Linear Algebra

July 5, 2008

This course is related to last year's Algebra and Geometry, but takes a more abstract approach. See the website for example sheets.

Books

CW Curtis has written a good book with a title along the lines of "Linear Algebra...", as have K Hoffman and R Kuhze; there are generally a lot of reasonable books on this subject.

Part I Vector Spaces

We use F to denote the field \mathbb{R} or \mathbb{C} ; recall that a field F is an abelian group under "+" with identity "0" such that $F \setminus \{0\}$ is an abelian group under "×" which is distributive over "+". The identity for × is called "1"; \mathbb{F}_p the integers modulo p is a good example of a field

Definition

A vector space V over the field F is a set which forms an abelian group under "+" with identity $\vec{0}$ and is closed under scalar multiplication, which satisfies $\forall v, v_i \in V, \lambda, \lambda_i \in F$ (note nonzero vectors are not underlined in this course):

- 1. $\lambda (v_1 + v_2) = \lambda v_1 + \lambda v_2$
- 2. $(\lambda_1 + \lambda_2) v = \lambda_1 v + \lambda_2 v$
- 3. $(\lambda_1 \lambda_2) v = \lambda_1 (\lambda_2 v)$
- 4. 1v = v

This is not the most basic set of axioms, but it is easy enough to check. Technically we should talk about $(V, F, +, \times)$ where the latter two are the vector addition and scalar multiplication operations.

Proposition

If V is a vector space over F then for $\lambda \in F, v \in V, \ \lambda v = \vec{0} \Leftrightarrow \lambda = 0 \text{ or } v = 0.$

Proof

 $\vec{0} + 0v = (0+0)v = 0v + 0v \text{ so } 0v = \vec{0} \forall v \in V. \ \vec{0} + \lambda \vec{0} = \lambda \left(\vec{0} + \vec{0}\right) = \lambda \vec{0} + \lambda \vec{0} \text{ so } \lambda \vec{0} = \vec{0} \forall \lambda \in F.$

Now if $\lambda v = \vec{0}$ with $\lambda \neq 0$, $\exists \lambda^{-1} \in F$ so $v = \lambda^{-1} \lambda v = \lambda^{-1} \vec{0} = \vec{0}$. As an excercise the reader should show that -1v = v.

Example

For a set X, the set $F^X = \{f : X \to F\}$ with $(f_1 + f_2)(x)$ defined as $f_1(x) + f_2(x)$ and $(\lambda f)(x)$ defined as $\lambda(f(x))$ is a vector space, as we can prove by checking our definition.

Definition

For V a vec sp over a field $F, U \subset V$, is a subspace, written $U \leq V$, if $\vec{0} \in U$, $u_1 + u_2 \in U$ and $\lambda u \in U, \forall u, u_1, u_2 \in U, \lambda \in F$. For example, $\mathbb{R}^{\mathbb{R}}$ has a subspace $\mathcal{C}(\mathbb{R})$, the set of cnts real-vald funcs.

Lemma

Any such U forms a vector space over F with the restrictions of + and \times to U

Linear Combinations

The empty lin comb is valid and $\vec{0}$. Take finite; $\sum_{i \in I} \lambda_i v_i$ for an arbitrary indexing set I is only a valid lin comb if all but finitely many of the λ_i are 0.

Spans or generates defined; V is finite dimensional if it is spanned by a finite set. Lin indep defined; v_i for $i \in I$ is lin ind if every finite subcollection thereof is. Bases defined; $S \subset V$ is a basis if it spans and is lin ind.

 v_1, \ldots, v_n are a basis iff each $v \in V$ has a unique expression in terms of them; if two such expressions for any v when v_i span, difference is $\vec{0}$ so differences of coeffs must be 0 so they are the same; if each v has such an expression, the v_i span and uniqueness means lin ind (else two expressions for $\vec{0}$) so form a basis.

If v_1, \ldots, v_m span, some subset there is a basis, as if they are lin ind we are done, otherwise we have some l for which $v_l = \alpha_1 v_1 + \cdots + \alpha_{l-1} v_{l-1}$, so can remove it and continue.

The steinitz exchange lemma: given $v_1 \ldots v_n$ lin ind and $w_1 \ldots w_m$ spanning, can replace n of the w_i with v_i and still have them spanning - write v_1 in terms of w_i , rewrite to have one of the w_i in terms of the other w_i and v_1 , continue. This implies $n \leq m$.

Main thm: if V is a fin dim vec sp any two bases $v_1, \ldots v_n$ and w_1, \ldots, w_m have the same number $\dim_F V$ of elts, as the v_i are indep and the w_i span so $n \leq m$ and vice versa, so n = m. Note that $\dim_{\mathbb{C}} \mathbb{C} = 1$ but $\dim_{\mathbb{R}} \mathbb{C} = 2$.

An immediate corollary of Steinitz is that if V is a fin dim vec sp over F and w_1, \ldots, w_l a lin ind set of vectors of V we can extend it to form a basis. For an n dim vec sp, any lin ind set has $\leq n$ elts with equality only if it is a basis; likewise any spanning set has $\geq n$ elts with equality only if it is a basis. For v_1, \ldots, v_n it is equivalent that this is a basis, spanning set or linearly indep. For V a vec sp over F and $S \subset V$ we write $\langle S \rangle$ for the smallest subspace of V which contains S; this is clearly the set of all finite lin combs of elts of S. The intersections of subspaces are subspaces, but their unions almost never; we define for $U, W \leq V$ $U + W = \{u + w : u \in U, w \in W\} = \langle U \cup W \rangle$. This is a subspace, and if U, Wfin dim then it is fin dim with dim dim $U + \dim W - \dim U \cap W$. We prove all these results using bases. $V = U \oplus W$ if every elt of V can be expressed uniquely as u + w; W is called the direct complement of U in V. This is equivalent to V = U + W and $U \cap W = \{\vec{0}\}$ or that for any bases B_1 of U and B_2 of W, $B_1 \cup B_2$ is a basis of V. The second definition implies the first since any $v \in V$ is u + w for some u, w and if $u_1 + w_1 = u_2 + w_2$ then $u_1 - u_2 = w_2 - w_1$; the value for this is $\in U \cap W$ so must be $\vec{0}$ and $u_1 = u_2, w_1 = w_2$. The first implies the third by for B_1 a basis for U, B_2 a basis for W and $B = B_1 \cup B_2$; clearly have B spanning U + W, and if $\sum_{B} \lambda_{v} v = \vec{0}$ then since representation as u + v is unique, $\sum_{B_1} \lambda_u u = \vec{0}$ and the λ_u are 0, sim the λ_w , so all the λ_v are 0 and B is lin ind. Finally the third implies the second as for $v \in V$ we can express v in Bso in B_1 and B_2 so as u + w, and if $v \in U \cap W$ we have $v \in U$ so $v = \sum_{B_1} \lambda_u u$ and similarly, so $\sum \lambda_u u - \sum \lambda_w w = \vec{0}$ meaning $\lambda_u \equiv 0$ and similar so $v = \vec{0}$.

Lemma

If V a fin dim vec sp over F and $U \leq V$, \exists a (not generally unique) complement to U - take a basis for U and extend it to one for V and the span of the extension is then such a complement.

Lemma

For $V_1, \ldots, V_l \leq V$ with $\sum V_i = \{v_1 + \cdots + v_l : v_i \in V_i\}$ this sum is direct if whenever $v_1 + \cdots + v_l = v'_1 + \cdots + v'_l$, $v_i = v'_i$; in this case we write it as $\oplus V_i$; this is equivalent to that $V_i \cap \sum_{j \neq i} V_j = \{\vec{0}\} \forall i$ or that for any bases B_i of V_i their union $B = \bigcup_i B_i$ is a basis of $\sum V_i$; the reader should prove these equivalences as an exercise.

Quotient Spaces

For V a vec sp over F and $W \leq V$ the quotient group $\frac{V}{W}$ (W is normal since V abelian) is a vec sp over F with addition and scalar multiplication defined in

the obvious way. If V is fin dim so is $\frac{V}{W}$; prove this by extending a basis of W.

Part II Lin Maps and Matricies

1 Defn

For V, W vec sps over $F, \alpha : V \to W$ is linear or a homeomorphism if $\alpha (v_1 + v_2) = \alpha (v_1) + \alpha (v_2)$ and $\alpha (\lambda v) = \lambda \alpha (v) \ (\forall v, v_1, v_2 \in V, \lambda \in F).$

2 Eg

The function $f \mapsto f'$ on $\mathbb{R}^{\mathbb{R}}$ or $f \mapsto \int_{0}^{x} f(t) dt$ on $\mathcal{C}[0,1]$, or for any $m \times n$ matrix with entries in F the mapping $\alpha : F^{m} \to F^{n} x \mapsto Ax$.

3 L

For U, V, W vec sps over F, the identity and composition of linear maps are linear

4 L

For V, W vec sps over F and α_0 any map of a basis B of V to W, \exists a unique lin map α extending α_0 - proof by basis representation of v and linearity.

5 Note

We often define a lin map just on the basis and then "extend linearly". Also this means if two lin maps between the same spaces agree for a basis of the first space they are equal.

6 Def

A bij lin map is an isomorphism; if \exists one $V \to W$ we write $V \simeq W$.

7 L

 \simeq is an equiv rel on the set of all vec sps over F; only hard part of proof is linearity of α^{-1} , which must exist as α bij. For $w_1, w_2 \in W$, write the w_i as $\alpha^{-1}v_i$, then $\alpha^{-1}(w_1 + w_2) = \alpha^{-1}(\alpha v_1 + \alpha v_2) = \alpha^{-1}\alpha(v_1 + v_2)$ by linearity of α ; rest of proof similar.

8 Thm

If V a vec sp of dim n over F then $V \simeq F^n$. Express vecs of v in terms of basis and then map to F^n in the obvious way

9 Thm

The vec sps U, W over F are isom if they have the same dim - obvious corollary. The converse is also true; for $\alpha : U \to W$ an isomorphism and B a basis for U, $\alpha(U)$ is a basis for W - spans since B spans U and α surj, sim lin ind.

10 Def

For $\alpha: V \to W$ linear, the nullity $N(\alpha) = \{v \in V : \alpha(v) = 0\}$, also sometimes $\ker \alpha$; sim $Im(\alpha) = \{w \in W : w = \alpha(v) \text{ for some } v \in V\}$; note the former is a subspace of V and the latter of W. α is inj iff $\ker \alpha = \{\vec{0}\}$, surj iff $Im\alpha = W$; we define the rank $rk(\alpha)$ or $r(\alpha)$ by dim $Im\alpha$, nullity $n\alpha = \dim N\alpha$. [missing brackets because I'm cool]

11 Rank-Nullity Thm

For V, W vec sps over F with $\dim_F V$ fin, $\alpha : V \to W$ linear $\dim V = r\alpha + n\alpha$; take a basis for $N\alpha$, extend this to a basis of V and the image of the extension is a basis for $Im\alpha$, or can prove by iso from $\frac{V}{N\alpha}$ to $Im\alpha$.

12 L

for V, W vec sps over F of equal fin dim and $\alpha: V \to W$ linear, equivalent that:

- 1. α iso
- 2. α inj
- 3. α surj

Proove by rank-nullity

13 Prop: the space L(V, W) of linear maps $V \rightarrow W$ for V, W vec sps over F is a vec sp

Also sometimes called Hom(V, W); vec sp under addition and multiplication defined pointwise. If V, W fin dim so is L, with dimension dim $V \dim W$; proof of this later (19)

Matricies

An $m \times n$ matrix A over F is an array with m rows and n columns with entries $\in F$, we usually write them as (a_{ij}) with individual elts a_{ij} ; the set of all such is $M_{m,n}(F)$.

14 Prop

This is a vec sp over F with addition and multiplication defined pointwise; dimension $m \times n$ by the standard basis (the set of matricies with 0s in all but one entry, which contains a 1)

Repr of lin maps by matricies

For V, W fin dim vec sps over F and $\alpha : V \to W$ linear fix bases $B = \{v_1, \ldots, v_n\}, C = \{w_1, \ldots, w_m\}$, then for $v = \sum \lambda_i v_i \in V$ write $[v]_B = \begin{pmatrix} \lambda_1 \\ \ldots \\ \lambda_n \end{pmatrix}$, sim $[W]_C$.

15 Defn

 $[\alpha]_{B,C}$ the matrix of α wrt B, C is $([\alpha v_1]_C \dots [\alpha v_n]_C)$. [The lecturer has the dimensions of his matrices hopelessly confused, so I'm ignoring them].

16 L

 $\forall v \in V, \ [\alpha v]_C = [\alpha]_{B,C} \ [v]_B$ multiplied as matricies.

17 Rk

We get the same result by mapping $v \in V$ to a vector $w \in W$ by α and then representing this as a column in F^m as by mapping v to a column in F^n and then applying the corresponding matrix A.

18 Rk

This matrix $[\alpha]_{BC}$ is the only matrix A for which $[\alpha v]_C = A[v]_B \forall v \in V$ by taking v to be the basis vectors of V.

19 Prop

For V, W vec sps over F with dim n, m respectively $L(V, W) \simeq M_{m,n}(F)$; fix bases and then map $\alpha \mapsto [\alpha]_{BC}$; inj as if mapping is 0α is 0 on a basis so the 0 map, surj as let α map the bases as indicated by a given matrix and extend linearly; this prooves 13 above.

20 L

For $\beta: U \to V$ and $\alpha: V \to W$ linear, for bases A, B, C respectively of U, V, W, $[\alpha \circ \beta]_{AC} = [\alpha]_{BC} [\beta]_{AB}$ by action on basis vectors of U.

Change of Bases

For bases $B = v_1, \ldots, v_n, B'$ of a vec sp V the matrix $P = p_{ij}$ given by $v'_j = \sum_i p_{ij} v_i$ is the change of basis matrix from B to B'; it looks like $([v'_1]_B \ldots [v'_n]_B)$ and we can see it as $[i]_{B'B}$. Then we have $[v]_B = P[v]_{B'}$ either by 16 or directly by actuan on basis vectors. Note P must be invetible since P^{-1} is the change of basis matrix from B' to B, $[i]_{BB'}$; $[i]_{B'B}[i]_{BB'} = [i]_{BB} = I$ and similarly the product in the other direction.

\mathbf{L}

For $\alpha : V \to W$ linear $A = [\alpha]_{BC}$ and $A' = [\alpha]_{B'C'}$, $A' = Q^{-1}AP$ for some invertible Q, P as $Q[\alpha V]_{C'} = [\alpha v]_C = A[v]_B = AP[v]_{B'}$ [I'm guessing what the lecturer meant here] for Q and P the change of basis matrices between B, B' in V and C, C' in W respectively.

Def

The matricies A, A' are equiv if $A' = Q^{-1}AP$ for some invertible Q, P; this clearly defines an equiv rel on $M_{m,n}(F)$

\mathbf{L}

1. For V, W vec sps over F of respective dim n, m and $\alpha : V \to W$ linear \exists bases B of V, C of W (not generally unique) st $[\alpha]_{BC} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ for these entries submatricies where I_r is the $r \times r$ identity; compare with rank-nullity, take a basis of V containing a basis for $N\alpha$, then extend its image to a basis for W and done (modulo re-ordering basis vectors)

2. Any matrix is equiv to one of this form

Def

For $A \in M_{m,n}(F)$ the (col) rank of A r(A) is the dim of the subspace of F^m generated by the cols of A; if $A = [\alpha]_{BC}$ this is $r\alpha$ as we have an iso from $Im\alpha$ to the span of the cols of A by $\alpha v \mapsto [\alpha v]_C$

\mathbf{T}

The matricies A, A' equiv iff rA = rA'; forward implication since both can represent the same lin trans, reverse by A equiv to some $\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$ where r = rA by first part, sim for A' and these are only equiv if rA = rA'. Row rank (dim of the span of the rows) of any A is the same as col rank; take A equiv to $\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$ and then A^T equiv to $\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$ where the 0s may be differently sized and these clearly have the same col rank (rowrk $A = \operatorname{colrk} A^T$) so done.

Eltary ops, Eltary matricies

Def eltary col ops on a matrix A are swap two cols i, j, replace col i by $\lambda \times$ itself, or add $\lambda \times$ col i to col j and sim eltary row ops; these are all reversible. We find the corresponding eltary matricies by performing these operations on I, e.g. in $2 \times 2 T_{12} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, M_{1\lambda} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}, C_{12\lambda} = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$ are matricies of the 3 types; an eltary operation can be performed by postmultiplying A by the corresponding eltary matrix (or premultiplying for a row op), e.g. $A \mapsto AT_{ij}$. We can use this to constructively prove that any matrix is equiv to one of the form $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$; if A has no nonzero entries we stop, otherwise take some $a_{ij} = \lambda \neq 0$, swap rows i1 and cols ij and multiply col 1 by λ^{-1} , then clear out the first row and col by ops of typ. 3 and recurse on the $m - 1 \times n - 1$ submatrix in the bottom right corner; since every operation can be represented by a matrix we can find P, Q by multiplying the matricies corresponding to the ops we have performed in the correct order. [I assume; I was out trying to kill people for the end of this lecture].

Variations

We need only eltary row ops to obtain the row echelon form of a matrix (use Gaussian elimination)

For A square (n = m) if A non-singular can obtain $I_n w/$ just eltary col ops (or row ops); inductively if we have the first k rows we have some j > k w/ $a_{k+1j} = \lambda \neq 0$ since otherwise A would be singular [?], so we swap cols k + 1, j, divide col k + 1 by λ , and then clear out the remainder of row k + 1 by type 3 ops. We can use this to construct A^{-1} by $AE_1 \dots E_C = I_n$ so $I_n E_1 \dots E_C = A^{-1}$. [?]

P 34

Any invertible $n \times n$ mat is a prod of eltary mats - construct from A^{-1} as above. For V = W, C = B we write L(V) rather than L(V, V), $[\alpha]_B$ rather than $[\alpha]_{BB}$, and $M_n(F)$ for $M_{n,n}(F)$.

\mathbf{D}

A, A' are similar or conjugate if $A' = P^{-1}AP$ some invertible P; note $[\alpha]_{B'} = P^{-1}[\alpha]_B P$ for P change of basis mat from B to B'

Det and Trace

Trace

Defined; note linear $M_n F \to F$.

\mathbf{L}

trAB = trBA

\mathbf{L}

Similar mats have same tr as $trP^{-1}AP = trAPP^{-1} = trA$.

For α linear def $tr\alpha = tr[\alpha]_B$ for any basis B; now know well defd.

Recall S_n is the group of permutations of $\{1, \ldots, n\}$; let $\epsilon(\sigma) = +$ for σ even, - for σ odd (i.e. the composition of an even or odd no. of transpositions; recall this is well defined. Def det A by $\sum_{\sigma \in S_n} \epsilon(\sigma) a_{\sigma(1)1} \ldots a_{\sigma(n)n}$. This is the sum of n! summands, each of which is a sign \times a prod of n factors, one from each row and one from each col. Note this is the familiar determinant for e.g. n = 2.

We write $A = (A^{(1)}A^{(2)}\dots A^{(n)})$ an *n*-tuple of vectors in F^n ; note $I = (e_1, \dots, e_n)$.

Def

The func $d: F^n \times \cdots \times F^n \to F$ is a volume func on F^n if it is multilinear (linear in each argument) and alternating (0 if any two distinct args are the same). d is a determinant form if also $d(e_1, \ldots, e_n) = 1$.

\mathbf{L}

For d a vol func swapping cols changes sign, as d is linear in both of these cols so d(a, b, ...) + d(b, a, ...) = d(a + b, a + b, ...) = 0 and similar.

Corollary

If d a vol func on F^n and $\sigma \in S_n d(v_{\sigma 1} \dots v_{\sigma n}) = \epsilon(\sigma) d(v_1, \dots, v_n)$. In particular for a det form $d(e_{\sigma 1}, \dots, e_{\sigma n}) = \epsilon(\sigma)$.

\mathbf{T}

If d a vol func on F^n and $A = (A^{(1)} \dots A^{(n)}), d(A^{(1)}, \dots, A^{(n)}) = \det Ad(e_1 \dots, e_n)$ which of course = det A if d is a det form, as it = $d\left(\sum_{j_1=1}^n a_{j_11}e_{j_1}, \dots\right) = \sum_{j_1=1}^n a_{j_11}d(e_{j_1}, A^{(2)}, \dots) = \dots = \left(\prod_{i=1}^n \sum_{j_i=1}^n a_{j_ii}\right) d(e_{j_1}, \dots, e_{j_n})$ (by which I mean all the sums are applied); the terms where the j_i are not all distinct are 0 so this is $\sum_{\sigma \in S_n} a_{\sigma(1)1} \dots a_{\sigma(n)n} \epsilon(\sigma)$ as required. This means a det function is unique if it exists

T10

 $\begin{array}{l} d\,:\,F^n\times\cdots\times F^n\,\to\,F\,\left(A^{(1)},\ldots,A^{(n)}\right)\mapsto\det A \text{ is a det func on }F^n; \text{ multilinear as det }A \text{ is a sum with each of the summands }\epsilon\left(\sigma\right)a_{\sigma(1)1}\ldots a_{\sigma(n)n}\\ \text{linear in each factor, alternating as if }A^{(k)}\,=\,A^{(l)} \text{ for some }k\,\neq l, \text{ let }\tau\,=\,(kl)\in S_n, \text{ then we can express the sum det }A=\sum_{\sigma\in S_n}\epsilon\left(\sigma\right)a_{\sigma(1)1}\ldots a_{\sigma(n)n}\text{ as }\sum_{\sigma\in A_n}\epsilon\left(\sigma\right)a_{\sigma(1)1}\ldots a_{\sigma(n)n}+\epsilon\left(\sigma\tau\right)a_{\sigma\tau(1)1}\ldots a_{\sigma\tau(n)n} (\text{where }A_n\text{ is the alternating group }\sigma\in S_n:\epsilon\left(\sigma\right)=+)\text{ which is }\sum_{\sigma\in A_n}a_{\sigma(1)1}\ldots a_{\sigma(n)n}-a_{\sigma\tau(1)1}\ldots a_{\sigma\tau(n)n}\\ \text{ but for any }\sigma\in S_n, a_{\sigma(1)1}\ldots a_{\sigma(n)n}=a_{\sigma\tau(1)1}\ldots a_{\sigma\tau(n)n} \text{ as }k=l \text{ so this is 0.}\\ \text{Finally det }I=\sum_{\sigma\in S_n}\epsilon\left(\sigma\right)e_{\sigma(1)1}\ldots e_{\sigma(n)n}=\sum_{\sigma\in S_n}\epsilon\left(\sigma\right)\delta_{\sigma(1)1}\ldots\delta_{\sigma(n)n}; \text{ the only nonzero summand is where }\sigma=\iota;\ \epsilon\left(\iota\right)=+\text{ so det }I=1. \text{ Therefore det is the unique determinant form.}\end{array}$

L11

det A^T = det A as if $\sigma \in S_n$ then $a_{\sigma(1)1} \dots a_{\sigma(n)n} = a_{1\sigma^{-1}(1)} \dots a_{n\sigma^{-1}(n)}$, since the same factors are present in both products. We have $\epsilon(\sigma^{-1}) = \epsilon(\sigma)$ and σ^{-1} runs over S_n as σ does, so replacing σ^{-1} with π , det $A = \sum_{\pi \in S_n} \epsilon(\pi) a_{1\pi(1)} \dots a_{n\pi(n)} =$ det A^T .

L12

det is the unique multilinear alternating function of rows normalized at ${\cal I}$ -immediate corollary.

L13

If $A = (a_{ij})$ an upper triangular matrix (i.e. $a_{ij} = 0 \ \forall i > j$) det $A = a_{11} \dots a_{nn}$ (and similarly the same result for a lower triangular matrix) as for $a_{\sigma(1)1} \dots a_{\sigma(n)n}$ to be nonzero we must have $\sigma(1) \leq 1$ so $\sigma(1) = 1$, then need $\sigma(2) \leq 2$ so $\sigma(2) = 2$ and so on, so the only σ with this nonzero is ι and det $A = \epsilon(\iota) a_{11} \dots a_{nn} = a_{11} \dots a_{nn}$.

L14

If E an eltary $n \times n$ mat for any $A \det AE = \det A \det E = \det EA$ so performing an eltary op on A multiplies det A by the det of the corresponding eltary mat,; det $T_{ij} = -1$ by alternating and applying the transposition multiplies det A by -1 by the same; det $M_{i\lambda} = \lambda$ by multilinearity and applying the multiplication multiplies det A by λ by the same, and det $C_{ij\lambda} = 1$ since this is upper or lower triangular and the reader should prove the corresponding operation leaves det Aunchanged [since the lecturer apparently can't].

T15

Let A be a square matrix, then A is non-singular iff det $A \neq 0$; if it is nonsingular A is a prod of eltary matricies so has det the product of their dets $\neq 0$ by above; if A is singular we can obtain a matrix w/ a 0 col (since a 0 col is a non-trivial lin comb of the cols of A) by eltary col ops, so det of this matrix is 0 and det A = 0 by above.

T16

For $A, B \in M_n(F)$ det $AB = \det A \det B$; if B singular so is AB by considering the corresponding lin maps, so det $AB = 0 = \det A \det B$, otherwise express B as a prod of eltary matricies and det $AB = \det AE_1 \dots E_C = \det AE_1 \dots E_C = \det A \det E_C = \dots = \det A \det E_1 \dots \det E_C = \det A \det B$.

C17

A invertible $\Rightarrow \det A = \frac{1}{\det A^{-1}}$.

C18

Conjugate mats have same ded as $\det PAP^{-1} = \det A \det P \det P^{-1} = \det A$.

D19

 $\det \alpha = \det [\alpha]_B$ for any basis B; well defd by above.

T20

det : $L(V) \to F$ has det $\iota = 1$, det $\alpha\beta = \det \alpha \det \beta$ and det $\alpha \neq 0$ iff α nonsingular, and det $\alpha^{-1} = (\det \alpha)^{-1} \forall$ such α - from matrix properties.

\mathbf{Rks}

GL(V) is the group of all automorphisms of V; an $\alpha \in L(V)$ is an endomorphism and a non-singular (bijective) endomorphism is an automorphism. Say V is *n*-dim over F; then $GL_n(F)$ is the group of invertible $n \times n$ mats on F and det : $GL_n(F) \to F$ is a group hom and surj; ker det is called $SL_n(F)$, the group of mats w/ det 1. For $A \ n \times n$ mat representing $\alpha \in L(V)$, equivalent that A non-singular, α non-singular, A invertible, α invertible, det $A \neq 0$ or det $\alpha \neq 0$.

L21

For $A \in M_m(F)$, $B \in M_k(F)$, $C \in M_{m,k}(F)$, $\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \det A \det B$ as if we write n = m+k, $X = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ we have $\det X = \sum_{\sigma \in S_n} \epsilon(\sigma) x_{\sigma(1)1} \dots x_{\sigma(n)n}$ but $x_{\sigma(j)j} = 0$ for $j \le m$ and $\sigma(j) > m$, so we sum only over σ which map [1, m]and [m+1, n] to themselzen, which is the same as summing over $\sigma_1 \in S_m, \sigma_2 \in S_k$ where $\sigma_1(l) = \sigma(l), \sigma_2(l) = \sigma(m+l) - m$; we have $\epsilon(\sigma) = \epsilon(\sigma_1)\epsilon(\sigma_2)$ so $\det X = \left(\sum_{\sigma_1 \in S_m} \epsilon(\sigma_1) a_{\sigma_1(1)1} \dots a_{\sigma_1(m)m}\right) \left(\sum_{\sigma_2 \in S_k} \epsilon(\sigma_2) b_{\sigma_2(1)1} \dots b_{\sigma_2(k)k}\right)$ and done.

L22

Let $A \in M_n(F)$, $A = (a_{ij})$; write $A_{\hat{ij}}$ for the $n-1 \times n-1$ mat obtained by deleting row i, col j from A. For fixed j, det $A = \sum_{i=1}^n (-1)^{i+j} a_{ji} \det A_{\hat{ij}}$; this is the expansion in col j (and by transpose, for fixed $i \det A = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det A_{\hat{ij}}$); note we can define det inductively by this (set det (a) = a for 1×1 matricies as the base case); det $A = \det \left(A^{(1)}, \ldots, \sum_{i=1}^n a_{ij}e_i, \ldots, A^{(n)}\right) = \sum_{i=1}^n a_{ij} (-1)^{i+j} \det \begin{pmatrix} 1 & \ldots \\ 0 & A_{\hat{ij}} \end{pmatrix}$ (by repeated col transpositions) $= \sum_{i=1}^j (-1)^{i+j} \det A_{\hat{ij}}$.

D23 [?]

The adjugate or classical adjoint matrix adjA of $A \in M_n(F)$ is the matrix w/ ij entry $(-1)^{i+j} \det A_{\hat{j}\hat{i}}$.

T24

 $AdjA \times A = (\det A) I$ (as a corollary, if A invertible $A^{-1} = \frac{1}{\det A} adjA$ [no proof it is inverse from both sides here, but maybe we know already?]) since $\det A = \sum_i (adjA)_{ji} a_{ij}$ which is the jj entry of $adjA \times A$; $0 = \det (A^{(1)}, \ldots, A^{(k)}, \ldots, A^{(k)}, \ldots, A_n) = \sum_i (adjA)_{ji} a_{ik}$ which is the jk entry of $adjA \times A$.

Digression: systems of linear eqns

 $A\vec{x} = \vec{b}$ for A a $m \times n$ mat, \vec{b} m-vec and \vec{x} n-vec is a system of m eqns for n unknowns. Recall it has a sol iff $r(A) = r(A \mid b)$ (the augmented matrix formed by A with the extra col \vec{b}); if we have such a sol \vec{b} is lin dep on the cols of A and vice versa.

The sol is unique iff this rank = n; to find it we use eltary row ops to perform Gaussian elimination.

For m = n and A non-singular the unique sol is $\vec{x} = A^{-1}\vec{b}$.

L25 (Cramer Rule) [sp?]

If A is a non-singular $n \times n$ mat the system $A\vec{x} = \vec{b}$ has $x_i = \frac{\det A_i b}{\det A} \forall i$ as its unique sol where $A_i b$ is A with col *i* replaced by \vec{b} , as if $A\vec{x} = \vec{b}$ then $\det A_i b = \det \left(A^{(1)}, \dots, A^{(i-1)}, \vec{b}, A^{(i+1)}, \dots, a^{(n)}\right) = \det \left(A^{(1)}, \dots, A^{(i-1)}, \sum_j A^{(j)} x_j, A^{(i+1)}, \dots, a^{(n)}\right) = \sum_j x_j \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(j)}, A^{(i+1)}, \dots, a^{(n)}\right) = x_i \det A.$

C26

If $A \in M_n(\mathbb{Z})$ with det $A = \pm 1$ and $\vec{b} \in \mathbb{Z}^n$ we can solve $A\vec{x} = \vec{b}$ over \mathbb{Z} [why?]

4 Endomorphisms, mats and evecs

For this section: V is a fin dim vec sp over F, dim $V = n, B = \{v_1, \ldots, v_n\}$ is a basis and $\alpha : V \to V$ is linear so an endomorphism.

We want to pick B st $[\alpha]_B$ is simple; recall $[\alpha]_{B'} = P^{-1} [\alpha]_B P$ for P a change of basis mat from B to B', so equiv that for $A \in M_n(F)$ we want A' conj to A with a nice form.

Def 1

 α is diagonalizable if $\exists B : [\alpha]_B$ diagonal, trianglizable if $\exists B : [\alpha]_B$ upper triangular (we could equally well use lower triangular, but must define one or the other, not both. The define for a matrix A are obvious.

D2

 $\lambda\in F \text{ is an eval if } \exists v\neq 0\in V: \alpha\left(v\right)=\lambda v.$

Rk3

 λ is an eval of α iff $\alpha - \lambda \iota$ singular iff λ a root of $\chi_{\alpha}(t) = \det(\alpha - t\iota)$. Def $v_{\lambda} = \{v \in V : \alpha(v) = \lambda v\}$ the λ -eigenspace of α .

Note 4

The col j of $[\alpha]_B$ is λe_j iff $\alpha(v_j) = \lambda v_j$; $[\alpha]_B$ is diaconal iff B consists of evecs, upper triangular iff $\alpha(v_j) \in \langle v_1, \ldots, v_j \rangle$; note this means v_1 is an evec.

R5

Recall: a func $f: F \to F$ is a polynomial func if it is of the form $f(t) = a_n t^n + \cdots + a_0$ for $n \in \mathbb{N}_0, a_i \in F \forall i$; the largest $m: a_m \neq 0$ is the degree of f with the degree of 0 taken to be $-\infty$; this gives us that deg $fg = \deg f + \deg g$ (addition and multiplication of polys is defd the obvious way); the polys form a ring F[t]. λ is a root of the poly f if $f(\lambda) = 0$; if λ is a root of f then $(t - \lambda)$ divides f(t), as then $f(t) = f(t) - f(\lambda) = a_n (t^n - \lambda^n) + \cdots + a_1 (t - \lambda) = (t - \lambda) (a_n (t^{n-1} + t^{n-2}\lambda + \cdots + \lambda^{n-1}) + \cdots + a_1) = (t - \lambda) q(t)$ for some $q(t) \in F[t]$; we say λ is a root of f w/ multiplicity e if $(t - \lambda)^e$ divides f but $(t - \lambda)^{e+1}$ does not.

L7 [ya rly]

A poly over F of deg $n \ge 0$ has at most n roots (counted w/ multiplicity); trivially true for n > 0, then strong induction; for f a poly of deg n > 0 if no roots then done, otherwise let λ a root of multiplicity $e \ge 1$, then $f(t) = (t - \lambda)^e q(t)$ for q a poly of deg n - e over f and any root of $f \ne \lambda$ is a root of q.

C8

If f_1, f_2 polys of deg < n and $f_1(t_i) = f_2(t_i)$ for n points t_i of F then $f_1 = f_2$ by considering $f_1 - f_2$.

Rk9 FTA

Any poly over $F = \mathbb{C}$ of deg n > 0 has a root (and so inductively has n roots, counted as always with multiplicity); \mathbb{C} is algebraically closed.

Def

The char poly $\chi_{\alpha}(t) = \det(\alpha - t\iota)$ (and sim χ_A) is a poly of deg $n \in F[t]$

Rk11

Conj mats have the same char poly (consider corresponding α)

T12

For $F = \mathbb{C}[\alpha]_B$ is upper triangular for some B (so any squar cplx mat is triangable): we induct on n, the n = 1 case being trivial. If true $\forall V$ of dim < n for some n > 1 any α has some eval λ by FTA, so $\alpha - \lambda \iota$ is singular; put $U = Im (\alpha - \lambda \iota) \leqq V$, then U is α -invariant $(\alpha (U) \subset U)$; consider $\alpha_1 = \alpha \mid_U$; by the induction hypothesis \exists a basis B_1 of $U \le / [\alpha_1]_{B_1}$ upper triangular; extend to B with $\{v_1, \ldots, v_k\} = B_1$. Then $[\alpha]_B = \begin{pmatrix} [\alpha_1]_{B_1} & \star \\ 0 & \lambda I \end{pmatrix}$ (where \star is some matrix) since for $1 \le j \le k \alpha (v_j) = \alpha_1 (v_j)$, so the left hand portion is as given, and for $k < j \le n \alpha (v_j) = u_j + \lambda v_j$ for some $u_j \in U$ since $(\alpha - \lambda \iota) (v_j) \in U$, so the right hand portion is as given, and the matrix is upper triangular.

Rk13

This is not true for $F = \mathbb{R}$ by e.g. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

T14

 α is triangable iff χ_{α} can be written as a prod of lin factors, i.e. all evals are $\in F$; necessity by if $[\alpha]_B = A$ upper triangular det $\alpha = a_{11} \dots a_{nn}$ and $\chi_{\alpha}(t) = (a_{11} - t) \dots (a_{nn} - t)$, sufficiency by proof as above; for the inductive step we have $\chi_{\alpha}(t) = \chi_{\alpha_1}(t) (\lambda - t)^m$ where m = n - k.

We can also proove 12 using eigenspaces.

T15

 $\begin{array}{l} \alpha \text{ is diagable if } p\left(\alpha\right) = 0 \text{ (the zero endomorphism) for some poly } p \text{ the prod} \\ \text{ of distinct lin factors; forward implication by let } \lambda_1, \ldots, \lambda_k \text{ the distinct evals} \\ \text{ of } \alpha \text{ which are the nonzero values in } [\alpha]_B = A \text{ diagonal, then take } p\left(t\right) = (t - \lambda_1) \ldots (t - \lambda_n) \text{ and } p\left(\alpha\right) = 0 \text{ (if } v \in B, \alpha\left(v\right) = \lambda_l v \text{ some } 1 \leq l \leq k \\ \text{ so } (\alpha - \lambda_l \iota) \left(v\right) = 0 \text{ so } p\left(\alpha\right) \left(v\right) = 0 \text{ so } p\left(\alpha\right) \text{maps } B \text{ to } 0 \text{ so is the 0 endomorphism), reverse by if } p\left(t\right) = (t - \lambda_1) \ldots (t - \lambda_k) \text{ w/ all the } \lambda_i \text{ distinct set } p_j\left(t\right) = (t - \lambda_1) \ldots (t - \lambda_{j-1}) \left(t - \lambda_{j+1}\right) \ldots (t - \lambda_k) \text{ and } h_j\left(t\right) = (p_j\left(\lambda_j\right))^{-1} p_j\left(t\right), \text{ then } \\ h_j\left(\lambda_l\right) = \delta_{jl}; \text{ write } h\left(t\right) = \sum_{j=1}^k h_j\left(t\right) \text{ and } h \text{ is the poly 1 since } h\left(t\right) - 1 \text{ is } \\ \text{ a poly of deg } k \text{ (since a sum of polys of deg } k - 1) \text{ w/ } k \text{ roots } \lambda_1, \ldots, \lambda_n; \\ \text{put } \pi_j = h_j\left(\alpha\right), \text{ then } \iota = \pi_1 + \cdots + \pi_k \text{ and } \pi_j \pi_l = 0 \text{ if } j \neq l \text{ since } p \mid h_j h_l \\ \text{ and } p\left(\alpha\right) = 0; \pi_j^2 = \pi_j \text{ since } = \pi_j \sum_l \pi_l. \text{ Put } V_j = Im\left(\pi_j\right), \text{ then } V_j \subset v_{\lambda_j} \\ \text{ since } \left(\alpha - \lambda_j \iota\right) \pi_j = p\left(\alpha\right) = 0; \text{ note } \pi_j \text{ restricted to } V_l \text{ is 0 for } j \neq l, \iota_{V_j} \text{ for } \\ j = l \left(\text{since } \pi_j\left(\pi_j\left(v\right)\right) = \pi_j\left(v\right)\right); \text{ now } V = \bigoplus_j V_j; V = \sum_j V_j \text{ since for } v \in V \\ v = \iota\left(v\right) = \sum_j \pi_j \left(v\right) \text{ and if } u_1 + \cdots + u_k = u'_1 + \cdots + u'_k \text{ with } u_j, u'_j \in v_j \text{ then applying } \pi_j \text{ have } u_j = u'_j \text{ for each } j; \text{ if } B_j \text{ is a basis of } V_j \text{ then the union } B = \bigcup_j B_j \\ \text{ is a basis of } V \text{ (spans clearly, lin ind as if } \sum_{v \in B} \lambda_v v = 0 \sum_j \left(\sum_{v \in B_j} \lambda_v v\right) = 0 \\ \text{ so } \sum_{v \in B_i} \lambda_v v = 0 \forall j \text{ so } \lambda_v = 0 \forall v \in B_j \forall j \text{ and done.} \end{aligned}$

- 1. $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagable as its evals are 1 but the only mat conj to *I* is $I(PIP^{-1} = I \forall P).$
- 2. For $\lambda_1, \ldots, \lambda_k$ the distinct evals of $\alpha \sum_j V_{\lambda_j}$ is direct so the only way diagonalization fails is if $\sum_j V_{\lambda_j} \nleq V$ since if $v \in V_{\lambda_j} \cap \sum_{i \neq j} V_{\lambda_i}$ we apply $(\alpha \lambda_1 \iota) \ldots (\alpha \lambda_{j-1} \iota) (\alpha \lambda_{j+1} \iota) \ldots (\alpha \lambda_k \iota)$ which maps all vecs $\in \sum_{i \neq j} V_{\lambda_i}$ to 0 but multiplies any vec $\in V_{\lambda_j}$ by the non-zero scalar $(\lambda_j \lambda_1) \ldots (\lambda_j \lambda_{j-1}) (\lambda_j \lambda_{j+1}) \ldots (\lambda_j \lambda_k)$, so v = 0.

T17

Simultaneous diagation: let α_1, α_2 commuting (necessary as diag mats commute) diagable endomorphisms of V, then they are simultaneously diagable, i.e. $\exists B : [\alpha_1]_B, [\alpha_2]_B$ diagonal; we have $V = V_1 \oplus \cdots \oplus V_k$ where the V_i are the eigensps of α_1 ; say $\alpha_1(v) = \lambda_j v$ for $v \in V_j$. Then $\alpha_2(V_j) \subset V_j$ as if $v \in v_j$ $\alpha_1(\alpha_2(v)) = \alpha_2(\lambda_j v) = \lambda_j \alpha_2(v)$; now $\alpha_2 |_{V_j}$ is diagable by T15 so \exists a basis B_j consisting of evecs of α_2 (which will be evecs of α_1 as well) and $B = \bigcup_j B_j$ is a basis of V consisting of evecs of both α_1 and α_2 .

18 Polys over F

Given polys a, b over $F \le d = 0$ polys $q, r \le d = bq + r, \deg r < \deg b$ (hence F[t] is a euclidean domain; this has nice consequences, see the IA course N&S); proof inducting by dividing in the obivous way

D19

The min poly m_{α} of α is the monic (leading coeff 1) poly of smallest deg w/ $m_{\alpha}(\alpha) = 0$; exists since have a poly of deg $\leq n^2$ w/ $p(\alpha) = 0$ as dim_F $L(V) = n^2$ so $\iota, \alpha, \ldots, \alpha^{n^2}$ lin dep, unique by:

L21

if $p(\alpha) = 0, m_{\alpha} \mid p$; write $p = qm_{\alpha} + r$, then deg $r < \deg m_{\alpha}$ but $r(\alpha) = 0$.

T22 - Cayley-Hamilton

 $\chi_{\alpha}(\alpha) = 0$ (and sim for mats); a corollary of this (C23) is that $m_{\alpha} \mid \chi_{\alpha}$. For $A \in M_n(F)$ let $(-1)^n \chi_A(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0 = \det(tI - A)$, now for any mat $B \mid B \times adjB = I \det B$ so we this to tI - A; adj(tI - A) is a mat w/ entries polys of deg $\leq n - 1$ so we can consider this as a poly w/ mat coeffs $(tI - A) adj(tI - A) = (tI - A) (B_{n-1}t^{n-1} + \cdots + B_0)$ for some mats B_i ; comparing coeffs we have $I = B_{n-1}, a_{n-1}I = B_{n-2} - AB_{n-1}, \ldots, a_0I = -AB_0$;

16

$\mathbf{R}\mathbf{k}$

multiplying the *i*th eqn by A^{n-i+1} from the left and summing all the eqns we have $A^n + a_{n-1}A^{n-1} + \cdots + a_0I = 0$. The schedules require only a proof of this result over \mathbb{C} , which can be done by other means [it was given in lectures, but I prefer this one].

D24

 λ an eval of α has $\chi_{\alpha}(t) = (t - \lambda)^{a_{\lambda}} q(t)$ with q a poly not divisible by $t - \lambda$; call the a_{λ} such that this is the case the algebraic multiplicity of λ (as an eval of α). We def g_{λ} the geometric multiplicity of λ by dim $N(\alpha - \lambda \iota)$.

L25

For λ an eval $1 \leq g_{\lambda} \leq a_{\lambda}$; $1 \leq g_{\lambda}$ since $\alpha - \lambda \iota$ singular, $g_{\lambda} \leq a_{\lambda}$ since for $B = v_1, \ldots, v_g, \ldots, v_n$ containing a basis v_1, \ldots, v_g of $N(\alpha - \lambda \iota)$, $\alpha_B = \begin{pmatrix} \lambda I_g & \star \\ 0 & A_1 \end{pmatrix}$ (I_g being the $g \times g$ identity) for some mat A_1 so $\chi_{\alpha}(t) = (\lambda - t)^g \chi_{A_1}(t)$. Now taking $F = \mathbb{C}$:

$\mathbf{26}$

 $\chi_{\alpha}(t) = (\lambda_1 - t)^{a_1} \dots (\lambda_k - t)^{a_k}$ for λ_k the distinct evals of α , so $a_1 + \dots + a_k = n$. Let $m_{\alpha}(t) = (t - \lambda_1)^{c_1} \dots (t - \lambda_k)^{c_k}$; $c_j \leq \alpha_j \forall j$ since $m_{\alpha} \mid \chi_{\alpha}$ and $1 \leq c_j$ since for each $\lambda_j \alpha(v) = \lambda v$ for some $v \neq 0 \in V$, so for p any poly $p(\alpha)(v) = p(\lambda)v, \vec{0} = m_{\alpha}(\alpha)(v) = m_{\alpha}(\lambda)v$ so λ a root of m_{α} .

T28

This is essentially an expansion of T15; let $\chi_{\alpha} = (\lambda_1 - t)^{a_1} \dots (\lambda_k - t)^{a_k}$, then α diagable iff $p(\alpha) = 0$ where $p(t) = (t - \lambda_1) \dots (t - \lambda_k)$.

Rk29

Exercise: If $\chi_A(t) = (-1)^n t^n + a_{n-1}t^{n-1} + \dots + a_0$ then $a_0 = \det A, a_{n-1} = (-1)^{n-1} tr A$.

Jordan normal form

The full proof of this is the highlight of the IB GRM course; we work over $F = \mathbb{C}$. The JNF is bidiagonal; it has nonzero entries on the diagonal and possibly some 1s immediately above the diagonal. It is block diagonal; it has a set of square blocks B_1, \ldots, B_k along the diagonal where $\lambda_1, \ldots, \lambda_k$ are the distinct evals, and 0s elsewhere. If we fix j and look at $B = B_j$ this is also block diagonal, made up of blocks C_1, \ldots, C_g (where $g = g_{\lambda_j}$ as defined above);

each of the C_i is a jordan block $J_{S_i}(\lambda)$, the $S_i \times S_i$ block with entries λ on the diagonal, 1 immediately above it, and 0 elsewhere. We can arrange to have $S_1 \geq S_2 \geq \cdots \geq S_g = 1$.

T30

Every mat in $M_n(\mathbb{C})$ is conj to one in JNF, essentially unique (i.e. unique up to the order of the λ_j). The proof is not examinable in this course; see GRM, but an outline is as follows:

T31 Primary Decomposition T

Let $m_{\alpha}(t) = (t - \lambda_1)^{c_1} \dots (t - \lambda_k)^{c_k}$, then $V = V_1 \oplus \dots \oplus V_k$ where $V_j = N((\alpha - \lambda_j \iota)^{c_j})$, generalized eigenspaces. We prove this similarly to 15; write $p_j(t) = (t - \lambda_1)^{c_1} \dots (t - \lambda_{j-1})^{c_{j-1}} (t - \lambda_{j+1})^{c_{j+1}} \dots (t - \lambda_k)^{c_k}$, then p_1, \dots, p_k are coprime polys so by an analogue of Bezout's Thm (see N&S) \exists polys q_1, \dots, q_k s.t. $p_1q_1 + \dots + p_kq_k = 1$; let $h_j = p_jq_j$, then $\iota = h_1(\alpha) + \dots + h_k(\alpha)$; $V_j = Im(h_j(\alpha))$ is in fact $N((\alpha - \lambda_j \iota)^{c_j})$, and each V_j is α -invariant, so we can split the matrix into B_j as required. Then we consider the restriction of α to V_j which is equivalent to the case $\chi_{\alpha}(t) = (\lambda - t)^n$. $m_{\alpha}(t) = (t - \lambda)^c$; let $v \in V \le V (\alpha - \lambda \iota)^{c-1}(v) \neq 0$ (must exist by def of c), then $(\alpha - \lambda \iota)^{c-1}(v), (\alpha - \lambda \iota)^{c-2}(v), \dots, (\alpha - \lambda \iota)(v), v$ are lin ind [by applying $\alpha - \lambda \iota$]; let them respectively $= v_1, \dots, v_c$.

 $\begin{array}{l} (\alpha - \lambda \iota) & (\upsilon), (\alpha - \lambda \iota) & (\upsilon), \dots, (\alpha - \lambda \iota) (\upsilon), \upsilon \text{ are infinite [by applying } \alpha - \lambda \iota]; \text{ let them respectively} = v_1, \dots, v_c. \text{ Restricting } \alpha \text{ to the sp } W = \langle v_1, \dots, v_c \rangle \\ \text{we have the mat} \begin{pmatrix} \lambda & 1 & 0 & \dots \\ 0 & \lambda & 1 & \dots \\ 0 & 0 & \lambda & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}; \alpha (v_1) = \lambda v_1 \text{ as } (\alpha - \lambda \iota) v_1 = 0, \\ \text{them } (\alpha - \lambda \iota) v_1 = 0, \dots & \dots & \dots \end{pmatrix}$

then $(\alpha - \lambda \iota) v_2 = v_1$ so $v_2 = \lambda v_2 + v_1$ and so on. The proof is completed fully in GRM but the remainder is relatively uninteresting; we take an α -invariant complement U to W and then have the matrix for B_j as $\begin{pmatrix} J_c(\lambda) & 0 \\ 0 & \star \end{pmatrix}$ and induct.

Discussion, "uniqueness"

For the case n = s, $J_s(\lambda)$ represents α . Observe $\chi_{\alpha}(t) = (\lambda - t)^s$ and $m_{\alpha}(t) = (t - \lambda)^s$, since $(J_s(\lambda) - \lambda I)^k$ is the matrix with 1s k above the diagonal and 0s elsewhere; each time we multiply by $(J_s(\lambda) - \lambda I)$ we shift the row of 1s up one. From the matrix we can clearly see $(\alpha - \lambda \iota)^k$ has nullity k for $k \leq s$, s for k > s (since the max possible nullity is s). We can use this for the general case; the number of blocks with $\lambda_j = \lambda$ of size $\geq k$ is $n((\alpha - \lambda \iota)^k) - n((\alpha - \lambda \iota)^{k-1})$; it follows that:

L32

The no. of blocks w/ $\lambda_j = \lambda$ of size k is $2n\left((\alpha - \lambda \iota)^k\right) - n\left((\alpha - \lambda \iota)^{k-1}\right) - n\left((\alpha - \lambda \iota)^{k+1}\right)$, so the JNF of α (assuming it exists) is determined by these dimensions of nullspaces, so unique in the sense described above.

For example, the JNFs for 2×2 mats are $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} (J_1(\lambda_1) \oplus J_2(\lambda_2))$ for $\lambda_1 \neq \lambda_2$ w/ min poly $(t - \lambda_1) (t - \lambda_2)$, $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} (J_1(\lambda) \oplus J_2(\lambda); (t - \lambda))$

and $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ $(J_2(\lambda); (t-\lambda)^2)$; the reader may wish to look at the n = 3 case where again we can distinguish by min polys; also consider the n = 4 case where we have λ with multiplicity 4; notice how fast the number of possible cases grows.

So e.g. if we know $m_{\alpha}(t) = (t - \lambda)^2$ in a 2D space we know $[\alpha]_B = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ for some *B*; we can find *B* by taking v_2 (for the second col) $\in V \setminus N(\alpha - \lambda \iota)$ and $v_1 = (\alpha - \lambda \iota) v_2$.

JNF is very nice - given a mat A in it we can immediately see χ_A, m_A and for any ev $\lambda \ a_{\lambda}, C_{\lambda}$ the size of the biggest λ -block, and g_{λ} the no. of λ -blocks.

5 Dual Sps, Dual maps

V is a fin dim vec sp over F in this sec unless otherwise specified. We def $V^{\star} = L(V, F)$ i.e. $\{\alpha : V \to F \text{ linear}\}$ the dual of V; this is a vec sp over F with elts these maps, linear functionals.

Let $B = e_1, \ldots, e_n$ some basis of V, then $B^* = \epsilon_1, \ldots, \epsilon_n$ where ϵ_j is the linear extension of $\epsilon_j (e_k) = \delta_{jk}$ is the basis dual to B; lin ind as if $\left(\sum_j \lambda_j \epsilon_j\right)(e_k) = 0 \sum_j \lambda_j \delta_{jk} = 0$, span by $\alpha = \sum_j \alpha(e_j) \epsilon_j$; this implies dim $V^* = \dim V$.

C3

 $\dim V^{\star} = \dim V$

It is sometimes useful to think of V^* as the sp of rows of length n over U; if e_1, \ldots, e_n a basis of V and $\epsilon_1, \ldots, \epsilon_n$ the dual basis to it and $x \in V = \sum x_i e_i, \alpha \in V^* = \sum a_i \epsilon_i$ then $\alpha(x) = \sum a_i x_i$ which we can see as the mat prod $(a_1, \ldots, a_n) \begin{pmatrix} x_1 \\ \ldots \\ x_n \end{pmatrix}$.

D4

If $U \subset V$ def U^0 the set of $\alpha \in V^*$ such that $\alpha(u) = 0 \forall u \in U$, the annihiliator [sp] of U.

If $U \subset V$, $U^0 \leq V^*$; if $U \leq V$, dim $V = \dim U + \dim U^0$ as take e_1, \ldots, e_k basis of U and extend to $B = e_1, \ldots, e_n$ basis of V, let $\epsilon_1, \ldots, \epsilon_n$ the dual basis of V^* , then $U^0 = \langle \epsilon_{k+1}, \ldots, \epsilon_n \rangle$ as if i > k, $\epsilon_i (e_j) = 0 \forall j \leq k$ so $\epsilon_i \in U^0$ and if $\alpha \in U^0$ write $\alpha = \sum_{i=1}^n \lambda_i \epsilon_i$ and then for $i \leq k \alpha (e_i) = 0$ so $\lambda_i = 0$ and $\alpha = \sum_{i=k+1}^n \lambda_i \epsilon_i$.

L6

Let W a vec sp over F and $\alpha \in L(V, W)$ then $\alpha^* : W^* \to V^*$ given by $\epsilon \mapsto \epsilon \circ \alpha$ is linear; we call it the dual of α ; exists since $\epsilon \circ \alpha$ is a lin map $V \to F$ so $\in V^*$ and linear trivially.

Prop 7

Let $B = \{b_1, \ldots, b_n\}, C$ bases of V, W respectively w/ respective dual bases $B^* = \{\beta_1, \ldots, \beta_n\}, C^*$. For $\alpha \in L(V, W)$ $[\alpha^*]_{C^*B^*} = [\alpha]_{BC}^T$; let $[\alpha]_{BC} = A = (a_{ij}); \alpha(b_j) = \sum_i a_{ij}c_i \forall j \ [c_j \text{ in my notes but this must be wrong], then } (\alpha^*(\gamma_r))(b_s) = (\gamma_r \circ \alpha)(b_s) = \gamma_r(\sum_t a_{ts}c_t) = \sum_t a_{ts}\gamma_r(c_t) = \sum_t a_{ts}\delta_{rt} = a_{rs} = \sum_i a_{ri}\beta_i(b_s) \forall s \text{ so } \alpha^*(\gamma_r) = \sum_i a_{ri}\beta_i \forall r \text{ and done.}$

C8

If dim $V = \dim W \det (\alpha) = \det (\alpha^*)$, $\chi_{\alpha^*} = \chi_{\alpha}$, $m_{\alpha^*} = m_{\alpha}$ (for any poly p over $f, p(A^T) = (p(A))^T$).

L9

 $N(\alpha^{\star}) = (Im(\alpha))^0$ (so in particular α^{\star} inj iff α surj) as $\epsilon \in W^{\star}$ is $\epsilon \in N(\alpha^{\star})$ iff $\alpha^{\star}(\epsilon) = 0$ iff $\epsilon \circ \alpha = 0$ iff $\epsilon \in (Im(\alpha))^0$ and done.

Similarly, $Im(\alpha^*) = (N(\alpha))^0$; for $\epsilon \in Im(\alpha^*) \epsilon = \alpha^*(\phi)$ some $\phi \in w^*$; for any $u \in N(\alpha) \epsilon(u) = (\alpha^*(\phi))(u) = \phi(\alpha(u)) = \phi(\vec{0}) = 0$ so $\epsilon \in (N(\alpha))^0$ and $Im(\alpha^*) \supset (N(\alpha))^0$ and then equality by dimensions.

C10

 $r(\alpha) = r(\alpha^*)$ (so $r(A) = r(A^T)$, another proof of T2.29); $r(\alpha^*) = \dim W^* - n(\alpha^*) = \dim W - \dim (Im(\alpha))^0 = \dim W - (\dim W - \dim Im(\alpha)) = r(\alpha)$. For $v \in V$ let $\hat{v}(\epsilon) = \epsilon(v)$, the evaluation at v map; this is $\in V^{**}$.

T11

 $\hat{}: V \to V^{\star\star}$ as defined above is an isomorphism; note that this is a "natural" isomorphism without reference to bases. $\hat{}$ does map $V \to V^{\star\star}$ since $\hat{v}: V^{\star} \to F$ linear $\forall v \in V$, is trivially linear, injective by if $e \neq \vec{0} \in V$ let e, e_2, \ldots, e_n a

L5

basis of V and $\epsilon_1, \ldots, \epsilon_n$ the dual basis of V^* , then $\hat{e}(\epsilon_1) = \epsilon_1(e) = 1$ so $\hat{e} \neq 0$, \hat{e} linear so inj; surj by dimensions so \hat{e} is an iso.

Rk12

If $\epsilon_1, \ldots, \epsilon_n$ a basis of V^* and E_1, \ldots, E_n the basis of V^{**} dual to it $E_j = \hat{e_j}$ for unique $e_j \in V$; then $\epsilon_1, \ldots, \epsilon_n$ is the basis of V^* dual to e_1, \ldots, e_n .

L13

Let $U \leq V$, then $\hat{U} = U^{00}$; if we identify V with $V^{\star\star}$ by $\hat{,} U^{00} = U$; $U \leq U^{00}$ since $u \in U \Rightarrow \epsilon(u) = 0 \forall \epsilon \in U^0$ by def of U^0 so $\hat{u}(\epsilon) = 0 \forall \epsilon \in U^0$ by def of $\hat{,}$ so $\hat{u} \in U^{00}$; equality by dimensions.

Rk14

For $T \leq V^{\star}$ we can def T^0 by $\{v \in V : \theta(v) = 0 \forall \theta \in T\}$.

L15

For $U_1, U_2 \leq V$, $(U_1 + U_2)^0 = U_1^0 \cap U_2^0$ (exercise), then applying 0 to this, $(U_1 \cap U_2)^0 = U_1^0 + U_2^0$.

Rk16

Let V = P the set of all real polys; $P = \langle p_0, p_1, \ldots \rangle$ where $p_j(t) = t^j$; any $\epsilon \in P^*$ can be written as $(\epsilon(p_0), \epsilon(p_1), \ldots) \in \mathbb{R}^n$ and all such sequences can be attained (see Exs3Q16) but $\mathbb{R}^{\mathbb{N}}$ has no countable generating set, and its dual will be even bigger, so cannot be iso to P. So these proofs really do depend on V being fin dim.

Rk17

We have a mapping $V^* \times V \to F$ by $(\epsilon, v) \mapsto \epsilon(v)$; this is a bilinear func on $V^* \times V$ (see later); we write it as $\langle \epsilon | v \rangle$ as we could equally well use $\hat{v}(\epsilon)$ so this is symmetric; we have $\langle \alpha^*(\epsilon) | v \rangle = \langle \epsilon | \alpha(v) \rangle$ ($\forall \alpha$ as above)

6 Bilinear Forms

In this section V, W vec sps over F, fin dim unless otherwise specified

Def

The func $\psi: V \times W \to F$ is a bilinear func if it is linear in each coordinate, i.e. $\psi(v, w)$ is linear in $v \forall$ fixed $w \in W$ and vv; here we usually take V = W in which case we say ψ is a bilinear form (on V). For example, the real inner or

scalar product on $\mathbb{R}^n \times \mathbb{R}^n$, or more generally for $V = F^n$ and A fixed $\in M_n(F)$, $\psi(u, v) = u^T A v$ is a bilinear form on V.

D3

Let dim V = n and $B = v_1, \ldots, v_n$ a basis of V, then the mat of the bilinear form ψ on V wrt B is $[\psi]_B = (\psi(v_i, v_j))$ as an $n \times n$ matrix.

L4

 $\psi(u,v) = [u]_B^T [\psi]_B [v]_B \forall u, v \in V; \text{ furthermore } [\psi]_B \text{ is the only mat for which}$ this holds; $\psi(a,b) = \psi(\sum a_i v_i, \sum b_j v_j) = \sum a_i b_j \psi(v_i, v_j) = (a_1, \dots, a_n) [\psi]_B \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix}$ and done; if $\psi(u,v) = [u]_B^T A [v]_B \forall u, v \in V$ take $u = v_i, v = v_j$ and $A = [\psi]_B$.

Change of basis

For $B' = v'_1, \ldots, v'_n$ also a basis of V and P the change of basis mat from B to $B' v_j = \sum p_{ij} v_i$ and $[v]_B = P[v]_{B'} \forall v \in V$.

T5

$$\begin{split} & [\psi]_{B'} = P^T \, [\psi]_B \, P \ (\text{note} \ P^T \ \text{rather than} \ P^{-1}) \ \text{as} \ \psi \, (u,v) = \left[u \right]_B^T \, [\psi]_B \, [v]_B = \\ & (P \, [u]_{B'})^T \, [\psi]_B \, P \, [v]_{B'} = \left[u \right]_{B'}^T \, P^T \, [\psi]_B \, P \, [v]_{B'} \ \text{and done.} \end{split}$$

D6

Square real $n \times n$ mats A, B have A congruent to B if $B = P^T A P$.

L7

This is an equiv rel on $M_n(\mathbb{R})$; $A \operatorname{cong} A$ by P = I, if $A \operatorname{cong} B$ by P then $B \operatorname{cong} A$ by P^{-1} , and if also $B \operatorname{cong} C$ by Q then $A \operatorname{cong} C$ by PQ

D8

The rank of a bilinear form $r(\psi)$ is $r([\psi]_B)$ for any basis B; this is well defd.

D9

A real bilinear form ψ on V is symmetric if $\psi(u, v) = \psi(v, u) \forall u, v \in V, \lambda \in F$; note it is equiv that $[\psi]_B$ is diagonal; To be able to represent ψ by a diagonal mat ψ must be symmetric as if $P^T A P = D$ diagonal, $D = D^T = P^T A^T P$ so $A = A^T$ (since P invertible).

D10

For V a real vec sp $Q : V \to \mathbb{R}$ is a quadratic form if $Q(\lambda v) = \lambda^2 Q(v), \exists$ a real symmetric bilinear form ψ st $Q(u+v) = Q(u) + Q(v) + 2\psi(u,v)$; note we can find ψ given Q by $\psi(u,v) = \frac{1}{2}(Q(u+v) - Q(u) - Q(v))$ or $\frac{1}{4}(Q(u+v) - Q(u-v))$, and for any ψ we have a corresponding Q by $Q(v) = \psi(v,v)$;

T11

Any real symmetric bilinear form (or equivalently any real quadratic form, as is the case for many of the following results) can be represented by a diagonal mat; $\begin{pmatrix} I_p & 0 & 0 \end{pmatrix}$

moreover this can be taken to be $\begin{pmatrix} I_p & 0 & 0\\ 0 & -I_q & 0\\ 0 & 0 & 0 \end{pmatrix}$ for some $p, q \in \mathbb{N}_0$; given a

real symmetric bilinear form ψ on $V \exists$ a basis B of V s.t. if $[v]_B = \begin{pmatrix} X_1 \\ \dots \\ X_n \end{pmatrix}$,

 $Q(V) = X_1^2 + \dots + X_p^2 - X_{p+1}^2 - \dots - X_{p+q}^2$; we induct on dim V; we can assume ψ is nonzero, otherwise we are done; then $\exists v \in V$ with $Q(v) \neq 0$; then consider $W = \{w \in V : \psi(v, w) = 0\}$; $W \nleq V$ since $v \notin W$ and it suffices to show $V = \langle v \rangle \oplus W$; if $u \in V$ we can write $u = \lambda v + (u - \lambda v)$; choose $\lambda \in \mathbb{R}$ so $u - \lambda v \in W$ by $\lambda = \frac{\psi(u,v)}{\psi(v,v)}$ so $V = \langle v \rangle + W$, and $\langle v \rangle \hat{W} = \vec{0}$ since if $\psi(\lambda v, v) = 0$ then $\lambda Q(v, v) = 0$ so $\lambda = 0$; now the restriction of ψ to $W \times W$ is a real symmetric bilinear form so we can induct (the base case is trivial [or so claims the lecturer]); we have a basis $B' = v_2, \dots, v_n$ in which it is diagonal and then ψ is diagonal wrt $B = v, v_2, \dots, v_n$.

the lecture(1), we have a basis $D = v_2, \ldots, v_n$ in which it is diagonal and then ψ is diagonal wrt $B = v, v_2, \ldots, v_n$. Let $[\psi]_B = \begin{pmatrix} d_1 \\ \ldots \\ d_n \end{pmatrix}$; reorder B if necessary so that the first p of the d_i are +ve, the next q -ve and the rest 0; then normalize B by $v_i \to \frac{v_i}{\sqrt{Q(v_i)}}$ for $1 \le i \le p, \frac{v_i}{\sqrt{-Q(v_i)}}$ for $p+1 \le i \le p+q$; then the mat of ψ wrt this new B is as required.

D12

As per above, the rank $r(\psi) = p + q$; signature $s(\psi) = p - q$, and these are basis-invariant:

T13 Sylvester's Law of Inertia

If a real symmetric [bilinear] form ψ is represented by $\begin{pmatrix} I_p & 0 & 0 \\ 0 & -I_q & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} I_{p'} & 0 & 0 \\ 0 & -I_{q'} & 0 \\ 0 & 0 & 0 \end{pmatrix}$ wrt bases B, B' then p = p', q = q'; first def Q on a real vec sp $V \le V$ is

+ve definite on U if $Q(u) > 0 \forall u \neq \vec{0} \in U$, +ve semidefinite for \geq rather than >, similarly -ve definite and semidefinite; if we say Q +ve definite without additional qualification we mean Q is +ve definite on V and similarly. Now, we claim p is the largest dim of a subsp on which ψ is +ve definite (and sim q for -ve definite); we sometimes define p, q by these; $B = v_1, \ldots, v_p, v_{p+1}, \ldots, v_{p+q}, \ldots, v_n$; let $P = \langle v_1, \ldots, v_p \rangle$, $U = \langle v_{p+1}, \ldots, v_n \rangle$; ψ is +ve definite on P, and if ψ +ve definite on some $P', P' \cap U = \{\vec{0}\}$ since ψ -ve semidefinite on U so dim $P' \leq \dim V - \dim U, p' + n - p \leq n$ so $p' \leq p$ and the claim holds; sim for q. Of course this is equivalently true for a real quadratic form over \mathbb{R} .

Rk14

 ψ determines p but not P; there are generally many possible such spaces, sim for q; note that rank and signature together determine p, q. $K = \langle v_{p+q+1}, \ldots, v_n \rangle$ is determined by ψ ; it is the kernel or radical of the form: $K = \{v \in V : \psi(v, u) = 0 \forall u \in V\}$; we call it V^{\perp} .

Def

 ψ is non-singular if $K = \{\vec{0}\}$ or equivalently $r(\psi) = \dim V$; note we may still have $U \subset V$ with $\psi(u, v) = 0 \forall u, v \in U$.

Rk15

∃ subsp *T* of dim min $\{p,q\} + n - (p+q)$ s.t. $\psi = 0$ on *T*; this includes *K* but is generally much larger. min $\{p,q\} + n - (p+q)$ is the largest possible dim of such a sp; say wlog $q \leq p$ and take $T = \langle v_1 + v_{p+1}, \ldots, v_q + v_{p+q}, v_{p+q+1}, \ldots, v_n \rangle$ (note $T \cap P = \{0\} = T \cap Q$).

e.g. if ψ is non-singular with n = 2m and \exists a subsp of dim m on which ψ is 0 then p = m = q so $s(\psi) = p - q = 0$.

16 Worked Example

 $V = \mathbb{R}^{3}, Q(\vec{x}) = x_{1}^{2} + x_{2}^{2} + 2x_{3}^{2} + 2x_{1}x_{2} + 2x_{1}x_{3} - 2x_{2}x_{3}; \text{ the mat of } Q$ wrt the standard basis is $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ (this can be found by $\psi(u, v) = \frac{1}{2}(Q(u+v) - Q(u) - Q(v))$). The first method to diagonalise is to gather all ocurrences of x_{1} together as $Q(\vec{x}) = (x_{1} + x_{2} + x_{3})^{2} + x_{3}^{2} - 4x_{2}x_{3}$, then all x_{3} [since this is easier] by $Q(\vec{x}) = (x_{1} + x_{2} + x_{3})^{2} + (x_{3} - 2x_{2})^{2} - (2x_{2})^{2}$ (in fact this offers another way to proove T11) so we know $[Q]_{B} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ wrt some $B; r(\psi) = 3, s(\psi) = 1$. Then to find a suitable trans mat P we have

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ so } P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix}^{-1}.$$
 For the second method, we apply obtain the corresponding obtain row of the second sec

ond method we apply eltary col ops followed by the corresponding eltary row op $\begin{pmatrix} 1 & 1 & 1 \\ & 1 & 1 \end{pmatrix}$

$$A \to E^T A E \text{ e.g. } A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}; \text{ we want } \operatorname{col} 2 \to \operatorname{col} 2 - \operatorname{col} 1 \text{ so } E_1 = \begin{pmatrix} 1 & -1 & 2 \end{pmatrix}; \text{ (1 -1)} \begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 \\ 1 \\ 1 \end{pmatrix}, \text{ then } AE_1 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 2 \end{pmatrix}, E_1^T AE_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -2 \\ 1 & -2 & 2 \end{pmatrix}$$

we similarly use col 3 \rightarrow col 3 - col 1 and so on; we build up P as we go along

; we similarly use col $3 \rightarrow$ col 3 - col 1 and so on; we build up P as we go along by $E_1E_2...$ For the third method we can use the same method as the pf of T11.

Finally if we just want to find r, s it is sometimes easier to work with χ_A since we shall later see s is the no. of +ve evals of A – the no. of -ve evals of A.

Now we work over $F = \mathbb{C}$; for ψ bilinear and symmetric on V over \mathbb{C} as in T11

we have a basis
$$B$$
 s.t. $[\psi]_B = \begin{pmatrix} a_1 & & & \\ & \ddots & & \\ & & d_r & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$ w/ $d_i \neq 0 \in \mathbb{C} \forall i;$

now replace v_i by $\frac{v_i}{\sqrt{v_i}} \forall 1 \le i \le r$ and then ψ has mat $\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$ wrt this new basis, so:

L17

Any cplx symmetric mat A satisfies $P^T A P = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ for some invertible P for unique r (actually r(A)); this is usially not quite what we want. Rather than symmetric cplx mats we need to study Hermitian mats; a mat A is Hermitian if $A = \overline{A^T}$ (complex conjugation).

D18

For V a cplx vec sp a Hermitian form on V is a func $\psi : V \times V \to \mathbb{C}$ s.t. $\forall v \in V, u \mapsto \psi(\underline{u}, v)$ is linear (note this is the ohter way around from in QM) and $\psi(u, v) = \overline{\psi(v, u)}$. Note that such a ψ is not a bilinear form on V, rather it is sesquilinear [sp?]: $\psi(\lambda_1 u_1 + \lambda_2 u_2, v) = \lambda_1 \psi(u_1, v) + \lambda_2 \psi(u_2, v), \psi(u, \lambda_1 v_1 + \lambda_2 v_2) = \overline{\lambda_1} \psi(u, v_1) + \overline{\lambda_2} \psi(u, v_2)$; an example of such a form is the cplx inner prod.

Rk21

For V a cplx vec sp and ψ a Herm form on V, can def $Q: V \to \mathbb{C}$ (in fact Q is real-valued) by $Q(v) = \psi(v, v)$; we have $Q(\lambda v) = |\lambda|^2 Q(v)$; given Q we can recover ψ similarly to before; $\psi(u, v) = \frac{1}{4} (Q(u+v) - Q(u-v) + iQ(u+iv) - iQ(u-iv))$. If $B = v_1, \ldots, v_n$ is a basis of V the mat of ψ wrt B is $[\psi]_B = (\psi(v_i, v_j))$. Let this be A, then $A = \overline{A^T}$ i.e. this is a Herm mat. $\psi(u, v) = [u]_B^T [\psi]_B \overline{[v]_B}$. Finally , a change of basis maps $[\psi]_B \to P^T A \overline{P}$ where P is the (invertible)

change of basis mat.

T26

If ψ is a Herm form on the cplx vec sp V \exists a basis B of V w/ $[\psi]_B$ = $\begin{pmatrix} I_p & & \\ & -I_q & \\ & & 0 \end{pmatrix}$, and p, q are determined by ψ . The proof is mostly as for

the reals; as an outline if $\psi \equiv 0$ we are done, otherwise take $v \neq \vec{0} \in V$ w/ $\psi(v,v) \neq 0$, then def $W = \{w \in V : \psi(v,w) = 0\}$ and $V = \langle v \rangle \oplus W$ since if $u \in V$ $u = \lambda v + (u - \lambda v)$ with $\lambda = \frac{\psi(u,v)}{\psi(v,v)}$ so $\psi(v,u - \lambda v) = 0$; we then inductively find v_2, \ldots, v_n a basis of W wrt which $\psi \mid_W$ is diagonal, then take $B = v_1, v_2, \ldots, v_n$ and $[\psi]_B$ is diagonal; the top row is 0s other than the top left so since the mat is Herm the left collumn is also all 0 below the top. Then we reorder the basis so the first p entries are +ve, the next q -ve and the rest 0, then replace v_j by $\frac{1}{\sqrt{|Q(v_j)|}}v_j$ for j from 1 to p+q. That p,q are determined is by exactly the same pf as in 13; p is the maximal dim of a subsp on which ψ is +ve definite etc.

Returning to V a real vec sp, there is another important class of real bilinear forms:

D27

The bilinear form ψ on the real vec sp V is skewsymmetric or symplectic or alternating if $\psi(v, u) = -\psi(u, v) \forall u, v \in V$; note this means $\psi(v, v) = 0 \forall v \in V$. If $A = [\psi]_B$ for some basis B of V then $A^T = -A$; A is skewsymmetric.

Rk28

Any real square mat A can be written as $A = \frac{1}{2} (A + A^T) + \frac{1}{2} (A - A^T)$ a sum of symmetric and antisymmetric parts.

T29

If ψ is a skewsymmetric bilinear form on a real vec sp V then m\exists a basis

 $\begin{array}{ccc}
 0 & 1 \\
 -1 & 0
 \end{array}$

 $\begin{array}{ccc}
 0 & 1 \\
 -1 & 0
\end{array}$

0

 $v_1, w_1, v_2, w_2, \ldots, v_m, w_m, v_{2m+1}, v_{2m+2}, \ldots, v_n$ wrt which ψ has mat

note that this means the rank of any skewsymmetric mat is even. Also note we can rearrange the basis as $v_1, \ldots, v_m, w_1, \ldots, w_m, v_{2m+1}, \ldots, v_n$ and the mat becomes $\begin{pmatrix} 0 & I_m \\ -I_m & 0 \\ 0 \end{pmatrix}$; for the proof we induct on dim V = n; if $\psi \equiv 0$ we are done, otherwise \exists vecs $v_1, w_1 \le \psi(v_1, w_1) \neq 0$ and by scaling w_1 we can have this = 1, then $\psi(w_1, v_1) = -1$. Let $U = \langle v_1, w_1 \rangle$ and $W = U^{\perp} = \{v \in V : \psi(v_1, v) = 0 = \psi(w_1, v)\}$; then $V = U \oplus W$ as given $v \in V$ let $a = \psi(v, w_1), b = \psi(v_1, v)$ then $v = av_1 + bv_2 + (v - av_1 - bw_1)$ with the first two terms in U and the last in W, and $U \cap W = \{\vec{0}\}$ as if $av_1 + bw_1 \in W$ then $\psi(v_1, aw_1 + bv_1) = 0 \Rightarrow a = 0, \psi(w_1, aw_1 + bv_1) \Rightarrow b = 0$. Now we continue with $\psi \mid_W$ and the claim holds by induction.

Some extra remarks on general bilinear forms on $U \times V$ where U, V are over the same field $F; \psi: U \times V \to F$ linear in each coordinate. [The lecturer used to be making a distinction between forms and functions, and made a big fuss about this, but appears to have now abandoned this. Or just be incompetent. Or both] Examples are $U = V^*, \psi$ given by $(\alpha, v) \mapsto \alpha(v)$ or for V over $F = \mathbb{C}$ define \overline{V} to have the same elts as V and the same addition but with scalar prod $\lambda \overline{\cdot} v = \overline{\lambda} \cdot v$; the sesquilinear forms on V are precisely the bilinear funcs $V \times \overline{V} \to \mathbb{C}$.

Cor 30

The rk of any skewsymmetric mat is even.

For U, V over F and $\psi: U \times V \to F$ bilinear. we have maps $\psi_L: U \to V^*$ by $u \mapsto \psi_L(u)$ given by $v \mapsto \psi(u, v)$, sim. $\psi_R: V \to U^*$. ψ is non-singular if both the left kernel ker ψ_L and right kernel ker ψ_R are $\{0\}$.

L31

If ψ is non-singular on $U \times V$ then dim $U = \dim V$ as ker $\psi_L = \{0\} \Rightarrow \dim U \le \dim V^* = \dim V$ and similarly dim $V \le \dim U$.

L32 (Exercise)

If dim $U = \dim V$ then ker $\psi_L = \{0\} \Leftrightarrow \ker \psi_R = \{0\}$; in fact if we assume ker $\psi_L = \{0\}$ let u_1, \ldots, u_n be a basis of U, then $\psi_L(u_1), \ldots, \psi_L(u_n)$ is a basis of V^* ; let v_1, \ldots, v_n the basis of V dual to it and observe $\psi(u_i, v_j) = \delta_{ij}$, so we have bases of U, V which are "dual wrt ψ ".

33

Let ψ a non-singular bilinear form on V, then $\psi_L : V \to V^*$ is an isomorphism.

$\mathbf{34}$

For ψ a non-singular bilinear form V and $W \leq V$, then W^{\perp} (the right [perp, I assume - lol saxl's accent] of W) is $\{v \in V : \psi(w, v) = 0 \forall w \in W\}$. We clearly have $W^{\perp} \leq V$; we claim dim $V = \dim W + \dim W^{\perp}$ which is true since $W^{\perp} = (\psi_L(W))^0$, as $v \in W^{\perp} \Leftrightarrow \psi(w, v) = 0 \forall w \in W \Leftrightarrow \psi_L(w)(v) = 0 \forall w \in W \Leftrightarrow v \in (\psi_L(W))^0$, so then dim $W + \dim W^{\perp} = \dim W + \dim (\psi_L(W))^0 = \dim W + \dim V - \dim \psi_L(W) = \dim V$. (ψ is non-singular so dim $\psi_L(W) = \dim W$)

7 Inner Product Sps

D1

For V a real/cplx vecsp an inner prod on V is a +ve definite symmetric bilinear/Herm form on V; as notation we write $\langle v, w \rangle$ for the value of the inner prod on (v, w). If V is a real/cplx inner prod sp (i.e. a sp w/ an inner prod) it is a Euclidean/unitary sp. (i.e. a real one is Euclidean, a cplx one is unitary, and similarly), e.g. dot products, or (exercise) V = C[0, 1] the spare of cnts real- or cplx-vald funcs on $[0, 1] \le \langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt$.

D2

The length ||v|| of $v \in V$ is $+\sqrt{\langle v, v \rangle}$; note $\langle v, v \rangle \ge 0$ w/ equality iff $v = \vec{0}$.

L3 The schwartz ineq

$$\begin{split} |\langle v,w\rangle| &\leq \|v\| \, \|w\| \, \forall v,w \in V; \text{ if } v = 0 \text{ trivial, otherwise for the real case } 0 \leq \\ \|tv-w\|^2 &= t^2 \, \|v\|^2 - 2t \, \langle v,w\rangle + \|w\|^2 \, \forall t \in \mathbb{R} \text{ (here we could use the discriminant of this quadratic in } t, \text{ but we want to use a similar proof for both cases); put } t &= \frac{\langle v,w\rangle}{\|v\|^2} \text{ and then } 0 \leq -\frac{\langle v,w\rangle^2}{\|v\|^2} + \|w\|^2 \text{ so } |\langle v,w\rangle| \leq \|v\| \, \|w\|, \text{ and for the cplx case } 0 \leq \|tv-w\|^2 = t\overline{t} \, \|v\|^2 - (t+\overline{t}) \, \langle v,w\rangle + \|w\|^2 \, \forall t \in \mathbb{C}; \text{ put } t = \frac{\overline{\langle v,w\rangle}}{\|v\|^2} \text{ then } 0 \leq -\frac{|\langle v,w\rangle|^2}{\|v\|^2} + \|w\|^2 \text{ and done as before.} \end{split}$$

D4

In the Euclidean case, if $v \neq \vec{0} \neq w$ the angle θ between v, w is given by $\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|}$, taking $\theta \in [0, \pi]$.

L5 Triangle ineq

 $||v+w|| \le ||v|| + ||w||$ as $||v+w||^2 = ||v||^2 + (\langle v,w \rangle + \overline{\langle v,w \rangle}) + ||w||^2 \le ||v||^2 + ||v||^2$ $2 \|v\| \|w\| + \|w\|^{2} = (\|v\| + \|w\|)^{2}.$

D6

A set e_1, \ldots, e_k of vecs $\in V$ is orthogonal if $\langle e_i, e_j \rangle = 0 \forall i \neq j$ and orthonormal if $\langle e_i, e_j \rangle = \delta_{ij} \forall i, j$.

L7

If e_1, \ldots, e_j are orthog nonzero vecs they are lin ind; in fact $v = \sum \lambda_j e_j \Rightarrow \lambda_j =$ $\frac{\langle v, e_j \rangle}{\langle e_j, e_j \rangle}.$ By 6.11,6.26 \exists ON bases; there is a procedure for "making" them:

T8 The Gram Schmidt Orthogonalization Process

Let V an inner prod sp (always fin dim from now on); let v_1, \ldots, v_n a basis of V. There is an ON basis e_1, \ldots, e_n s.t. $span \langle e_1, \ldots, e_k \rangle = span \langle v_1, \ldots, v_k \rangle \forall 1 \le k \le n$; let $e_1 = \frac{v_1}{\|v_1\|}$ and induct; if we have found e_1, \ldots, e_k take $e'_{k+1} = v_{k+1} - v_{k+1}$ $\sum_{j=1}^{k} \lambda_j e_j \le \lambda_j \text{ chosen so that } \left\langle e_j, e_{k+1}' \right\rangle = 0 \forall 1 \le j \le k \text{ by } \lambda_j = \langle e_j, v_{k+1} \rangle.$ Then $e'_{k+1} \neq 0$ since v_1, \ldots, v_{k+1} indep; put $e_{k+1} = \frac{e'_{k+1}}{\|e'_{k+1}\|}$ and done.

C9

In a fin dim inprosp [shorthand for inner product sp] any ON set of vecs can be extended to an ON basis; if e_1, \ldots, e_k ON they are lin ind, extend to a basis $e_1, \ldots, e_k, v_{k+1}, \ldots, v_n$ and apply Gram Schmidt - first k vecs are unchanged since ON already.

D10

Let V and inprosp; if $W \leq V$ write $W^{\perp} = \{v \in V : v \perp w \forall w \in W\}$, where $v \perp w$ means $\langle v, w \rangle = 0$ or equivalently $\langle w, v \rangle = 0$. This is the orthogonal complement of W in V; it is clearly unique, an:

T11

If V a find dim inprosp, $W \leq V$ then $W^{\perp} \leq V$ and $V = W \oplus W^{\perp}$; let e_1, \ldots, e_k an ON basis of W, extend this to an ON basis e_1, \ldots, e_n of V; observe $e_{k+1}, \ldots, e_k \in W^{\perp}$ and $W^{\perp} = \langle e_{k+1}, \ldots, e_n \rangle$; if $v \in V$ we can write $v = \sum_{j=1}^n \lambda_j e_j = \sum_{j=1}^k \lambda_j e_j + \sum_{j=k+1}^n \lambda_j e_j$ so $V = W + W^{\perp}$; observe $W \cap W^{\perp} = \{0\}$ since if $v \in W \cap W^{\perp} \langle v, v \rangle = 0$. From now on take $W \leq V$

D12

Any $v \in V$ can be written uniquely as $v = w + w' \le W, w' \in W^{\perp}$. Def $\pi : V \to W$ by $v \mapsto$ this w; this is linear and surj, called the orthogonal projection of V onto W. It is a projection since $\pi^2 = \pi$. Also observe ker $\pi = W^{\perp}$ and $\pi' = \iota - \pi$ is the orthog proj of V onto W^{\perp} .

L13

If e_1, \ldots, e_k an ON [merely orthogonal in lectures, but that must be wrong] basis of W then π satisfies $\pi(v) = \sum_{j=1}^k \langle v, e_j \rangle e_j \forall v \in V$, as if $v = \sum_{j=1}^n \lambda_j e_j$ (extending to an ON basis of V) then $\lambda_j = \langle v, e_j \rangle$ and $\pi(v) = \sum_{j=1}^k \pi_j e_j$ since $v = \pi(v) \in W^{\perp}, = \sum_{j=1}^k \langle v, e_j \rangle e_j$. Note $\pi(v)$ is the point of W nearest to v; $d(v, \pi(v))$ (or $||v - \pi(v)|| \leq d(v, w) \forall w \in W$.

P14

Any real nonsingular (note therefore square) mat A can be written A = RTwhere R is an orthog mat (i.e. $R^{-1} = R^T$) and T is upper triangular; sim for A cplx but then R is unitary $(R^{-1} = \overline{R^T})$. Work in $V = \mathbb{R}^n$ where A is $n \times n$, w/ standard dot prod. Let v_1, \ldots, v_n the cols of A; this is a basis of Vsince A is nonsingular. Apply Gram-Schmidt; let e_1, \ldots, e_n be the ON basis this obtained. Let R be the mat w/ cols e_1, \ldots, e_n , then $R^T R = I$ since the e_j are ON. Write $v_k = \sum_{j=1}^n t_{jk} e_j$ and let $T = (t_{ij})$; then T is upper triangular since $v_k \in span \langle e_1, \ldots, e_k \rangle \forall k$ and A = RT since $A^{(k)} = v_k = \sum_{j=1}^n t_{jk} R^{(j)}$.

Endomorphisms of inprosps

For V an inprosp and $\alpha: V \to V$ linear:

P15 (Important)

For V fin dim $\exists!$ endomorphism α^* of V s.t. $\langle \alpha v, w \rangle = \langle v, \alpha^* w \rangle \forall v, w \in V;$ moreover for B an ON basis of $V \ [\alpha^*]_B = \overline{[\alpha]_B^T}$. This is the adjoint of α ; note that this is not the same as the $\alpha^* : V^* \to V^*$ defined above (even though this is sometimes called the classical adjoint); the notation is standard in both cases. Let $B = e_1, \ldots, e_n$ an ON basis of $V, A = [\alpha]_B$, and let α^* be the endomorphism of V given by $[\alpha^*]_B = \overline{A^T} = C$, then $\forall 1 \leq i, j \leq n, \langle \alpha(e_i), e_j \rangle = \langle \sum_{k=1}^n a_{ki}e_i, e_j \rangle = \sum_{k=1}^n a_{ki}\delta_{kj} = a_{ji}; \langle e_i, \alpha^*(e_j) \rangle = \langle e_i, \sum_{k=1}^n c_{kj}e_k \rangle = \sum_{k=1}^n \overline{c_{kj}}\delta_{ik} = \overline{c_{ij}}$, so by linearity $\langle \alpha(v), w \rangle = \langle v, \alpha^*(w) \rangle \forall v, w$; uniqueness by the same proof in reverse: this property $\Rightarrow [\alpha^*]_B = \overline{[\alpha]}_B^T$.

Rk16

For $F = \mathbb{C}$ put $\psi(v, w) = \langle v, w \rangle$, then $\psi_R(w) \in V^* \forall w$, each given by $v \mapsto \psi(v, w)$; ψ_R is a map $V \to V^*$. Then the map $V \to V^* \to V^* \to V$ given by $\psi_R^{-1} \circ \alpha^* \circ \psi_R$ for α^* the dual map of α is the adjoint map of α on V; if we identify V, V^* under ψ_R then the adjoint and the dual of α are the same thing, since $\langle v, \psi_R^{-1} \alpha^* \psi_R w \rangle = (\psi_R(\psi_R^{-1}(\alpha^*(\psi_R(w)))))(v) = (\alpha^*(\psi_R(w)))(v) = (\psi_R(w))(\alpha(v)) = \langle \alpha(v), w \rangle \forall v, w \in V$; if we try and do the same with a cplx inprosp we get an identification of \overline{V} with V^* .

L17

For adjoint maps, $(\alpha + \beta)^* = \alpha^* + \beta^*, (\lambda \alpha)^* = \overline{\lambda} \alpha^*, \alpha^{**} = \alpha, \iota^* = \iota$ either directly from the matricies or the direct proofs are trivial, e.g. $\langle v, \alpha^{**}(w) \rangle = \langle \alpha^*(v), w \rangle = \overline{\langle w, \alpha^*(v) \rangle} = \overline{\langle \alpha(w), v \rangle} = \langle v, \alpha(w) \rangle \forall v, w \in V$ so $\langle v, (\alpha - \alpha^{**}) w \rangle = 0 \forall v, w \in V$ i.e. $\alpha = \alpha^{**}$.

D18

For V fin dim inprosp and $\alpha \in L(V)$ we define α is:

- Self-adjoint if $\alpha = \alpha^*$; equivalently $\langle \alpha(v), w \rangle = \langle v, \alpha(w) \rangle \forall v, w \in V$; for V real α is symmetric, for V cplx α is Hermitian
- An isometry if $\alpha^* = \alpha^{-1}$ or equivalently $\langle \alpha(v), \alpha(w) \rangle = \langle v, w \rangle \forall v, w \in V$; for V real α is orthogonal, for V cplx α is unitary
- Normal if $\alpha \alpha^* = \alpha^* \alpha$.

For matricies, a real matrix A is symmetric if $A^T = A$, orthogonal if $A^T = A^{-1}$ and a cplx mat A is Hermitian if $\overline{A^T} = A$ and unitary if $\overline{A^T} = A^{-1}$.

L19

If $\alpha \in L(V)$ for V a fin dim in prosp and B an ON basis theref, α is symmetric/hermitian/orthogonal/unitary iff $[\alpha]_B$ is.

L20

Let V a cplx inprosp, $\alpha \in L(V)$ Hermitian (unitary), then the evals of α are real (lie on the unit circle in \mathbb{C} and evecs corresponding to distinct evals are orthogonal; if $\alpha(v) = \lambda v \text{ w} / v \neq \vec{0}$ then $\lambda \langle v, v \rangle = \langle \alpha(v), v \rangle = \langle v, \alpha^*(v) \rangle$ which

 $= \langle v, \alpha(v) \rangle = \overline{\lambda} \langle v, v \rangle; \text{ since } v \neq \vec{0} \langle v, v \rangle \neq 0 \text{ so this means } \lambda = \overline{\lambda} \text{ i.e. } \lambda \text{ real} \\ (= \langle v, \alpha^{-1}(v) \rangle = \overline{\lambda^{-1}} \langle v, v \rangle \text{ so } \lambda = \overline{\lambda^{-1}} \text{ so } |\lambda|^2 = 1). \text{ If } \alpha(v_i) = \lambda_i v_i \text{ for } i = 1, 2 \\ \underline{w} / \lambda_1 \neq \lambda_2 \text{ then } \lambda_1 \langle v_1, v_2 \rangle = \langle \alpha(v_1), v_2 \rangle = \langle v_1, \alpha^*(v_2) \rangle = \langle v_1, \alpha(v_2) \rangle = \\ \overline{\lambda_2} \langle v_1, v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle \text{ so } (\lambda_1 - \lambda_2) \langle v_1, v_2 \rangle = 0 \text{ and } \langle v_1, v_2 \rangle = 0 \text{ (the pf for unitary } \alpha \text{ is similar}).$

Main T: 21

Let V a cplx findim inprosp, α a Hermitian (unitary) endomorphism of V, then \exists an ON basis of V consisting of evecs of α , i.e. $[\alpha]_B$ is diagonal wrt some ON B: since V is cplx α has an eval λ ; let $\alpha(e) = \lambda e$ with ||e|| = 1 (which we can do by scaling since $e \neq \vec{0}$); let $W = \langle e \rangle^{\perp}$, then $V = \langle e \rangle \oplus W$ by T11 (or an easy direct pf) and $\alpha(W) = W$; W is α -invariant: if $v \in W$ then $\langle \alpha(v), e \rangle = \langle v, \alpha^*(e) \rangle = \langle v, \alpha(e) \rangle = \overline{\lambda} \langle v, e \rangle = 0$ ($= \overline{\lambda^{-1}} \langle v, e \rangle = 0$ for unitary), so $\alpha(v) \in W$. Now $\alpha \mid_W$ is Hermitian (unitary) so by induction \exists an ON basis e_2, \ldots, e_n of W consisting of evecs of α and then $\{e, e_2, \ldots, e_n\}$ is an ON basis of V of evecs of α .

L22

Let V a real findim inprosp, $\alpha \in L(V)$ a symmetric endomorphism therev, then α has real evals and evecs corresponding to distinct evals are orthog; for B an ON basis of $V[\alpha]_B$ is a real symmetric mat so Hermitian so by 20 the evals of α are real, and we have orthogonality by the same pf as in 20.

Main T: 23

Note that this T does not in general work for orthog endomorphisms, only symmetric ones; let V a real findim inprosp, α a symmetric endomorphism thereof, then \exists an ON basis (of V) of evecs of α : by 22 α has a real eval so let e a corresponding evec of length 1, let $W = \langle e \rangle^{\perp}$ and continue as in T21

A common generalisation, which should be considered as an exercise: for V over \mathbb{C} and $\alpha \in L(V)$ normal (i.e. $\alpha \alpha^* = \alpha^* \alpha$), \exists an ON basis of evecs.

Rk24

L22 and hence T23 do not hold for orthog endomorphisms of real inprosps e.g. n = 2, α a rotation has in general no real evals; however, see Exs4Q14: for V a real inprosp and $\alpha \in L(V)$ orthogonal \exists an ON basis B st $[\alpha]_B =$

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & -1 & & & \\ & & & \ddots & & \\ & & & & -1 & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

as an outline of the pf if α has a real eval λ then $\lambda = \pm 1$ as before (λ must be on the unit circle as per L20). Assume all irreducible factors of the min poly mof α (i.e. α has no real evals), then let $m_{\alpha}(x) = (x^2 + ax + b) q(x); q(\alpha) \neq 0$; let $v \in Im(q(\alpha))$, then $(\alpha^2 + a\alpha + b)(v) = \vec{0}$; let $W = [span] \langle v, \alpha(v) \rangle$, then $V = W \oplus W^{\perp}$; both W and W^{\perp} are α -invariant, and we induct.

Rk 24A

Let $A \in M_n(\mathbb{R})$ $(M_n(\mathbb{C}))$ symmetric (Herm); regard it as an endomorphism of \mathbb{R}^n (\mathbb{C}^n) w/ standard inner prod: $v \mapsto Av$. \exists an ON basis v_1, \ldots, v_n of evecs by the above. Then $P = (v_1 \ldots v_n)$ is orthogonal (unitary) and AP = Pd w/

$$D \text{ diagonal} = \begin{pmatrix} \lambda_1 & & \\ & \dots & \\ & & \lambda_n \end{pmatrix}; \text{ then } P^{-1}AP = D = P^TAP \ (\overline{P^T}AP). \text{ Note}$$

P is the change of basis mat from the standard basis to our ON basis of evecs v_1, \ldots, v_n ; *A* is of course the mat of the endomorphism wrt the standard basis.

L25

Let ψ a symmetric (herm) bilinear form on a real (cplx) vec sp V; let $A = [\psi]_B$ for some ON basis B of V, then $s(\psi) = \text{no.} + ve$ evals of A- no. -ve evals of A: A is symmetric (herm) so by the above \exists an ON B s.t. $P^{-1}AP = D = P^TAP$ $(\overline{P^T}AP) \le D$ diagonal. But then the evals of D are those of $P^{-1}AP$ so we are done.

T26

Simultaneous diagonalization of quadratic forms: let ψ , ϕ symmetric (Herm) bilinear forms on a real (cplx) vecsp V; assume one of them, wlog ψ , is +ve definite (see Exs4Q10 for why this is actually necessary necessary), then \exists basis B of V st $[\psi]_B$, $[\phi]_B$ diagonal: fix any basis and have mats A, C representing ψ , ϕ . Diagonalise ψ : \exists non-singular mat P s.t. $P^T AP = I$ since ψ is +ve definite, now $P^T CP$ is symmetric so m\exists an orthog mat $R \le P^T CPR = D$ diagonal, then $(PR)^T A (PR) = R^T IR = I$ and $(PR)^T C (PR) = D$ as above, and PR is nonsingular since P, R are, so we are done.

The diagonal entries of D are precisely the roots of the poly det (C - tA)since they are the roots of det $(D - tI) = \det ((PR)^T CPR - t (PR)^T APR) =$ $\det (PR)^T \det (C - tA) \det (PR) = (\det PR)^2 \det (C - tA)$; since PR is nonsingular the roots of this are precisely those of det (C - tA) as required.

Exercise: a symmetric mat is +ve definite iff the n principal minors (dets of submats in the top left corner of size 1, 2, ...) are +ve.

Final Rk

In IA A&G we looked at conics. For n = 2: $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 + b_1x_1 + b_2x_2 + c = 0$. This is the locus of $\vec{x}^T A \vec{x} + B \vec{x} + C = 0$ where A is the symmetric mat $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$. For general n these [kinds of forms?] are called quadrics. Assume the conics are non-degenerate (not just points and straight lines) and we have the following cases:

- s(A) = 2, an ellipse. If we diagonalise using an orthog transformation $a_{11}x_1^2 + a_{22}x_2^2 + b_1x_1 + b_2x_2 + c = 0$ for new constants, then translate $x_i \to x_i \frac{b_i}{2a_i}$ so $b_1 = b_2 = 0$ i.e. $a_{11}x_1^2 + a_{22}x_2^2 = c$; we can also squash by a non-orthogonal transform matrix P to $x_1^2 + x_2^2 = 1$, the unit circle.
- r(A) = 2, s(A) = 0; we similarly obtain a hyperbola $a_{11}x_1^2 a_{22}x_2^2 = c$. On a 1D subsp the restricted form is +ve for lines between the two asymtopes in the same sections where the hyperbola is, and -ve for lines in the other two sections.
- r(A) = s(A) = 1: $a_{11}x_1^2 + b_1x_1 + b_2x_2 + c = 0$; translating we cannot eliminate b_2x_2 but have $a_{11}x_1^2 + b_2x_2 + c = 0$, then let $x_2 \to x_2 \frac{c}{b_2}$ and $a_{11}x_1^2 + b_2x_2 = 0$, a parabola.

For n > 2 we get similar sets of cases, e.g. for n = 3, r(A) = 3:

- s(A) = 3: squashed form $x^2 + y^2 + z^2 = 1$, an ellipsoid
- s(A) = 1: squashed form $x^2 + y^2 z^2 = 1$, a hyperboloid of one sheet
- s(A) = -1: squashed form $x^2 y^2 z^2 = 1$, a hyperboloid of two sheets

This concludes this course. For further reading and course is the next term, the lecturer recommends M Artin's "Algebra".

Rk