,

B1 ∪ B2 is a basis of V . The second defn implies the first since any v ∈ V is
u+w for some u,w and if u1 +w1 = u2 +w2 then u1 − u2 = w2 −w1; the value
for this is ∈ U ∩W so must be ~0 and u1 = u2, w1 = w2. The first implies the
third by for B1 a basis for U , B2 a basis for W and B = B1 ∪ B2; clearly have
B spanning U + W , and if

∑

B λvv = ~0 then since representation as u + v is

unique,
∑

B1
λuu = ~0 and the λu are 0, sim the λw, so all the λv are 0 and B is

lin ind. Finally the third implies the second as for v ∈ V we can express v in B
so in B1 and B2 so as u+w, and if v ∈ U ∩W we have v ∈ U so v =

∑

B1
λuu

and similarly, so
∑

λuu− ∑

λww = ~0 meaning λu ≡ 0 and similar so v = ~0.

Lemma

If V a fin dim vec sp over F and U ≤ V , ∃ a (not generally unique) complement
to U - take a basis for U and extend it to one for V and the span of the extension
is then such a complement.

Lemma

For V1, . . . , Vl ≤ V with
∑

Vi = {v1 + · · · + vl : vi ∈ Vi} this sum is direct if
whenever v1 + · · · + vl = v′1 + · · · + v′l, vi = v′i; in this case we write it as ⊕Vi;
this is equivalent to that Vi ∩

∑

j 6=i Vj =
{

~0
}

∀i or that for any bases Bi of

Vi their union B =
⋃

iBi is a basis of
∑

Vi; the reader should proove these
equivalences as an exercise.

Quotient Spaces

For V a vec sp over F and W ≤ V the quotient group V
W

(W is normal since
V abelian) is a vec sp over F with addition and scalar multiplication defined in
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the obvious way. If V is fin dim so is V
W

; prove this by extending a basis of W .

Part II

Lin Maps and Matricies

1 Defn

For V,W vec sps over F , α : V →W is linear or a homeomorphism if α (v1 + v2) =
α (v1) + α (v2) and α (λv) = λα (v) (∀v, v1, v2 ∈ V, λ ∈ F ).

2 Eg

The function f 7→ f ′ on RR or f 7→
∫ x

0
f (t) dt on C [0, 1], or for any m × n

matrix with entries in F the mapping α : Fm → Fn x 7→ Ax.

3 L

For U, V,W vec sps over F , the identity and composition of linear maps are
linear

4 L

For V,W vec sps over F and α0 any map of a basis B of V to W , ∃ a unique
lin map α extending α0 - proof by basis representation of v and linearity.

5 Note

We often define a lin map just on the basis and then “extend linearly”. Also
this means if two lin maps between the same spaces agree for a basis of the first
space they are equal.

6 Def

A bij lin map is an isomorphism; if ∃ one V →W we write V ≃W .

7 L

≃ is an equiv rel on the set of all vec sps over F ; only hard part of proof is
linearity of α−1, which must exist as α bij. For w1, w2 ∈ W , write the wi as
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α−1vi, then α−1 (w1 + w2) = α−1 (αv1 + αv2) = α−1α (v1 + v2) by linearity of
α; rest of proof similar.

8 Thm

If V a vec sp of dim n over F then V ≃ Fn. Express vecs of v in terms of basis
and then map to Fn in the obvious way

9 Thm

The vec sps U,W over F are isom if they have the same dim - obvious corollary.
The converse is also true; for α : U → W an isomorphism and B a basis for U ,
α (U) is a basis for W - spans since B spans U and α surj, sim lin ind.

10 Def

For α : V → W linear, the nullity N (α) = {v ∈ V : α (v) = 0}, also sometimes
kerα; sim Im (α) = {w ∈W : w = α (v) for some v ∈ V }; note the former is a

subspace of V and the latter of W . α is inj iff kerα =
{

~0
}

, surj iff Imα = W ;

we define the rank rk (α) or r (α) by dim Imα, nullity nα = dimNα. [missing
brackets because I’m cool]

11 Rank-Nullity Thm

For V,W vec sps over F with dimF V fin, α : V → W linear dimV = rα + nα;
take a basis for Nα, extend this to a basis of V and the image of the extension
is a basis for Imα, or can prove by iso from V

Nα
to Imα.

12 L

for V,W vec sps over F of equal fin dim and α : V →W linear, equivalent that:

1. α iso

2. α inj

3. α surj

Proove by rank-nullity
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13 Prop: the space L (V, W ) of linear maps V →
W for V, W vec sps over F is a vec sp

Also sometimes called Hom(V,W ); vec sp under addition and multiplication
defined pointwise. If V,W fin dim so is L, with dimension dimV dimW ; proof
of this later (19)

Matricies

An m×n matrix A over F is an array with m rows and n columns with entries
∈ F , we usually write them as (aij) with individual elts aij ; the set of all such
is Mm,n (F ).

14 Prop

This is a vec sp over F with addition and multiplication defined pointwise;
dimension m × n by the standard basis (the set of matricies with 0s in all but
one entry, which contains a 1)

Repr of lin maps by matricies

For V,W fin dim vec sps over F and α : V → W linear fix bases B =

{v1, . . . , vn} , C = {w1, . . . , wm}, then for v =
∑

λivi ∈ V write [v]B =





λ1

. . .
λn



,

sim [W ]C .

15 Defn

[α]B,C the matrix of α wrt B,C is ([αv1]C . . . [αvn]C). [The lecturer has the
dimensions of his matricies hopelessly confused, so I’m ignoring them].

16 L

∀v ∈ V , [αv]C = [α]B,C [v]B multiplied as matricies.

17 Rk

We get the same result by mapping v ∈ V to a vector w ∈ W by α and then
representing this as a column in Fm as by mapping v to a column in Fn and
then applying the corresponding matrix A.

6



18 Rk

This matrix [α]BC is the only matrix A for which [αv]C = A [v]B ∀v ∈ V by
taking v to be the basis vectors of V .

19 Prop

For V,W vec sps over F with dim n,m respectively L (V,W ) ≃ Mm,n (F ); fix
bases and then map α 7→ [α]BC ; inj as if mapping is 0 α is 0 on a basis so the
0 map, surj as let α map the bases as indicated by a given matrix and extend
linearly; this prooves 13 above.

20 L

For β : U → V and α : V →W linear, for bases A,B,C respectively of U, V,W ,
[α ◦ β]AC = [α]BC [β]AB by action on basis vectors of U .

Change of Bases

For bases B = v1, . . . , vn, B
′ of a vec sp V the matrix P = pij given by v′j =

∑

i pijvi is the change of basis matrix from B to B′; it looks like ([v′1]B . . . [v
′
n]B)

and we can see it as [i]B′B . Then we have [v]B = P [v]B′ either by 16 or directly
by actuan on basis vectors. Note P must be invetible since P−1 is the change
of basis matrix from B′ to B, [i]BB′ ; [i]B′B [i]BB′ = [i]BB = I and similarly the
product in the other direction.

L

For α : V → W linear A = [α]BC and A′ = [α]B′C′ , A′ = Q−1AP for some
invertible Q,P as Q [αV ]C′ = [αv]C = A [v]B = AP [v]B′ [I’m guessing what the
lecturer meant here] for Q and P the change of basis matricies between B,B′

in V and C,C′ in W respectively.

Def

The matricies A,A′ are equiv if A′ = Q−1AP for some invertible Q,P ; this
clearly defines an equiv rel on Mm,n (F )

L

1. For V,W vec sps over F of respective dim n,m and α : V → W linear

∃ bases B of V , C of W (not generally unique) st [α]BC =

(

Ir 0
0 0

)

7



for these entries submatricies where Ir is the r× r identity; compare with
rank-nullity, take a basis of V containing a basis for Nα, then extend its
image to a basis for W and done (modulo re-ordering basis vectors)

2. Any matrix is equiv to one of this form

Def

For A ∈ Mm,n (F ) the (col) rank of A r (A) is the dim of the subspace of Fm

generated by the cols of A; if A = [α]BC this is rα as we have an iso from Imα
to the span of the cols of A by αv 7→ [αv]C

T

The matricies A,A′ equiv iff rA = rA′; forward implication since both can

represent the same lin trans, reverse by A equiv to some

(

Ir 0
0 0

)

where

r = rA by first part, sim for A′ and these are only equiv if rA = rA′. Row rank
(dim of the span of the rows) of any A is the same as col rank; take A equiv to
(

Ir 0
0 0

)

and then AT equiv to

(

Ir 0
0 0

)

where the 0s may be differently

sized and these clearly have the same col rank (rowrkA =colrkAT ) so done.

Eltary ops, Eltary matricies

Def eltary col ops on a matrix A are swap two cols i, j , replace col i by λ× itself,
or add λ× col i to col j and sim eltary row ops; these are all reversible. We find
the corresponding eltary matricies by performing these operations on I, e.g. in

2 × 2 T12 =

(

0 1
1 0

)

,M1λ =

(

λ 0
0 1

)

, C12λ =

(

1 0
λ 1

)

are matricies of

the 3 types; an eltary operation can be performed by postmultiplying A by the
corresponding eltary matrix (or premultiplying for a row op), e.g. A 7→ ATij .
We can use this to constructively prove that any matrix is equiv to one of the

form

(

Ir 0
0 0

)

; if A has no nonzero entries we stop, otherwise take some

aij = λ 6= 0, swap rows i1 and cols ij and multiply col 1 by λ−1, then clear
out the first row and col by ops of typ. 3 and recurse on the m − 1 × n − 1
submatrix in the bottom right corner; since every operation can be represented
by a matrix we can find P,Q by multiplying the matricies corresponding to the
ops we have performed in the correct order. [I assume; I was out trying to kill
people for the end of this lecture].
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Variations

We need only eltary row ops to obtain the row echelon form of a matrix (use
Gaussian elimination)

For A square (n = m) if A non-singular can obtain In w/ just eltary col ops
(or row ops); inductively if we have the first k rows we have some j > k w/
ak+1j = λ 6= 0 since otherwise A would be singular [?], so we swap cols k+ 1, j,
divide col k + 1 by λ, and then clear out the remainder of row k + 1 by type 3
ops. We can use this to constrct A−1 by AE1 . . . EC = In so InE1 . . . EC = A−1.
[?]

P 34

Any invertible n×n mat is a prod of eltary mats - construct from A−1 as above.
For V = W,C = B we write L (V ) rather than L (V, V ), [α]B rather than

[α]BB, and Mn (F ) for Mn,n (F ).

D

A,A′ are similar or conjugate if A′ = P−1AP some invertible P ; note [α]B′ =
P−1 [α]B P for P change of basis mat from B to B′

Det and Trace

Trace

Defined; note linear MnF → F .

L

trAB = trBA

L

Similar mats have same tr as trP−1AP = trAPP−1 = trA.
For α linear def trα = tr [α]B for any basis B; now know well defd.
Recall Sn is the group of permutations of {1, . . . , n}; let ǫ (σ) = + for σ

even, − for σ odd (i.e. the composition of an even or odd no. of transpositions;
recall this is well defined. Def detA by

∑

σ∈Sn
ǫ (σ) aσ(1)1 . . . aσ(n)n. This is the

sum of n! summands, each of which is a sign × a prod of n factors, one from
each row and one from each col. Note this is the familiar determinant for e.g.
n = 2.

We write A =
(

A(1)A(2) . . . A(n)
)

an n-tuple of vectors in Fn; note I =
(e1, . . . , en).
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Def

The func d : Fn×· · ·×Fn → F is a volume func on Fn if it is multilinear (linear
in each argument) and alternating (0 if any two distinct args are the same). d
is a determinant form if also d (e1, . . . , en) = 1.

L

For d a vol func swapping cols changes sign, as d is linear in both of these cols
so d (a, b, . . . ) + d (b, a, . . . ) = d (a+ b, a+ b, . . . ) = 0 and similar.

Corollary

If d a vol func on Fn and σ ∈ Sn d (vσ1 . . . vσn) = ǫ (σ) d (v1, . . . , vn). In
particular for a det form d (eσ1, . . . , eσn) = ǫ (σ).

T

If d a vol func on Fn andA =
(

A(1) . . . A(n)
)

, d
(

A(1), . . . , A(n)
)

= detAd (e1 . . . , en)

which of course = detA if d is a det form, as it = d
(

∑n
j1=1 aj11ej1 , . . .

)

=
∑n

j1=1 aj11d
(

ej1 , A
(2), . . .

)

= · · · =
(

∏n

i=1

∑n

ji=1 ajii

)

d (ej1 , . . . , ejn) (by which

I mean all the sums are applied); the terms where the ji are not all distinct are
0 so this is

∑

σ∈Sn
aσ(1)1 . . . aσ(n)nǫ (σ) as required. This means a det function

is unique if it exists

T10

d : Fn × · · · × Fn → F
(

A(1), . . . , A(n)
)

7→ detA is a det func on Fn; mul-
tilinear as detA is a sum with each of the summands ǫ (σ) aσ(1)1 . . . aσ(n)n

linear in each factor, alternating as if A(k) = A(l) for some k 6= l, let τ =
(kl) ∈ Sn, then we can express the sum detA =

∑

σ∈Sn
ǫ (σ) aσ(1)1 . . . aσ(n)n as

∑

σ∈An
ǫ (σ) aσ(1)1 . . . aσ(n)n+ǫ (στ) aστ(1)1 . . . aστ(n)n (where An is the alternat-

ing group σ ∈ Sn : ǫ (σ) = +) which is
∑

σ∈An
aσ(1)1 . . . aσ(n)n−aστ(1)1 . . . aστ(n)n

but for any σ ∈ Sn, aσ(1)1 . . . aσ(n)n = aστ(1)1 . . . aστ(n)n as k = l so this is 0.
Finally det I =

∑

σ∈Sn
ǫ (σ) eσ(1)1 . . . eσ(n)n =

∑

σ∈Sn
ǫ (σ) δσ(1)1 . . . δσ(n)n; the

only nonzero summand is where σ = ι; ǫ (ι) = + so det I = 1. Therefore det is
the unique determinant form.

L11

detAT = detA as if σ ∈ Sn then aσ(1)1 . . . aσ(n)n = a1σ−1(1) . . . anσ−1(n), since

the same factors are present in both products. We have ǫ
(

σ−1
)

= ǫ (σ) and σ−1

runs over Sn as σ does, so replacing σ−1 with π, detA =
∑

π∈Sn
ǫ (π) a1π(1) . . . anπ(n) =

detAT .
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L12

det is the unique multilinear alternating function of rows normalized at I -
immediate corollary.

L13

If A = (aij) an upper triangular matrix (i.e. aij = 0 ∀i > j) detA =
a11 . . . ann (and similarly the same result for a lower triangular matrix) as for
aσ(1)1 . . . aσ(n)n to be nonzero we must have σ (1) ≤ 1 so σ (1) = 1, then need
σ (2) ≤ 2 so σ (2) = 2 and so on, so the only σ with this nonzero is ι and
detA = ǫ (ι) a11 . . . ann = a11 . . . ann.

L14

If E an eltary n×nmat for any A detAE = detAdetE = detEA so performing
an eltary op on A multiplies detA by the det of the corresponding eltary mat,;
detTij = −1 by alternating and applying the transposition multiplies detA by
−1 by the same; detMiλ = λ by multilinearity and applying the multiplication
multiplies detA by λ by the same, and detCijλ = 1 since this is upper or lower
triangular and the reader should proove the corresponding operation leaves detA
unchanged [since the lecturer apparently can’t].

T15

Let A be a square matrix, then A is non-singular iff detA 6= 0; if it is non-
singular A is a prod of eltary matricies so has det the product of their dets 6= 0
by above; if A is singular we can obtain a matrix w/ a 0 col (since a 0 col is a
non-trivial lin comb of the cols of A) by eltary col ops, so det of this matrix is
0 and detA = 0 by above.

T16

For A,B ∈ Mn (F ) detAB = detAdetB; if B singular so is AB by con-
sidering the corresponding lin maps, so detAB = 0 = detAdetB, other-
wise express B as a prod of eltary matricies and detAB = detAE1 . . . EC =
detAE1 . . . EC−1 detEC = · · · = detAdetE1 . . . detEC = detAdetB.

C17

A invertible ⇒ detA = 1
detA−1 .

C18

Conjugate mats have same ded as detPAP−1 = detAdetP detP−1 = detA.
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D19

detα = det [α]B for any basis B; well defd by above.

T20

det : L (V ) → F has det ι = 1, detαβ = detα detβ and detα 6= 0 iff α non-

singular, and detα−1 = (detα)
−1 ∀ such α - from matrix properties.

Rks

GL (V ) is the group of all automorphisms of V ; an α ∈ L (V ) is an endomor-
phism and a non-singular (bijective) endomorphism is an automorphism. Say
V is n-dim over F ; then GLn (F ) is the group of invertible n×n mats on F and
det : GLn (F ) → F is a group hom and surj; ker det is called SLn (F ), the group
of mats w/ det 1. For A n × n mat representing α ∈ L (V ), equivalent that A
non-singular, α non-singular, A invertible, α invertible, detA 6= 0 or detα 6= 0.

L21

For A ∈ Mm (F ) , B ∈ Mk(F ) , C ∈ Mm,k (F ), det

(

A C
0 B

)

= detAdetB as

if we write n = m+k,X =

(

A C
0 B

)

we have detX =
∑

σ∈Sn
ǫ (σ) xσ(1)1 . . . xσ(n)n

but xσ(j)j = 0 for j ≤ m and σ (j) > m, so we sum only over σ which map [1,m]
and [m+ 1, n] to themselzen, which is the same as summing over σ1 ∈ Sm, σ2 ∈
Sk where σ1 (l) = σ (l) , σ2 (l) = σ (m+ l) − m; we have ǫ (σ) = ǫ (σ1) ǫ (σ2)
so detX =

(
∑

σ1∈Sm
ǫ (σ1) aσ1(1)1 . . . aσ1(m)m

) (
∑

σ2∈Sk
ǫ (σ2) bσ2(1)1 . . . bσ2(k)k

)

and done.

L22

Let A ∈Mn (F ), A = (aij); write Abij for the n−1×n−1 mat obtained by delet-

ing row i, col j from A. For fixed j, detA =
∑n

i=1 (−1)
i+j

aji detAbij ; this is the

expansion in col j (and by transpose, for fixed i detA =
∑n
j=1 (−1)i+j aij detAbij);

note we can define det inductively by this (set det (a) = a for 1× 1 matricies as

the base case); detA = det
(

A(1), . . . ,
∑n

i=1 aijei, . . . , A
(n)

)

=
∑n
i=1 aij (−1)i+j det

(

1 . . .
0 Abij

)

(by repeated col transpositions) =
∑j

i=1 (−1)
i+j

detAbij .

D23 [?]

The adjugate or classical adjoint matrix adjA of A ∈ Mn (F ) is the matrix w/

ij entry (−1)
i+j

detAbji.
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T24

AdjA×A = (detA) I (as a corollary, if A invertible A−1 = 1
detAadjA [no proof

it is inverse from both sides here, but maybe we know already?]) since detA =
∑

i (adjA)ji aij which is the jj entry of adjA×A; 0 = det
(

A(1), . . . , A(k), . . . , A(k), . . . , An
)

=
∑

i (adjA)ji aik which is the jk entry of adjA×A.

Digression: systems of linear eqns

A~x = ~b for A a m × n mat, ~b m-vec and ~x n-vec is a system of m eqns for n
unknowns. Recall it has a sol iff r (A) = r (A | b) (the augmented matrix formed

by A with the extra col ~b); if we have such a sol ~b is lin dep on the cols of A
and vice versa.

The sol is unique iff this rank = n; to find it we use eltary row ops to perform
Gaussian elimination.

For m = n and A non-singular the unique sol is ~x = A−1~b.

L25 (Cramer Rule) [sp?]

If A is a non-singular n × n mat the system A~x = ~b has xi =
detA

î
b

detA ∀i as its

unique sol where Aîb is A with col i replaced by ~b, as if A~x = ~b then detAîb =

det
(

A(1), . . . , A(i−1),~b, A(i+1), . . . , a(n)
)

= det
(

A(1), . . . , A(i−1),
∑

j A
(j)xj , A

(i+1), . . . , a(n)
)

=
∑

j xj det
(

A(1), . . . , A(i−1), A(j), A(i+1), . . . , a(n)
)

= xi detA.

C26

If A ∈Mn (Z) with detA = ±1 and ~b ∈ Zn we can solve A~x = ~b over Z [why?]

4 Endomorphisms, mats and evecs

For this section: V is a fin dim vec sp over F , dimV = n,B = {v1, . . . , vn} is a
basis and α : V → V is linear so an endomorphism.

We want to pick B st [α]B is simple; recall [α]B′ = P−1 [α]B P for P a
change of basis mat from B to B′, so equiv that for A ∈ Mn (F ) we want A′

conj to A with a nice form.

Def 1

α is diagonalizable if ∃B : [α]B diagonal, trianglizable if ∃B : [α]B upper tri-
angular (we could equally well use lower triangular, but must define one or the
other, not both. The defns for a matrix A are obvious.

D2

λ ∈ F is an eval if ∃v 6= 0 ∈ V : α (v) = λv.

13



Rk3

λ is an eval of α iff α− λι singular iff λ a root of χα (t) = det (α− tι).
Def vλ = {v ∈ V : α (v) = λv} the λ−eigenspace of α.

Note 4

The col j of [α]B is λej iff α (vj) = λvj ; [α]B is diaconal iff B consists of evecs,
upper triangular iff α (vj) ∈ 〈v1, . . . , vj〉; note this means v1 is an evec.

R5

Recall: a func f : F → F is a polynomial func if it is of the form f (t) =
ant

n + · · · + a0 for n ∈ N0, ai ∈ F∀i; the largest m : am 6= 0 is the degree of
f with the degree of 0 taken to be −∞; this gives us that deg fg = deg f +
deg g (addition and multiplication of polys is defd the obvious way); the polys
form a ring F [t]. λ is a root of the poly f if f (λ) = 0; if λ is a root of f
then (t− λ) divides f (t), as then f (t) = f (t) − f (λ) = an (tn − λn) + · · · +
a1 (t− λ) = (t− λ)

(

an
(

tn−1 + tn−2λ+ · · · + λn−1
)

+ · · · + a1

)

= (t− λ) q (t)
for some q (t) ∈ F [t]; we say λ is a root of f w/ multiplicity e if (t− λ)

e
divides

f but (t− λ)e+1 does not.

L7 [ya rly]

A poly over F of deg n ≥ 0 has at most n roots (counted w/ multiplicity);
trivially true for n > 0, then strong induction; for f a poly of deg n > 0 if
no roots then done, otherwise let λ a root of multiplicity e ≥ 1, then f (t) =
(t− λ)

e
q (t) for q a poly of deg n− e over f and any root of f 6= λ is a root of

q.

C8

If f1, f2 polys of deg < n and f1 (ti) = f2 (ti) for n points ti of F then f1 = f2
by considering f1 − f2.

Rk9 FTA

Any poly over F = C of deg n > 0 has a root (and so inductively has n roots,
counted as always with multiplicity); C is algebraically closed.

Def

The char poly χα (t) = det (α− tι) (and sim χA) is a poly of deg n ∈ F [t]

Rk11

Conj mats have the same char poly (consider corresponding α)

14



T12

For F = C[α]B is upper triangular for some B (so any squar cplx mat is tri-
angable): we induct on n, the n = 1 case being trivial. If true ∀V of dim
< n for some n > 1 any α has some eval λ by FTA, so α − λι is singular; put
U = Im (α− λι) � V , then U is α-invariant (α (U) ⊂ U); consider α1 = α |U ;
by the induction hypothesis ∃ a basis B1 of U w/ [α1]B1

upper triangular; extend

to B with {v1, . . . , vk} = B1. Then [α]B =

(

[α1]B1
⋆

0 λI

)

(where ⋆ is some

matrix) since for 1 ≤ j ≤ k α (vj) = α1 (vj), so the left hand portion is as given,
and for k < j ≤ n α (vj) = uj + λvj for some uj ∈ U since (α− λι) (vj) ∈ U , so
the right hand portion is as given, and the matrix is upper triangular.

Rk13

This is not true for F = R by e.g.

(

0 −1
1 0

)

.

T14

α is triangable iff χα can be written as a prod of lin factors, i.e. all evals
are ∈ F ; necessity by if [α]B = A upper triangular detα = a11 . . . ann and
χα (t) = (a11 − t) . . . (ann − t), sufficiency by proof as above; for the inductive
step we have χα (t) = χα1

(t) (λ− t)
m

where m = n− k.
We can also proove 12 using eigenspaces.

T15

α is diagable if p (α) = 0 (the zero endomorphism) for some poly p the prod
of distinct lin factors; forward implication by let λ1, . . . , λk the distinct evals
of α which are the nonzero values in [α]B = A diagonal, then take p (t) =
(t− λ1) . . . (t− λn) and p (α) = 0 (if v ∈ B, α (v) = λlv some 1 ≤ l ≤ k
so (α− λlι) (v) = 0 so p (α) (v) = 0 so p (α)maps B to 0 so is the 0 endomor-
phism), reverse by if p (t) = (t− λ1) . . . (t− λk) w/ all the λi distinct set pj (t) =

(t− λ1) . . . (t− λj−1) (t− λj+1) . . . (t− λk) and hj (t) = (pj (λj))
−1
pj (t), then

hj (λl) = δjl; write h (t) =
∑k
j=1 hj (t) and h is the poly 1 since h (t) − 1 is

a poly of deg < k (since a sum of polys of deg k − 1) w/ k roots λ1, . . . λn;
put πj = hj (α), then ι = π1 + · · · + πk and πjπl = 0 if j 6= l since p | hjhl
and p (α) = 0; π2

j = πj since = πj
∑

l πl. Put Vj = Im (πj), then V j ⊂ vλj

since (α− λjι)πj = p (α) = 0; note πj restricted to Vl is 0 for j 6= l, ιVj
for

j = l (since πj (πj (v)) = πj (v)); now V =
⊕

j Vj ; V =
∑

j Vj since for v ∈ V
v = ι (v) =

∑

j πj (v) and if u1+· · ·+uk = u′1+· · ·+u′k with uj, u
′
j ∈ vj then ap-

plying πj have uj = u′j for each j; if Bj is a basis of Vj then the union B =
⋃

j Bj

is a basis of V (spans clearly, lin ind as if
∑

v∈B λvv = 0
∑

j

(

∑

v∈Bj
λvv

)

= 0

so
∑

v∈Bj
λvv = 0∀j so λv = 0∀v ∈ Bj∀j and done.

15



Rk

1.

(

1 1
0 1

)

is not diagable as its evals are 1 but the only mat conj to I is

I (PIP−1 = I∀P ).

2. For λ1, . . . , λk the distinct evals of α
∑

j Vλj
is direct so the only way

diagonalization fails is if
∑

j Vλj
� V since if v ∈ Vλj

∩
∑

i6=j Vλi
we ap-

ply (α− λ1ι) . . . (α− λj−1ι) (α− λj+1ι) . . . (α− λkι) which maps all vecs
∈ ∑

i6=j Vλi
to 0 but multiplies any vec ∈ Vλj

by the non-zero scalar
(λj − λ1) . . . (λj − λj−1) (λj − λj+1) . . . (λj − λk), so v = 0.

T17

Simultaneous diagation: let α1, α2 commuting (necessary as diag mats com-
mute) diagable endomorphisms of V , then they are simultaneously diagable, i.e.
∃B : [α1]B , [α2]B diagonal; we have V = V1 ⊕ · · · ⊕ Vk where the Vi are the
eigensps of α1; say α1 (v) = λjv for v ∈ Vj . Then α2 (Vj) ⊂ Vj as if v ∈ vj
α1 (α2 (v)) = α2 (λjv) = λjα2 (v); now α2 |Vj

is diagable by T15 so ∃ a basis Bj
consisting of evecs of α2 (which will be evecs of α1 as well) and B =

⋃

j Bj is a
basis of V consisting of evecs of both α1 and α2.

18 Polys over F

Given polys a, b over F w/ b 6= 0∃ polys q, r w/ a = bq+ r, deg r < deg b (hence
F [t] is a euclidean domain; this has nice consequences, see the IA course N&S);
proof inducting by dividing in the obivous way

D19

The min poly mα of α is the monic (leading coeff 1) poly of smallest deg w/
mα (α) = 0; exists since have a poly of deg ≤ n2 w/ p (α) = 0 as dimF L (V ) =

n2 so ι, α, . . . , αn
2

lin dep, unique by:

L21

if p (α) = 0,mα | p; write p = qmα + r, then deg r < degmα but r (α) = 0.

T22 - Cayley-Hamilton

χα (α) = 0 (and sim for mats); a corollary of this (C23) is that mα | χα. For
A ∈ Mn (F ) let (−1)

n
χA (t) = tn + an−1t

n−1 + · · · + a0 = det (tI −A), now
for any mat B B × adjB = I detB so we this to tI − A; adj (tI −A) is a
mat w/ entries polys of deg ≤ n − 1 so we can consider this as a poly w/ mat
coeffs (tI −A) adj (tI −A) = (tI −A)

(

Bn−1t
n−1 + · · · +B0

)

for some matsBi;
comparing coeffs we have I = Bn−1, an−1I = Bn−2 −ABn−1, . . . , a0I = −AB0;

16



multiplying the ith eqn by An−i+1 from the left and summing all the eqns we
have An + an−1A

n−1 + · · ·+ a0I = 0. The schedules require only a proof of this
result over C, which can be done by other means [it was given in lectures, but
I prefer this one].

D24

λ an eval of α has χα (t) = (t− λ)
aλ q (t) with q a poly not divisible by t − λ;

call the aλ such that this is the case the algebraic multiplicity of λ (as an eval
of α). We def gλ the geometric multiplicity of λ by dimN (α− λι).

L25

For λ an eval 1 ≤ gλ ≤ aλ; 1 ≤ gλ since α − λι singular, gλ ≤ aλ since
for B = v1, . . . , vg, . . . , vn containing a basis v1, . . . , vg of N (α− λι), αB =
(

λIg ⋆
0 A1

)

(Ig being the g × g identity) for some mat A1 so χα (t) =

(λ− t)g χA1
(t).

Now taking F = C:

26

χα (t) = (λ1 − t)
a1 . . . (λk − t)

ak for λk the distinct evals of α, so a1 + · · · +
ak = n. Let mα (t) = (t− λ1)

c1 . . . (t− λk)
ck ; cj ≤ αj∀j since mα | χα and

1 ≤ cj since for each λj α (v) = λv for some v 6= 0 ∈ V , so for p any poly

p (α) (v) = p (λ) v, ~0 = mα (α) (v) = mα (λ) v so λ a root of mα.

T28

This is essentially an expansion of T15; let χα = (λ1 − t)
a1 . . . (λk − t)

ak , then
α diagable iff p (α) = 0 where p (t) = (t− λ1) . . . (t− λk).

Rk29

Exercise: If χA (t) = (−1)
n
tn + an−1t

n−1 + · · · + a0 then a0 = detA, an−1 =

(−1)
n−1

trA.

Jordan normal form

The full proof of this is the highlight of the IB GRM course; we work over
F = C. The JNF is bidiagonal; it has nonzero entries on the diagonal and
possibly some 1s immediately above the diagonal. It is block diagonal; it has
a set of square blocks B1, . . . , Bk along the diagonal where λ1, . . . , λk are the
distinct evals, and 0s elsewhere. If we fix j and look at B = Bj this is also
block diagonal, made up of blocks C1, . . . , Cg (where g = gλj

as defined above);

17



each of the Ci is a jordan block JSi
(λ), the Si × Si block with entries λ on

the diagonal, 1 immediately above it, and 0 elsewhere. We can arrange to have
S1 ≥ S2 ≥ · · · ≥ Sg = 1.

T30

Every mat in Mn (C) is conj to one in JNF, essentially unique (i.e. unique up
to the order of the λj). The proof is not examinable in this course; see GRM,
but an outline is as follows:

T31 Primary Decomposition T

Let mα (t) = (t− λ1)
c1 . . . (t− λk)

ck , then V = V1 ⊕ · · · ⊕ Vk where Vj =
N ((α− λjι)

cj ), generalized eigenspaces. We proove this similarly to 15; write
pj (t) = (t− λ1)

c1 . . . (t− λj−1)
cj−1 (t− λj+1)

cj+1 . . . (t− λk)
ck , then p1, . . . , pk

are coprime polys so by an analogue of Bezout’s Thm (see N&S) ∃ polys
q1, . . . , qk s.t. p1q1 + · · ·+pkqk = 1; let hj = pjqj , then ι = h1 (α)+ · · ·+hk (α);
Vj = Im (hj (α)) is in fact N ((α− λjι)

cj ), and each Vj is α-invariant, so
we can split the matrix into Bj as required. Then we consider the restric-
tion of α to Vj which is equivalent to the case χα (t) = (λ− t)

n
. mα (t) =

(t− λ)c; let v ∈ V w/ (α− λι)c−1 (v) 6= 0 (must exist by def of c), then

(α− λι)
c−1

(v) , (α− λι)
c−2

(v) , . . . , (α− λι) (v) , v are lin ind [by applying α−
λι]; let them respectively = v1, . . . , vc. Restricting α to the sp W = 〈v1, . . . , vc〉

we have the mat









λ 1 0 . . .
0 λ 1 . . .
0 0 λ . . .
. . . . . . . . . . . .









; α (v1) = λv1 as (α− λι) v1 = 0,

then (α− λι) v2 = v1 so v2 = λv2 + v1 and so on. The proof is completed fully
in GRM but the remainder is relatively uninteresting; we take an α-invariant

complement U to W and then have the matrix for Bj as

(

Jc (λ) 0
0 ⋆

)

and

induct.

Discussion, “uniqueness”

For the case n = s, Js (λ) represents α. Observe χα (t) = (λ− t)
s

and mα (t) =

(t− λ)
s
, since (Js (λ) − λI)

k
is the matrix with 1s k above the diagonal and 0s

elsewhere; each time we multiply by (Js (λ) − λI) we shift the row of 1s up one.

From the matrix we can clearly see (α− λι)
k

has nullity k for k ≤ s, s for k > s
(since the max possible nullity is s). We can use this for the general case; the

number of blocks with λj = λ of size ≥ k is n
(

(α− λι)
k
)

− n
(

(α− λι)
k−1

)

;

it follows that:

18



L32

The no. of blocks w/ λj = λ of size k is 2n
(

(α− λι)k
)

− n
(

(α− λι)k−1
)

−

n
(

(α− λι)
k+1

)

, so the JNF of α (assuming it exists) is determined by these

dimensions of nullspaces, so unique in the sense described above.

For example, the JNFs for 2 × 2 mats are

(

λ1 0
0 λ2

)

(J1 (λ1) ⊕ J2 (λ2))

for λ1 6= λ2 w/ min poly (t− λ1) (t− λ2),

(

λ 0
0 λ

)

(J1 (λ) ⊕ J2 (λ); (t− λ))

and

(

λ 1
0 λ

)

(J2 (λ); (t− λ)2); the reader may wish to look at the n = 3

case where again we can distinguish by min polys; also consider the n = 4 case
where we have λ with multiplicity 4; notice how fast the number of possible
cases grows.

So e.g. if we know mα (t) = (t− λ)
2

in a 2D space we know [α]B =
(

λ 1
0 λ

)

for some B; we can find B by taking v2 (for the second col) ∈
V \N (α− λι) and v1 = (α− λι) v2.

JNF is very nice - given a mat A in it we can immediately see χA,mA and
for any ev λ aλ, Cλ the size of the biggest λ-block, and gλ the no. of λ-blocks.

5 Dual Sps, Dual maps

V is a fin dim vec sp over F in this sec unless otherwise specified. We def
V ⋆ = L (V, F ) i.e. {α : V → F linear} the dual of V ; this is a vec sp over F
with elts these maps, linear functionals.

Let B = e1, . . . , en some basis of V , then B⋆ = ǫ1, . . . , ǫn where ǫj is
the linear extension of ǫj (ek) = δjk is the basis dual to B; lin ind as if
(

∑

j λjǫj

)

(ek) = 0
∑

j λjδjk = 0, span by α =
∑

j α (ej) ǫj ; this implies

dimV ⋆ = dimV .

C3

dimV ⋆ = dimV
It is sometimes useful to think of V ⋆ as the sp of rows of length n over

U ; if e1, . . . , en a basis of V and ǫ1, . . . , ǫn the dual basis to it and x ∈ V =
∑

xiei, α ∈ V ⋆ =
∑

aiǫi then α (x) =
∑

aixi which we can see as the mat prod

(a1, . . . , an)





x1

. . .
xn



.

D4

If U ⊂ V def U0 the set of α ∈ V ⋆ such that α (u) = 0∀u ∈ U , the anhilliator
[sp] of U .

19



L5

If U ⊂ V , U0 ≤ V ⋆; if U ≤ V , dim V = dimU + dimU0 as take e1, . . . , ek
basis of U and extend to B = e1, . . . en basis of V , let ǫ1, . . . , ǫn the dual basis
of V ⋆, then U0 = 〈ǫk+1, . . . , ǫn〉 as if i > k, ǫi (ej) = 0∀j ≤ k so ǫi ∈ U0 and
if α ∈ U0 write α =

∑n

i=1 λiǫi and then for i ≤ k α (ei) = 0 so λi = 0 and
α =

∑n

i=k+1 λiǫi.

L6

Let W a vec sp over F and α ∈ L (V,W ) then α⋆ : W ⋆ → V ⋆ given by ǫ 7→ ǫ ◦α
is linear; we call it the dual of α; exists since ǫ ◦ α is a lin map V → F so ∈ V ⋆

and linear trivially.

Prop 7

Let B = {b1, . . . , bn} , C bases of V,W respectively w/ respective dual bases

B⋆ = {β1, . . . , βn} , C⋆. For α ∈ L (V,W ) [α⋆]C⋆B⋆ = [α]
T

BC ; let [α]BC =
A = (aij); α (bj) =

∑

i aijci∀j [cj in my notes but this must be wrong], then
(α⋆ (γr)) (bs) = (γr ◦ α) (bs) = γr (

∑

t atsct) =
∑

t atsγr (ct) =
∑

t atsδrt =
ars =

∑

i ariβi (bs)∀s so α⋆ (γr) =
∑

i ariβi∀r and done.

C8

If dimV = dimW det (α) = det (α⋆) , χα⋆ = χα,mα⋆ = mα (for any poly p over

f , p
(

AT
)

= (p (A))
T
).

L9

N (α⋆) = (Im (α))0 (so in particular α⋆ inj iff α surj) as ǫ ∈ W ⋆ is ∈ N (α⋆) iff

α⋆ (ǫ) = 0 iff ǫ ◦ α = 0 iff ǫ ∈ (Im (α))
0

and done.

Similarly, Im (α⋆) = (N (α))
0
; for ǫ ∈ Im (α⋆) ǫ = α⋆ (φ) some φ ∈ w⋆; for

any u ∈ N (α) ǫ (u) = (α⋆ (φ)) (u) = φ (α (u)) = φ
(

~0
)

= 0 so ǫ ∈ (N (α))0 and

Im (α⋆) ⊃ (N (α))
0

and then equality by dimensions.

C10

r (α) = r (α⋆) (so r (A) = r
(

AT
)

, another proof of T2.29); r (α⋆) = dimW ⋆ −
n (α⋆) = dimW − dim (Im (α))

0
= dimW − (dimW − dim Im (α)) = r (α).

For v ∈ V let v̂ (ǫ) = ǫ (v), the evaluation at v map; this is ∈ V ⋆⋆.

T11

ˆ : V → V ⋆⋆ as defined above is an isomorphism; note that this is a “natural”
isomorphism without reference to bases. ˆdoes map V → V ⋆⋆ since v̂ : V ⋆ → F
linear ∀v ∈ V , is trivially linear, injective by if e 6= ~0 ∈ V let e, e2, . . . , en a
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basis of V and ǫ1, . . . , ǫn the dual basis of V ⋆, then ê (ǫ1) = ǫ1 (e) = 1 so ê 6= 0,
ˆlinear so inj; surj by dimensions soˆis an iso.

Rk12

If ǫ1, . . . , ǫn a basis of V ⋆ and E1, . . . , En the basis of V ⋆⋆ dual to it Ej = êj for
unique ej ∈ V ; then ǫ1, . . . , ǫn is the basis of V ⋆ dual to e1, . . . , en.

L13

Let U ≤ V , then Û = U00; if we identify V with V ⋆⋆ by ,̂ U00 = U ; U ≤ U00

since u ∈ U ⇒ ǫ (u) = 0∀ǫ ∈ U0 by def of U0 so û (ǫ) = 0∀ǫ ∈ U0 by def ofˆso
û ∈ U00; equality by dimensions.

Rk14

For T ≤ V ⋆ we can def T 0 by {v ∈ V : θ (v) = 0∀θ ∈ T }.

L15

For U1, U2 ≤ V , (U1 + U2)
0

= U0
1 ∩ U0

2 (exercise), then applying 0 to this,

(U1 ∩ U2)
0

= U0
1 + U0

2 .

Rk16

Let V = P the set of all real polys; P = 〈p0, p1, . . . 〉 where pj (t) = tj ; any
ǫ ∈ P ⋆ can be written as (ǫ (p0) , ǫ (p1) , . . . ) ∈ Rn and all such sequences can
be attained (see Exs3Q16) but RN has no countable generating set, and its dual
will be even bigger, so cannot be iso to P . So these proofs really do depend on
V being fin dim.

Rk17

We have a mapping V ⋆ × V → F by (ǫ, v) 7→ ǫ (v); this is a bilinear func on
V ⋆×V (see later); we write it as 〈ǫ | v〉 as we could equally well use v̂ (ǫ) so this
is symmetric; we have 〈α⋆ (ǫ) | v〉 = 〈ǫ | α (v)〉 (∀α as above)

6 Bilinear Forms

In this section V,W vec sps over F , fin dim unless otherwise specified

Def

The func ψ : V ×W → F is a bilinear func if it is linear in each coordinate, i.e.
ψ (v, w) is linear in v ∀ fixed w ∈ W and vv; here we usually take V = W in
which case we say ψ is a bilinear form (on V ). For example, the real inner or
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scalar product on Rn×Rn, or more generally for V = Fn and A fixed ∈Mn (F ),
ψ (u, v) = uTAv is a bilinear form on V .

D3

Let dimV = n and B = v1, . . . , vn a basis of V , then the mat of the bilinear
form ψ on V wrt B is [ψ]B = (ψ (vi, vj)) as an n× n matrix.

L4

ψ (u, v) = [u]
T
B [ψ]B [v]B ∀u, v ∈ V ; furthermore [ψ]B is the only mat for which

this holds; ψ (a, b) = ψ (
∑

aivi,
∑

bjvj) =
∑

aibjψ (vi, vj) = (a1, . . . , an) [ψ]B





b1
. . .
bn





and done; if ψ (u, v) = [u]TB A [v]B ∀u, v ∈ V take u = vi, v = vj and A = [ψ]B .

Change of basis

For B′ = v′1, . . . , v
′
n also a basis of V and P the change of basis mat from B to

B′ vj =
∑

pijvi and [v]B = P [v]B′ ∀v ∈ V .

T5

[ψ]B′ = PT [ψ]B P (note PT rather than P−1) as ψ (u, v) = [u]
T

B [ψ]B [v]B =

(P [u]B′)
T

[ψ]B P [v]B′ = [u]
T

B′ PT [ψ]B P [v]B′ and done.

D6

Square real n× n mats A,B have A congruent to B if B = PTAP .

L7

This is an equiv rel on Mn (R); A cong A by P = I, if A cong B by P then B
cong A by P−1, and if also B cong C by Q then A cong C by PQ

D8

The rank of a bilinear form r (ψ) is r ([ψ]B) for any basis B; this is well defd.

D9

A real bilinear form ψ on V is symmetric if ψ (u, v) = ψ (v, u)∀u, v ∈ V, λ ∈ F ;
note it is equiv that [ψ]B is diagonal; To be able to represent ψ by a diagonal
mat ψ must be symmetric as if PTAP = D diagonal, D = DT = PTATP so
A = AT (since P invertible).
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D10

For V a real vec sp Q : V → R is a quadratic form if Q (λv) = λ2Q (v) , ∃
a real symmetric bilinear form ψ st Q (u+ v) = Q (u) + Q (v) + 2ψ (u, v);
note we can find ψ given Q by ψ (u, v) = 1

2 (Q (u+ v) −Q (u) −Q (v)) or
1
4 (Q (u+ v) −Q (u− v)), and for any ψ we have a corresponding Q by Q (v) =
ψ (v, v);

T11

Any real symmetric bilinear form (or equivalently any real quadratic form, as is
the case for many of the following results) can be represented by a diagonal mat;

moreover this can be taken to be





Ip 0 0
0 −Iq 0
0 0 0



 for some p, q ∈ N0; given a

real symmetric bilinear form ψ on V ∃ a basis B of V s.t. if [v]B =





X1

. . .
Xn



,

Q (V ) = X2
1 + · · · + X2

p − X2
p+1 − · · · − X2

p+q; we induct on dimV ; we can
assume ψ is nonzero, otherwise we are done; then ∃v ∈ V with Q (v) 6= 0; then
consider W = {w ∈ V : ψ (v, w) = 0}; W � V since v /∈ W and it suffices to
show V = 〈v〉 ⊕W ; if u ∈ V we can write u = λv + (u− λv); choose λ ∈ R so

u−λv ∈ W by λ = ψ(u,v)
ψ(v,v) so V = 〈v〉+W , and 〈v〉 Ŵ = ~0 since if ψ (λv, v) = 0

then λQ (v, v) = 0 so λ = 0; now the restriction of ψ to W × W is a real
symmetric bilinear form so we can induct (the base case is trivial [or so claims
the lecturer]); we have a basis B′ = v2, . . . , vn in which it is diagonal and then
ψ is diagonal wrt B = v, v2, . . . , vn.

Let [ψ]B =





d1

. . .
dn



; reorder B if necessary so that the first p of

the di are +ve, the next q −ve and the rest 0; then normalize B by vi → vi√
Q(vi)

for 1 ≤ i ≤ p, vi√
−Q(vi)

for p+ 1 ≤ i ≤ p + q ; then the mat of ψ wrt this new

B is as required.

D12

As per above, the rank r (ψ) = p + q; signature s (ψ) = p − q, and these are
basis-invariant:

T13 Sylvester’s Law of Inertia

If a real symmetric [bilinear] form ψ is represented by





Ip 0 0
0 −Iq 0
0 0 0



 ,





Ip′ 0 0
0 −Iq′ 0
0 0 0





wrt bases B,B′ then p = p′, q = q′; first def Q on a real vec sp V w/ U ≤ V is
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+ve definite on U if Q (u) > 0∀u 6= ~0 ∈ U , +ve semidefinite for ≥ rather than >,
similarly −ve definite and semidefinite; if we say Q +ve definite without addi-
tional qualification we meanQ is +ve definite on V and similarly. Now, we claim
p is the largest dim of a subsp on which ψ is +ve definite (and sim q for −ve def-
inite); we sometimes define p, q by these; B = v1, . . . , vp, vp+1, . . . , vp+q, . . . , vn;
let P = 〈v1, . . . , vp〉 , U = 〈vp+1, . . . , vn〉; ψ is +ve definite on P , and if ψ

+ve definite on some P ′, P ′ ∩ U =
{

~0
}

since ψ −ve semidefinite on U so

dimP ′ ≤ dim V − dimU , p′ + n− p ≤ n so p′ ≤ p and the claim holds; sim for
q. Of course this is equivalently true for a real quadratic form over R.

Rk14

ψ determines p but not P ; there are generally many possible such spaces, sim for
q; note that rank and signature together determine p, q. K = 〈vp+q+1, . . . , vn〉 is
determined by ψ; it is the kernel or radical of the form: K = {v ∈ V : ψ (v, u) = 0∀u ∈ V };
we call it V ⊥.

Def

ψ is non-singular if K =
{

~0
}

or equivalently r (ψ) = dimV ; note we may still

have U ⊂ V with ψ (u, v) = 0∀u, v ∈ U .

Rk15

∃ subsp T of dim min {p, q}+n− (p+ q) s.t. ψ = 0 on T ; this includes K but is
generaly much larger. min {p, q}+n− (p+ q) is the largest possible dim of such
a sp; say wlog q ≤ p and take T = 〈v1 + vp+1, . . . , vq + vp+q, vp+q+1, . . . , vn〉
(note T ∩ P = {0} = T ∩Q).

e.g. if ψ is non-singular with n = 2m and ∃ a subsp of dim m on which ψ is
0 then p = m = q so s (ψ) = p− q = 0.

16 Worked Example

V = R3, Q (~x) = x2
1 + x2

2 + 2x2
3 + 2x1x2 + 2x1x3 − 2x2x3; the mat of Q

wrt the standard basis is





1 1 1
1 1 −1
1 −1 2



 (this can be found by ψ (u, v) =

1
2 (Q (u+ v) −Q (u) −Q (v))). The first method to diagonalise is to gather all

ocurrences of x1 together as Q (~x) = (x1 + x2 + x3)
2 + x2

3 − 4x2x3, then all x3

[since this is easier] by Q (~x) = (x1 + x2 + x3)
2

+ (x3 − 2x2)
2 − (2x2)

2
(in fact

this offers another way to proove T11) so we know [Q]B =





1
1

−1



 wrt

some B; r (ψ) = 3, s (ψ) = 1. Then to find a suitable trans mat P we have
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



X1

X2

X3



 =





1 1 1
0 −2 1
0 2 0









x1

x2

x3



 so P =





1 1 1
0 −2 1
0 2 0





−1

. For the sec-

ond method we apply eltary col ops followed by the corresponding eltary row op

A→ ETAE e.g. A =





1 1 1
1 1 −1
1 −1 2



; we want col 2 → col 2 - col 1 so E1 =





1 −1
1

1



, then AE1 =





1 0 1
1 0 −1
1 −2 2



 , ET1 AE1 =





1 0 1
0 0 −2
1 −2 2





; we similarly use col 3 → col 3 - col 1 and so on; we build up P as we go along
by E1E2 . . . . For the third method we can use the same method as the pf of
T11.

Finally if we just want to find r, s it is sometimes easier to work with χA
since we shall later see s is the no. of +ve evals of A − the no. of −ve evals of
A.

Now we work over F = C; for ψ bilinear and symmetric on V over C as in T11

we have a basis B s.t. [ψ]B =

















d1

. . .
dr

0
. . .

0

















w/ di 6= 0 ∈ C∀i;

now replace vi by vi√
vi
∀1 ≤ i ≤ r and then ψ has mat

(

Ir 0
0 0

)

wrt this new

basis, so:

L17

Any cplx symmetric mat A satisfies PTAP =

(

Ir 0
0 0

)

for some invertible P

for unique r (actually r (A)); this is usially not quite what we want. Rather than
symmetric cplx mats we need to study Hermitian mats; a mat A is Hermitian
if A = AT (complex conjugation).

D18

For V a cplx vec sp a Hermitian form on V is a func ψ : V × V → C s.t.
∀v ∈ V, u 7→ ψ (u, v) is linear (note this is the ohter way around from in QM)
and ψ (u, v) = ψ (v, u). Note that such a ψ is not a bilinear form on V , rather it is
sesquilinear [sp?]: ψ (λ1u1 + λ2u2, v) = λ1ψ (u1, v)+λ2ψ (u2, v) , ψ (u, λ1v1 + λ2v2) =
λ1ψ (u, v1) + λ2ψ (u, v2); an example of such a form is the cplx inner prod.
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Rk21

For V a cplx vec sp and ψ a Herm form on V , can def Q : V → C (in fact Q is

real-valued) by Q (v) = ψ (v, v); we have Q (λv) = |λ|2Q (v); given Q we can re-
cover ψ similarly to before; ψ (u, v) = 1

4 (Q (u+ v) −Q (u− v) + iQ (u+ iv) − iQ (u− iv)).
If B = v1, . . . , vn is a basis of V the mat of ψ wrt B is [ψ]B = (ψ (vi, vj)). Let

this be A, then A = AT i.e. this is a Herm mat. ψ (u, v) = [u]TB [ψ]B [v]B.
Finally , a change of basis maps [ψ]B → PTAP where P is the (invertible)

change of basis mat.

T26

If ψ is a Herm form on the cplx vec sp V ∃ a basis B of V w/ [ψ]B =




Ip
−Iq

0



, and p, q are determined by ψ. The proof is mostly as for

the reals; as an outline if ψ ≡ 0 we are done, otherwise take v 6= ~0 ∈ V w/
ψ (v, v) 6= 0, then def W = {w ∈ V : ψ (v, w) = 0} and V = 〈v〉 ⊕W since if

u ∈ V u = λv + (u− λv) with λ = ψ(u,v)
ψ(v,v) so ψ (v, u− λv) = 0; we then in-

ductively find v2, . . . , vn a basis of W wrt which ψ |W is diagonal, then take
B = v1, v2, . . . , vn and [ψ]B is diagonal; the top row is 0s other than the top left
so since the mat is Herm the left collumn is also all 0 below the top. Then we
reorder the basis so the first p entries are +ve, the next q −ve and the rest 0,
then replace vj by 1√

|Q(vj)|
vj for j from 1 to p+ q. That p, q are determined is

by exactly the same pf as in 13; p is the maximal dim of a subsp on which ψ is
+ve definite etc.

Returning to V a real vec sp, there is another important class of real bilinear
forms:

D27

The bilinear form ψ on the real vec sp V is skewsymmetric or symplectic or
alternating if ψ (v, u) = −ψ (u, v)∀u, v ∈ V ; note this means ψ (v, v) = 0∀v ∈ V .
If A = [ψ]B for some basis B of V then AT = −A; A is skewsymmetric.

Rk28

Any real square mat A can be written as A = 1
2

(

A+AT
)

+ 1
2

(

A−AT
)

a sum
of symmetric and antisymmetric parts.
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T29

If ψ is a skewsymmetric bilinear form on a real vec sp V then m\exists a basis

v1, w1, v2, w2, . . . , vm, wm, v2m+1, v2m+2, . . . , vn wrt which ψ has mat

































0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0

0
.

note that this means the rank of any skewsymmetric mat is even. Also note
we can rearrange the basis as v1, . . . , vm, w1, . . . , wm, v2m+1, . . . , vn and the

mat becomes





0 Im
−Im 0

0



; for the proof we induct on dimV = n; if

ψ ≡ 0 we are done, otherwise ∃ vecs v1, w1 w/ ψ (v1, w1) 6= 0 and by scal-
ing w1 we can have this = 1, then ψ (w1, v1) = −1. Let U = 〈v1, w1〉 and
W = U⊥ = {v ∈ V : ψ (v1, v) = 0 = ψ (w1, v)}; then V = U⊕W as given v ∈ V
let a = ψ (v, w1) , b = ψ (v1, v) then v = av1+bv2+(v − av1 − bw1) with the first

two terms in U and the last in W , and U ∩W =
{

~0
}

as if av1 + bw1 ∈W then

ψ (v1, aw1 + bv1) = 0 ⇒ a = 0, ψ (w1, aw1 + bv1) ⇒ b = 0. Now we continue
with ψ |W and the claim holds by induction.

Some extra remarks on general bilinear forms on U ×V where U, V are over
the same field F ; ψ : U × V → F linear in each coordinate. [The lecturer used
to be making a distinction between forms and functions, and made a big fuss
about this, but appears to have now abandoned this. Or just be incompetent.
Or both] Examples are U = V ⋆, ψ given by (α, v) 7→ α (v) or for V over F = C
define V to have the same elts as V and the same addition but with scalar
prod λ·v = λ · v; the sesquilinear forms on V are precisely the bilinear funcs
V × V → C.

Cor 30

The rk of any skewsymmetric mat is even.
For U, V over F and ψ : U × V → F bilinear. we have maps ψL : U → V ⋆

by u 7→ ψL (u) given by v 7→ ψ (u, v), sim. ψR : V → U⋆. ψ is non-singular if
both the left kernel kerψL and right kernel kerψR are {0}.

L31

If ψ is non-singular on U × V then dimU = dimV as kerψL = {0} ⇒ dimU ≤
dimV ⋆ = dimV and similarly dim V ≤ dimU .
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L32 (Exercise)

If dimU = dim V then kerψL = {0} ⇔ kerψR = {0}; in fact if we assume
kerψL = {0} let u1, . . . , un be a basis of U , then ψL (u1) , . . . , ψL (un) is a basis
of V ⋆; let v1, . . . , vn the basis of V dual to it and observe ψ (ui, vj) = δij , so we
have bases of U, V which are “dual wrt ψ”.

33

Let ψ a non-singular bilinear form on V , then ψL : V → V ⋆ is an isomorphism.

34

For ψ a non-singular bilinear form V and W ≤ V , then W⊥ (the right [perp, I
assume - lol saxl’s accent] of W ) is {v ∈ V : ψ (w, v) = 0∀w ∈ W}. We clearly
have W⊥ ≤ V ; we claim dimV = dimW + dimW⊥ which is true since W⊥ =
(ψL (W ))0, as v ∈ W⊥ ⇔ ψ (w, v) = 0∀w ∈ W ⇔ ψL (w) (v) = 0∀w ∈ W ⇔
v ∈ (ψL (W ))0, so then dimW +dimW⊥ = dimW +dim (ψL (W ))0 = dimW +
dimV − dimψL (W ) = dim V . (ψ is non-singular so dimψL (W ) = dimW )

7 Inner Product Sps

D1

For V a real/cplx vecsp an inner prod on V is a +ve definite symmetric bilin-
ear/Herm form on V ; as notation we write 〈v, w〉 for the value of the inner prod
on (v, w). If V is a real/cplx inner prod sp (i.e. a sp w/ an inner prod) it is a
Euclidean/unitary sp. (i.e. a real one is Euclidean, a cplx one is unitary, and
similarly), e.g. dot products, or (exercise) V = C [0, 1] the spare of cnts real- or

cplx-vald funcs on [0, 1] w/ 〈f, g〉 =
∫ 1

0 f (t) g (t)dt.

D2

The length ‖v‖ of v ∈ V is +
√

〈v, v〉; note 〈v, v〉 ≥ 0 w/ equality iff v = ~0.

L3 The schwartz ineq

|〈v, w〉| ≤ ‖v‖ ‖w‖ ∀v, w ∈ V ; if v = 0 trivial, otherwise for the real case 0 ≤
‖tv − w‖2

= t2 ‖v‖2−2t 〈v, w〉+‖w‖2 ∀t ∈ R (here we could use the discriminant
of this quadratic in t, but we want to use a similar proof for both cases); put

t = 〈v,w〉
‖v‖2 and then 0 ≤ − 〈v,w〉2

‖v‖2 + ‖w‖2
so |〈v, w〉| ≤ ‖v‖ ‖w‖, and for the cplx

case 0 ≤ ‖tv − w‖2
= tt ‖v‖2 −

(

t+ t
)

〈v, w〉 + ‖w‖2 ∀t ∈ C; put t = 〈v,w〉
‖v‖2 then

0 ≤ − |〈v,w〉|2
‖v‖2 + ‖w‖2

and done as before.
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D4

In the Euclidean case, if v 6= ~0 6= w the angle θ between v, w is given by

cos θ = 〈v,w〉
‖v‖‖w‖ , taking θ ∈ [0, π].

L5 Triangle ineq

‖v + w‖ ≤ ‖v‖ + ‖w‖ as ‖v + w‖2
= ‖v‖2

+
(

〈v, w〉 + 〈v, w〉
)

+ ‖w‖2 ≤ ‖v‖2
+

2 ‖v‖ ‖w‖ + ‖w‖2
= (‖v‖ + ‖w‖)2.

D6

A set e1, . . . , ek of vecs ∈ V is orthogonal if 〈ei, ej〉 = 0∀i 6= j and orthonormal
if 〈ei, ej〉 = δij∀i, j.

L7

If e1, . . . , ej are orthog nonzero vecs they are lin ind; in fact v =
∑

λjej ⇒ λj =
〈v,ej〉
〈ej ,ej〉 .

By 6.11,6.26 ∃ ON bases; there is a procedure for “making” them:

T8 The Gram Schmidt Orthogonalization Process

Let V an inner prod sp (always fin dim from now on); let v1, . . . , vn a basis of V .
There is an ON basis e1, . . . , en s.t. span 〈e1, . . . , ek〉 = span 〈v1, . . . , vk〉 ∀1 ≤
k ≤ n; let e1 = v1

‖v1‖ and induct; if we have found e1, . . . , ek take e′k+1 = vk+1 −
∑k

j=1 λjej w/ λj chosen so that
〈

ej , e
′
k+1

〉

= 0∀1 ≤ j ≤ k by λj = 〈ej , vk+1〉.
Then e′k+1 6= 0 since v1, . . . , vk+1 indep; put ek+1 =

e′k+1

‖e′k+1‖ and done.

C9

In a fin dim inprosp [shorthand for inner product sp] any ON set of vecs can
be extended to an ON basis; if e1, . . . , ek ON they are lin ind, extend to a basis
e1, . . . , ek, vk+1, . . . , vn and apply Gram Schmidt - first k vecs are unchanged
since ON already.

D10

Let V and inprosp; ifW ≤ V writeW⊥ = {v ∈ V : v ⊥ w∀w ∈ W}, where v ⊥ w
means 〈v, w〉 = 0 or equivalently 〈w, v〉 = 0. This is the orthogonal complement
of W in V ; it is clearly unique, an:
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T11

If V a find dim inprosp, W ≤ V then W⊥ ≤ V and V = W ⊕ W⊥; let
e1, . . . , ek an ON basis of W , extend this to an ON basis e1, . . . , en of V ; observe
ek+1, . . . , ek ∈ W⊥ and W⊥ = 〈ek+1, . . . , en〉; if v ∈ V we can write v =
∑n

j=1 λjej =
∑k

j=1 λjej+
∑n

j=k+1 λjej so V = W+W⊥; observeW∩W⊥ = {0}
since if v ∈ W ∩W⊥ 〈v, v〉 = 0. From now on take W ≤ V

D12

Any v ∈ V can be written uniquely as v = w+w′ w/ w ∈W,w′ ∈ W⊥. Def π :
V →W by v 7→ this w; this is linear and surj, called the orthogonal projection
of V onto W . It is a projection since π2 = π. Also observe kerπ = W⊥ and
π′ = ι− π is the orthog proj of V onto W⊥.

L13

If e1, . . . , ek an ON [merely orthogonal in lectures, but that must be wrong]

basis of W then π satisfies π (v) =
∑k
j=1 〈v, ej〉 ej∀v ∈ V , as if v =

∑n
j=1 λjej

(extending to an ON basis of V ) then λj = 〈v, ej〉 and π (v) =
∑k

j=1 πjej since

v = π (v) ∈ W⊥, =
∑k

j=1 〈v, ej〉 ej . Note π (v) is the point of W nearest to v;
d (v, π (v)) (or ‖v − π (v)‖) ≤ d (v, w) ∀w ∈ W .

P14

Any real nonsingular (note therefore square) mat A can be written A = RT
where R is an orthog mat (i.e. R−1 = RT ) and T is upper triangular; sim

for A cplx but then R is unitary (R−1 = RT ). Work in V = Rn where A is
n × n, w/ standard dot prod. Let v1, . . . , vn the cols of A; this is a basis of V
since A is nonsingular. Apply Gram-Schmidt; let e1, . . . , en be the ON basis
this obtained. Let R be the mat w/ cols e1, . . . , en, then RTR = I since the ej
are ON. Write vk =

∑n
j=1 tjkej and let T = (tij); then T is upper triangular

since vk ∈ span 〈e1, . . . ek〉 ∀k and A = RT since A(k) = vk =
∑n

j=1 tjkR
(j).

Endomorphisms of inprosps

For V an inprosp and α : V → V linear:

P15 (Important)

For V fin dim ∃! endomorphism α⋆ of V s.t. 〈αv,w〉 = 〈v, α⋆w〉 ∀v, w ∈ V ;

moreover for B an ON basis of V [α⋆]B = [α]TB. This is the adjoint of α;
note that this is not the same as the α⋆ : V ⋆ → V ⋆ defined above (even
though this is sometimes called the classical adjoint); the notation is stan-
dard in both cases. Let B = e1, . . . , en an ON basis of V , A = [α]B, and
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let α⋆ be the endomorphism of V given by [α⋆]B = AT = C, then ∀1 ≤
i, j ≤ n, 〈α (ei) , ej〉 = 〈

∑n

k=1 akiei, ej〉 =
∑n

k=1 akiδkj = aji; 〈ei, α⋆ (ej)〉 =
〈ei,

∑n
k=1 ckjek〉 =

∑n
k=1 ckjδik = cij , so by linearity 〈α (v) , w〉 = 〈v, α⋆ (w)〉 ∀v, w;

uniqueness by the same proof in reverse: this property ⇒ [α⋆]B = [α]
T
B.

Rk16

For F = C put ψ (v, w) = 〈v, w〉, then ψR (w) ∈ V ⋆∀w, each given by v 7→
ψ (v, w); ψR is a map V → V ⋆. Then the map V → V ⋆ → V ⋆ → V given by
ψ−1
R ◦α⋆ ◦ψR for α⋆ the dual map of α is the adjoint map of α on V ; if we iden-

tify V, V ⋆ under ψR then the adjoint and the dual of α are the same thing,
since

〈

v, ψ−1
R α⋆ψRw

〉

=
(

ψR
(

ψ−1
R (α⋆ (ψR (w)))

))

(v) = (α⋆ (ψR (w))) (v) =
(ψR (w)) (α (v)) = 〈α (v) , w〉 ∀v, w ∈ V ; if we try and do the same with a cplx
inprosp we get an identification of V with V ⋆.

L17

For adjoint maps, (α+ β)
⋆

= α⋆ + β⋆, (λα)
⋆

= λα⋆, α⋆⋆ = α, ι⋆ = ι either
directly from the matricies or the direct proofs are trivial, e.g. 〈v, α⋆⋆ (w)〉 =
〈α⋆ (v) , w〉 = 〈w,α⋆ (v)〉 = 〈α (w) , v〉 = 〈v, α (w)〉 ∀v, w ∈ V so 〈v, (α− α⋆⋆)w〉 =
0∀v, w ∈ V i.e. α = α⋆⋆.

D18

For V fin dim inprosp and α ∈ L (V ) we define α is:

• Self-adjoint if α = α⋆; equivalently 〈α (v) , w〉 = 〈v, α (w)〉 ∀v, w ∈ V ; for
V real α is symmetric, for V cplx α is Hermitian

• An isometry if α⋆ = α−1 or equivalently 〈α (v) , α (w)〉 = 〈v, w〉 ∀v, w ∈ V ;
for V real α is orthogonal, for V cplx α is unitary

• Normal if αα⋆ = α⋆α.

For matricies, a real matrix A is symmetric if AT = A, orthogonal if AT = A−1

and a cplx mat A is Hermitian if AT = A and unitary if AT = A−1.

L19

If α ∈ L (V ) for V a fin dim inprosp and B an ON basis therof, α is symmet-
ric/hermitian/orthogonal/unitary iff [α]B is.

L20

Let V a cplx inprosp, α ∈ L (V ) Hermitian (unitary), then the evals of α are
real (lie on the unit circle in C and evecs corresponding to distinct evals are
orthogonal; if α (v) = λv w/ v 6= ~0 then λ 〈v, v〉 = 〈α (v) , v〉 = 〈v, α⋆ (v)〉 which
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= 〈v, α (v)〉 = λ 〈v, v〉; since v 6= ~0 〈v, v〉 6= 0 so this means λ = λ i.e. λ real

(=
〈

v, α−1 (v)
〉

= λ−1 〈v, v〉 so λ = λ−1 so |λ|2 = 1). If α (vi) = λivi for i = 1, 2
w/ λ1 6= λ2 then λ1 〈v1, v2〉 = 〈α (v1) , v2〉 = 〈v1, α⋆ (v2)〉 = 〈v1, α (v2)〉 =
λ2 〈v1, v2〉 = λ2 〈v1, v2〉 so (λ1 − λ2) 〈v1, v2〉 = 0 and 〈v1, v2〉 = 0 (the pf for
unitary α is similar).

Main T: 21

Let V a cplx findim inprosp, α a Hermitian (unitary) endomorphism of V , then
∃ an ON basis of V consisting of evecs of α, i.e. [α]B is diagonal wrt some
ON B: since V is cplx α has an eval λ; let α (e) = λe with ‖e‖ = 1 (which

we can do by scaling since e 6= ~0); let W = 〈e〉⊥, then V = 〈e〉 ⊕W by T11
(or an easy direct pf) and α (W ) = W ; W is α-invariant: if v ∈ W then
〈α (v) , e〉 = 〈v, α⋆ (e)〉 = 〈v, α (e)〉 = λ 〈v, e〉 = 0 (= λ−1 〈v, e〉 = 0 for unitary),
so α (v) ∈ W . Now α |W is Hermitian (unitary) so by induction ∃ an ON basis
e2, . . . , en of W consisting of evecs of α and then {e, e2, . . . , en} is an ON basis
of V of evecs of α.

L22

Let V a real findim inprosp, α ∈ L (V ) a symmetric endomorphism therov, then
α has real evals and evecs corresponding to distinct evals are orthog; for B an
ON basis of V [α]B is a real symmetric mat so Hermitian so by 20 the evals of
α are real, and we have orthogonality by the same pf as in 20.

Main T: 23

Note that this T does not in general work for orthog endomorphisms, only
symmetric ones; let V a real findim inprosp, α a symmetric endomorphism
therof, then ∃ an ON basis (of V ) of evecs of α: by 22 α has a real eval so let e

a corresponding evec of length 1, let W = 〈e〉⊥ and continue as in T21
A common generalisation, which should be considered as an exercise: for V

over C and α ∈ L (V ) normal (i.e. αα⋆ = α⋆α), ∃ an ON basis of evecs.

Rk24

L22 and hence T23 do not hold for orthog endomorphisms of real inprosps
e.g. n = 2, α a rotation has in general no real evals; however, see Exs4Q14:
for V a real inprosp and α ∈ L (V ) orthogonal ∃ an ON basis B st [α]B =
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



























1
. . .

1
−1

. . .
−1

�

. . .
�





























where the � are 2×2 blocks

(

cos θj sin θj
− sin θj cos θj

)

;

as an outline of the pf if α has a real eval λ then λ = ±1 as before (λ must be
on the unit circle as per L20). Assume all irreducible factors of the min poly m
of α (i.e. α has no real evals), then let mα (x) =

(

x2 + ax+ b
)

q (x); q (α) 6= 0;

let v ∈ Im (q (α)), then
(

α2 + aα+ b
)

(v) = ~0; let W = [span] 〈v, α (v)〉, then
V = W ⊕W⊥; both W and W⊥ are α-invariant, and we induct.

Rk 24A

Let A ∈Mn (R) (Mn (C)) symmetric (Herm); regard it as an endomorphism of
Rn (Cn) w/ standard inner prod: v 7→ Av. ∃ an ON basis v1, . . . , vn of evecs
by the above. Then P = (v1 . . . vn) is orthogonal (unitary) and AP = Pd w/

D diagonal =





λ1

. . .
λn



; then P−1AP = D = PTAP (PTAP ). Note

P is the change of basis mat from the standard basis to our ON basis of evecs
v1, . . . , vn; A is of course the mat of the endomorphism wrt the standard basis.

L25

Let ψ a symmetric (herm) bilinear form on a real (cplx) vec sp V ; let A = [ψ]B
for some ON basis B of V , then s (ψ) = no. +ve evals of A− no. −ve evals of A:
A is symmetric (herm) so by the above ∃ an ON B s.t. P−1AP = D = PTAP

(PTAP ) w/ D diagonal. But then the evals of D are those of P−1AP so we are
done.

T26

Simultaneous diagonalization of quadratic forms: let ψ, φ symmetric (Herm)
bilinear forms on a real (cplx) vecsp V ; assume one of them, wlog ψ, is +ve def-
inite (see Exs4Q10 for why this is actually necessary necessary), then ∃ basis B
of V st [ψ]B , [φ]B diagonal: fix any basis and have mats A,C representing ψ, φ.
Diagonalise ψ: ∃ non-singular mat P s.t. PTAP = I since ψ is +ve definite,
now PTCP is symmetric so m\exists an orthog mat R w/ RTPTCPR = D

diagonal, then (PR)
T
A (PR) = RT IR = I and (PR)

T
C (PR) = D as above,

and PR is nonsingular since P,R are, so we are done.

33



Rk

The diagonal entries of D are precisely the roots of the poly det (C − tA)

since they are the roots of det (D − tI) = det
(

(PR)
T
CPR− t (PR)

T
APR

)

=

det (PR)
T

det (C − tA) det (PR) = (detPR)
2
det (C − tA); since PR is non-

singular the roots of this are precisely those of det (C − tA) as required.
Exercise: a symmetric mat is +ve definite iff the n principal minors (dets of

submats in the top left corner of size 1, 2, . . . ) are +ve.

Final Rk

In IA A&G we looked at conics. For n = 2: a11x
2
1 + 2a12x1x2 + a22x

2
2 + b1x1 +

b2x2 + c = 0. This is the locus of ~xTA~x+B~x+C = 0 where A is the symmetric

mat

(

a11 a12

a12 a22

)

, B =

(

b1
b2

)

. For general n these [kinds of forms?] are

called quadrics. Assume the conics are non-degenerate (not just points and
straight lines) and we have the following cases:

• s (A) = 2, an ellipse. If we diagonalise using an orthog transformation
a11x

2
1 + a22x

2
2 + b1x1 + b2x2 + c = 0 for new constants, then translate

xi → xi − bi

2ai
so b1 = b2 = 0 i.e. a11x

2
1 + a22x

2
2 = c; we can also squash

by a non-orthogonal transform matrix P to x2
1 + x2

2 = 1, the unit circle.

• r (A) = 2, s (A) = 0; we similarly obtain a hyperbola a11x
2
1−a22x

2
2 = c. On

a 1D subsp the restricted form is +ve for lines between the two asymtopes
in the same sections where the hyperbola is, and -ve for lines in the other
two sections.

• r (A) = s (A) = 1: a11x
2
1 + b1x1 + b2x2 + c = 0; translating we cannot

eliminate b2x2 but have a11x
2
1 + b2x2 + c = 0, then let x2 → x2 − c

b2
and

a11x
2
1 + b2x2 = 0, a parabola.

For n > 2 we get similar sets of cases, e.g. for n = 3, r (A) = 3:

• s (A) = 3: squashed form x2 + y2 + z2 = 1, an ellipsoid

• s (A) = 1: squashed form x2 + y2 − z2 = 1, a hyperboloid of one sheet

• s (A) = −1: squashed form x2 − y2 − z2 = 1, a hyperboloid of two sheets

This concludes this course. For further reading and course is the next term, the
lecturer recommends M Artin’s “Algebra”.
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