Linear Algebra

July 5, 2008

This course is related to last year's Algebra and Geometry, but takes a more abstract approach. See the website for example sheets.

Books

CW Curtis has written a good book with a title along the lines of "Linear Algebra...", as have K Hoffman and R Kuhze; there are generally a lot of reasonable books on this subject.

Part I

Vector Spaces

We use F to denote the field \mathbb{R} or \mathbb{C}; recall that a field F is an abelian group under " + " with identity " 0 " such that $F \backslash\{0\}$ is an abelian group under " \times " which is distributive over " + ". The identity for \times is called " 1 "; \mathbb{F}_{p} the integers modulo p is a good example of a field

Definition

A vector space V over the field F is a set which forms an abelian group under "+" with identity $\overrightarrow{0}$ and is closed under scalar multiplication, which satisfies $\forall v, v_{i} \in V, \lambda, \lambda_{i} \in F$ (note nonzero vectors are not underlined in this course):

1. $\lambda\left(v_{1}+v_{2}\right)=\lambda v_{1}+\lambda v_{2}$
2. $\left(\lambda_{1}+\lambda_{2}\right) v=\lambda_{1} v+\lambda_{2} v$
3. $\left(\lambda_{1} \lambda_{2}\right) v=\lambda_{1}\left(\lambda_{2} v\right)$
4. $1 v=v$

This is not the most basic set of axioms, but it is easy enough to check. Technically we should talk about $(V, F,+, \times)$ where the latter two are the vector addition and scalar multiplication operations.

Proposition

If V is a vector space over F then for $\lambda \in F, v \in V, \lambda v=\overrightarrow{0} \Leftrightarrow \lambda=0$ or $v=0$.

Proof

$\overrightarrow{0}+0 v=(0+0) v=0 v+0 v$ so $0 v=\overrightarrow{0} \forall v \in V . \overrightarrow{0}+\lambda \overrightarrow{0}=\lambda(\overrightarrow{0}+\overrightarrow{0})=\lambda \overrightarrow{0}+\lambda \overrightarrow{0}$ so
$\lambda \overrightarrow{0}=\overrightarrow{0} \forall \lambda \in F$.
Now if $\lambda v=\overrightarrow{0}$ with $\lambda \neq 0, \exists \lambda^{-1} \in F$ so $v=\lambda^{-1} \lambda v=\lambda^{-1} \overrightarrow{0}=\overrightarrow{0}$.
As an excercise the reader should show that $-1 v=v$.

Example

For a set X, the set $F^{X}=\{f: X \rightarrow F\}$ with $\left(f_{1}+f_{2}\right)(x)$ defined as $f_{1}(x)+$ $f_{2}(x)$ and $(\lambda f)(x)$ defined as $\lambda(f(x))$ is a vector space, as we can prove by checking our definition.

Definition

For V a vec sp over a field $F, U \subset V$, is a subspace, written $U \leq V$, if $\overrightarrow{0} \in U$, $u_{1}+u_{2} \in U$ and $\lambda u \in U, \forall u, u_{1}, u_{2} \in U, \lambda \in F$. For example, $\mathbb{R}^{\mathbb{R}}$ has a subspace $\mathcal{C}(\mathbb{R})$, the set of cnts real-vald funcs.

Lemma

Any such U forms a vector space over F with the restrictions of + and \times to U

Linear Combinations

The empty lin comb is valid and $\overrightarrow{0}$. Take finite; $\sum_{i \in I} \lambda_{i} v_{i}$ for an arbitrary indexing set I is only a valid lin comb if all but finitely many of the λ_{i} are 0 .

Spans or generates defined; V is finite dimensional if it is spanned by a finite set. Lin indep defined; v_{i} for $i \in I$ is lin ind if every finite subcollection therof is. Bases defined; $S \subset V$ is a basis if it spans and is lin ind.
v_{1}, \ldots, v_{n} are a basis iff each $v \in V$ has a unique expression in terms of them; if two such expressions for any v when v_{i} span, difference is $\overrightarrow{0}$ so differences of coeffs must be 0 so they are the same; if each v has such an expression, the v_{i} span and uniqueness means lin ind (else two expressions for $\overrightarrow{0}$) so form a basis.

If v_{1}, \ldots, v_{m} span, some subset therof is a basis, as if they are lin ind we are done, otherwise we have some l for which $v_{l}=\alpha_{1} v_{1}+\cdots+\alpha_{l-1} v_{l-1}$, so can remove it and continue.

The steinitz exchange lemma: given $v_{1} \ldots v_{n}$ lin ind and $w_{1} \ldots w_{m}$ spanning, can replace n of the w_{i} with v_{i} and still have them spanning - write v_{1} in terms of w_{i}, rewrite to have one of the w_{i} in terms of the other w_{i} and v_{1}, continue. This implies $n \leq m$.

Main thm: if V is a fin dim vec sp any two bases $v_{1}, \ldots v_{n}$ and w_{1}, \ldots, w_{m} have the same number $\operatorname{dim}_{F} V$ of elts, as the v_{i} are indep and the w_{i} span so $n \leq m$ and vice versa, so $n=m$. Note that $\operatorname{dim}_{\mathbb{C}} \mathbb{C}=1$ but $\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$.

An immediate corollary of Steinitz is that if V is a fin dim vec sp over F and w_{1}, \ldots, w_{l} a lin ind set of vectors of V we can extend it to form a basis. For an n dim vec sp, any lin ind set has $\leq n$ elts with equality only if it is a basis; likewise any spanning set has $\geq n$ elts with equality only if it is a basis. For v_{1}, \ldots, v_{n} it is equivalent that this is a basis, spanning set or linearly indep. For V a vec sp over F and $S \subset V$ we write $\langle S\rangle$ for the smallest subspace of V which contains S; this is clearly the set of all finite lin combs of elts of S. The intersections of subspaces are subspaces, but their unions almost never; we define for $U, W \leq V$ $U+W=\{u+w: u \in U, w \in W\}=\langle U \cup W\rangle$. This is a subspace, and if U, W fin dim then it is fin dim with $\operatorname{dim} \operatorname{dim} U+\operatorname{dim} W-\operatorname{dim} U \cap W$. We prove all these results using bases. $V=U \oplus W$ if every elt of V can be expressed uniquely as $u+w ; W$ is called the direct complement of U in V. This is equivalent to $V=U+W$ and $U \cap W=\{\overrightarrow{0}\}$ or that for any bases B_{1} of U and B_{2} of W, $B_{1} \cup B_{2}$ is a basis of V. The second defn implies the first since any $v \in V$ is $u+w$ for some u, w and if $u_{1}+w_{1}=u_{2}+w_{2}$ then $u_{1}-u_{2}=w_{2}-w_{1}$; the value for this is $\in U \cap W$ so must be $\overrightarrow{0}$ and $u_{1}=u_{2}, w_{1}=w_{2}$. The first implies the third by for B_{1} a basis for U, B_{2} a basis for W and $B=B_{1} \cup B_{2}$; clearly have B spanning $U+W$, and if $\sum_{B} \lambda_{v} v=\overrightarrow{0}$ then since representation as $u+v$ is unique, $\sum_{B_{1}} \lambda_{u} u=\overrightarrow{0}$ and the λ_{u} are 0 , sim the λ_{w}, so all the λ_{v} are 0 and B is lin ind. Finally the third implies the second as for $v \in V$ we can express v in B so in B_{1} and B_{2} so as $u+w$, and if $v \in U \cap W$ we have $v \in U$ so $v=\sum_{B_{1}} \lambda_{u} u$ and similarly, so $\sum \lambda_{u} u-\sum \lambda_{w} w=\overrightarrow{0}$ meaning $\lambda_{u} \equiv 0$ and similar so $v=\overrightarrow{0}$.

Lemma

If V a fin dim vec sp over F and $U \leq V, \exists$ a (not generally unique) complement to U - take a basis for U and extend it to one for V and the span of the extension is then such a complement.

Lemma

For $V_{1}, \ldots, V_{l} \leq V$ with $\sum V_{i}=\left\{v_{1}+\cdots+v_{l}: v_{i} \in V_{i}\right\}$ this sum is direct if whenever $v_{1}+\cdots+v_{l}=v_{1}^{\prime}+\cdots+v_{l}^{\prime}, v_{i}=v_{i}^{\prime}$; in this case we write it as $\oplus V_{i}$; this is equivalent to that $V_{i} \cap \sum_{j \neq i} V_{j}=\{\overrightarrow{0}\} \forall i$ or that for any bases B_{i} of V_{i} their union $B=\bigcup_{i} B_{i}$ is a basis of $\sum V_{i}$; the reader should proove these equivalences as an exercise.

Quotient Spaces

For V a vec sp over F and $W \leq V$ the quotient group $\frac{V}{W}$ (W is normal since V abelian) is a vec sp over F with addition and scalar multiplication defined in
the obvious way. If V is fin dim so is $\frac{V}{W}$; prove this by extending a basis of W.

Part II

Lin Maps and Matricies

1 Defn

For V, W vec sps over $F, \alpha: V \rightarrow W$ is linear or a homeomorphism if $\alpha\left(v_{1}+v_{2}\right)=$ $\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)$ and $\alpha(\lambda v)=\lambda \alpha(v)\left(\forall v, v_{1}, v_{2} \in V, \lambda \in F\right)$.

2 Eg

The function $f \mapsto f^{\prime}$ on $\mathbb{R}^{\mathbb{R}}$ or $f \mapsto \int_{0}^{x} f(t) d t$ on $\mathcal{C}[0,1]$, or for any $m \times n$ matrix with entries in F the mapping $\alpha: F^{m} \rightarrow F^{n} x \mapsto A x$.

3 L

For U, V, W vec sps over F, the identity and composition of linear maps are linear

4 L

For V, W vec sps over F and α_{0} any map of a basis B of V to W, \exists a unique lin map α extending α_{0} - proof by basis representation of v and linearity.

5 Note

We often define a lin map just on the basis and then "extend linearly". Also this means if two lin maps between the same spaces agree for a basis of the first space they are equal.

6 Def

A bij lin map is an isomorphism; if \exists one $V \rightarrow W$ we write $V \simeq W$.

$7 \quad$ L

\simeq is an equiv rel on the set of all vec sps over F; only hard part of proof is linearity of α^{-1}, which must exist as α bij. For $w_{1}, w_{2} \in W$, write the w_{i} as
$\alpha^{-1} v_{i}$, then $\alpha^{-1}\left(w_{1}+w_{2}\right)=\alpha^{-1}\left(\alpha v_{1}+\alpha v_{2}\right)=\alpha^{-1} \alpha\left(v_{1}+v_{2}\right)$ by linearity of α; rest of proof similar.

8 Thm

If V a vec sp of $\operatorname{dim} n$ over F then $V \simeq F^{n}$. Express vecs of v in terms of basis and then map to F^{n} in the obvious way

9 Thm

The vec sps U, W over F are isom if they have the same dim - obvious corollary. The converse is also true; for $\alpha: U \rightarrow W$ an isomorphism and B a basis for U, $\alpha(U)$ is a basis for W - spans since B spans U and α surj, sim lin ind.

10 Def

For $\alpha: V \rightarrow W$ linear, the nullity $N(\alpha)=\{v \in V: \alpha(v)=0\}$, also sometimes $\operatorname{ker} \alpha ; \operatorname{sim} \operatorname{Im}(\alpha)=\{w \in W: w=\alpha(v)$ for some $v \in V\} ;$ note the former is a subspace of V and the latter of $W . \alpha$ is inj iff $\operatorname{ker} \alpha=\{\overrightarrow{0}\}$, surj iff $\operatorname{Im} \alpha=W$; we define the rank $r k(\alpha)$ or $r(\alpha)$ by $\operatorname{dim} \operatorname{Im} \alpha$, nullity $n \alpha=\operatorname{dim} N \alpha$. [missing brackets because I'm cool]

11 Rank-Nullity Thm

For V, W vec sps over F with $\operatorname{dim}_{F} V$ fin, $\alpha: V \rightarrow W \operatorname{linear} \operatorname{dim} V=r \alpha+n \alpha$; take a basis for $N \alpha$, extend this to a basis of V and the image of the extension is a basis for Im α, or can prove by iso from $\frac{V}{N \alpha}$ to Im α.

12 L

for V, W vec sps over F of equal fin dim and $\alpha: V \rightarrow W$ linear, equivalent that:

1. α iso
2. α inj
3. α surj

Proove by rank-nullity

13 Prop: the space $L(V, W)$ of linear maps $V \rightarrow$ W for V, W vec sps over F is a vec sp

Also sometimes called $\operatorname{Hom}(V, W)$; vec sp under addition and multiplication defined pointwise. If V, W fin dim so is L, with dimension $\operatorname{dim} V \operatorname{dim} W$; proof of this later (19)

Matricies

An $m \times n$ matrix A over F is an array with m rows and n columns with entries $\in F$, we usually write them as $\left(a_{i j}\right)$ with individual elts $a_{i j}$; the set of all such is $M_{m, n}(F)$.

14 Prop

This is a vec sp over F with addition and multiplication defined pointwise; dimension $m \times n$ by the standard basis (the set of matricies with 0 s in all but one entry, which contains a 1)

Repr of lin maps by matricies

For V, W fin dim vec sps over F and $\alpha: V \rightarrow W$ linear fix bases $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}, C=\left\{w_{1}, \ldots, w_{m}\right\}$, then for $v=\sum \lambda_{i} v_{i} \in V$ write $[v]_{B}=\left(\begin{array}{c}\lambda_{1} \\ \ldots \\ \lambda_{n}\end{array}\right)$, $\operatorname{sim}[W]_{C}$.

15 Defn

$[\alpha]_{B, C}$ the matrix of α wrt B, C is $\left(\left[\alpha v_{1}\right]_{C} \ldots\left[\alpha v_{n}\right]_{C}\right)$. [The lecturer has the dimensions of his matricies hopelessly confused, so I'm ignoring them].

16 L

$\forall v \in V,[\alpha v]_{C}=[\alpha]_{B, C}[v]_{B}$ multiplied as matricies.

17 Rk

We get the same result by mapping $v \in V$ to a vector $w \in W$ by α and then representing this as a column in F^{m} as by mapping v to a column in F^{n} and then applying the corresponding matrix A.

18 Rk

This matrix $[\alpha]_{B C}$ is the only matrix A for which $[\alpha v]_{C}=A[v]_{B} \forall v \in V$ by taking v to be the basis vectors of V.

19 Prop

For V, W vec sps over F with $\operatorname{dim} n, m$ respectively $L(V, W) \simeq M_{m, n}(F)$; fix bases and then map $\alpha \mapsto[\alpha]_{B C}$; inj as if mapping is 0α is 0 on a basis so the 0 map, surj as let α map the bases as indicated by a given matrix and extend linearly; this prooves 13 above.

20 L

For $\beta: U \rightarrow V$ and $\alpha: V \rightarrow W$ linear, for bases A, B, C respectively of U, V, W, $[\alpha \circ \beta]_{A C}=[\alpha]_{B C}[\beta]_{A B}$ by action on basis vectors of U.

Change of Bases

For bases $B=v_{1}, \ldots, v_{n}, B^{\prime}$ of a vec sp V the matrix $P=p_{i j}$ given by $v_{j}^{\prime}=$ $\sum_{i} p_{i j} v_{i}$ is the change of basis matrix from B to B^{\prime}; it looks like ($\left[v_{1}^{\prime}\right]_{B} \ldots\left[v_{n}^{\prime}\right]_{B}$) and we can see it as $[i]_{B^{\prime} B}$. Then we have $[v]_{B}=P[v]_{B^{\prime}}$ either by 16 or directly by actuan on basis vectors. Note P must be invetible since P^{-1} is the change of basis matrix from B^{\prime} to $B,[i]_{B B^{\prime}} ;[i]_{B^{\prime} B}[i]_{B B^{\prime}}=[i]_{B B}=I$ and similarly the product in the other direction.

L

For $\alpha: V \rightarrow W$ linear $A=[\alpha]_{B C}$ and $A^{\prime}=[\alpha]_{B^{\prime} C^{\prime}}, A^{\prime}=Q^{-1} A P$ for some invertible Q, P as $Q[\alpha V]_{C^{\prime}}=[\alpha v]_{C}=A[v]_{B}=A P[v]_{B^{\prime}}[$ I'm guessing what the lecturer meant here] for Q and P the change of basis matricies between B, B^{\prime} in V and C, C^{\prime} in W respectively.

Def

The matricies A, A^{\prime} are equiv if $A^{\prime}=Q^{-1} A P$ for some invertible Q, P; this clearly defines an equiv rel on $M_{m, n}(F)$

L

1. For V, W vec sps over F of respective $\operatorname{dim} n, m$ and $\alpha: V \rightarrow W$ linear \exists bases B of V, C of W (not generally unique) st $[\alpha]_{B C}=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$
for these entries submatricies where I_{r} is the $r \times r$ identity; compare with rank-nullity, take a basis of V containing a basis for $N \alpha$, then extend its image to a basis for W and done (modulo re-ordering basis vectors)
2. Any matrix is equiv to one of this form

Def

For $A \in M_{m, n}(F)$ the (col) rank of $A r(A)$ is the dim of the subspace of F^{m} generated by the cols of A; if $A=[\alpha]_{B C}$ this is $r \alpha$ as we have an iso from $\operatorname{Im} \alpha$ to the span of the cols of A by $\alpha v \mapsto[\alpha v]_{C}$

T

The matricies A, A^{\prime} equiv iff $r A=r A^{\prime}$; forward implication since both can represent the same lin trans, reverse by A equiv to some $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$ where $r=r A$ by first part, sim for A^{\prime} and these are only equiv if $r A=r A^{\prime}$. Row rank (dim of the span of the rows) of any A is the same as col rank; take A equiv to $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$ and then A^{T} equiv to $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$ where the 0 s may be differently sized and these clearly have the same col rank ($\operatorname{rowrk} A=\operatorname{colrk} A^{T}$) so done.

Eltary ops, Eltary matricies

Def eltary col ops on a matrix A are swap two cols i, j, replace col i by $\lambda \times$ itself, or add $\lambda \times \operatorname{col} i$ to col j and sim eltary row ops; these are all reversible. We find the corresponding eltary matricies by performing these operations on I, e.g. in $2 \times 2 T_{12}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), M_{1 \lambda}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right), C_{12 \lambda}=\left(\begin{array}{cc}1 & 0 \\ \lambda & 1\end{array}\right)$ are matricies of the 3 types; an eltary operation can be performed by postmultiplying A by the corresponding eltary matrix (or premultiplying for a row op), e.g. $A \mapsto A T_{i j}$. We can use this to constructively prove that any matrix is equiv to one of the form $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$; if A has no nonzero entries we stop, otherwise take some $a_{i j}=\lambda \neq 0$, swap rows i1 and cols ij and multiply col 1 by λ^{-1}, then clear out the first row and col by ops of typ. 3 and recurse on the $m-1 \times n-1$ submatrix in the bottom right corner; since every operation can be represented by a matrix we can find P, Q by multiplying the matricies corresponding to the ops we have performed in the correct order. [I assume; I was out trying to kill people for the end of this lecture].

Variations

We need only eltary row ops to obtain the row echelon form of a matrix (use Gaussian elimination)

For A square $(n=m)$ if A non-singular can obtain I_{n} w/ just eltary col ops (or row ops); inductively if we have the first k rows we have some $j>k \mathrm{w} /$ $a_{k+1 j}=\lambda \neq 0$ since otherwise A would be singular [?], so we swap cols $k+1, j$, divide col $k+1$ by λ, and then clear out the remainder of row $k+1$ by type 3 ops. We can use this to constrct A^{-1} by $A E_{1} \ldots E_{C}=I_{n}$ so $I_{n} E_{1} \ldots E_{C}=A^{-1}$.

P 34

Any invertible $n \times n$ mat is a prod of eltary mats - construct from A^{-1} as above.
For $V=W, C=B$ we write $L(V)$ rather than $L(V, V),[\alpha]_{B}$ rather than $[\alpha]_{B B}$, and $M_{n}(F)$ for $M_{n, n}(F)$.

D

A, A^{\prime} are similar or conjugate if $A^{\prime}=P^{-1} A P$ some invertible P; note $[\alpha]_{B^{\prime}}=$ $P^{-1}[\alpha]_{B} P$ for P change of basis mat from B to B^{\prime}

Det and Trace

Trace

Defined; note linear $M_{n} F \rightarrow F$.

L

$\operatorname{tr} A B=\operatorname{tr} B A$

L

Similar mats have same tr as $\operatorname{tr} P^{-1} A P=\operatorname{tr} A P P^{-1}=\operatorname{tr} A$.
For α linear def $\operatorname{tr} \alpha=\operatorname{tr}[\alpha]_{B}$ for any basis B; now know well defd.
Recall S_{n} is the group of permutations of $\{1, \ldots, n\}$; let $\epsilon(\sigma)=+$ for σ even, - for σ odd (i.e. the composition of an even or odd no. of transpositions; recall this is well defined. Def $\operatorname{det} A$ by $\sum_{\sigma \in S_{n}} \epsilon(\sigma) a_{\sigma(1) 1} \ldots a_{\sigma(n) n}$. This is the sum of n ! summands, each of which is a sign \times a prod of n factors, one from each row and one from each col. Note this is the familiar determinant for e.g. $n=2$.

We write $A=\left(A^{(1)} A^{(2)} \ldots A^{(n)}\right)$ an n-tuple of vectors in F^{n}; note $I=$ $\left(e_{1}, \ldots, e_{n}\right)$.

Def

The func $d: F^{n} \times \cdots \times F^{n} \rightarrow F$ is a volume func on F^{n} if it is multilinear (linear in each argument) and alternating (0 if any two distinct args are the same). d is a determinant form if also $d\left(e_{1}, \ldots, e_{n}\right)=1$.

L

For d a vol func swapping cols changes sign, as d is linear in both of these cols so $d(a, b, \ldots)+d(b, a, \ldots)=d(a+b, a+b, \ldots)=0$ and similar.

Corollary

If d a vol func on F^{n} and $\sigma \in S_{n} d\left(v_{\sigma 1} \ldots v_{\sigma n}\right)=\epsilon(\sigma) d\left(v_{1}, \ldots, v_{n}\right)$. In particular for a det form $d\left(e_{\sigma 1}, \ldots, e_{\sigma n}\right)=\epsilon(\sigma)$.

T

If d a vol func on F^{n} and $A=\left(A^{(1)} \ldots A^{(n)}\right), d\left(A^{(1)}, \ldots, A^{(n)}\right)=\operatorname{det} A d\left(e_{1} \ldots, e_{n}\right)$ which of course $=\operatorname{det} A$ if d is a det form, as it $=d\left(\sum_{j_{1}=1}^{n} a_{j_{1} 1} e_{j_{1}}, \ldots\right)=$ $\sum_{j_{1}=1}^{n} a_{j_{1} 1} d\left(e_{j_{1}}, A^{(2)}, \ldots\right)=\cdots=\left(\prod_{i=1}^{n} \sum_{j_{i}=1}^{n} a_{j_{i} i}\right) d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)$ (by which I mean all the sums are applied); the terms where the j_{i} are not all distinct are 0 so this is $\sum_{\sigma \in S_{n}} a_{\sigma(1) 1} \ldots a_{\sigma(n) n} \epsilon(\sigma)$ as required. This means a det function is unique if it exists

T10

$d: F^{n} \times \cdots \times F^{n} \rightarrow F\left(A^{(1)}, \ldots, A^{(n)}\right) \mapsto \operatorname{det} A$ is a det func on F^{n}; multilinear as $\operatorname{det} A$ is a sum with each of the summands $\epsilon(\sigma) a_{\sigma(1) 1} \ldots a_{\sigma(n) n}$ linear in each factor, alternating as if $A^{(k)}=A^{(l)}$ for some $k \neq l$, let $\tau=$ $(k l) \in S_{n}$, then we can express the sum $\operatorname{det} A=\sum_{\sigma \in S_{n}} \epsilon(\sigma) a_{\sigma(1) 1} \ldots a_{\sigma(n) n}$ as $\sum_{\sigma \in A_{n}} \epsilon(\sigma) a_{\sigma(1) 1} \ldots a_{\sigma(n) n}+\epsilon(\sigma \tau) a_{\sigma \tau(1) 1} \ldots a_{\sigma \tau(n) n}$ (where A_{n} is the alternating group $\sigma \in S_{n}: \epsilon(\sigma)=+$) which is $\sum_{\sigma \in A_{n}} a_{\sigma(1) 1} \ldots a_{\sigma(n) n}-a_{\sigma \tau(1) 1} \ldots a_{\sigma \tau(n) n}$ but for any $\sigma \in S_{n}, a_{\sigma(1) 1} \ldots a_{\sigma(n) n}=a_{\sigma \tau(1) 1} \ldots a_{\sigma \tau(n) n}$ as $k=l$ so this is 0 . Finally $\operatorname{det} I=\sum_{\sigma \in S_{n}} \epsilon(\sigma) e_{\sigma(1) 1} \ldots e_{\sigma(n) n}=\sum_{\sigma \in S_{n}} \epsilon(\sigma) \delta_{\sigma(1) 1} \ldots \delta_{\sigma(n) n}$; the only nonzero summand is where $\sigma=\iota ; \epsilon(\iota)=+\operatorname{so} \operatorname{det} I=1$. Therefore det is the unique determinant form.

L11

$\operatorname{det} A^{T}=\operatorname{det} A$ as if $\sigma \in S_{n}$ then $a_{\sigma(1) 1} \ldots a_{\sigma(n) n}=a_{1 \sigma^{-1}(1)} \ldots a_{n \sigma^{-1}(n)}$, since the same factors are present in both products. We have $\epsilon\left(\sigma^{-1}\right)=\epsilon(\sigma)$ and σ^{-1} runs over S_{n} as σ does, so replacing σ^{-1} with π, $\operatorname{det} A=\sum_{\pi \in S_{n}} \epsilon(\pi) a_{1 \pi(1)} \ldots a_{n \pi(n)}=$ $\operatorname{det} A^{T}$.

L12

det is the unique multilinear alternating function of rows normalized at I immediate corollary.

L13

If $A=\left(a_{i j}\right)$ an upper triangular matrix (i.e. $a_{i j}=0 \forall i>j$) $\operatorname{det} A=$ $a_{11} \ldots a_{n n}$ (and similarly the same result for a lower triangular matrix) as for $a_{\sigma(1) 1} \ldots a_{\sigma(n) n}$ to be nonzero we must have $\sigma(1) \leq 1$ so $\sigma(1)=1$, then need $\sigma(2) \leq 2$ so $\sigma(2)=2$ and so on, so the only σ with this nonzero is ι and $\operatorname{det} A=\epsilon(\iota) a_{11} \ldots a_{n n}=a_{11} \ldots a_{n n}$.

L14

If E an eltary $n \times n$ mat for any $A \operatorname{det} A E=\operatorname{det} A \operatorname{det} E=\operatorname{det} E A$ so performing an eltary op on A multiplies $\operatorname{det} A$ by the det of the corresponding eltary mat,; $\operatorname{det} T_{i j}=-1$ by alternating and applying the transposition multiplies $\operatorname{det} A$ by -1 by the same; $\operatorname{det} M_{i \lambda}=\lambda$ by multilinearity and applying the multiplication multiplies $\operatorname{det} A$ by λ by the same, and $\operatorname{det} C_{i j \lambda}=1$ since this is upper or lower triangular and the reader should proove the corresponding operation leaves $\operatorname{det} A$ unchanged [since the lecturer apparently can't].

T15

Let A be a square matrix, then A is non-singular iff $\operatorname{det} A \neq 0$; if it is nonsingular A is a prod of eltary matricies so has det the product of their dets $\neq 0$ by above; if A is singular we can obtain a matrix w/ a 0 col (since a 0 col is a non-trivial lin comb of the cols of A) by eltary col ops, so det of this matrix is 0 and $\operatorname{det} A=0$ by above.

T16

For $A, B \in M_{n}(F) \operatorname{det} A B=\operatorname{det} A \operatorname{det} B$; if B singular so is $A B$ by considering the corresponding lin maps, so $\operatorname{det} A B=0=\operatorname{det} A \operatorname{det} B$, otherwise express B as a prod of eltary matricies and $\operatorname{det} A B=\operatorname{det} A E_{1} \ldots E_{C}=$ $\operatorname{det} A E_{1} \ldots E_{C-1} \operatorname{det} E_{C}=\cdots=\operatorname{det} A \operatorname{det} E_{1} \ldots \operatorname{det} E_{C}=\operatorname{det} A \operatorname{det} B$.

C17

A invertible $\Rightarrow \operatorname{det} A=\frac{1}{\operatorname{det} A^{-1}}$.

C18

Conjugate mats have same ded as $\operatorname{det} P A P^{-1}=\operatorname{det} A \operatorname{det} P \operatorname{det} P^{-1}=\operatorname{det} A$.

D19
$\operatorname{det} \alpha=\operatorname{det}[\alpha]_{B}$ for any basis B; well defd by above.

T20

det : $L(V) \rightarrow F$ has $\operatorname{det} \iota=1$, $\operatorname{det} \alpha \beta=\operatorname{det} \alpha \operatorname{det} \beta$ and $\operatorname{det} \alpha \neq 0$ iff α nonsingular, and $\operatorname{det} \alpha^{-1}=(\operatorname{det} \alpha)^{-1} \forall$ such α - from matrix properties.

Rks

$G L(V)$ is the group of all automorphisms of V; an $\alpha \in L(V)$ is an endomorphism and a non-singular (bijective) endomorphism is an automorphism. Say V is n-dim over F; then $G L_{n}(F)$ is the group of invertible $n \times n$ mats on F and det : $G L_{n}(F) \rightarrow F$ is a group hom and surj; ker det is called $S L_{n}(F)$, the group of mats w/ det 1. For $A n \times n$ mat representing $\alpha \in L(V)$, equivalent that A non-singular, α non-singular, A invertible, α invertible, $\operatorname{det} A \neq 0$ or $\operatorname{det} \alpha \neq 0$.

L21

For $A \in M_{m}(F), B \in M_{k}(F), C \in M_{m, k}(F)$, $\operatorname{det}\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)=\operatorname{det} A \operatorname{det} B$ as if we write $n=m+k, X=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$ we have $\operatorname{det} X=\sum_{\sigma \in S_{n}} \epsilon(\sigma) x_{\sigma(1) 1} \ldots x_{\sigma(n) n}$ but $x_{\sigma(j) j}=0$ for $j \leq m$ and $\sigma(j)>m$, so we sum only over σ which map [$1, m$] and $[m+1, n]$ to themselzen, which is the same as summing over $\sigma_{1} \in S_{m}, \sigma_{2} \in$ S_{k} where $\sigma_{1}(l)=\sigma(l), \sigma_{2}(l)=\sigma(m+l)-m$; we have $\epsilon(\sigma)=\epsilon\left(\sigma_{1}\right) \epsilon\left(\sigma_{2}\right)$ so $\operatorname{det} X=\left(\sum_{\sigma_{1} \in S_{m}} \epsilon\left(\sigma_{1}\right) a_{\sigma_{1}(1) 1} \ldots a_{\sigma_{1}(m) m}\right)\left(\sum_{\sigma_{2} \in S_{k}} \epsilon\left(\sigma_{2}\right) b_{\sigma_{2}(1) 1} \ldots b_{\sigma_{2}(k) k}\right)$ and done.

L22

Let $A \in M_{n}(F), A=\left(a_{i j}\right)$; write $A_{\widehat{i j}}$ for the $n-1 \times n-1$ mat obtained by deleting row $i, \operatorname{col} j$ from A. For fixed $j, \operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} a_{j i} \operatorname{det} A_{\widehat{i j}}$; this is the expansion in col j (and by transpose, for fixed $i \operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A_{\widehat{i j}}$); note we can define det inductively by this ($\operatorname{set} \operatorname{det}(a)=a$ for 1×1 matricies as the base case); $\operatorname{det} A=\operatorname{det}\left(A^{(1)}, \ldots, \sum_{i=1}^{n} a_{i j} e_{i}, \ldots, A^{(n)}\right)=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det}\left(\begin{array}{cc}1 & \ldots \\ 0 & A_{\widehat{i j}}\end{array}\right)$ (by repeated col transpositions) $=\sum_{i=1}^{j}(-1)^{i+j} \operatorname{det} A_{\widehat{i j}}$.

D23 [?]

The adjugate or classical adjoint matrix $\operatorname{adj} A$ of $A \in M_{n}(F)$ is the matrix w/ ij entry $(-1)^{i+j} \operatorname{det} A_{\widehat{j} i}$.

T24

$\operatorname{Adj} A \times A=(\operatorname{det} A) I$ (as a corollary, if A invertible $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$ [no proof it is inverse from both sides here, but maybe we know already?]) since $\operatorname{det} A=$ $\sum_{i}(\operatorname{adj} A)_{j i} a_{i j}$ which is the $j j$ entry of $\operatorname{adj} A \times A ; 0=\operatorname{det}\left(A^{(1)}, \ldots, A^{(k)}, \ldots, A^{(k)}, \ldots, A_{n}\right)=$ $\sum_{i}(\operatorname{adj} A)_{j i} a_{i k}$ which is the $j k$ entry of $\operatorname{adj} A \times A$.

Digression: systems of linear eqns

$A \vec{x}=\vec{b}$ for A a $m \times n$ mat, $\vec{b} \mathrm{~m}$-vec and $\vec{x} \mathrm{n}$-vec is a system of m eqns for n unknowns. Recall it has a sol iff $r(A)=r(A \mid b)$ (the augmented matrix formed by A with the extra col \vec{b}); if we have such a sol \vec{b} is lin dep on the cols of A and vice versa.

The sol is unique iff this rank $=n$; to find it we use eltary row ops to perform Gaussian elimination.

For $m=n$ and A non-singular the unique sol is $\vec{x}=A^{-1} \vec{b}$.

L25 (Cramer Rule) [sp?]

If A is a non-singular $n \times n$ mat the system $A \vec{x}=\vec{b}$ has $x_{i}=\frac{\operatorname{det} A_{i} b}{\operatorname{det} A} \forall i$ as its unique sol where $A_{\hat{i}} b$ is A with col i replaced by \vec{b}, as if $A \vec{x}=\vec{b}$ then $\operatorname{det} A_{\hat{i}} b=$ $\operatorname{det}\left(A^{(1)}, \ldots, A^{(i-1)}, \vec{b}, A^{(i+1)}, \ldots, a^{(n)}\right)=\operatorname{det}\left(A^{(1)}, \ldots, A^{(i-1)}, \sum_{j} A^{(j)} x_{j}, A^{(i+1)}, \ldots, a^{(n)}\right)=$ $\sum_{j} x_{j} \operatorname{det}\left(A^{(1)}, \ldots, A^{(i-1)}, A^{(j)}, A^{(i+1)}, \ldots, a^{(n)}\right)=x_{i} \operatorname{det} A$.

C26
If $A \in M_{n}(\mathbb{Z})$ with $\operatorname{det} A= \pm 1$ and $\vec{b} \in \mathbb{Z}^{n}$ we can solve $A \vec{x}=\vec{b}$ over \mathbb{Z} [why?]

4 Endomorphisms, mats and evecs

For this section: V is a fin dim vec sp over $F, \operatorname{dim} V=n, B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis and $\alpha: V \rightarrow V$ is linear so an endomorphism.

We want to pick B st $[\alpha]_{B}$ is simple; recall $[\alpha]_{B^{\prime}}=P^{-1}[\alpha]_{B} P$ for P a change of basis mat from B to B^{\prime}, so equiv that for $A \in M_{n}(F)$ we want A^{\prime} conj to A with a nice form.

Def 1

α is diagonalizable if $\exists B:[\alpha]_{B}$ diagonal, trianglizable if $\exists B:[\alpha]_{B}$ upper triangular (we could equally well use lower triangular, but must define one or the other, not both. The defns for a matrix A are obvious.

D2

$\lambda \in F$ is an eval if $\exists v \neq 0 \in V: \alpha(v)=\lambda v$.

Rk3

λ is an eval of α iff $\alpha-\lambda \iota$ singular iff λ a root of $\chi_{\alpha}(t)=\operatorname{det}(\alpha-t \iota)$.
Def $v_{\lambda}=\{v \in V: \alpha(v)=\lambda v\}$ the λ-eigenspace of α.

Note 4

The col j of $[\alpha]_{B}$ is λe_{j} iff $\alpha\left(v_{j}\right)=\lambda v_{j} ;[\alpha]_{B}$ is diaconal iff B consists of evecs, upper triangular iff $\alpha\left(v_{j}\right) \in\left\langle v_{1}, \ldots, v_{j}\right\rangle$; note this means v_{1} is an evec.

R5

Recall: a func $f: F \rightarrow F$ is a polynomial func if it is of the form $f(t)=$ $a_{n} t^{n}+\cdots+a_{0}$ for $n \in \mathbb{N}_{0}, a_{i} \in F \forall i$; the largest $m: a_{m} \neq 0$ is the degree of f with the degree of 0 taken to be $-\infty$; this gives us that $\operatorname{deg} f g=\operatorname{deg} f+$ $\operatorname{deg} g$ (addition and multiplication of polys is defd the obvious way); the polys form a ring $F[t] . \quad \lambda$ is a root of the poly f if $f(\lambda)=0$; if λ is a root of f then $(t-\lambda)$ divides $f(t)$, as then $f(t)=f(t)-f(\lambda)=a_{n}\left(t^{n}-\lambda^{n}\right)+\cdots+$ $a_{1}(t-\lambda)=(t-\lambda)\left(a_{n}\left(t^{n-1}+t^{n-2} \lambda+\cdots+\lambda^{n-1}\right)+\cdots+a_{1}\right)=(t-\lambda) q(t)$ for some $q(t) \in F[t]$; we say λ is a root of $f \mathrm{w} /$ multiplicity e if $(t-\lambda)^{e}$ divides f but $(t-\lambda)^{e+1}$ does not.

L7 [ya rly]

A poly over F of $\operatorname{deg} n \geq 0$ has at most n roots (counted w/ multiplicity); trivially true for $n>0$, then strong induction; for f a poly of $\operatorname{deg} n>0$ if no roots then done, otherwise let λ a root of multiplicity $e \geq 1$, then $f(t)=$ $(t-\lambda)^{e} q(t)$ for q a poly of $\operatorname{deg} n-e$ over f and any root of $f \neq \lambda$ is a root of q.

C8

If f_{1}, f_{2} polys of $\operatorname{deg}<n$ and $f_{1}\left(t_{i}\right)=f_{2}\left(t_{i}\right)$ for n points t_{i} of F then $f_{1}=f_{2}$ by considering $f_{1}-f_{2}$.

Rk9 FTA

Any poly over $F=\mathbb{C}$ of $\operatorname{deg} n>0$ has a root (and so inductively has n roots, counted as always with multiplicity); \mathbb{C} is algebraically closed.

Def

The char poly $\chi_{\alpha}(t)=\operatorname{det}(\alpha-t \iota)$ (and $\left.\operatorname{sim} \chi_{A}\right)$ is a poly of $\operatorname{deg} n \in F[t]$

Rk11

Conj mats have the same char poly (consider corresponding α)

T12

For $F=\mathbb{C}[\alpha]_{B}$ is upper triangular for some B (so any squar cplx mat is triangable): we induct on n, the $n=1$ case being trivial. If true $\forall V$ of dim $<n$ for some $n>1$ any α has some eval λ by FTA, so $\alpha-\lambda \iota$ is singular; put $U=\operatorname{Im}(\alpha-\lambda \iota) \supsetneqq V$, then U is α-invariant $(\alpha(U) \subset U)$; consider $\alpha_{1}=\left.\alpha\right|_{U}$; by the induction hypothesis \exists a basis B_{1} of $U \mathrm{w} /\left[\alpha_{1}\right]_{B_{1}}$ upper triangular; extend to B with $\left\{v_{1}, \ldots, v_{k}\right\}=B_{1}$. Then $[\alpha]_{B}=\left(\begin{array}{cc}{\left[\alpha_{1}\right]_{B_{1}}} & \star \\ 0 & \lambda I\end{array}\right)$ (where \star is some matrix) since for $1 \leq j \leq k \alpha\left(v_{j}\right)=\alpha_{1}\left(v_{j}\right)$, so the left hand portion is as given, and for $k<j \leq n \alpha\left(v_{j}\right)=u_{j}+\lambda v_{j}$ for some $u_{j} \in U$ since $(\alpha-\lambda \iota)\left(v_{j}\right) \in U$, so the right hand portion is as given, and the matrix is upper triangular.

Rk13

This is not true for $F=\mathbb{R}$ by e.g. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

T14

α is triangable iff χ_{α} can be written as a prod of lin factors, i.e. all evals are $\in F$; necessity by if $[\alpha]_{B}=A$ upper triangular $\operatorname{det} \alpha=a_{11} \ldots a_{n n}$ and $\chi_{\alpha}(t)=\left(a_{11}-t\right) \ldots\left(a_{n n}-t\right)$, sufficiency by proof as above; for the inductive step we have $\chi_{\alpha}(t)=\chi_{\alpha_{1}}(t)(\lambda-t)^{m}$ where $m=n-k$.

We can also proove 12 using eigenspaces.

T15

α is diagable if $p(\alpha)=0$ (the zero endomorphism) for some poly p the prod of distinct lin factors; forward implication by let $\lambda_{1}, \ldots, \lambda_{k}$ the distinct evals of α which are the nonzero values in $[\alpha]_{B}=A$ diagonal, then take $p(t)=$ $\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{n}\right)$ and $p(\alpha)=0\left(\right.$ if $v \in B, \alpha(v)=\lambda_{l} v$ some $1 \leq l \leq k$ so $\left(\alpha-\lambda_{l} \iota\right)(v)=0$ so $p(\alpha)(v)=0$ so $p(\alpha)$ maps B to 0 so is the 0 endomorphism), reverse by if $p(t)=\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{k}\right) \mathrm{w} /$ all the λ_{i} distinct set $p_{j}(t)=$ $\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{j-1}\right)\left(t-\lambda_{j+1}\right) \ldots\left(t-\lambda_{k}\right)$ and $h_{j}(t)=\left(p_{j}\left(\lambda_{j}\right)\right)^{-1} p_{j}(t)$, then $h_{j}\left(\lambda_{l}\right)=\delta_{j l}$; write $h(t)=\sum_{j=1}^{k} h_{j}(t)$ and h is the poly 1 since $h(t)-1$ is a poly of deg $<k$ (since a sum of polys of $\operatorname{deg} k-1$) w/k roots $\lambda_{1}, \ldots \lambda_{n}$; put $\pi_{j}=h_{j}(\alpha)$, then $\iota=\pi_{1}+\cdots+\pi_{k}$ and $\pi_{j} \pi_{l}=0$ if $j \neq l$ since $p \mid h_{j} h_{l}$ and $p(\alpha)=0 ; \pi_{j}^{2}=\pi_{j}$ since $=\pi_{j} \sum_{l} \pi_{l}$. Put $V_{j}=\operatorname{Im}\left(\pi_{j}\right)$, then $V_{j} \subset v_{\lambda_{j}}$ since $\left(\alpha-\lambda_{j} \iota\right) \pi_{j}=p(\alpha)=0$; note π_{j} restricted to V_{l} is 0 for $j \neq l, \iota_{V_{j}}$ for $j=l\left(\right.$ since $\left.\pi_{j}\left(\pi_{j}(v)\right)=\pi_{j}(v)\right) ;$ now $V=\bigoplus_{j} V_{j} ; V=\sum_{j} V_{j}$ since for $v \in V$ $v=\iota(v)=\sum_{j} \pi_{j}(v)$ and if $u_{1}+\cdots+u_{k}=u_{1}^{\prime}+\cdots+u_{k}^{\prime}$ with $u_{j}, u_{j}^{\prime} \in v_{j}$ then applying π_{j} have $u_{j}=u_{j}^{\prime}$ for each j; if B_{j} is a basis of V_{j} then the union $B=\bigcup_{j} B_{j}$ is a basis of V (spans clearly, lin ind as if $\sum_{v \in B} \lambda_{v} v=0 \sum_{j}\left(\sum_{v \in B_{j}} \lambda_{v} v\right)=0$ so $\sum_{v \in B_{j}} \lambda_{v} v=0 \forall j$ so $\lambda_{v}=0 \forall v \in B_{j} \forall j$ and done.

Rk

1. $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagable as its evals are 1 but the only mat conj to I is $I\left(P I P^{-1}=I \forall P\right)$.
2. For $\lambda_{1}, \ldots, \lambda_{k}$ the distinct evals of $\alpha \sum_{j} V_{\lambda_{j}}$ is direct so the only way diagonalization fails is if $\sum_{j} V_{\lambda_{j}} \supsetneqq V$ since if $v \in V_{\lambda_{j}} \cap \sum_{i \neq j} V_{\lambda_{i}}$ we apply $\left(\alpha-\lambda_{1} \iota\right) \ldots\left(\alpha-\lambda_{j-1} \iota\right)\left(\alpha-\lambda_{j+1} \iota\right) \ldots\left(\alpha-\lambda_{k} \iota\right)$ which maps all vecs $\in \sum_{i \neq j} V_{\lambda_{i}}$ to 0 but multiplies any vec $\in V_{\lambda_{j}}$ by the non-zero scalar $\left(\lambda_{j}-\lambda_{1}\right) \ldots\left(\lambda_{j}-\lambda_{j-1}\right)\left(\lambda_{j}-\lambda_{j+1}\right) \ldots\left(\lambda_{j}-\lambda_{k}\right)$, so $v=0$.

T17

Simultaneous diagation: let α_{1}, α_{2} commuting (necessary as diag mats commute) diagable endomorphisms of V, then they are simultaneously diagable, i.e. $\exists B:\left[\alpha_{1}\right]_{B},\left[\alpha_{2}\right]_{B}$ diagonal; we have $V=V_{1} \oplus \cdots \oplus V_{k}$ where the V_{i} are the eigensps of α_{1}; say $\alpha_{1}(v)=\lambda_{j} v$ for $v \in V_{j}$. Then $\alpha_{2}\left(V_{j}\right) \subset V_{j}$ as if $v \in v_{j}$ $\alpha_{1}\left(\alpha_{2}(v)\right)=\alpha_{2}\left(\lambda_{j} v\right)=\lambda_{j} \alpha_{2}(v)$; now $\left.\alpha_{2}\right|_{V_{j}}$ is diagable by T15 so \exists a basis B_{j} consisting of evecs of α_{2} (which will be evecs of α_{1} as well) and $B=\bigcup_{j} B_{j}$ is a basis of V consisting of evecs of both α_{1} and α_{2}.

18 Polys over F

Given polys a, b over $F \mathrm{w} / b \neq 0 \exists$ polys $q, r \mathrm{w} / a=b q+r, \operatorname{deg} r<\operatorname{deg} b$ (hence $F[t]$ is a euclidean domain; this has nice consequences, see the IA course N\&S); proof inducting by dividing in the obivous way

D19

The min poly m_{α} of α is the monic (leading coeff 1) poly of smallest deg w/ $m_{\alpha}(\alpha)=0$; exists since have a poly of $\operatorname{deg} \leq n^{2} \mathrm{w} / p(\alpha)=0$ as $\operatorname{dim}_{F} L(V)=$ n^{2} so $\iota, \alpha, \ldots, \alpha^{n^{2}}$ lin dep, unique by:

L21

if $p(\alpha)=0, m_{\alpha} \mid p$; write $p=q m_{\alpha}+r$, then $\operatorname{deg} r<\operatorname{deg} m_{\alpha}$ but $r(\alpha)=0$.

T22 - Cayley-Hamilton

$\chi_{\alpha}(\alpha)=0$ (and sim for mats); a corollary of this (C23) is that $m_{\alpha} \mid \chi_{\alpha}$. For $A \in M_{n}(F)$ let $(-1)^{n} \chi_{A}(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}=\operatorname{det}(t I-A)$, now for any mat $B B \times \operatorname{adj} B=I \operatorname{det} B$ so we this to $t I-A ; \operatorname{adj}(t I-A)$ is a mat w/ entries polys of $\operatorname{deg} \leq n-1$ so we can consider this as a poly w/ mat coeffs $(t I-A) a d j(t I-A)=(t I-A)\left(B_{n-1} t^{n-1}+\cdots+B_{0}\right)$ for some mats B_{i}; comparing coeffs we have $I=B_{n-1}, a_{n-1} I=B_{n-2}-A B_{n-1}, \ldots, a_{0} I=-A B_{0}$;
multiplying the i th eqn by A^{n-i+1} from the left and summing all the eqns we have $A^{n}+a_{n-1} A^{n-1}+\cdots+a_{0} I=0$. The schedules require only a proof of this result over \mathbb{C}, which can be done by other means [it was given in lectures, but I prefer this one].

D24

λ an eval of α has $\chi_{\alpha}(t)=(t-\lambda)^{a_{\lambda}} q(t)$ with q a poly not divisible by $t-\lambda$; call the a_{λ} such that this is the case the algebraic multiplicity of λ (as an eval of $\alpha)$. We def g_{λ} the geometric multiplicity of λ by $\operatorname{dim} N(\alpha-\lambda \iota)$.

L25

For λ an eval $1 \leq g_{\lambda} \leq a_{\lambda} ; 1 \leq g_{\lambda}$ since $\alpha-\lambda \iota$ singular, $g_{\lambda} \leq a_{\lambda}$ since for $B=v_{1}, \ldots, v_{g}, \ldots, v_{n}$ containing a basis v_{1}, \ldots, v_{g} of $N(\alpha-\lambda \iota), \alpha_{B}=$ $\left(\begin{array}{cc}\lambda I_{g} & \star \\ 0 & A_{1}\end{array}\right)\left(I_{g}\right.$ being the $g \times g$ identity $)$ for some mat A_{1} so $\chi_{\alpha}(t)=$ $(\lambda-t)^{g} \chi_{A_{1}}(t)$.

Now taking $F=\mathbb{C}$:

26

$\chi_{\alpha}(t)=\left(\lambda_{1}-t\right)^{a_{1}} \ldots\left(\lambda_{k}-t\right)^{a_{k}}$ for λ_{k} the distinct evals of α, so $a_{1}+\cdots+$ $a_{k}=n$. Let $m_{\alpha}(t)=\left(t-\lambda_{1}\right)^{c_{1}} \ldots\left(t-\lambda_{k}\right)^{c_{k}} ; c_{j} \leq \alpha_{j} \forall j$ since $m_{\alpha} \mid \chi_{\alpha}$ and $1 \leq c_{j}$ since for each $\lambda_{j} \alpha(v)=\lambda v$ for some $v \neq 0 \in V$, so for p any poly $p(\alpha)(v)=p(\lambda) v, \overrightarrow{0}=m_{\alpha}(\alpha)(v)=m_{\alpha}(\lambda) v$ so λ a root of m_{α}.

T28

This is essentially an expansion of T15; let $\chi_{\alpha}=\left(\lambda_{1}-t\right)^{a_{1}} \ldots\left(\lambda_{k}-t\right)^{a_{k}}$, then α diagable iff $p(\alpha)=0$ where $p(t)=\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{k}\right)$.

Rk29

Exercise: If $\chi_{A}(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}$ then $a_{0}=\operatorname{det} A, a_{n-1}=$ $(-1)^{n-1} \operatorname{tr} A$.

Jordan normal form

The full proof of this is the highlight of the IB GRM course; we work over $F=\mathbb{C}$. The JNF is bidiagonal; it has nonzero entries on the diagonal and possibly some 1 s immediately above the diagonal. It is block diagonal; it has a set of square blocks B_{1}, \ldots, B_{k} along the diagonal where $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct evals, and 0 s elsewhere. If we fix j and look at $B=B_{j}$ this is also block diagonal, made up of blocks C_{1}, \ldots, C_{g} (where $g=g_{\lambda_{j}}$ as defined above);
each of the C_{i} is a jordan block $J_{S_{i}}(\lambda)$, the $S_{i} \times S_{i}$ block with entries λ on the diagonal, 1 immediately above it, and 0 elsewhere. We can arrange to have $S_{1} \geq S_{2} \geq \cdots \geq S_{g}=1$.

T30

Every mat in $M_{n}(\mathbb{C})$ is conj to one in JNF, essentially unique (i.e. unique up to the order of the λ_{j}). The proof is not examinable in this course; see GRM, but an outline is as follows:

T31 Primary Decomposition T

Let $m_{\alpha}(t)=\left(t-\lambda_{1}\right)^{c_{1}} \ldots\left(t-\lambda_{k}\right)^{c_{k}}$, then $V=V_{1} \oplus \cdots \oplus V_{k}$ where $V_{j}=$ $N\left(\left(\alpha-\lambda_{j} \iota\right)^{c_{j}}\right)$, generalized eigenspaces. We proove this similarly to 15 ; write $p_{j}(t)=\left(t-\lambda_{1}\right)^{c_{1}} \ldots\left(t-\lambda_{j-1}\right)^{c_{j-1}}\left(t-\lambda_{j+1}\right)^{c_{j+1}} \ldots\left(t-\lambda_{k}\right)^{c_{k}}$, then p_{1}, \ldots, p_{k} are coprime polys so by an analogue of Bezout's Thm (see N\&S) \exists polys q_{1}, \ldots, q_{k} s.t. $p_{1} q_{1}+\cdots+p_{k} q_{k}=1$; let $h_{j}=p_{j} q_{j}$, then $\iota=h_{1}(\alpha)+\cdots+h_{k}(\alpha)$; $V_{j}=\operatorname{Im}\left(h_{j}(\alpha)\right)$ is in fact $N\left(\left(\alpha-\lambda_{j} \iota\right)^{c_{j}}\right)$, and each V_{j} is α-invariant, so we can split the matrix into B_{j} as required. Then we consider the restriction of α to V_{j} which is equivalent to the case $\chi_{\alpha}(t)=(\lambda-t)^{n} . m_{\alpha}(t)=$ $(t-\lambda)^{c}$; let $v \in V \mathrm{w} /(\alpha-\lambda \iota)^{c-1}(v) \neq 0$ (must exist by def of c), then $(\alpha-\lambda \iota)^{c-1}(v),(\alpha-\lambda \iota)^{c-2}(v), \ldots,(\alpha-\lambda \iota)(v), v$ are lin ind [by applying $\alpha-$ $\left.\lambda_{c}\right]$; let them respectively $=v_{1}, \ldots, v_{c}$. Restricting α to the sp $W=\left\langle v_{1}, \ldots, v_{c}\right\rangle$ we have the mat $\left(\begin{array}{cccc}\lambda & 1 & 0 & \ldots \\ 0 & \lambda & 1 & \ldots \\ 0 & 0 & \lambda & \ldots \\ \cdots & \ldots & \ldots & \ldots\end{array}\right) ; \alpha\left(v_{1}\right)=\lambda v_{1}$ as $(\alpha-\lambda \iota) v_{1}=0$, then $(\alpha-\lambda \iota) v_{2}=v_{1}$ so $v_{2}=\lambda v_{2}+v_{1}$ and so on. The proof is completed fully in GRM but the remainder is relatively uninteresting; we take an α-invariant complement U to W and then have the matrix for B_{j} as $\left(\begin{array}{cc}J_{c}(\lambda) & 0 \\ 0 & \star\end{array}\right)$ and induct.

Discussion, "uniqueness"

For the case $n=s, J_{s}(\lambda)$ represents α. Observe $\chi_{\alpha}(t)=(\lambda-t)^{s}$ and $m_{\alpha}(t)=$ $(t-\lambda)^{s}$, since $\left(J_{s}(\lambda)-\lambda I\right)^{k}$ is the matrix with $1 \mathrm{~s} k$ above the diagonal and 0 s elsewhere; each time we multiply by $\left(J_{s}(\lambda)-\lambda I\right)$ we shift the row of 1 s up one. From the matrix we can clearly see $(\alpha-\lambda \iota)^{k}$ has nullity k for $k \leq s, s$ for $k>s$ (since the max possible nullity is s). We can use this for the general case; the number of blocks with $\lambda_{j}=\lambda$ of size $\geq k$ is $n\left((\alpha-\lambda \iota)^{k}\right)-n\left((\alpha-\lambda \iota)^{k-1}\right)$; it follows that:

L32

The no. of blocks $\mathrm{w} / \lambda_{j}=\lambda$ of size k is $2 n\left((\alpha-\lambda \iota)^{k}\right)-n\left((\alpha-\lambda \iota)^{k-1}\right)-$ $n\left((\alpha-\lambda \iota)^{k+1}\right)$, so the JNF of α (assuming it exists) is determined by these dimensions of nullspaces, so unique in the sense described above.

For example, the JNFs for 2×2 mats are $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)\left(J_{1}\left(\lambda_{1}\right) \oplus J_{2}\left(\lambda_{2}\right)\right)$ for $\lambda_{1} \neq \lambda_{2} \mathrm{w} /$ min poly $\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right),\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)\left(J_{1}(\lambda) \oplus J_{2}(\lambda) ;(t-\lambda)\right)$ and $\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)\left(J_{2}(\lambda) ;(t-\lambda)^{2}\right)$; the reader may wish to look at the $n=3$ case where again we can distinguish by min polys; also consider the $n=4$ case where we have λ with multiplicity 4 ; notice how fast the number of possible cases grows.

So e.g. if we know $m_{\alpha}(t)=(t-\lambda)^{2}$ in a 2 D space we know $[\alpha]_{B}=$ $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ for some B; we can find B by taking v_{2} (for the second col) \in $V \backslash N(\alpha-\lambda \iota)$ and $v_{1}=(\alpha-\lambda \iota) v_{2}$.

JNF is very nice - given a mat A in it we can immediately see χ_{A}, m_{A} and for any ev $\lambda a_{\lambda}, C_{\lambda}$ the size of the biggest λ-block, and g_{λ} the no. of λ-blocks.

5 Dual Sps, Dual maps

V is a fin dim vec sp over F in this sec unless otherwise specified. We def $V^{\star}=L(V, F)$ i.e. $\{\alpha: V \rightarrow F$ linear $\}$ the dual of V; this is a vec sp over F with elts these maps, linear functionals.

Let $B=e_{1}, \ldots, e_{n}$ some basis of V, then $B^{\star}=\epsilon_{1}, \ldots, \epsilon_{n}$ where ϵ_{j} is the linear extension of $\epsilon_{j}\left(e_{k}\right)=\delta_{j k}$ is the basis dual to B; lin ind as if $\left(\sum_{j} \lambda_{j} \epsilon_{j}\right)\left(e_{k}\right)=0 \sum_{j} \lambda_{j} \delta_{j k}=0$, span by $\alpha=\sum_{j} \alpha\left(e_{j}\right) \epsilon_{j}$; this implies $\operatorname{dim} V^{\star}=\operatorname{dim} V$.

C3

$\operatorname{dim} V^{\star}=\operatorname{dim} V$
It is sometimes useful to think of V^{\star} as the sp of rows of length n over U; if e_{1}, \ldots, e_{n} a basis of V and $\epsilon_{1}, \ldots, \epsilon_{n}$ the dual basis to it and $x \in V=$ $\sum x_{i} e_{i}, \alpha \in V^{\star}=\sum a_{i} \epsilon_{i}$ then $\alpha(x)=\sum a_{i} x_{i}$ which we can see as the mat prod $\left(a_{1}, \ldots, a_{n}\right)\left(\begin{array}{c}x_{1} \\ \ldots \\ x_{n}\end{array}\right)$.

D4
If $U \subset V$ def U^{0} the set of $\alpha \in V^{\star}$ such that $\alpha(u)=0 \forall u \in U$, the anhilliator [sp] of U.

L5

If $U \subset V, U^{0} \leq V^{\star}$; if $U \leq V, \operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} U^{0}$ as take e_{1}, \ldots, e_{k} basis of U and extend to $B=e_{1}, \ldots e_{n}$ basis of V, let $\epsilon_{1}, \ldots, \epsilon_{n}$ the dual basis of V^{\star}, then $U^{0}=\left\langle\epsilon_{k+1}, \ldots, \epsilon_{n}\right\rangle$ as if $i>k, \epsilon_{i}\left(e_{j}\right)=0 \forall j \leq k$ so $\epsilon_{i} \in U^{0}$ and if $\alpha \in U^{0}$ write $\alpha=\sum_{i=1}^{n} \lambda_{i} \epsilon_{i}$ and then for $i \leq k \alpha\left(e_{i}\right)=0$ so $\lambda_{i}=0$ and $\alpha=\sum_{i=k+1}^{n} \lambda_{i} \epsilon_{i}$.

L6

Let W a vec sp over F and $\alpha \in L(V, W)$ then $\alpha^{\star}: W^{\star} \rightarrow V^{\star}$ given by $\epsilon \mapsto \epsilon \circ \alpha$ is linear; we call it the dual of α; exists since $\epsilon \circ \alpha$ is a lin map $V \rightarrow F$ so $\in V^{\star}$ and linear trivially.

Prop 7

Let $B=\left\{b_{1}, \ldots, b_{n}\right\}, C$ bases of V, W respectively w/ respective dual bases $B^{\star}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}, C^{\star}$. For $\alpha \in L(V, W)\left[\alpha^{\star}\right]_{C^{\star} B^{\star}}=[\alpha]_{B C}^{T}$; let $[\alpha]_{B C}=$ $A=\left(a_{i j}\right) ; \alpha\left(b_{j}\right)=\sum_{i} a_{i j} c_{i} \forall j$ [c_{j} in my notes but this must be wrong], then $\left(\alpha^{\star}\left(\gamma_{r}\right)\right)\left(b_{s}\right)=\left(\gamma_{r} \circ \alpha\right)\left(b_{s}\right)=\gamma_{r}\left(\sum_{t} a_{t s} c_{t}\right)=\sum_{t} a_{t s} \gamma_{r}\left(c_{t}\right)=\sum_{t} a_{t s} \delta_{r t}=$ $a_{r s}=\sum_{i} a_{r i} \beta_{i}\left(b_{s}\right) \forall s$ so $\alpha^{\star}\left(\gamma_{r}\right)=\sum_{i} a_{r i} \beta_{i} \forall r$ and done.

C8

If $\operatorname{dim} V=\operatorname{dim} W \operatorname{det}(\alpha)=\operatorname{det}\left(\alpha^{\star}\right), \chi_{\alpha^{\star}}=\chi_{\alpha}, m_{\alpha^{\star}}=m_{\alpha}$ (for any poly p over $\left.f, p\left(A^{T}\right)=(p(A))^{T}\right)$.

L9

$N\left(\alpha^{\star}\right)=(\operatorname{Im}(\alpha))^{0}$ (so in particular $\alpha^{\star} \operatorname{inj}$ iff α surj) as $\epsilon \in W^{\star}$ is $\in N\left(\alpha^{\star}\right)$ iff $\alpha^{\star}(\epsilon)=0$ iff $\epsilon \circ \alpha=0$ iff $\epsilon \in(\operatorname{Im}(\alpha))^{0}$ and done.

Similarly, $\operatorname{Im}\left(\alpha^{\star}\right)=(N(\alpha))^{0}$; for $\epsilon \in \operatorname{Im}\left(\alpha^{\star}\right) \epsilon=\alpha^{\star}(\phi)$ some $\phi \in w^{\star}$; for any $u \in N(\alpha) \epsilon(u)=\left(\alpha^{\star}(\phi)\right)(u)=\phi(\alpha(u))=\phi(\overrightarrow{0})=0$ so $\epsilon \in(N(\alpha))^{0}$ and $\operatorname{Im}\left(\alpha^{\star}\right) \supset(N(\alpha))^{0}$ and then equality by dimensions.

C10

$r(\alpha)=r\left(\alpha^{\star}\right)\left(\right.$ so $r(A)=r\left(A^{T}\right)$, another proof of T2.29); $r\left(\alpha^{\star}\right)=\operatorname{dim} W^{\star}-$ $n\left(\alpha^{\star}\right)=\operatorname{dim} W-\operatorname{dim}(\operatorname{Im}(\alpha))^{0}=\operatorname{dim} W-(\operatorname{dim} W-\operatorname{dim} \operatorname{Im}(\alpha))=r(\alpha)$.

For $v \in V$ let $\hat{v}(\epsilon)=\epsilon(v)$, the evaluation at v map; this is $\in V^{\star \star}$.

T11

${ }^{\wedge}: V \rightarrow V^{\star \star}$ as defined above is an isomorphism; note that this is a "natural" isomorphism without reference to bases. ^does map $V \rightarrow V^{\star \star}$ since $\hat{v}: V^{\star} \rightarrow F$ linear $\forall v \in V$, is trivially linear, injective by if $e \neq \overrightarrow{0} \in V$ let e, e_{2}, \ldots, e_{n} a
basis of V and $\epsilon_{1}, \ldots, \epsilon_{n}$ the dual basis of V^{\star}, then $\hat{e}\left(\epsilon_{1}\right)=\epsilon_{1}(e)=1$ so $\hat{e} \neq 0$, ${ }^{\wedge}$ linear so inj; surj by dimensions so ${ }^{\wedge}$ is an iso.

Rk12

If $\epsilon_{1}, \ldots, \epsilon_{n}$ a basis of V^{\star} and E_{1}, \ldots, E_{n} the basis of $V^{\star \star}$ dual to it $E_{j}=\hat{e_{j}}$ for unique $e_{j} \in V$; then $\epsilon_{1}, \ldots, \epsilon_{n}$ is the basis of V^{\star} dual to e_{1}, \ldots, e_{n}.

L13

Let $U \leq V$, then $\hat{U}=U^{00}$; if we identify V with $V^{\star \star}$ by ${ }^{\wedge}, U^{00}=U ; U \leq U^{00}$ since $u \in U \Rightarrow \epsilon(u)=0 \forall \epsilon \in U^{0}$ by def of U^{0} so $\hat{u}(\epsilon)=0 \forall \epsilon \in U^{0}$ by def of ${ }^{\wedge}$ so $\hat{u} \in U^{00}$; equality by dimensions.

Rk14

For $T \leq V^{\star}$ we can def T^{0} by $\{v \in V: \theta(v)=0 \forall \theta \in T\}$.

L15

For $U_{1}, U_{2} \leq V,\left(U_{1}+U_{2}\right)^{0}=U_{1}^{0} \cap U_{2}^{0}$ (exercise), then applying ${ }^{0}$ to this, $\left(U_{1} \cap U_{2}\right)^{0}=U_{1}^{0}+U_{2}^{0}$.

Rk16

Let $V=P$ the set of all real polys; $P=\left\langle p_{0}, p_{1}, \ldots\right\rangle$ where $p_{j}(t)=t^{j}$; any $\epsilon \in P^{\star}$ can be written as $\left(\epsilon\left(p_{0}\right), \epsilon\left(p_{1}\right), \ldots\right) \in \mathbb{R}^{n}$ and all such sequences can be attained (see Exs3Q16) but $\mathbb{R}^{\mathbb{N}}$ has no countable generating set, and its dual will be even bigger, so cannot be iso to P. So these proofs really do depend on V being fin dim.

Rk17

We have a mapping $V^{\star} \times V \rightarrow F$ by $(\epsilon, v) \mapsto \epsilon(v)$; this is a bilinear func on $V^{\star} \times V$ (see later); we write it as $\langle\epsilon \mid v\rangle$ as we could equally well use $\hat{v}(\epsilon)$ so this is symmetric; we have $\left\langle\alpha^{\star}(\epsilon) \mid v\right\rangle=\langle\epsilon \mid \alpha(v)\rangle$ ($\forall \alpha$ as above)

6 Bilinear Forms

In this section V, W vec sps over F, fin dim unless otherwise specified

Def

The func $\psi: V \times W \rightarrow F$ is a bilinear func if it is linear in each coordinate, i.e. $\psi(v, w)$ is linear in $v \forall$ fixed $w \in W$ and vv; here we usually take $V=W$ in which case we say ψ is a bilinear form (on V). For example, the real inner or
scalar product on $\mathbb{R}^{n} \times \mathbb{R}^{n}$, or more generally for $V=F^{n}$ and A fixed $\in M_{n}(F)$, $\psi(u, v)=u^{T} A v$ is a bilinear form on V.

D3

Let $\operatorname{dim} V=n$ and $B=v_{1}, \ldots, v_{n}$ a basis of V, then the mat of the bilinear form ψ on V wrt B is $[\psi]_{B}=\left(\psi\left(v_{i}, v_{j}\right)\right)$ as an $n \times n$ matrix.

L4

$\psi(u, v)=[u]_{B}^{T}[\psi]_{B}[v]_{B} \forall u, v \in V$; furthermore $[\psi]_{B}$ is the only mat for which
this holds; $\psi(a, b)=\psi\left(\sum a_{i} v_{i}, \sum b_{j} v_{j}\right)=\sum a_{i} b_{j} \psi\left(v_{i}, v_{j}\right)=\left(a_{1}, \ldots, a_{n}\right)[\psi]_{B}\left(\begin{array}{c}b_{1} \\ \ldots \\ b_{n}\end{array}\right)$
and done; if $\psi(u, v)=[u]_{B}^{T} A[v]_{B} \forall u, v \in V$ take $u=v_{i}, v=v_{j}$ and $A=[\psi]_{B}$.

Change of basis

For $B^{\prime}=v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ also a basis of V and P the change of basis mat from B to $B^{\prime} v_{j}=\sum p_{i j} v_{i}$ and $[v]_{B}=P[v]_{B^{\prime}} \forall v \in V$.

T5

$[\psi]_{B^{\prime}}=P^{T}[\psi]_{B} P\left(\right.$ note P^{T} rather than P^{-1}) as $\psi(u, v)=[u]_{B}^{T}[\psi]_{B}[v]_{B}=$ $\left(P[u]_{B^{\prime}}\right)^{T}[\psi]_{B} P[v]_{B^{\prime}}=[u]_{B^{\prime}}^{T} P^{T}[\psi]_{B} P[v]_{B^{\prime}}$ and done.

D6

Square real $n \times n$ mats A, B have A congruent to B if $B=P^{T} A P$.

L7

This is an equiv rel on $M_{n}(\mathbb{R}) ; A$ cong A by $P=I$, if A cong B by P then B cong A by P^{-1}, and if also B cong C by Q then A cong C by $P Q$

D8

The rank of a bilinear form $r(\psi)$ is $r\left([\psi]_{B}\right)$ for any basis B; this is well defd.

D9

A real bilinear form ψ on V is symmetric if $\psi(u, v)=\psi(v, u) \forall u, v \in V, \lambda \in F$; note it is equiv that $[\psi]_{B}$ is diagonal; To be able to represent ψ by a diagonal mat ψ must be symmetric as if $P^{T} A P=D$ diagonal, $D=D^{T}=P^{T} A^{T} P$ so $A=A^{T}$ (since P invertible).

D10

For V a real vec $\operatorname{sp} Q: V \rightarrow \mathbb{R}$ is a quadratic form if $Q(\lambda v)=\lambda^{2} Q(v), \exists$ a real symmetric bilinear form ψ st $Q(u+v)=Q(u)+Q(v)+2 \psi(u, v)$; note we can find ψ given Q by $\psi(u, v)=\frac{1}{2}(Q(u+v)-Q(u)-Q(v))$ or $\frac{1}{4}(Q(u+v)-Q(u-v))$, and for any ψ we have a corresponding Q by $Q(v)=$ $\psi(v, v)$;

T11

Any real symmetric bilinear form (or equivalently any real quadratic form, as is the case for many of the following results) can be represented by a diagonal mat; moreover this can be taken to be $\left(\begin{array}{ccc}I_{p} & 0 & 0 \\ 0 & -I_{q} & 0 \\ 0 & 0 & 0\end{array}\right)$ for some $p, q \in \mathbb{N}_{0}$; given a real symmetric bilinear form ψ on $V \exists$ a basis B of V s.t. if $[v]_{B}=\left(\begin{array}{c}X_{1} \\ \ldots \\ X_{n}\end{array}\right)$, $Q(V)=X_{1}^{2}+\cdots+X_{p}^{2}-X_{p+1}^{2}-\cdots-X_{p+q}^{2}$; we induct on $\operatorname{dim} V$; we can assume ψ is nonzero, otherwise we are done; then $\exists v \in V$ with $Q(v) \neq 0$; then consider $W=\{w \in V: \psi(v, w)=0\} ; W \supsetneqq V$ since $v \notin W$ and it suffices to show $V=\langle v\rangle \oplus W$; if $u \in V$ we can write $u=\lambda v+(u-\lambda v)$; choose $\lambda \in \mathbb{R}$ so $u-\lambda v \in W$ by $\lambda=\frac{\psi(u, v)}{\psi(v, v)}$ so $V=\langle v\rangle+W$, and $\langle v\rangle \hat{W}=\overrightarrow{0}$ since if $\psi(\lambda v, v)=0$ then $\lambda Q(v, v)=0$ so $\lambda=0$; now the restriction of ψ to $W \times W$ is a real symmetric bilinear form so we can induct (the base case is trivial [or so claims the lecturer]); we have a basis $B^{\prime}=v_{2}, \ldots, v_{n}$ in which it is diagonal and then ψ is diagonal wrt $B=v, v_{2}, \ldots, v_{n}$.

Let $[\psi]_{B}=\left(\begin{array}{ccc}d_{1} & & \\ & \ldots & \\ & & d_{n}\end{array}\right)$; reorder B if necessary so that the first p of the d_{i} are $+v e$, the next $q-v e$ and the rest 0 ; then normalize B by $v_{i} \rightarrow \frac{v_{i}}{\sqrt{Q\left(v_{i}\right)}}$ for $1 \leq i \leq p, \frac{v_{i}}{\sqrt{-Q\left(v_{i}\right)}}$ for $p+1 \leq i \leq p+q$; then the mat of ψ wrt this new B is as required.

D12

As per above, the rank $r(\psi)=p+q$; signature $s(\psi)=p-q$, and these are basis-invariant:

T13 Sylvester's Law of Inertia

If a real symmetric [bilinear] form ψ is represented by $\left(\begin{array}{ccc}I_{p} & 0 & 0 \\ 0 & -I_{q} & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}I_{p^{\prime}} & 0 & 0 \\ 0 & -I_{q^{\prime}} & 0 \\ 0 & 0 & 0\end{array}\right)$ wrt bases B, B^{\prime} then $p=p^{\prime}, q=q^{\prime}$; first def Q on a real vec sp $V \mathrm{w} / U \leq V$ is
$+v e$ definite on U if $Q(u)>0 \forall u \neq \overrightarrow{0} \in U,+v e$ semidefinite for \geq rather than $>$, similarly $-v e$ definite and semidefinite; if we say $Q+v e$ definite without additional qualification we mean Q is $+v e$ definite on V and similarly. Now, we claim p is the largest dim of a subsp on which ψ is $+v e$ definite (and $\operatorname{sim} q$ for $-v e$ definite); we sometimes define p, q by these; $B=v_{1}, \ldots, v_{p}, v_{p+1}, \ldots, v_{p+q}, \ldots, v_{n}$; let $P=\left\langle v_{1}, \ldots, v_{p}\right\rangle, U=\left\langle v_{p+1}, \ldots, v_{n}\right\rangle ; \psi$ is $+v e$ definite on P, and if ψ $+v e$ definite on some $P^{\prime}, P^{\prime} \cap U=\{\overrightarrow{0}\}$ since $\psi-v e$ semidefinite on U so $\operatorname{dim} P^{\prime} \leq \operatorname{dim} V-\operatorname{dim} U, p^{\prime}+n-p \leq n$ so $p^{\prime} \leq p$ and the claim holds; sim for q. Of course this is equivalently true for a real quadratic form over \mathbb{R}.

Rk14

ψ determines p but not P; there are generally many possible such spaces, sim for q; note that rank and signature together determine $p, q . K=\left\langle v_{p+q+1}, \ldots, v_{n}\right\rangle$ is determined by ψ; it is the kernel or radical of the form: $K=\{v \in V: \psi(v, u)=0 \forall u \in V\}$; we call it V^{\perp}.

Def

ψ is non-singular if $K=\{\overrightarrow{0}\}$ or equivalently $r(\psi)=\operatorname{dim} V$; note we may still have $U \subset V$ with $\psi(u, v)=0 \forall u, v \in U$.

Rk15

$\exists \operatorname{subsp} T$ of $\operatorname{dim} \min \{p, q\}+n-(p+q)$ s.t. $\psi=0$ on T; this includes K but is generaly much larger. $\min \{p, q\}+n-(p+q)$ is the largest possible dim of such a sp; say wlog $q \leq p$ and take $T=\left\langle v_{1}+v_{p+1}, \ldots, v_{q}+v_{p+q}, v_{p+q+1}, \ldots, v_{n}\right\rangle$ (note $T \cap P=\{0\}=T \cap Q$).
e.g. if ψ is non-singular with $n=2 m$ and \exists a subsp of $\operatorname{dim} m$ on which ψ is 0 then $p=m=q$ so $s(\psi)=p-q=0$.

16 Worked Example

$V=\mathbb{R}^{3}, Q(\vec{x})=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3} ;$ the mat of Q wrt the standard basis is $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 2\end{array}\right)$ (this can be found by $\psi(u, v)=$ $\left.\frac{1}{2}(Q(u+v)-Q(u)-Q(v))\right)$. The first method to diagonalise is to gather all ocurrences of x_{1} together as $Q(\vec{x})=\left(x_{1}+x_{2}+x_{3}\right)^{2}+x_{3}^{2}-4 x_{2} x_{3}$, then all x_{3} [since this is easier] by $Q(\vec{x})=\left(x_{1}+x_{2}+x_{3}\right)^{2}+\left(x_{3}-2 x_{2}\right)^{2}-\left(2 x_{2}\right)^{2}$ (in fact this offers another way to proove T11) so we know $[Q]_{B}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & -1\end{array}\right)$ wrt some $B ; r(\psi)=3, s(\psi)=1$. Then to find a suitable trans mat P we have
$\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ so $P=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0\end{array}\right)^{-1}$. For the second method we apply eltary col ops followed by the corresponding eltary row op $A \rightarrow E^{T} A E$ e.g. $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 2\end{array}\right)$; we want $\operatorname{col} 2 \rightarrow \operatorname{col} 2-\operatorname{col} 1$ so $E_{1}=$ $\left(\begin{array}{ccc}1 & -1 & \\ & 1 & \\ & & 1\end{array}\right)$, then $A E_{1}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 2\end{array}\right), E_{1}^{T} A E_{1}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & -2 \\ 1 & -2 & 2\end{array}\right)$; we similarly use col $3 \rightarrow$ col $3-$ col 1 and so on; we build up P as we go along by $E_{1} E_{2} \ldots$. For the third method we can use the same method as the pf of T11.

Finally if we just want to find r, s it is sometimes easier to work with χ_{A} since we shall later see s is the no. of $+v e$ evals of $A-$ the no. of $-v e$ evals of A.

Now we work over $F=\mathbb{C}$; for ψ bilinear and symmetric on V over \mathbb{C} as in T11 we have a basis B s.t. $[\psi]_{B}=\left(\begin{array}{cccccc}d_{1} & & & & & \\ & \ldots & & & & \\ & & d_{r} & & & \\ & & & 0 & & \\ & & & & \cdots & \\ & & & & & 0\end{array}\right) \mathrm{w} / d_{i} \neq 0 \in \mathbb{C} \forall i$; now replace v_{i} by $\frac{v_{i}}{\sqrt{v_{i}}} \forall 1 \leq i \leq r$ and then ψ has mat $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$ wrt this new basis, so:

L17

Any cplx symmetric mat A satisfies $P^{T} A P=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$ for some invertible P for unique r (actually $r(A)$); this is usially not quite what we want. Rather than symmetric cplx mats we need to study Hermitian mats; a mat A is Hermitian if $A=\overline{A^{T}}$ (complex conjugation).

D18

For V a cplx vec sp a Hermitian form on V is a func $\psi: V \times V \rightarrow \mathbb{C}$ s.t. $\forall v \in V, u \mapsto \psi \underline{(u, v)}$ is linear (note this is the ohter way around from in QM) and $\psi(u, v)=\overline{\psi(v, u)}$. Note that such a ψ is not a bilinear form on V, rather it is sesquilinear [sp?]: $\psi\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}, v\right)=\lambda_{1} \psi\left(u_{1}, v\right)+\lambda_{2} \psi\left(u_{2}, v\right), \psi\left(u, \lambda_{1} v_{1}+\lambda_{2} v_{2}\right)=$ $\overline{\lambda_{1}} \psi\left(u, v_{1}\right)+\overline{\lambda_{2}} \psi\left(u, v_{2}\right)$; an example of such a form is the cplx inner prod.

Rk21

For V a cplx vec sp and ψ a Herm form on V, can $\operatorname{def} Q: V \rightarrow \mathbb{C}$ (in fact Q is real-valued) by $Q(v)=\psi(v, v)$; we have $Q(\lambda v)=|\lambda|^{2} Q(v)$; given Q we can recover ψ similarly to before; $\psi(u, v)=\frac{1}{4}(Q(u+v)-Q(u-v)+i Q(u+i v)-i Q(u-i v))$. If $B=v_{1}, \ldots, v_{n}$ is a basis of V the mat of ψ wrt B is $[\psi]_{B}=\left(\psi\left(v_{i}, v_{j}\right)\right)$. Let this be A, then $A=\overline{A^{T}}$ i.e. this is a Herm mat. $\psi(u, v)=[u]_{B}^{T}[\psi]_{B} \overline{[v]_{B}}$.

Finally, a change of basis maps $[\psi]_{B} \rightarrow P^{T} A \bar{P}$ where P is the (invertible) change of basis mat.

T26

If ψ is a Herm form on the cplx vec sp $V \exists$ a basis B of $V \mathrm{w} /[\psi]_{B}=$ $\left(\begin{array}{ccc}I_{p} & & \\ & -I_{q} & \\ & & 0\end{array}\right)$, and p, q are determined by ψ. The proof is mostly as for the reals; as an outline if $\psi \equiv 0$ we are done, otherwise take $v \neq \overrightarrow{0} \in V \mathrm{w} /$ $\psi(v, v) \neq 0$, then $\operatorname{def} W=\{w \in V: \psi(v, w)=0\}$ and $V=\langle v\rangle \oplus W$ since if $u \in V u=\lambda v+(u-\lambda v)$ with $\lambda=\frac{\psi(u, v)}{\psi(v, v)}$ so $\psi(v, u-\lambda v)=0$; we then inductively find v_{2}, \ldots, v_{n} a basis of W wrt which $\left.\psi\right|_{W}$ is diagonal, then take $B=v_{1}, v_{2}, \ldots, v_{n}$ and $[\psi]_{B}$ is diagonal; the top row is 0 s other than the top left so since the mat is Herm the left collumn is also all 0 below the top. Then we reorder the basis so the first p entries are $+v e$, the next $q-v e$ and the rest 0 , then replace v_{j} by $\frac{1}{\sqrt{\left|Q\left(v_{j}\right)\right|}} v_{j}$ for j from 1 to $p+q$. That p, q are determined is by exactly the same pf as in $13 ; p$ is the maximal dim of a subsp on which ψ is $+v e$ definite etc.

Returning to V a real vec sp, there is another important class of real bilinear forms:

D27

The bilinear form ψ on the real vec sp V is skewsymmetric or symplectic or alternating if $\psi(v, u)=-\psi(u, v) \forall u, v \in V$; note this means $\psi(v, v)=0 \forall v \in V$. If $A=[\psi]_{B}$ for some basis B of V then $A^{T}=-A ; A$ is skewsymmetric.

Rk28

Any real square mat A can be written as $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$ a sum of symmetric and antisymmetric parts.

T29
If ψ is a skewsymmetric bilinear form on a real vec sp V then $\mathrm{m} \backslash$ exists a basis
$\left(\begin{array}{cccc}0 & 1 & & \\ -1 & 0 & & \\ & & 0 & 1 \\ & & -1 & 0\end{array}\right.$
$v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{m}, w_{m}, v_{2 m+1}, v_{2 m+2}, \ldots, v_{n}$ wrt which ψ has mat
note that this means the rank of any skewsymmetric mat is even. Also note we can rearrange the basis as $v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{m}, v_{2 m+1}, \ldots, v_{n}$ and the mat becomes $\left(\begin{array}{ccc}0 & I_{m} & \\ -I_{m} & 0 & \\ & & 0\end{array}\right)$; for the proof we induct on $\operatorname{dim} V=n$; if $\psi \equiv 0$ we are done, otherwise \exists vecs $v_{1}, w_{1} \mathrm{w} / \psi\left(v_{1}, w_{1}\right) \neq 0$ and by scaling w_{1} we can have this $=1$, then $\psi\left(w_{1}, v_{1}\right)=-1$. Let $U=\left\langle v_{1}, w_{1}\right\rangle$ and $W=U^{\perp}=\left\{v \in V: \psi\left(v_{1}, v\right)=0=\psi\left(w_{1}, v\right)\right\}$; then $V=U \oplus W$ as given $v \in V$ let $a=\psi\left(v, w_{1}\right), b=\psi\left(v_{1}, v\right)$ then $v=a v_{1}+b v_{2}+\left(v-a v_{1}-b w_{1}\right)$ with the first two terms in U and the last in W, and $U \cap W=\{\overrightarrow{0}\}$ as if $a v_{1}+b w_{1} \in W$ then $\psi\left(v_{1}, a w_{1}+b v_{1}\right)=0 \Rightarrow a=0, \psi\left(w_{1}, a w_{1}+b v_{1}\right) \Rightarrow b=0$. Now we continue with $\left.\psi\right|_{W}$ and the claim holds by induction.

Some extra remarks on general bilinear forms on $U \times V$ where U, V are over the same field $F ; \psi: U \times V \rightarrow F$ linear in each coordinate. [The lecturer used to be making a distinction between forms and functions, and made a big fuss about this, but appears to have now abandoned this. Or just be incompetent. Or both] Examples are $U=V^{\star}, \psi$ given by $(\alpha, v) \mapsto \alpha(v)$ or for V over $F=\mathbb{C}$ define \bar{V} to have the same elts as V and the same addition but with scalar prod $\lambda^{\bar{\prime}} v=\bar{\lambda} \cdot v$; the sesquilinear forms on V are precisely the bilinear funcs $V \times \bar{V} \rightarrow \mathbb{C}$.

Cor 30

The rk of any skewsymmetric mat is even.
For U, V over F and $\psi: U \times V \rightarrow F$ bilinear. we have maps $\psi_{L}: U \rightarrow V^{\star}$ by $u \mapsto \psi_{L}(u)$ given by $v \mapsto \psi(u, v)$, sim. $\psi_{R}: V \rightarrow U^{\star} . \psi$ is non-singular if both the left kernel $\operatorname{ker} \psi_{L}$ and right kernel $\operatorname{ker} \psi_{R}$ are $\{0\}$.

L31

If ψ is non-singular on $U \times V$ then $\operatorname{dim} U=\operatorname{dim} V$ as $\operatorname{ker} \psi_{L}=\{0\} \Rightarrow \operatorname{dim} U \leq$ $\operatorname{dim} V^{\star}=\operatorname{dim} V$ and similarly $\operatorname{dim} V \leq \operatorname{dim} U$.

L32 (Exercise)

If $\operatorname{dim} U=\operatorname{dim} V$ then $\operatorname{ker} \psi_{L}=\{0\} \Leftrightarrow \operatorname{ker} \psi_{R}=\{0\} ;$ in fact if we assume $\operatorname{ker} \psi_{L}=\{0\}$ let u_{1}, \ldots, u_{n} be a basis of U, then $\psi_{L}\left(u_{1}\right), \ldots, \psi_{L}\left(u_{n}\right)$ is a basis of V^{\star}; let v_{1}, \ldots, v_{n} the basis of V dual to it and observe $\psi\left(u_{i}, v_{j}\right)=\delta_{i j}$, so we have bases of U, V which are "dual wrt ψ ".

33

Let ψ a non-singular bilinear form on V, then $\psi_{L}: V \rightarrow V^{\star}$ is an isomorphism.

34

For ψ a non-singular bilinear form V and $W \leq V$, then W^{\perp} (the right [perp, I assume - lol saxl's accent] of W) is $\{v \in V: \psi(w, v)=0 \forall w \in W\}$. We clearly have $W^{\perp} \leq V$; we claim $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$ which is true since $W^{\perp}=$ $\left(\psi_{L}(W)\right)^{0}$, as $v \in W^{\perp} \Leftrightarrow \psi(w, v)=0 \forall w \in W \Leftrightarrow \psi_{L}(w)(v)=0 \forall w \in W \Leftrightarrow$ $v \in\left(\psi_{L}(W)\right)^{0}$, so then $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} W+\operatorname{dim}\left(\psi_{L}(W)\right)^{0}=\operatorname{dim} W+$ $\operatorname{dim} V-\operatorname{dim} \psi_{L}(W)=\operatorname{dim} V .\left(\psi\right.$ is non-singular so $\left.\operatorname{dim} \psi_{L}(W)=\operatorname{dim} W\right)$

7 Inner Product Sps

D1

For V a real/cplx vecsp an inner prod on V is a + ve definite symmetric bilinear/Herm form on V; as notation we write $\langle v, w\rangle$ for the value of the inner prod on (v, w). If V is a real/cplx inner prod sp (i.e. a $\mathrm{sp} \mathrm{w} /$ an inner prod) it is a Euclidean/unitary sp. (i.e. a real one is Euclidean, a cplx one is unitary, and similarly), e.g. dot products, or (exercise) $V=C[0,1]$ the spare of cnts real- or cplx-vald funcs on $[0,1] \mathrm{w} /\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t$.

D2

The length $\|v\|$ of $v \in V$ is $+\sqrt{\langle v, v\rangle}$; note $\langle v, v\rangle \geq 0 \mathrm{w} /$ equality iff $v=\overrightarrow{0}$.

L3 The schwartz ineq

$|\langle v, w\rangle| \leq\|v\|\|w\| \forall v, w \in V$; if $v=0$ trivial, otherwise for the real case $0 \leq$ $\|t v-w\|^{2}=t^{2}\|v\|^{2}-2 t\langle v, w\rangle+\|w\|^{2} \forall t \in \mathbb{R}$ (here we could use the discriminant of this quadratic in t, but we want to use a similar proof for both cases); put $t=\frac{\langle v, w\rangle}{\|v\|^{2}}$ and then $0 \leq-\frac{\langle v, w\rangle^{2}}{\|v\|^{2}}+\|w\|^{2}$ so $|\langle v, w\rangle| \leq\|v\|\|w\|$, and for the cplx case $0 \leq\|t v-w\|^{2}=t \bar{t}\|v\|^{2}-(t+\bar{t})\langle v, w\rangle+\|w\|^{2} \forall t \in \mathbb{C}$; put $t=\frac{\overline{\langle v, w\rangle}}{\|v\|^{2}}$ then $0 \leq-\frac{|\langle v, w\rangle|^{2}}{\|v\|^{2}}+\|w\|^{2}$ and done as before.

D4

In the Euclidean case, if $v \neq \overrightarrow{0} \neq w$ the angle θ between v, w is given by $\cos \theta=\frac{\langle v, w\rangle}{\|v\|\|w\|}$, taking $\theta \in[0, \pi]$.

L5 Triangle ineq

$$
\begin{aligned}
& \|v+w\| \leq\|v\|+\|w\| \text { as }\|v+w\|^{2}=\|v\|^{2}+(\langle v, w\rangle+\overline{\langle v, w\rangle})+\|w\|^{2} \leq\|v\|^{2}+ \\
& 2\|v\|\|w\|+\|w\|^{2}=(\|v\|+\|w\|)^{2} .
\end{aligned}
$$

D6

A set e_{1}, \ldots, e_{k} of vecs $\in V$ is orthogonal if $\left\langle e_{i}, e_{j}\right\rangle=0 \forall i \neq j$ and orthonormal if $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j} \forall i, j$.

L7

If e_{1}, \ldots, e_{j} are orthog nonzero vecs they are lin ind; in fact $v=\sum \lambda_{j} e_{j} \Rightarrow \lambda_{j}=$ $\frac{\left\langle v, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$.

By $6.11,6.26 \exists$ ON bases; there is a procedure for "making" them:

T8 The Gram Schmidt Orthogonalization Process

Let V an inner prod sp (always fin dim from now on); let v_{1}, \ldots, v_{n} a basis of V. There is an $O N$ basis e_{1}, \ldots, e_{n} s.t. $\operatorname{span}\left\langle e_{1}, \ldots, e_{k}\right\rangle=\operatorname{span}\left\langle v_{1}, \ldots, v_{k}\right\rangle \forall 1 \leq$ $k \leq n$; let $e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$ and induct; if we have found e_{1}, \ldots, e_{k} take $e_{k+1}^{\prime}=v_{k+1}-$ $\sum_{j=1}^{k} \lambda_{j} e_{j} \mathrm{w} / \lambda_{j}$ chosen so that $\left\langle e_{j}, e_{k+1}^{\prime}\right\rangle=0 \forall 1 \leq j \leq k$ by $\lambda_{j}=\left\langle e_{j}, v_{k+1}\right\rangle$. Then $e_{k+1}^{\prime} \neq 0$ since v_{1}, \ldots, v_{k+1} indep; put $e_{k+1}=\frac{e_{k+1}^{\prime}}{\left\|e_{k+1}^{\prime}\right\|}$ and done.

C9

In a fin dim inprosp [shorthand for inner product sp] any ON set of vecs can be extended to an ON basis; if e_{1}, \ldots, e_{k} ON they are lin ind, extend to a basis $e_{1}, \ldots, e_{k}, v_{k+1}, \ldots, v_{n}$ and apply Gram Schmidt - first k vecs are unchanged since ON already.

D10

Let V and inprosp; if $W \leq V$ write $W^{\perp}=\{v \in V: v \perp w \forall w \in W\}$, where $v \perp w$ means $\langle v, w\rangle=0$ or equivalently $\langle w, v\rangle=0$. This is the orthogonal complement of W in V; it is clearly unique, an:

T11

If V a find dim inprosp, $W \leq V$ then $W^{\perp} \leq V$ and $V=W \oplus W^{\perp}$; let e_{1}, \ldots, e_{k} an ON basis of W, extend this to an ON basis e_{1}, \ldots, e_{n} of V; observe $e_{k+1}, \ldots, e_{k} \in W^{\perp}$ and $W^{\perp}=\left\langle e_{k+1}, \ldots, e_{n}\right\rangle$; if $v \in V$ we can write $v=$ $\sum_{j=1}^{n} \lambda_{j} e_{j}=\sum_{j=1}^{k} \lambda_{j} e_{j}+\sum_{j=k+1}^{n} \lambda_{j} e_{j}$ so $V=W+W^{\perp}$; observe $W \cap W^{\perp}=\{0\}$ since if $v \in W \cap W^{\perp}\langle v, v\rangle=0$. From now on take $W \leq V$

D12

Any $v \in V$ can be written uniquely as $v=w+w^{\prime} \mathrm{w} / w \in W, w^{\prime} \in W^{\perp}$. Def π : $V \rightarrow W$ by $v \mapsto$ this w; this is linear and surj, called the orthogonal projection of V onto W. It is a projection since $\pi^{2}=\pi$. Also observe $\operatorname{ker} \pi=W^{\perp}$ and $\pi^{\prime}=\iota-\pi$ is the orthog proj of V onto W^{\perp}.

L13

If e_{1}, \ldots, e_{k} an ON [merely orthogonal in lectures, but that must be wrong] basis of W then π satisfies $\pi(v)=\sum_{j=1}^{k}\left\langle v, e_{j}\right\rangle e_{j} \forall v \in V$, as if $v=\sum_{j=1}^{n} \lambda_{j} e_{j}$ (extending to an ON basis of V) then $\lambda_{j}=\left\langle v, e_{j}\right\rangle$ and $\pi(v)=\sum_{j=1}^{k} \pi_{j} e_{j}$ since $v=\pi(v) \in W^{\perp},=\sum_{j=1}^{k}\left\langle v, e_{j}\right\rangle e_{j}$. Note $\pi(v)$ is the point of W nearest to v; $d(v, \pi(v))($ or $\|v-\pi(v)\|) \leq d(v, w) \forall w \in W$.

P14

Any real nonsingular (note therefore square) mat A can be written $A=R T$ where R is an orthog mat (i.e. $R^{-1}=R^{T}$) and T is upper triangular; sim for A cplx but then R is unitary $\left(R^{-1}=\overline{R^{T}}\right)$. Work in $V=\mathbb{R}^{n}$ where A is $n \times n$, w/ standard dot prod. Let v_{1}, \ldots, v_{n} the cols of A; this is a basis of V since A is nonsingular. Apply Gram-Schmidt; let e_{1}, \ldots, e_{n} be the ON basis this obtained. Let R be the mat $\mathrm{w} / \operatorname{cols} e_{1}, \ldots, e_{n}$, then $R^{T} R=I$ since the e_{j} are ON. Write $v_{k}=\sum_{j=1}^{n} t_{j k} e_{j}$ and let $T=\left(t_{i j}\right)$; then T is upper triangular since $v_{k} \in \operatorname{span}\left\langle e_{1}, \ldots e_{k}\right\rangle \forall k$ and $A=R T$ since $A^{(k)}=v_{k}=\sum_{j=1}^{n} t_{j k} R^{(j)}$.

Endomorphisms of inprosps

For V an inprosp and $\alpha: V \rightarrow V$ linear:

P15 (Important)

For V fin $\operatorname{dim} \exists$! endomorphism α^{\star} of V s.t. $\langle\alpha v, w\rangle=\left\langle v, \alpha^{\star} w\right\rangle \forall v, w \in V$; moreover for B an ON basis of $V\left[\alpha^{\star}\right]_{B}=\overline{[\alpha]_{B}^{T}}$. This is the adjoint of α; note that this is not the same as the $\alpha^{\star}: V^{\star} \rightarrow V^{\star}$ defined above (even though this is sometimes called the classical adjoint); the notation is standard in both cases. Let $B=e_{1}, \ldots, e_{n}$ an ON basis of $V, A=[\alpha]_{B}$, and
let α^{\star} be the endomorphism of V given by $\left[\alpha^{\star}\right]_{B}=\overline{A^{T}}=C$, then $\forall 1 \leq$ $i, j \leq n,\left\langle\alpha\left(e_{i}\right), e_{j}\right\rangle=\left\langle\sum_{k=1}^{n} a_{k i} e_{i}, e_{j}\right\rangle=\sum_{k=1}^{n} a_{k i} \delta_{k j}=a_{j i} ;\left\langle e_{i}, \alpha^{\star}\left(e_{j}\right)\right\rangle=$ $\left\langle e_{i}, \sum_{k=1}^{n} c_{k j} e_{k}\right\rangle=\sum_{k=1}^{n} \overline{c_{k j}} \delta_{i k}=\overline{c_{i j}}$, so by linearity $\langle\alpha(v), w\rangle=\left\langle v, \alpha^{\star}(w)\right\rangle \forall v, w$; uniqueness by the same proof in reverse: this property $\Rightarrow\left[\alpha^{\star}\right]_{B}=\overline{[\alpha]_{B}^{T}}$.

Rk16

For $F=\mathbb{C}$ put $\psi(v, w)=\langle v, w\rangle$, then $\psi_{R}(w) \in V^{\star} \forall w$, each given by $v \mapsto$ $\psi(v, w) ; \psi_{R}$ is a map $V \rightarrow V^{\star}$. Then the map $V \rightarrow V^{\star} \rightarrow V^{\star} \rightarrow V$ given by $\psi_{R}^{-1} \circ \alpha^{\star} \circ \psi_{R}$ for α^{\star} the dual map of α is the adjoint map of α on V; if we identify V, V^{\star} under ψ_{R} then the adjoint and the dual of α are the same thing, since $\left\langle v, \psi_{R}^{-1} \alpha^{\star} \psi_{R} w\right\rangle=\left(\psi_{R}\left(\psi_{R}^{-1}\left(\alpha^{\star}\left(\psi_{R}(w)\right)\right)\right)\right)(v)=\left(\alpha^{\star}\left(\psi_{R}(w)\right)\right)(v)=$ $\left(\psi_{R}(w)\right)(\alpha(v))=\langle\alpha(v), w\rangle \forall v, w \in V$; if we try and do the same with a cplx inprosp we get an identification of \bar{V} with V^{\star}.

L17

For adjoint maps, $(\alpha+\beta)^{\star}=\alpha^{\star}+\beta^{\star},(\lambda \alpha)^{\star}=\bar{\lambda} \alpha^{\star}, \alpha^{\star \star}=\alpha, \iota^{\star}=\iota$ either directly from the matricies or the direct proofs are trivial, e.g. $\left\langle v, \alpha^{\star \star}(w)\right\rangle=$ $\left\langle\alpha^{\star}(v), w\right\rangle=\overline{\left\langle w, \alpha^{\star}(v)\right\rangle}=\overline{\langle\alpha(w), v\rangle}=\langle v, \alpha(w)\rangle \forall v, w \in V$ so $\left\langle v,\left(\alpha-\alpha^{\star \star}\right) w\right\rangle=$ $0 \forall v, w \in V$ i.e. $\alpha=\alpha^{\star \star}$.

D18

For V fin dim inprosp and $\alpha \in L(V)$ we define α is:

- Self-adjoint if $\alpha=\alpha^{\star}$; equivalently $\langle\alpha(v), w\rangle=\langle v, \alpha(w)\rangle \forall v, w \in V$; for V real α is symmetric, for $V \operatorname{cplx} \alpha$ is Hermitian
- An isometry if $\alpha^{\star}=\alpha^{-1}$ or equivalently $\langle\alpha(v), \alpha(w)\rangle=\langle v, w\rangle \forall v, w \in V$; for V real α is orthogonal, for $V \operatorname{cplx} \alpha$ is unitary
- Normal if $\alpha \alpha^{\star}=\alpha^{\star} \alpha$.

For matricies, a real matrix A is symmetric if $A^{T}=A$, orthogonal if $A^{T}=A^{-1}$ and a cplx mat A is Hermitian if $\overline{A^{T}}=A$ and unitary if $\overline{A^{T}}=A^{-1}$.

L19

If $\alpha \in L(V)$ for V a fin dim inprosp and B an ON basis therof, α is symmetric/hermitian/orthogonal/unitary iff $[\alpha]_{B}$ is.

L20

Let V a cplx inprosp, $\alpha \in L(V)$ Hermitian (unitary), then the evals of α are real (lie on the unit circle in \mathbb{C} and evecs corresponding to distinct evals are orthogonal; if $\alpha(v)=\lambda v \mathrm{w} / v \neq \overrightarrow{0}$ then $\lambda\langle v, v\rangle=\langle\alpha(v), v\rangle=\left\langle v, \alpha^{\star}(v)\right\rangle$ which
$=\langle v, \alpha(v)\rangle=\bar{\lambda}\langle v, v\rangle$; since $v \neq \overrightarrow{0}\langle v, v\rangle \neq 0$ so this means $\lambda=\bar{\lambda}$ i.e. λ real $\left(=\left\langle v, \alpha^{-1}(v)\right\rangle=\overline{\lambda^{-1}}\langle v, v\rangle\right.$ so $\lambda=\overline{\lambda^{-1}}$ so $\left.|\lambda|^{2}=1\right)$. If $\alpha\left(v_{i}\right)=\lambda_{i} v_{i}$ for $i=1,2$ $\mathrm{w} / \lambda_{1} \neq \lambda_{2}$ then $\lambda_{1}\left\langle v_{1}, v_{2}\right\rangle=\left\langle\alpha\left(v_{1}\right), v_{2}\right\rangle=\left\langle v_{1}, \alpha^{\star}\left(v_{2}\right)\right\rangle=\left\langle v_{1}, \alpha\left(v_{2}\right)\right\rangle=$ $\overline{\lambda_{2}}\left\langle v_{1}, v_{2}\right\rangle=\lambda_{2}\left\langle v_{1}, v_{2}\right\rangle$ so $\left(\lambda_{1}-\lambda_{2}\right)\left\langle v_{1}, v_{2}\right\rangle=0$ and $\left\langle v_{1}, v_{2}\right\rangle=0$ (the pf for unitary α is similar).

Main T: 21

Let V a cplx findim inprosp, α a Hermitian (unitary) endomorphism of V, then \exists an ON basis of V consisting of evecs of α, i.e. $[\alpha]_{B}$ is diagonal wrt some ON B : since V is cplx α has an eval λ; let $\alpha(e)=\lambda e$ with $\|e\|=1$ (which we can do by scaling since $e \neq \overrightarrow{0}$); let $W=\langle e\rangle^{\perp}$, then $V=\langle e\rangle \oplus W$ by T11 (or an easy direct pf) and $\alpha(W)=W ; W$ is α-invariant: if $v \in W$ then $\langle\alpha(v), e\rangle=\left\langle v, \alpha^{\star}(e)\right\rangle=\langle v, \alpha(e)\rangle=\bar{\lambda}\langle v, e\rangle=0\left(=\overline{\lambda^{-1}}\langle v, e\rangle=0\right.$ for unitary $)$, so $\alpha(v) \in W$. Now $\left.\alpha\right|_{W}$ is Hermitian (unitary) so by induction \exists an ON basis e_{2}, \ldots, e_{n} of W consisting of evecs of α and then $\left\{e, e_{2}, \ldots, e_{n}\right\}$ is an ON basis of V of evecs of α.

L22

Let V a real findim inprosp, $\alpha \in L(V)$ a symmetric endomorphism therov, then α has real evals and evecs corresponding to distinct evals are orthog; for B an ON basis of $V[\alpha]_{B}$ is a real symmetric mat so Hermitian so by 20 the evals of α are real, and we have orthogonality by the same pf as in 20 .

Main T: 23

Note that this T does not in general work for orthog endomorphisms, only symmetric ones; let V a real findim inprosp, α a symmetric endomorphism therof, then \exists an ON basis (of V) of evecs of α : by 22α has a real eval so let e a corresponding evec of length 1 , let $W=\langle e\rangle^{\perp}$ and continue as in T21

A common generalisation, which should be considered as an exercise: for V over \mathbb{C} and $\alpha \in L(V)$ normal (i.e. $\alpha \alpha^{\star}=\alpha^{\star} \alpha$), \exists an ON basis of evecs.

Rk24

L22 and hence T23 do not hold for orthog endomorphisms of real inprosps e.g. $n=2, \alpha$ a rotation has in general no real evals; however, see Exs4Q14: for V a real inprosp and $\alpha \in L(V)$ orthogonal \exists an ON basis B st $[\alpha]_{B}=$

$$
\left(\begin{array}{cccccccc}
1 & & & & & & & \\
\\
& \ldots & & & & & & \\
\\
& & 1 & & & & & \\
\\
& & -1 & & & & & \\
& & & & \cdots & & & \\
& & & & & -1 & & \\
& & & & & \square & & \\
& & & & & & \cdots & \\
& & & & & & & \square
\end{array}\right) \text { where the } \square \operatorname{are} 2 \times 2 \operatorname{blocks}\left(\begin{array}{cc}
\cos \theta_{j} & \sin \theta_{j} \\
-\sin \theta_{j} & \cos \theta_{j}
\end{array}\right) ;
$$

as an outline of the pf if α has a real eval λ then $\lambda= \pm 1$ as before (λ must be on the unit circle as per L20). Assume all irreducible factors of the min poly m of α (i.e. α has no real evals), then let $m_{\alpha}(x)=\left(x^{2}+a x+b\right) q(x) ; q(\alpha) \neq 0$; let $v \in \operatorname{Im}(q(\alpha))$, then $\left(\alpha^{2}+a \alpha+b\right)(v)=\overrightarrow{0}$; let $W=[$ span $]\langle v, \alpha(v)\rangle$, then $V=W \oplus W^{\perp}$; both W and W^{\perp} are α-invariant, and we induct.

Rk 24A

Let $A \in M_{n}(\mathbb{R})\left(M_{n}(\mathbb{C})\right)$ symmetric (Herm); regard it as an endomorphism of $\mathbb{R}^{n}\left(\mathbb{C}^{n}\right) \mathrm{w} /$ standard inner prod: $v \mapsto A v . \exists$ an ON basis v_{1}, \ldots, v_{n} of evecs by the above. Then $P=\left(v_{1} \ldots v_{n}\right)$ is orthogonal (unitary) and $A P=P d \mathrm{w} /$ D diagonal $=\left(\begin{array}{ccc}\lambda_{1} & & \\ & \ldots & \\ & & \lambda_{n}\end{array}\right)$; then $P^{-1} A P=D=P^{T} A P\left(\overline{P^{T}} A P\right)$. Note P is the change of basis mat from the standard basis to our ON basis of evecs $v_{1}, \ldots, v_{n} ; A$ is of course the mat of the endomorphism wrt the standard basis.

L25

Let ψ a symmetric (herm) bilinear form on a real (cplx) vec sp V; let $A=[\psi]_{B}$ for some ON basis B of V, then $s(\psi)=$ no. $+v e$ evals of $A-$ no. $-v e$ evals of A : A is symmetric (herm) so by the above \exists an ON B s.t. $P^{-1} A P=D=P^{T} A P$ $\left(\overline{P^{T}} A P\right) \mathrm{w} / D$ diagonal. But then the evals of D are those of $P^{-1} A P$ so we are done.

T26

Simultaneous diagonalization of quadratic forms: let ψ, ϕ symmetric (Herm) bilinear forms on a real (cplx) vecsp V; assume one of them, wlog ψ, is + ve definite (see Exs4Q10 for why this is actually necessary necessary), then \exists basis B of V st $[\psi]_{B},[\phi]_{B}$ diagonal: fix any basis and have mats A, C representing ψ, ϕ. Diagonalise ψ : \exists non-singular mat P s.t. $P^{T} A P=I$ since ψ is + ve definite, now $P^{T} C P$ is symmetric so $\mathrm{m} \backslash$ exists an orthog mat $R \mathrm{w} / R^{T} P^{T} C P R=D$ diagonal, then $(P R)^{T} A(P R)=R^{T} I R=I$ and $(P R)^{T} C(P R)=D$ as above, and $P R$ is nonsingular since P, R are, so we are done.

Rk

The diagonal entries of D are precisely the roots of the poly $\operatorname{det}(C-t A)$ since they are the roots of $\operatorname{det}(D-t I)=\operatorname{det}\left((P R)^{T} C P R-t(P R)^{T} A P R\right)=$ $\operatorname{det}(P R)^{T} \operatorname{det}(C-t A) \operatorname{det}(P R)=(\operatorname{det} P R)^{2} \operatorname{det}(C-t A)$; since $P R$ is nonsingular the roots of this are precisely those of $\operatorname{det}(C-t A)$ as required.

Exercise: a symmetric mat is + ve definite iff the n principal minors (dets of submats in the top left corner of size $1,2, \ldots$) are + ve.

Final Rk

In IA A\&G we looked at conics. For $n=2: a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}+b_{1} x_{1}+$ $b_{2} x_{2}+c=0$. This is the locus of $\vec{x}^{T} A \vec{x}+B \vec{x}+C=0$ where A is the symmetric $\operatorname{mat}\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right), B=\binom{b_{1}}{b_{2}}$. For general n these [kinds of forms?] are called quadrics. Assume the conics are non-degenerate (not just points and straight lines) and we have the following cases:

- $s(A)=2$, an ellipse. If we diagonalise using an orthog transformation $a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+b_{1} x_{1}+b_{2} x_{2}+c=0$ for new constants, then translate $x_{i} \rightarrow x_{i}-\frac{b_{i}}{2 a_{i}}$ so $b_{1}=b_{2}=0$ i.e. $a_{11} x_{1}^{2}+a_{22} x_{2}^{2}=c$; we can also squash by a non-orthogonal transform matrix P to $x_{1}^{2}+x_{2}^{2}=1$, the unit circle.
- $r(A)=2, s(A)=0$; we similarly obtain a hyperbola $a_{11} x_{1}^{2}-a_{22} x_{2}^{2}=c$. On a 1D subsp the restricted form is + ve for lines between the two asymtopes in the same sections where the hyperbola is, and -ve for lines in the other two sections.
- $r(A)=s(A)=1: a_{11} x_{1}^{2}+b_{1} x_{1}+b_{2} x_{2}+c=0$; translating we cannot eliminate $b_{2} x_{2}$ but have $a_{11} x_{1}^{2}+b_{2} x_{2}+c=0$, then let $x_{2} \rightarrow x_{2}-\frac{c}{b_{2}}$ and $a_{11} x_{1}^{2}+b_{2} x_{2}=0$, a parabola.

For $n>2$ we get similar sets of cases, e.g. for $n=3, r(A)=3$:

- $s(A)=3$: squashed form $x^{2}+y^{2}+z^{2}=1$, an ellipsoid
- $s(A)=1$: squashed form $x^{2}+y^{2}-z^{2}=1$, a hyperboloid of one sheet
- $s(A)=-1$: squashed form $x^{2}-y^{2}-z^{2}=1$, a hyperboloid of two sheets

This concludes this course. For further reading and course is the next term, the lecturer recommends M Artin's "Algebra".

