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Introduction

0.1 Groups

This section continues from the IA course “Algebra and Geometry”. We concen-
trate on finite groups, and there is some interplay between counting arguments
and the structure of the groups. The main result from this section is Sylow’s T:
Let G be a finite group and |G| = pam w/ P prime and m coprime to p, then
there is a subgroup of order pa, all such subgroups are conjugate, and the num-
ber of such subgroups np ≡ 1(p) and np | |G| (and thus m). This tells us to
consider subgroups of prime power order.

This section leads towards courses in Representation Theory and Galois
Theory

0.2 Rings

A ring R has two operations + and ×, with distrutivity. Some examples are
the fields R, Q, C, but also Z, and polynomial rings such as C[X ], Z[X ]. In this
course we will concentrate on commutative rings and in particular those of in-
terest to number theory and algebraic geometry. For number theory we look at
rings like Z[i] = {a+ ib : a, b ∈ Z} ⊂ Q[i] ⊂ C, the Gaussian integers; more gen-
erally, in number theory we look at fields obtained by adjoining roots of integral
polys e.g. x2 + 1 to the rationals. Inside these there are rings that play the role
of the indtegers. The Gaussian integers are well behaved; in particular, Euclid’s
algorithm works, and hence we have unique prime factorization. However, in
general this is not the case. Study of these rings leads to the Number Theory
course and also Coding and Cryptography.

In algebraic geometry we look at sets of zeroes of polys of n vars, e.g. in
Cn, we study polys of C[X1, . . . , Xn]. For f(X1, . . . , Xn), f2(X1, . . . , Xn), . . .
we want to study the set of common zeroes. We will proove Hilbert’s Basis T,
which ⇒ it is equal to the set of zeroes of a finite subset of these polys.

0.3 Modules

These are a generalization of vec sps; scalars are taken from a ring instead of
a field. The theory for these is more complicated, but for “nice” rings there
are structure thms; we concentrate on modules with scalars from a ring where
Euclid’s algorithm works, especially Z and Q[X ].
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The Z-modules are ≡ the abelian groups, and important for Algebraic Topol-
ogy. C[X ]-modules give us the JNF, a good form for mats representing endo-
morphisms of vec sps.

Books

Fraleigh’s is the best introduction to this topic, and there is little difference be-
tween its many editions. Hartley & Hawkes’ (out of print) “Rings and Modules”
is also recommended, or for a more modern work, Cameron’s “Introduction to
Algebra”. Finally there is also the American Artin, whose book it is worth
getting a later rather than earlier edition of. There are four example sheets for
this course plus one mock tripos sheet; the lecture split between the three main
sections is approximately 8/10/6. In general, feedback from previous years is
that this course is interesting but contains a lot of content in comparison with
other IB courses.

1 Groups

1.1 Basic Concepts

Definition

A set G is a group wrt a binary operator :̇G × G → G if it satisfies the axioms
of closure (g1, g2 ∈ G ⇒ g1g2 ∈ G), associativity (g1(g2g3) = (g1g2)g3), the
existence of an identity elt (e) and inverses (∃g−1 : gg−1 = g−1g = e). The no.
of elts in G is its order, written |G| if it is finite. We met various examples in
A&G:

a) (Q, +), (R, +), C, +), additive groups

b) GLn(R), the general linear gp w/ real coefficients, or gr of invertible n×n
matricies

c) permutation groups, e.g. Sn the symmetric gp on n objects

d) the cyclic gp of order n, {e, x, . . . , xn−1} for some elt x

e) the dihedral gp of order 2n, D2n, the symmetry gp of the regular n-gon,
consisting of n rotations (including the identity) and n reflections

Definition

A subset H is a subgroup of G if it is a cp under restriction of the operation;
the notations is H ≤ G.

Rk

To check a subset is a subgp one demonstrates h1h
−
2 1 ∈ H if h1, h2 ∈ H .

Given a subgp H of G we can def an equivalence relation on G by g1 ∼ g2 ⇔
g−1
1 g2 ∈ H ; this partitions G into equiv classes of the form gH = {gh : h ∈ H},

the left cosets of H in G. Notice that these are all of the same size |H |, so by
counting we have:
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T (Lagrange) (1.1)

Let H ≤ G, G a fin gp, then |G| = |H ||G : H | where |G : H | = the index of H
in G = the no. of left cosets of H in G; in particular |H | | |G|.

Rk

We could equally well have done this for right cosets, using the equiv rel g1 ∼
g2 ⇔ g1g

−1
2 ∈ H ; thus the no. of right cosets = |G : H | = |G|

|H| = no. of left
cosets.

Def

The order o(g) of the elt g in G is the least n ≥ 1 st gn = e if such an n exists;
otherwise g is of infinite order. Note that gm = e ⇒ o(g) | m.

Lemma (1.2)

The order of an elt of G divides |G|, as {e, g, . . . , gn−1} where n = o(g) is a
subgp of G, so by Lagrange (1.1) n | G.

1.2 Normal subgps, homomorphisms, quotient groups, iso-

morphisms

Example

(Z, +) ⊂ (R, +); one coset is Z, another is Z + 1
2 [i.e. {. . . ,− 3

2 ,− 1
2 , 1

2 , 3
2 , . . . }].

We would like to define the addition of cosets here; we should have e.g. (Z+ 1
2 )+

(Z+ 1
3 ) = (Z+ 5

6 . More generally, for a subgp K of G it wousd be good to be able
to define multiplication of cosets (g1K) · (g2K) = g1g2K. But for this to work
we must have {g1k1g2k2 : k1 ∈ K1, k2 ∈ K2} be the single coset g1g2K; thus
g1Kg2K = g1g2K and multiplying on the left by g−1

1 we get Kg2K = g2K i.e.
we need Kg2 ⊂ g2K; similarly starting with right cosets we need Kg2 ⊃ g2K
so we’re sead to consider normal subgroups.

Definition

K ≤ G is normal in G if gK = Kg∀g ∈ G (i.e. left cosets = right cosets; of
course it is equivalent that gKg−1 = K); the notation is K ⊳ G.

Examples

All subgps of abelian gps are normal
{e} and G are normal subgps of G
The rotation subgp ⊳D2n, but {e, reflection} is not normal is D2n, since

greflectiong−1 is in general a different reflection.

Proposition (1.3)

Let K ⊳ G, then we can define (g1K) · (g2K) = g1g2K and under this operation
the set of cosets form a group G

K
, the quotient group of K in G. The proof is as

last year; the operation is well defined by the above, if g1K = g′1K, g2K = g′2K
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then g1g2K = g′1g
′
2K. Closure is trivial, associativity follows from that for G,

the identity elt is K and the inverse of any element gK is g−1K.

Definition

A map θ : G → H where G, H are groups is a group homomorphism if θ(g1g2) =
θ(g1)θ(g2).

Lemma (1.4)

Let θ : G → H be a (group) homomorphism, then a) the kernel ker θ = {g ∈
G : θ(g) = eH} ⊳ G and b) the image Im(θ) = {h : h = θ(g) some g ∈ G} ≤ H :
for a), let K = ker θ, then the left coset gK = {g1 ∈ G : θ(g) = θ(g1)} (since
θ(g1) = θ(g) ⇔ θ(g−1g1) = e) but similarly the right coset Kg = {g1 ∈ G :
θ(g1) = θ(g)} and thus gK = Kg; this is true ∀g ∈ G so K ⊳G. For b), we need
to show θ(g)θ(g1)

−1 also belongs to the image, but this is just θ(gg−1
1 ) since θ

is a homomorphism.

Def

A homomorphism θ : G → H is an isomorphism if it is bijective; the notation
is G ∼= H ; note that ’isomorphic to’ is an equivalence relation.

1st isomorphism Thm (1.5)

Let θ : G → H be a homomorphism of groups, K = ker θ. Then G
K

∼= Im(θ) ≤
H : we define Φ : G

K
→ Im(θ) by gK 7→ θ(g), and this is an isomorphism: it is

well defined since if gK = g1K then θ(g) = θ(g1), as per the previous lemma,
a homomorphism since Φ(g1K, g2K) = Φ(g1g2K) = θ(g1g2) = θ(g1)θ(g2) =
Φ(g1K)Φ(g2K), injective since if Φ(g1K) = Φ(g2K) then θ(g1) = θ(g2) so
g1K = g2K, and trivially surjective.

Example

(Z, +) ⊂ (R, +); define a group hom θ : (R, +) → (C⋆,×), the nonzero cplx nos
under multiplication, by r 7→ e2πir; the kernel is (Z, +), image is the unit circle,
so by (1.5) R

Z
∼= T , the unit circle under multiplication ≤ (C,×).

The numbering of the 2nd and 3rd isomorphisms Thms varies between dif-
ferent books.

2nd isomorphism Thm (1.6)

Let K⊳G, H ≤ G, then HK ≤ G where HK = {hk : h ∈ H, k ∈ K}, H∩K ⊳H ,
and H

H∩K
∼= HK

K
.

HK is a subgp of G since (h1k1)(h2k2)
−1 = h1h1k

−1
2 h−1

2 ∈ h1Kh−1
2 , which

since K ⊳ G this is h1h
−1
2 K ⊂ HK.

Define θ : H → G
K

by h 7→ hK; this is a homomorphism (clearly well defined)
since θ(h1h2) = h1h2K = h1K · h2K = θ(h1)θ(h2), so apply 1st isomorphism
T; ker θ = {h ∈ H : hK = K} = H ∩ K, Im θ = {hK : h ∈ H} = {gK :
g ∈ HK} = HK

K
≤ G

K
; thus H

H∩K
∼= HK

K
. In fact there is a very strong

relationship between subgps of G containing K and subgps of G
K

; we can biject
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by L 7→ L
K

= {lK : l ∈ L}; the inverse of this is X 7→ {g ∈ G : gK ∈ X}.
Moreover, the set of normal subgps of G containing K is isomorphic to the set

of normal subgps of G
K

by the same isomorphism, since gK L
K

(gK)−1 = gLg−1

K

3rd isomorphism Thm (1.7

Let G ⊳ K and K ≤ L ⊳ G, then
G
K
L
K

∼= G
L

; define θ : G
K

→ G
L

by gK 7→ gL;

this is well defined since if gK = g1K then g−1
1 g ∈ K ≤ L so gL = g1L, and

a hom since θ(g1Kg2K) = θ(g1g2K) = g1g2L = g1Lg2L = θ(g1K)θ(g2K), then

we apply (1.5); ker θ = {gK : gL = L} = L
K

, Im(θ) = G
L

trivially, so
G
K
L
K

∼= G
L

.

Definition

G is simple if the only normal subgps in G are {e} and G.

Examples

The only abelian finite simple groups are cyclic of prime order (∼= Cp), since in an
abelian group all subgps are normal, and if g 6= e ∈ G we know {e, g, . . . , go(g)−1} ≤
G, so this must be G, and if o(g) = rs then {e, gr, g2r, . . . , gr(s−1)} ≤ G, so o(g)
must be some prime p.

Shortly we shall show that A5 is simple.
This section is non-examinable; in fact An is simple ∀n ≥ 5. Note that

|A3| = 3 so A3 is abelian, the cyclic group of order 3. Thus the exceptional
case is not that A5 is simple, but that V = {e, (12)(34), (13)(24), (14)(23)}⊳ A4

so this is not simple. |A5| = 60, |A6| = 360; there is a finite simple group “in
between” these of order 168, which is most easily approached as GL(Z2, 3); as
an excercise the reader should show this has order 168 and, if very keen, that it
is simple. There are several infinite families apart from the alternating groups,
and 26 ’sporradic’ non-abelian finite simple groups which don’t fit into these
families.

Thm (1.8)

This is quite an important Thm; let G be a finite group, then there are subgroups
{e} = Hs ⊳ · · · ⊳ H2 ⊳ H1 ⊳ H0 = G where Hi+1 ⊳ Hi∀i, Hi

Hi+1
simple (note not

generally Hi ⊳ G).
Pick H1 from the normal subgroups of G so that H1 � G but |H1| maximal,

then our bijection between normal subgroups of G containing H1 and normal
subgroups of G

H
tells us that G

H1
is simple; repeat to find H2, H3, . . . ; since G is

finite we eventually reach Hs = {e}. The Hi are not essentially unique, but the
simple quotients Hi

Hi+1
, the composition factors of G, are.

Definition

G is soluble if all its composition factors are cyclic of prime rder; the terminology
comes from Galois theory. Solving a quadratic equation we have a formula for
the roots, similarly for cubics and quartics (solution by radicals), but quintic
equations cannot in general be solved this way. The method of finding these
solutions is to associate a ’Galois Group’ with the polynomial; a polynomial
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equation is soluble by radicals only if the Galois group is soluble. However,
t5 − 6t+3 has Galois group S5 which is not soluble; it has compositiaon factors
∼= A5 and C2 by 1 ⊳ A5 ⊳ S5.

1.3 Permutation groups, actions and permutation repre-

sentations

This section continues from the A&G course.
Sn, the symmetric group of bijective maps {1, . . . , n} → {1, . . . , n}, called

the permutations on {1, . . . , n}, has |Sn| = n!. The usual notation for its el-
ements is disjoint cycle form e.g. (123)(45)(6), but we usually suppress the
1-cycles.

An is the alternating group of even permutations on {1, . . . , n}; an even
permutation is one which may be expressed as a product of an even no. of
transpositions e.g. (12)(34), (123) = (12)(23); equivalently a permutations is
even iff there are an even no. of cycles of even length in its expression in
disjoint cycle form. |An| = n!

2 , |Sn : An| = 2. There are two cosets of An in Sn,
the even permutations and the odd permutations, so left cosets = right cosets
and An ⊳ Sn.

More generally, for any set Ω we can define its symmetry group SymΩ of all
bijective maps Ω → Ω.

Definition

G is a permutation group of degree n if G ≤ SymΩ where |Ω| = n, e.g.
Sn, An, D2n considered as permuting the verticies of a regular n-gon.

Definition

Let G be a group, Ω a set. The map ⋆ : G × Ω → Ω (g, α) → g ⋆ α (usually
written g(α) is an action of G on Ω if:

i) g ⋆ α ∈ Ω∀g ∈ G, α ∈ Ω

ii) g1 ⋆ (g2 ⋆ α) = g1g2 ⋆ α∀g1, g2 ∈ G, α ∈ ω

iii) e ⋆ α = α∀α ∈ Ω

Definition

The orbit of G on Ω containing α is G(α) = {g × α : g ∈ G}

Definition

G is transitive on Ω if Ω is the only orbit, i.e. there is exactly one orbit.

Definition

If α ∈ Ω the stabiliser of α is Gα = {g ∈ G : g ⋆ α = α}.
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Thm (orbit-stabiliser) (1.9)

Let G act on Ω and α ∈ Ω, then |G(α)| = |G : Gα|; the size of the orbit of α is
the index of the stabiliser, as there is a bijection from the set of left cosets of
Gα in G to G(α) by gGα → g ⋆ α.

Lemma (1.10)

Let G act on Ω. For g ∈ G the map φg : Ω → Ω defined by α 7→ g ⋆ α is a
permutation on Ω (it has inverse φg−1 so is bijective so a permutation), and the
map φ : G → SymΩ defined by g 7→ φg is a homomorphism by the definition of
an action, a permutation representation of G. By the first isomorphism theorem

(1.5) the image φ(G) is a subgroup of SymΩ, defined to be GΩ, the kernel of φ,
G(Ω) := {g ∈ G : g ⋆ α = α∀α ∈ Ω}, is a normal subgroup of G, and G

G(Ω)

∼= GΩ.

If G(Ω) = {e}, the action is faithful.

Rk

Cf Exs1Q11; if G acts on Ω giving orbits Ω1, . . . , Ωr then the image of φ in
SymΩ is isomorphic to a subgroup of the direct product SymΩ1×· · ·×SymΩr.

1.3.1 Examples

1)a) Ω = the set of diagonals of a cube, G = the symmetry group of the cube.
|Ω| = 4, |G| = 48. G acts on Ω; GΩ ∼= S4, G(Ω) = {e, central inversion}

1)b) The dodecahedron has 12 pentagonal faces, 30 edges, and 20 verticies,
with 3 pentagons about each vertex; the icosahedron has 20 triangular
faces, 30 edges and 12 verticies, with 5 triangles about each vertex. These
are dual to each other; if we put a vertex at the centre of each face of one
we obtain the other (the same is true of the cube and octahedron). Let
G be the rotation group (the same for both shapes); we use (1.9) to find
|G|, e.g. Ω = the set of faces of a dodecahedron; |Ω| = 12, |Gα| = 5, G
acts transitively so |G| = 5 × 12 = 60. Alternatively one can inscribe 5
cubes inside a dodecahedron (each using 8 of the 20 verticies); Ω = the
set of inscribed cubes, |Ω| = 5, GΩ ∼= A5, G(Ω) = {e}, G acts faithfully on
Ω (the missing part of this proof, an exercise for the reader, is to show
that a subgroup of S5 of order 60 must be A5)

2) Left regular action of G on Ω = G: g ⋆ α = gα∀g, α ∈ G. kerφ = {e}, so
since φ is an isomorphism we have by (1.10):

Theorem (Cayley) (1.11)

Any group G is isomorphic to a subgroup of SymG

3) Action of G on Ω = the set of left cosets of some H ≤ G: g ⋆g1H = gg1H .
The kernel of φ is

⋃

g1∈G g1Hg−1
1 , since we must have gg1H = g1H∀g1 ∈ G

so g−1
1 gg1 ∈ H i.e. g ∈ g1Hg−1

1 ∀g ∈ G. This kernel is the largest normal
subgp of G contained in H , since it is clearly normal and if K ≤ H, K ⊳ G
then K = g1Kg−1

1 ∀g1 ∈ G; K ≤ g1Hg−1
1 so K ≤ ⋂

g1∈G g1Hg−1
1
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Thm (1.12)

Let G a fin gp, H a proper subgp of G, |G : H | = n, then ∃K ⊳ G with K ⊂ H
s.t. G

K
∼= a subgp of Sn: let K be the kernel of the permutation repr arising

from the action of G on Ω = the let of left cosets of H in G. By (1.10) G
K

∼= GΩ,
a subgp of SymΩ ∼= Sn. G : K divides n! by Lagrange (1.1) and is ≥ n since
the action is transitive so |GΩ| ≥ n (in fact n | |GΩ|).

If G is non-abelian and simple then G ∼= a subgp of An: K = {e} by
simplicity, so G ∼= GΩ ≤ Sn, but An ⊳ Sn so GΩ ∩ An ⊳ GΩ; Gn ∩ An must
therefore be either {e} or GΩ; if the latter then GΩ ≤ An as required, if the
former GΩ must contain the same number of even and odd permutations so is
of order 2, contradicting G is non-abelian.

1.4 Conjugacy classes, centralisers and normalisers

Def the conjugacy action of G on Ω = G by g ⋆x = gxg−1∀x, g ∈ G. In this case
the permutations φg : x 7→ gxg−1 are bijective but also group homomorphisms,
thus they are automorphisms of G. We def AutG to be the set of isomorphisms
G → G; this is a gp under composition of maps.

Orbits are called conjugacy classes; cclG(x) = {gxg−1 : g ∈ G}. Stabilisers

are called centralisers, CG(x) = {g ∈ G : gxg−1 = x} (note this is the same as
the set of elts of G which commute with x). By orb-stab (1.9) |G : CG(x)| =

| cclG(x)|; the LHS is |G|
|CG(x)| , but |G| =

∑ | cclG(x)| where the sum is over

distinct conjugacy classes, so we have:

Lemma (1.13)

If G is finite, 1 =
∑

1
|CG(X)| (where the sum is over discrete conjugacy classes),

as 1 = 1
|G|

∑

| cclG(x)| = 1
|G|

∑

|G : CG(x)| = 1
|G|

∑ |G|
|CG(x)| =

∑

1
|CG(x)| .

The kernel of this permutation representation G → SymΩ G(Ω) = {g ∈ G :
gxg−1 = x∀x ∈ G} = {g ∈ G|gx = xg∀x ∈ G} =

⋂

x∈G CG(x), is called the
centre of G.

There is another conjugacy action of G on Ω = the set of subgps of G, g⋆H =
gHg−1; orbit of H is the conjugacy class of H, {gHg−1 : g ∈ G} = cclG(H),

stabiliser is the normaliser of H, {g ∈ G : gHg−1 = H} = NG(H); by orb-stab
(1.9) |G : NG(H) = | cclG(H).

Example: Conjugacy classes in Sn and An

Recall from A&G that two elts of Sn are conjugate iff they have the same cycle
type when written in disjoint cycle form. If we write 221 for the cycle type of an
element consisting of two 2-cycles and one 1-cycle and similarly, then S5 contains
1 elt of type 15, 15 of 221, 20 of 312, and 24 of 5 for the even permutations and
10 of type 213, 20 of type 32 and 30 of type 41 for the odd permutations.

Rk

We can now see that any subgp of S5 of order 60 must be A5; such a H is of
index 2 so normal in Sn so a union of conjugacy classes, and were it not A5 it
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would have to contain exactly 30 even permutations (and 30 odd ones) which
is impossible.

Let g ∈ A5, then cclAn
(g) ≤ cclSn

(g). | cclSn
(g)| = |Sn : CSn

(g)| by orb-stab
(1.9), |Z cclAn

(g)| = |An : CAn
(g)|. But CAn

(g) = An ∩ CSn
(g), which must be

of index 1 or 2 in CSn
(g) (either CSn

(g) lies entirely in An or contains an equal
no. of odd and even permutations). If CAn

(g) = CSn
(g) then | cclSn

(g)| =
2| cclAn

(g)| since |Sn : CSn
(g)| = |Sn : CAn

(g)| = |Sn : An||An : CAn
(g)| =

2|An : CAn
(g)| = 2| cclAn

(g)|; if CAn
(g) is of index 2 in CSn

(g) then | cclSn
(g)| =

| cclAn
(g)|. Thus some Sn-conjugacy classes (of even permutations) split into

two conjugacy classes in An, according to whether CAn
(g) = CSn

(g) or not. In
fact (excercise) this happens iff all cycles in disjoint cycle form have distinct
length, e.g. for n = 5 (12)(34) commuties with (12), as does (345), so the
conjugacy classes of double transpositions and 3-cycles both do not split, but
the conjugacy class of 5-cycles does split.

Reccall g((12345))g−1 = (g(1) . . . g(5)). CSn
((12345)) is just the subgp

generated by (12345), i.e. {e, (12345), (13524), (14253), (15432)}, and this =
CA5((12345)). So in A5 the conjugacy classes are 1 elt of type 15, 15 of type
221, 20 of type 312, and two classes of size 12 each with elts of cycle type 5.

Rk

One can see this geometrically via the rotation gp of the dodecahedron (or
icosahedron): the conjugates of a rotation are rotations of the same angle but
about a different axis, e.g. 5-cycles correspond to rotations of the dodecahedron
about an axis through midpoints of faces. The conjugacy classes are rotations by
± 2π

5 and rotations by ± 4π
5 (a rotation of − 2π

5 is one of 2π
5 about the “opposite

axis” [the same axis in the opposite direction]).

Prop (1.14)

A5 is simple: let K ⊳ G = A5. A subgp is normal iff it is a union of conjugacy
classes, so |K| = a + 15b + 20c + 12d where a = 1 (e ∈ K), b, c are each either
0 or 1, and 0 ≤ d ≤ 2. Lagrange (1.1) implies |K| | 60, but the only ways this
can happen are a = 1, b = c = d = 0 i.e. K = {e} or a = b = c = 1, d = 2 i.e.
K = G, so we have the result.

1.5 Finite p-groups

Definition

A gp G is a p-group if |G| = pn some prime p.

Thm (1.15

Let G be a p-group, then its centre Z(G) 6= {e}: the size of cclG(x) is the index of
CG(x) so divides |G| (by orbit-stabiliser (1.9)), so the possible sizes of conjugacy
classes are 1, p, p2, . . . . pn = |G| =

∑

i=0,1,... [no. of classes of size pi] × pi. But
p | |G|, so we must have p | the no. of conj classes of size 1. But {x} is a conj
class iff gxg−1 = x∀g ∈ G ⇔ gx = xg∀g ∈ G ⇔ x ∈ Z(G). So |Z(G)| = the no.
of conj classes of size 1 ≥ p.
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Lemma (1.16)

For any gp, if G
Z(G) cyclic then G is abelian (i.e. G = Z(G)): suppose G

Z(G) is

cyclic, generated by some gZ. Each elt of G
Z(G) is of the form (gZ)r = grZ for

some r, so any elt x1 of G is of the form grz for some r and z ∈ Z(G). But
then any two elts x1, x2 ∈ G commute, since they are respectively gr1z1, g

r2z2

and x1x2 = gr1z1g
r2z2 = gr1gr2z1z2 = gr2gr1z2z1 = gr2z2g

r1z1 = x2x1, since
both z1, z2 commute with all other elts of G.

Prop (1.17)

Gps of order p2 are abelian: (1.15) implies |Z(G)| ≥ p so G
Z(G) is of order 1

or p, but if it is of order p then G
Z(G) is cyclic so by (1.16) G is abelian (i.e.

G = Z(G)), a contradiction, thus G
Z(G) is of order 1, G = Z(G) and is therefore

abelian.

Direct Products

Given gps G, H we can construct a gp G×H by (g1, h1)(g2, h2) = (g1g2, h1h2).
Inside G × H we have subgps G1 = {(g, eH) : g ∈ G} ∼= G, H1 = {(eG, h) : h ∈
H} ∼= H w/ G1∩H1 = {(eG, eH)}, the identity elt of G×H , and G1H1 = G×H .

G×H is usually called the external direct product; there is also an internal direct product
L; this is when in L there are subgroups G1

∼= G, H1
∼= H, G1∩H1 = {e}, G1H1 =

L and all elts of G1 commute w/ all els of H1 (and thus L ∼= G1×H1, cf Exs1Q5).

Rk

Gps of order p2 are ∼= Cp2 or ∼= Cp × Cp; for gps of order p3 see Exs1Q6.

Thm (1.18)

A p-group G of order pn contains a subgroup of order pm for any 1 ≤ m ≤ n
(this is something of a converse to Lagrange): we induct on n, the n = 1 base
case being trivial. Assume n > 1, then by (1.15) the centre Z(G) 6= {e}. Pick
x 6= e ∈ Z(G); by taking a suitable power of x we may assume it is of order
p. Thus K = {e, x, . . . , xp−1} is a subgroup of G and normal since x ∈ Z(G),
so |G

K
| = pn−1. Apply the inductive hypothesis to find a subgroup H

K
≤ G

K
of

order pm−1, then the correspondence between subgroups of G
K

and subgroups
of G containing K gives us a subgroup H of G containing K with |H | = pm as
required.

1.6 Finite abelian groups

Thm (1.19)

Let G be a finite abelian group, then G is a direct product Cd1 ×Cd2 ×· · ·×Cdk

w/ di+1 | di and |G| = d1d2 . . . dk.
This theorem is proovable now, but doing so is messy; we shall proove it in

section 3 with more sophisticated methods than we currently have available. For
the devoted reader who wishes to try now, an outline is to pick x of maximal
order; if G generates G then we are done, otherwise (and this is the crux of

10



the proof) we can show ∃H ≤ G w/ 〈x〉 (the (cyclic) group generated by x)
∩H = {e} and G = 〈x〉H , then induct.

For example the abelian groups of order 8 are C8, C4×C2, C2×C2×C2 and
those of order 16 are C16, C8 × C2, C4 × C4, C4 × C2 × C2, C2 × C2 × C2 × C2.

Lemma (1.20)

If (m, n) = 1 then Cmn
∼= Cm ×Cn: take generators g, h of Cm, Cn respectively,

and consider the order of (g, h); (g, h)r = (gr, hr, so the least r for which this is
e = (eG, eH) will be lcm(m, n) which = mn by hypothesis. But |Cm×Cn| = mn
so this means (g, h) is a generator of Cm × Cn, so the group is cyclic of order
mn, e.g. C6 = C2 × C3, so the abelian groups of order 24 are ∼= C24, C12 × C2

or C6 × C2 × C2.

1.7 Sylow’s theorems with applications to small groups

Theorem (1.21) (Sylow)

Let G be a group with |G| = pam, p prime, p ∤ m. Then:
1) There is a subgroup of order pa of G, called a Sylow p-subgroup of G.
2) All Sylow p-subgroups of G are conjugate
3) Let np be the number of Sylow p-subgroups, then np

∼= 1(p) and np | |G|
(note that these two conditions together imply np | m.

Remark

G acts on Ω = the set of Sylow p-subgroups of G by conjugation g ⋆ P =
gPg−1; Sylow’s second theorem is the statement that this action is transitive
(has precisely one orbit). The stabiliser of P is the normaliser NG(p) = {g ∈
G : gPg−1 = P}. By Orbit-Stabiliser (1.9) np = the size of the orbit of P =
the index of NG(P ) which of course | |G|, so the last part of the third theorem
is easy given the second theorem.

Lemma (1.22)

If np = 1 the unique Sylow p-subgroup is normal in G, as gPg−1 is a Sylow
p-subgroup for any g ∈ G, so must = P∀g ∈ G.

Remark

P ⊳NG(P ). Applying Sylow’s second theorem to NG(P ) we have P is the unique
Sylow p-subgroup of NG(P ).

Lemma (1.23)

Cf (1.12): Let G be non-abelian and simple, and suppose np > 1. Then |G| | np!
2

and np ≥ 5.

11



Proof

G is acting transitively on Ω = the set of Sylow p-subgroups, and |Ω| = np. The
kernel of the associated permutation representation is a normal subgroup K and
G
K

∼= some subgroup of SymΩ. G is simple (and G = K would contradict the
transitivity of the action given np > 1) so K = {e}, so G ∼= some subgroup of
Snp

; G is simple so ∼= a subgroup of Anp
(cf (1.12)) [so |G| | |Anp

| = n!
2 ] and

if we accept that subgroups of A4 cannot be non-abelian and simple we have
np ≥ 5.

Examples

|G| = 1000 = 2353 ⇒ G not simple

n5
∼= 1(5), n5 | 8 ⇒ n5 = 1 so there exists a unique normal Sylow 5-subgroup

(of order 125).

|G| = 300 = 2235 ⇒ G not simple

n5
∼= 1(5) (it is generally best to start with the largest possible p) and n5 | 12;

Assume G is simple so n5 6= 1, then (G must be non-abelian if simple since |G|
is non-prime) n5 = 6 and by 1.23 |G| | 6!

2 = 360, a contradiction.

|G| = 132 = 22 × 3 × 11 ⇒ G not simple

n11 ≡ 1(11), n11 | 12. Assume G is simple (and again it must be non-abelian),
n11 6= 1 so n11 = 12. n3 = 1(3), n3 | 44, n3 6= 1 by simplicity and 6= 4 by (1.23),
so n3 = 22, but then we have 12 × 10 elements of order 11 (since each Sylow
11-subgroup contains 10 distinct elements, all of order 11) and 22 × 2 elements
of order 3, a contradiction because the sum of these is more than the size of the
group. This is a typical argument.

On Exs1 we show that S4, A5 and groups with |G| = pq, pq2, pqr (for distinct
primes p, q, r) are all non-simple.

Lemma (1.24)

Let G be a group of order 2p where p is an odd prime, then G ∼= C2p or
D2p: by Sylow’s theorems np ≡ 1(p) and np | 2 so np = 1 and ∃! subgroup
of order p; by Sylow n2 ≡ 1(p), n2 | p. We certainly have a Sylow 2-subgroup
Q, say {e, g} (which may or may not be unique), and a Sylow p-subgroup
{e, x, . . . , xp−1}. Conjugation gives action on P [?]: gxg−1 ∈ P since P normal,

so must = xr some r. x = ggxg−1g−1 = gxrg−1 = (gxg−1)r = xr2

so r2 ≡ 1(p),
thus r ≡ ±1(p); if r ≡ 1 then gxg−1 = x and x, g commute, gx is of order
2p so G ∼= C2p (this is the case n2 = 1 [if C2p is generated by y, the only
Sylow 2-subgroup is {e, yp}]), if r ≡ −1(p) then gxg−1 = x−1 and we have
an isomorphism with D2p by g 7→ some reflection, x 7→ rotation by 2π

p
(this is

the case n2 = p [{e, a} is a Sylow 2-subgroup for any reflection a]); cf Exs1 on
semidirect products, G ∼= semidirect product of P by Q.

12



Proof of Sylow’s Theorems

Let G be a finite group, |G| = pam, p prime, p ∤ m.

1: There exists a subgroup of order pa, a Sylow p-subgroup

Consider Ω = the set of subsets of G of size pα; |Ω =

(

pam
pa

)

= pam
pa

pam−1
pa−1 . . . pam−pa+1

1 .

For each factor pam−k
pa−k

in this product other than the first, pam−k
pa−k

, 1 ≤ k ≤ pa−1,

we make all possible cancellations of powers of p: let k = pbq, b < a, p ∤ q, then
pam−k
pa−k

= pam−pbq

pa−pbq
= pa−bm−q

pa−b−q
, andp ∤ (pa−bm − q), p ∤ (pa−b − q). pam

pa = m

which is not divisible by p, and none of the numerators of the pa−bm−q
pa−b−q

are

divisible by p, so p ∤ |Ω|.
The orbits Σ of G acting on Ω by left multiplication g ⋆ {g1, . . . , gpa} =

{gg1, . . . , ggpa}, g ∈ G, gi ∈ G, are all of size ≥ m, as if {g1, . . . , gpa} ∈ Σ then
gg−1

1 ⋆ {g1, . . . , gpa} ∈ Σ, but this is {g, . . . , gg−1
1 gpa}, and thus each g ∈ G

appears as an entry of some pa-set in Σ. This |Σ| ≥ pam
pa = m.

By Orbit-Stabiliser (1.9), |Σ| | |G| = pam. This means that if |Σ| > m, p |
|σ|. Counting the elements of Ω, |Ω| = the sum of sizes of orbits. p ∤ |Ω| and p |
the sum of sizes of orbits with |Σ| > m, thus there must be at least one orbit Σ
with |Σ| = m.

For this Σ, we know from above each g ∈ G lies in at least one pa-set
∈ Σ, but by counting as |Σ| = m each must lie in exactly one such set. Thus
{e, g′2, . . . , g′pa} ∈ Σ for some g′i, 2 ≤ i ≤ pa.

What is the stabiliser P of this set (under the action of G on Σ ⊂ Ω)?
Observe g′i ⋆ {e, g′2, . . . , g′pa} = {g′i, g′ig′2, . . . , g′ig′pa} ∈ Σ contains g′i, but g′i ap-
pears as an entry in only one pa-subset in the orbit, so {g′i, g′ig′2, . . . , g′ig′pa} =
{e, g′2, . . . , g′pa} and g′i ∈ P the stabiliser.

However, by the orbit-stabiliser theorem |P | = |G|
|Σ| = pam

pa , so P = {e, g′2, . . . , g′pa},
and this P is our Sylow p-subgroup.

2: All Sylow p-subgroups of G are conjugate

We shall actually proove a slightly stronger result:
If Q is a p-subgroup of G and P is a Sylow p-subgroup, then Q ≤ g1Pg−1

1

some g1 ∈ G (and so if Q is a Sylow p-subgroup and so of order pa then we
deduce Q = g1Pg−1

1 .
Consider the action of Q on the set Ω of left cosets of P , g⋆g1P = gg1P, g1 ∈

G, g ∈ G. Let |Q| = pb; by orbit-stabiliser the sizes of orbits divide this,
i.e. are various powers of p. Since the number of left cosets = index of P in

G = |G|
|P | = pam

pa = m and p ∤ m, there must be orbits of size 1. Let {g1P}
be such an orbit, g1 ∈ G. We have gg1P = g1P∀g ∈ Q, i.e. g−1

1 gg1P = P ∴

g−1
1 gg1 ∈ P ∴ g ∈ g1Pg−1

1 ∀g ∈ Q, i.e. Q ≤ g1Pg−1
1 as required.

3: No. of Sylow p-subgroups np ≡ 1(p),np | |G|
Saw before np | |G|. We have G acting via conjugation on the set Ω of Sylow
p-subgroups; by the second theorem this action is transitive. We restrict our
attention to the action of the Sylow p-subgroup P on Ω via conjugation; again

13



the orbits of P on Ω have sizes various powers of P (since their sizes must divide
|P |); note {P} is an orbit of size 1. If {P1} is an orbit of size 1 then we have
P ≤ NG(P1), but recall from above the unique Sylow p-subgroup of NG(P1) is
P1, so P = P1, and {P} is the only orbit of size 1. So counting, np the number
of Sylow p-subgroups= the sum of sizes of orbits = 1 + sum of sizes of orbits
all divisible by p ≡ 1(p).

Recall that a soluble group is one where all the composition factors are
abelian simple.

Theorem (Burnside 1904) (Pembroke)

If |G| = paqb for distinct prime p, q then G is soluble. The usual proof of this
result is given in the part II course “Representation Theory”; a purely group
theoretic proof is very messy.

Theorem (Hall 1937) (Caius)

Let G be a finite group. If for any factorisation |G| = mn wih (m, n) = 1, ∃ a
subgroup of order n, then G is soluble, and conversely.

Theorem (Ferit-Thompson, 1963) (Churchill)

If |G| odd then G is soluble (and hence non-abelian simple groups always have
even order); this result is very hard to proove.

2 Rings

2.1 Definitions and examples

Definition

A set R with operations + and · is a ring if:

a) (R, +) is an abelian group; we call the additive identity 0R or simply 0

b) Multiplication is associative, and there is a multiplicative identity 1R

c) Multiplication is distributive over addition; a · (b + c) = a · b + a · c (and
(b + c) · a = b · a + c · a)

Be aware that some people do not insist on the existence of a multiplicative
identity.

In this course we shall assume our rings are commutative, that is that mul-
tiplication is commutative, even though this is a rather silly assumption.

Definition

A subset S of a ring R is a subring of R if it is a ring under restriction of the
operations; in particular we must have 1R ∈ S. The notation is S ≤ R.

14



Examples

Z ≤ Q ≤ R ≤ C
The Gaussian integers, {a + bi : a, b ∈ Z} ⊂ C, as mentioned in the first

lecture.
Z[
√

2] = {a + b
√

2 : a, b ∈ Z} ⊂ Q[
√

2].
Zn; this is a ring for any n even though it is only a field for n prime.
Any field

Definition

An element r ∈ R is a unit if it has a multiplicative inverse, e.g. 2 is a unit
in Q but not in Z. Note some people use “unit” to refer to the multiplicative
identity.

Examples

The zero ring {0}; in this case 0 is also the multiplicative identity. In all other
cases 0R 6= 1R since (0 + 0)r = 0r ∴ 0r = 0∀r ∈ R, while 1r = r∀r ∈ R.

Example

Let R be a ring. A polynomial over R is of the form a0 + a1X + · · · + anXn =
f(X) with the ai ∈ R∀i. The degree of f is the largest n such that an 6= 0; f is
monic if this an = 1.

R[X ] is the set of all polynomials over R, with addition (f +g)(X) =
∑

(ai +
bi)X

i where f(X) =
∑

aiX
i, g(X) =

∑

biX
i, and multiplication (f · g)(X) =

∑

i(
∑i

j=0 ajbi−j)X
i. R is a subring of R[X ] by identifying R with the set of

constant polynomials f(X) = a0.
R[[X ]] is the set of formal power series over R, p(X) = a0+a1X+A2X

2+. . .
with ai ∈ R∀i, with addition and multiplication defined in exactly the same
way. The difference between these and polynomials is that here we may have
infinitely many nonzero terms (note, however, that the inner summation when
multiplying power series is only over finitely many terms, and thus the product
of two power series is a well defined power series).

Lawrent Polynomials,
∑

aiX
i but for i ∈ Z i.e. negative powers are allowed.

However we still insist on there being only finitely many nonzero coefficients.
Lawrent series,

∑

aiX
i, i ∈ Z but with only finitely many of the ai for

i ≤ 0 nonzero; were we to allow infinitely many nonzero coefficients “in both
directions” the product of two series would not always be properly defined.

Rings of R-valued functions on a set A, f : A → R with pointwise addition
and multiplication ((f+g)(a) = f(a)+g(a) and similarly). The set of continuous
functions R → R form a subring of the ring of real-valued functions on R, and in
turn the set of polynomial functions R → R (i.e. functions of the form a 7→ f(a),
“evaluation at a ∈ R”, where f is a polynomial) with real coefficients is a subring
of this. Note that if we try and do the same with power (or Lawrent) series to
give functions C → C we may have problems of convergence.
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2.2 Isomorphisms, homomorphisms, ideals and quotient

rings

Definition

Let R, S be rings. The map θ : R → S is a (ring) homomorphism if θ(r1 + r2) =
θ(r1) + θ(r2) (i.e. it is a homomorphism of additive groups) and θ(r1r2) =
θ(r1)θ(r2), θ(1R) = 1S.

Definition

An isomorphism is a bijective homomorphism

Definition

The kernel of a homomorphism is ker θ = {r ∈ R : θ(r) = 0S}.

Lemma (2.1)

θ : R → S is injective ⇔ ker θ = {0R}; if θ is injective 0R is the only element
of R mapped to 0S, if ker θ = {0R} then θ(r1) = θ(r2) ⇒ θ(r1) − θ(r2) = 0 ⇒
θ(r1 − r2) = 0 ⇒ r1 − r2 ∈ ker θ ⇒ r1 − r2 = 0 ⇒ r1 = r2.

Definition

A subset I ⊂ R is an ideal of R if I is a subgroup of R under addition and
I is closed under multiplication by all elements of R, that is ∀a ∈ I, r ∈ R,
ar ∈ I. The notation is I ⊳R, but though there is a strong analogy with normal
subgroups note that ideals are not generally subrings of R, as if 1R ∈ an ideal
I, any r ∈ R is = 1Rr so ∈ I and thus I = R; I is only a subring if I = R.

Lemma (2.2)

The kernel of a homomorphism θ : R → S is an ideal of R, since if we let
I = ker θ then a1, a2 ∈ I ⇒ θ(a1 + a2) = θ(a1) + θ(a2) = 0 + 0 = 0 so
a1 +a2 ∈ I, a ∈ I ⇒ θ(−a) = −θ(a) = 0 ⇒ −a ∈ I so I is an additive subgroup
of R, if a ∈ I, r ∈ R then θ(ar) = θ(a)θ(r) = 0θ(r) = 0 so ar ∈ I.

Examples

In a field F , the only ideals are {0}, F , since if a 6= 0 ∈ I then aa−1 = 1R ∈ I
and then I = F as above.

The ideals in Z are of the form nZ = {. . . ,−n, 0, n, . . .} [for n ∈ Z]; certainly
any such nZ is an ideal of Z, but these are the only ideals since they are the
only additive subgroups of Z: Let I be a nonzero additive subgroup of Z and
let n be the least positive element of I. Then nZ ⊂ I clearly (and note that
this does not depend on I being a ring, because qn = n + · · ·+ n), and if m ∈ I
write m = qn + r with 0 ≤ r < n by Euclid’s algorithm. Then r = m − qn ∈ I
since n ∈ I, so minimality of n implies r = 0 ∴ m = qn ∴ m ∈ nZ ∴ I = nZ.
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Definition

Let R be a ring and a ∈ R. Then the ideal generated by a is aR = {ar : r ∈ R}
(sometimes called (a). This is the smallest ideal containing a; a = a1 ∈ aR,
ar1 +ar2 = a(r1 + r2),−ar = a(−r) so aR is an additive subgroup of R, and for
any ar ∈ aR, s ∈ R, (ar)s = a(rs) ∈ aR, so R is an ideal containing a. If a ∈ I
with I an ideal then ar ∈ I∀r ∈ R by the definition of an ideal so aR ⊂ I.

Such an ideal aR is a principal ideal, e.g. nZ ⊳ Z. More generally, (a1, . . . , an)
denotes a1R + · · ·+ akR = {∑ airi : ri ∈ R}, the ideal generated by a1, . . . , ak.
If A ⊂ R then (A) = {∑a∈A ara : ra ∈ R, ra = 0 for all but finitely many a},
e.g. (X) ⊳ C[X ] is {f(X) : f(X) = Xg(X) some g(X) ∈ C[X ]} = {f(X) ∈
C[X ] : f(0) = 0}, the set of polynomials with zero constant term.

Proposition (2.3)

Let R be a ring and I ⊳ R. The quotient ring R
I

is the set {r + I : r ∈ R} of
cosets of I in R (under +) with addition (r1 + I) + (r2 + I) = (r1 + r2) + I, and
multiplication (r1 + I)(r2 + I) = r1r2 + I; this forms a ring: addition is well
defined and yields an additive group by (1.3) (quotient group), multiplication is
well defined since if r1 +I = r′1 +I, r2 +I = r′2 +I then we let a1 = r1−r′1, a2 =
r2− r′2, then a1, a2 ∈ I so r1r2 = (a1 + r′1)(a2 + r′2) = r′1r

′
2 +(a1r

′
2 + r′1a2 +a1a2)

and the bracket is ∈ I so r1r2 − r′1r
′
2 ∈ I and r1r2I = r′1r

′
2I. 1R + I is

a multiplicative identity as (1 + I)(r + I) = r + I∀r ∈ R; associativity and
distributivity are left as straightforward exercises for the reader.

Examples

nZ are the ideals of Z. Z
nZ

has elements 0+nZ, 1+nZ, . . . , (n−1)+nZ; addition
and multiplication correspond to those of Z mod n.

I = (X) ⊳ C[X ]; C[X]
(X) has for any f(X) ∈ C[X ], f(X) = a + Xg(X) some

g(X) ∈ C[X ] and so f(X)+I = a+I. Addition is (a+I)+(b+I) = (a+b)+I,
similarly multiplication (a + I)(b + I) = ab + I which correspond to addition

and multiplication in C; C[X]
(X)

∼= C.

Proposition (2.4) (Euclid’s algorithm for F [X ])

Let F be a field, f(X), g(X) ∈ F [X ], g(X) 6= 0. Then f(X) = g(X)q(X)+r(X)
with deg r(X) < deg g(X) (or r(X) = 0): let f(X) =

∑n
i=0 aiX

i, of degree n,
and g(X) =

∑m

i=0 biX
i, bm 6= 0 of degree m. If n < m we are done (q(X) =

0, r(X) = f(X)), otherwise we induct on n: for m ≥ n set f1(X) = f(X) −
anb−1

m g(X)Xn−m (b−1
m exists since bm 6= 0), then deg f1(X) < deg f(X) = n; for

m = n set q(X) = anb−1
m , r(X) = f1(X), for n > m write f1(X) = g(X)q1(X)+

r1(X) by the inductive hypothesis, then f(X) = g(X)(q1(X) + anb−1
m Xn−m) +

r1(X) so we are done by q(X) = q1(X) + anb−1
m Xn−m, r(X) = r1(X).

Note that we did need F to be a field, because b−1
m would not necessarily

exist in a ring.

Example

I = (X2 + 1) ⊳ R[X ]; for any f(X) ∈ R[X ], f(X) = (X2 + 1)q(X) + r(X) by

(2.4), with r(X) of degree ≤ 1, so f(X) + I = r(X) + I; the elements of R[X]
I
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are therefore of the form a0 + a1X + I. We have that addition is given by
(a0 + a1X + I) + (b0 + b1X + I) = (a0 + b0)+ (a1 + b1)X + I and multiplication
by (a0 + a1X + I)(b0 + b1X + I) = a0b0 + (a0b1 + a1b0)X + a1b1X

2 + I =
(a0b0−a1b1)+ (a0b1 +a1b0)X + I (since a1b1X

2 = −a1b1 +(a1b1(X
2 +1)) with

the bracket in I). We see that this behaves the same as C, and have R[X]
I

∼= C
by a0 + a1X + I 7→ a0 + a1i.

Example

F2[X]
X2+X+1 has four elements; we find this is a field, and in fact the same is true

for some other polynomials; X3 + X + 1 gives a field of 8 elements and if we
are able to somehow discover the correct polynomial to use, we can form fields
of order 2n for any n by this method. This is particularly useful once we see
(from Galois theory) that all fields of pn elements for prime p are isomorphic.

Theorem (2.5) (First isomorphism theorem)

Let θ : R → S be a ring homomorphism, then Im θ ≤ S, ker θ⊳R and R
ker θ

∼= Im θ:
by (2.2) we have ker θ ⊳ R. Im θ is an additive subgroup of S since θ is a
group homomorphism, θ(r1)θ(r2) = θ(r1r2) ∈ Im θ so Im θ is closed under
multiplication, and 1S = θ(1R) ∈ Im θ, so Im θ is a subring of S.

Let I = ker θ and define Φ : R
ker θ

→ Im θ by r + I 7→ θ(r); this is a group
isomorphism (so a bijective homomorphism of additive groups) from the first
isomorphism theorem for groups (and also well defined), Φ((r1 + I)(r2 + I)) =
Φ(r1r2 + I) = θ(r1r2) = θ(r1)θ(r2) = Φ(r1 + I)Φ(r2 + I) and Φ(1+ I) = θ(1R =
1S , so Φ is a bijective ring homomorphism, i.e. a ring isomorphism.

Example

θ : R[X ] → C given by
∑

ajX
j 7→ ∑

aji
j has ker θ = (X2 + 1) = {f(X) ∈

R[X ] : f(X) = (X2 + 1)q(X) some q(X) ∈ R[X ]}, Im θ = C, so R[X]
(X2+1)

∼= C as

above.

Theorem (2.6) (Second isomorphism theorem)

Let R ≤ S, J ⊳ S, then R ∩ J ⊳ R and R
R∩J

∼= (R+J)
J

≤ S
J
; the proof is by

applying the first isomorphism theorem to θ : R → S
J

defined by r 7→ r + J .
This is a ring homomorphism; it is a group homomorphism as before, and we
have 1 → 1 + J, θ(r1r2) = θ(r1)θ(r2) since (r1r2 + J) = (r1 + J)(r2 + J).

ker θ = {r ∈ R : r + J = J} = R ∩ J and Im θ = {r + J ∈ S
J

: r ∈ R} = (R+J)
J

(note R + J = {r + a : r ∈ R, a ∈ J} is a subring of S), so we have the result.
We have a correspondence between additive subgroups of R containing I

and additive subgroups of R
I
, where I ⊳ R. We want to extend this: subrings of

R containing I correspond to subrings of R
I

and similarly for ideals by exactly

the same recipe: L ⊂ I 7→ {a + I : a ∈ L}, with converse X ⊂ R
I
7→ {r + R :

r + I ∈ X}.
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Theorem (2.7) (Third isomorphism theorem)

Let I, J ⊳ R with I ⊂ J , then
R
I
J
I

∼= R
J

, where J
I

= {r + I : r ∈ J}. Again the

proof is by the first isomorphism theorem, this time on θ : R
I
→ R

J
defined by

r + I 7→ r + J . This is well defined since I ⊂ J and a group homomorphism
as per (1.7); it is a ring homomorphism: θ((r1 + I)(r2 + I)) = θ(r1r2 + I) =
r1r2+J = (r1+J)(r2+J) = θ(r1+I)θ(r2+I) [identity ommitted in the lecture,
presumably trivial]. ker θ = {r + I : r + J = J} = {r + I : r ∈ J}, Im θ = R

J

[and we have the result].

Example

Z[X]
(2,X2+1) : for this we have J = (2, X2+1). If we put I = (2) we have Z[X]

(2,X2+1)
∼=

F2[X]
X2+1 , or if we put I = (X2 + 1) we have that both these quotient rings are

∼= Z[i]
(2) .

Example

For any ring R, ∃! homomorphism φ : Z → R by 1 7→ 1R, m 7→ 1R + · · · + 1R.

Definition

The image of φ is the prime subring of R. By the isomorphism theorem Im φ ∼=
Z

ker φ
, kerφ ⊳ Z; since the ideals in Z are of the form nZ we have:

Definition

The characteristic of R is n such that φ(Z) ∼= Z
nZ

; this is |φ(Z)| if this 6= 0 and
0 for φ(Z) infinite. For example the characteristics of Z, Q, R, C are all 0, but
that of Z

pZ
= Fp for p prime is p.

2.3 Integral domains, fields of fractions, maximal and prime

ideals

Definition

a ∈ R is a zero divisor if ab = 0 for some b 6= 0

Definition

A ring R is an integral domain if 0 6= 1 and there are no nonzero zero divisors,
i.e. ab = 0 ⇒ a = 0 or b = 0

Examples

Any field, Z, and subrings of fields such as Z[i] ≤ C are all integral domains.
Note that in an integral domain we have cancellation: for a 6= 0, ab = ac ⇒

b = c as ab = ac ⇒ a(b − c) = 0 ⇒ b − c = 0.
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Lemma (2.8)

Let R be a finite integral domain, then R is a field: let a 6= 0 ∈ R. The map
(note we do not claim it is a ring homomorphism) R → R given by r 7→ ar is
injective since R is an integral domain; since R is finite it must also be surjective
so ∃r : ar = 1 i.e. we have a multiplicative inverse for any nonzero element a,
so R is a field.

Definition

An integral domain is a Principal Ideal Domain (PID) if all its ideals are prin-
cipal.

Proposition (2.9)

If R is an integral domain then so is R[X ], and indeed R[X1, . . . , Xn]. If f(X) =
∑

aiX
i of degree n, g(X) =

∑

biX
i of degree m with an, bm 6= 0 then f(X)g(X)

is of degree m+n and thus nonzero, since anbm 6= 0 as R is an integral domain.
We can view R[X1, X2] as (R[X1])[X2] so this is an integral domain, and

inductively so is R[X1, . . . , Xn].

Theorem (2.10)

Let R be an integral domain, then R has a field of fractions F with R ≤ F and
any element of F writable as ab−1 with a, b ∈ R, b 6= 0:

Define a relation on pairs [(a, b) ∈ R × R, b 6= 0]: (a, b) ∼ (c, d) if ad = bc.
This is an equivalence relation, as we can easily verify (but this requires an
integral domain, as otherwise the relation is not necessarily transitive). Denote
the equivalence class of (a, b) by a

b
. Define addition a1

b1
+ a2

b2
= a1b2+a2b1

b1b2
and

multiplication a1

b1

a2

b1
= a1a2

b1b2
; these are well defined (note b1b2 6= 0 since R is an

integral domain) as can be checked easily for this course (though prooving it for
general (i.e. noncommutative) rings is extremely horrible). Let F be the ring
defined by this set and operations. We can regard R as a subring of F by r 7→ r

1 .
F is a field; 1

1 is the multiplicative identity, and for any a 6= 0, a
b

[if a = 0 this

class is 0
1 = 0] has multiplicative inverse b

a
since ab

ab
= 1

1 . Any a
b

= a
1 ( b

1 )−1; see
the printed notes for the 2006 version of this course for more detais on this field.

Lemma (2.11)

The nonzero ring R is a field if and only if the ideals of R are {0} and R: for the
only if part, if I 6= {0} ⊳ R a field, then take a 6= 0 ∈ I and then 1 = aa−1 ∈ I
so I = R, for the if part let a 6= 0 ∈ R, and consider the ideal (a); it contains
a 6= 0 so must be R so 1 ∈ (a) and ∃r ∈ R : ar = 1 and a has a multiplicative
inverse, that is, a is a unit, so R is a field.

Definition

I ⊳ R is a maximal ideal in R if I 6= R and ∀J such that I ⊂ J ⊳ R, I = J or
J = R.
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Lemma (2.12)

Let I ⊳ R, then R
I

is a field if and only if I is a maximal ideal in R; by (2.11) R
I

is a field if and only if its only ideals are I
I
, R

I
, and by the correspondence used

in the third isomorphism theorem this is the case if and only if the only ideals
in R containing I are R, I.

Definition

I ⊳ R is a prime ideal in R if I 6= R and ∀a, b ∈ R, a ∈ I or b ∈ I.

Lemma (2.13)

Let I ⊳ R, then R
I

is an integral domain if and only if I is a prime ideal in R.

If R
I

is an integral domain let a, b ∈ R with ab ∈ I, then (a + I)(b + I) =

ab + i = I so as R
I

is an integral domain either a + I = I i.e. a ∈ I or b ∈ I.
If I is a prime ideal and (a + I)(b + I) = ab + I; if ab + I = I then ab ∈ I so

a ∈ I or b ∈ I, so either a + I = I or b + I = I and R
I

is an integral domain.

Corollay (2.14)

If I is a maximal ideal in R then I is a prime ideal; by (2.12) I is maiximal if
and only if R

I
is a field, which implies R

I
is an integral domain which by (2.13) is

the case if and only if I is a prime ideal; prooving this result directly is relatively
straightforward.

Example

In Z the maximal ideals are pZ for p prime and the prime ideals are pZ and {0}.

Proposition (2.15)

Let R be an integral domain (e.g. a field), then the characteristic of R is 0 or
some prime p. Recall the characteristic of R is n if and only if the image of
φ : Z → R is isomorphic to Z

nZ
, but this has nonzero zero divisors for n not

prime (or 0), as if n = ab with a, b 6= 1 then (a + nZ)(b + nZ) = ab + nZ = nZ;
since R is an integral domain the prime subring must be ∼= Z

pZ
for some prime

p or ∼= Z, thus the characteristic of R is p or 0.

2.4 Factorisation in integral domains; units, primes and

irreducibles

We assume throughout this subsection that R is an integral domain.

Definition

a ∈ R is a unit if it has a multiplicative inverse; equivalently (a) = R.
a divides b if ∃c ∈ R : ac = b or equivalently (b) ⊂ (a).
a, b ∈ R are associates in R if a = bc for some unit c; equivalently (a) = (b).
r ∈ R is irreducible in R if it is nonzero, not a unit, and whenever r =

ab, a, b ∈ R then a or b is a unit.
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r ∈ R is prime in R if it is nonzero, not a unit, and if r | ab with a, b ∈ R
then r | a or r | b.

Remark

(r) is a prime ideal in R if and only if r is prime or r = 0; for (r) a prime ideal
if r 6= 0 and r | ab then ab ∈ (r) so a ∈ (r) or b ∈ (r), then r | a or r | b; (0) is
a prime ideal in an integral domain and for r prime, for ab ∈ (r) we have r | ab
so r | a or r | b and a ∈ (r) or b ∈ (r).

These definitions of course depend on R; 2 is prime and irreducible in Z but
not in Q, 2X is reducible in Z[X ] but not in Q[X ].

Lemma (2.16)

If r is prime in R then r is irreducible in R; the converse is true for PIDs but
not in general, see below and (2.20).

Suppose r prime in R and r = ab with a, b ∈ R, then r | ab so wlog r | a,
then a = qr for some q ∈ r so r = qrb and cancelling in an integral domain
1 = br so b is a unit.

Example to show converse of (2.16) is false

R = Z[
√
−5] = {a + b

√
−5, a, b ∈ Z} ≤ C is an integral domain since it

is a subring of a field. Define the norm N(a + b
√
−5) = a2 + 5b2 = zz̄

where z = a + b
√
−5; this is ∈ Z+. The norm is multiplicative: N(z1z2) =

N(z1)N(z2)∀z1, z2 ∈ R. If z1z2 = 1 then 1 = N(z1z2) = N(z1)N(z2) so
N(z1), N(z2) are units in Z and > 0 so are 1 and z1 = ±1, z2 = ±1, thus the
only units in R are ±1, precisely the elements of norm 1. There are no elements
of norm 2 or 3 (since we cannot have a2 + 5b2 = 2, 3

Consider 6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5); N(2) = 4 so 2 is irreducible (if

2 = z1z2 then N(z1) | N(2) = 4 in Z and so one of the N(zi) is 1 (since there are
no elements of norm 2) and some zi is a unit; similarly 3, (1 +

√
−5), (1−

√
−5)

are all irreducible. However, we have that 2 is not prime in R, since 2 | (1 +√
−5)(1 −

√
−5) but 2 ∤ (1 +

√
−5), 2 ∤ (1 −

√
−5) (by considering the norms;

4 ∤ 6).

Definition

R is a Euclidean Domain or ED if there is a function φ : R \ {0} → Z≥0 = {n ∈
Z : n ≥ 0} such that a) φ(ab) ≥ φ(a)∀a, b ∈ R \ {0} and b) if a, b ∈ R, b 6=
0, ∃q, r ∈ R : a = qb + r and either r = 0 or r 6= 0 and φ(r) < φ(b); φ is a
Euclidean function and b) is the Euclidean algorithm.

Examples

Z with φ(x) = |x| is an ED as in 1A Numbers and Sets.
If F is a field, f [X ] is an ED with φ(f(X)) =degree of a nonzero polynomial

f(X).
R = Z[i] = {a+bi : a, b ∈ Z} ≤ C, the Gaussian integers, an integral domain:

define N(a+bi) = a2+b2 = zz̄ where z = a+ib, then N is a Euclidean function:
N is multiplicative N(z1z2) = N(z1)N(z2) ≥ N(z1)∀z2 6= 0 (since N(z2) ≥ 1).
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For z1, z2 ∈ R with z2 6= 0 consider z1

z2
∈ C; this is distance ≤ 1√

2
< 1 from an

element of Z[i] because of the lattice Z[i] forms in the complex plane. So write
z1

z2
= q + z4 with q ∈ Z[i], |z4| < 1, then z1 = qz2 + z2z4; let r = z2z4 = z1 =

qz2 ∈ Z[i] and then z1 = qz2 + r with N(r) = z2z4z2z4 = N(z2)|z4|2 < N(z2)
as required.

This last result is true for many similar lattices in the complex plane; the
critical property is that any point of the complex plane is < 1 away from some
lattice point; we have already seen the result is false for Z[

√
−5].

Euclidean Domains

Proposition (2.17)

If R is an ED then R is a PID: let R be an ED with Euclidean function φ
and I ⊳ R; for I = {0} we are done, otherwise take b ∈ I with φ(b) minimal.
Then I = (b): for any a ∈ I, by Euclid we can write a = bq + r with r = 0 or
φ(r) < φ(b), but since r ∈ I minimality of φ(b) implies r must be 0 and we have
a = bq ∈ (b).

Corollay

Z, F [X ] for F a field and Z[i] are principal ideal domains.

Example

Z[X ] is not a PID: (2, X) ⊳ Z[X ] is not a principal ideal. If it were (f(X)) for
some f(X) ∈ Z[i] we would have 2 = f(X)g(X) so by degrees f is constant
and furthermore f(X) ∈ {±1,±2}. But X = f(X)h(X) some h(X) so ±2 are
impossible, but ±1 /∈ (2, X), so there can be no such f(X).

Example

Minimal polynomials of matricies; for A ∈ Mn(F ) an n × n matrix over a field
F , I = {f(X) ∈ F [X ] : f(A) = ~0} ⊳ F [X ] in fact; F [X ] is a PID so I = (m(X))
some m(X); by multiplying by the inverse of a nonzero element of F we can
take m(X) to be monic, then it is the minimal polynomial of A.

Definition

An integral domain is a Unique Factorisation Domain (UFD) if a) every element
which is nonzero and not a unit is a product of finitely many irreducibles and
b) if p1 . . . pm = q1 . . . qn with pi, qj irreducible then m = n and we can reorder
such that pi, qi are associates (note not necessarily equal) ∀i.

We are now working towards a proof of:

Proposition (2.18)

If R is a PID then R is a UFD.
This immediately gives:
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Corollay (2.19)

Z, F [X ], Z[i] are UFDs

Example

Z[
√
−5] is not a UFD since 6 = 2 × 3 = (1 +

√
−5)(1 −

√
−5); all these factors

are irreducibles and they are not associates as e.g. 2 is not an associate of either
of the RHS factors by considering norms; they have norm 6 while N(2) = 4,
and the norm of any unit is 1.

To proove (2.16) we want the following lemmas:

Lemma (2.20) (converse of (2.16) for PIDs)

Let R be a PID. If p is irreducible in R then p is prime in R; let p be irreducible
with p | ab and suppose p ∤ a. Consider the ideal (p, a); it must be principal
since R is a PID so say it is (d). then p = q1d, a = q2d for some q1, q2. If p | d
then p | a and we have a contradiction, but since p is irreducible q1 or d is a unit
and if q1 is a unit then d = q−1

1 p and p | d, so d is a unit so (p, a) = (d) = R
and ∃r, s ∈ R such than 1 = rp + sa. Then b = rpb + sab but p | ab so p | RHS
so p | LHS = b as required.

Lemma (2.21) (Ascending Chain Condition (ACC) for ideals in PIDs)

Let R be a PID, Ij ⊳ R with I1 ⊂ I2 ⊂ . . . [in the lecture these were written
as I1 $ . . . but that seems insane], then for some n, In = In+i∀i ≥ 0: let
I =

⋃

j≥1 Ij , then I ⊳ R since if a ∈ Ij , b ∈ Ik take wlog j ≤ k and then
a−b ∈ Ik ⊂ I, and if a ∈ I then a ∈ Ij some j so for any r ∈ R, ar ∈ Ij ⊂ I. In a
PID, I = (a) for some a ∈ R but then a ∈ In for some n, so (a) = I ⊃ In+i ⊃ (a)
so (a) = In = In+i∀i ≥ 0.

We can now proove (2.18): a) let a ∈ R be a nonzero nonunit, and assume
a cannot be factorized as a product of irreducibles, then a = a1b1 with neither
of a1, b1 zero or a unit, and one of the a1, b1, wlog a1, cannot be factorized as
a product of irreducibles. So we have a1 = a2b2 and similarly. Then we have
(a1) ⊂ (a2) ⊂ . . . with inequality in each case, since if (ai) = (ai+1 then ai, ai+1

are associates so bi+1 is a unit. But this is a contradiction by (2.21). b) Suppose
a = p1 . . . pm = q1 . . . qn with the pi, qj irreducibles. Then p1 is prime by (2.20)
and p1 | q1 . . . qn so p1 | qi for some i; by rearranging if necessary p1 | q1. q1 is
irreducible and p1 is not a unit so p1 . . . pm = up1q2 . . . qn for some unit u, and
cancelling in an integral domain p2 . . . pm = uq2 . . . qn and we induct.

There are three important properties of UFDs:
a) Irreducibles are the same as primes in and UFD; we have that primes

are irreducibles, now suppose p is irreducible and p | ab. Let ab = pc and
express as products of irreducibles :a = p1 . . . pm, b = q1 . . . qn, c = r1 . . . rs.
Then pr1 . . . rs = p1 . . . pmq1 . . . qn and by unique factorization p is an associate
of some pi or qi, so p | a or b.

b) Highest common factors exist in a UFD:
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Definition

A highest common factor d of a1 . . . , an is a d such that d | ai∀i and if d′ | ai∀i
then d′ | d.

To find a highest common factor of a1, . . . , an in a UFD we can express each
ai as a product of irreducibles; by replacing irreducibles with associates we can
write ai = ui

∏

j p
nij

j with pj irreducible, ui a unit, and nij 6= 0∀i, j and pj , pk

not associates for any j 6= k. Then a highest common factor is d =
∏

p
|inij

j ;
it is a factor of each ai and if d′ is a factor of each ai then ai = d′ci, then
each irreducible dividing d′ must appear as an irreducible dividing each ai so
d′ = u

∏

p
mj

j with mj ≤ nij for each i.
c) Lowest common multiples exist in a UFD; the proof is similar and left as

an exercise.

2.5 Factorisation in polynomial rings, Gauss’ Lemma, Eisen-

stein’s Criterion

Reminder about polynomial rings with field coefficients

If F is a field we know that F [X ] is an ED, PID, UFD, every ideal I ⊳ F [X ]
is principal i.e. (f(X)) for some f , irreducibles are the same as primes, and I

being maximal is equivalent both to f(X) being irreducible and to F [X]
I

being

a field. The elements of F [X]
I

are of the form
∑deg f−1

i=0 aiX
i + I.

Now consider the coefficient ring R a UFD but not necessarily a field; we
have from before that R[X ] is an integral domain.

Definition

The content c(f) is the HCF of a0, . . . , an (only defined up to associates).
f(X) is primitive if c(f) is a unit, i.e. the ai are coprime.

Lemma (2.22) (Gauss’ Lemma)

(Note that the statement of this lemma varies between different books)
Let R be a UFD and F its field of fractions. Suppose f(X) ∈ R[X ] is

primitive. Then f(X) is irreducible in R[X ] if and only if it is irreducible in
F [X ]; in particular for R = Z, f(X) is irreducible in Q[X ] if and only if it is
irreducible in Z[X ].

Example

X3 + X + 1 is irreducible in Z[X ] and hence in Q[X ] so Q[X]
X3+X+1 is a field: we

try to factorize X3 +X +1 in Z[X ] as p(X)q(X) with neither of p, q units since
the polynomial is primitive if p(X) or q(X) is ∈ R then it is a unit, so we have
wlog deg P = 2, deg Q = 1, i.e. q(X) = b1X + b0, p(X) = a2X

2 + a1X + a0.
Then a0b0 = 1, a2b1 = 1 in Z so b0 = ±1, b1 = ±1 but ±1 are not roots of
X3 + X + 1, so there can be no such factorization.
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Lemma (2.23)

If f(X), g(X) ∈ R[X ] are primitive in R[X ] then so is f(X)g(X): let f(X) =
a0+· · ·+anXn, g(X) = b0+· · ·+bmXm be primitive. If f(X)g(X) not primitive
we have some prime p dividing c(f(X)g(X)). We have p ∤ c(f), c(g); let k be
such taht p | a0, . . . , ak−1 but p ∤ ak and similarly p ∤ bl. Then the coefficient
of Xk+l in f(X)g(X) is · · ·+ ak+1bl−1 + akbl + ak−1bl+1 + . . . ; p divides this if
and only if p | akbl, but it does not, so p ∤ the k + l coefficient of f(X)g(X) so
p ∤ c(f(X)g(X)), a contradiction.

Corollay (2.24)

For f(X), g(X) ∈ R[X ] the contents may be chosen such that c(f(X)g(X)) =
c(f(X))c(g(X)): Let f(X) = c(f(X))f1(X) with f1(X) primitive and similarly
for g(X), then by (2.23) f1(X)g1(X) is primitive so a HCF of the coefficients
of f(X)g(X) = c(f(X))c(g(X))f1(X)g1(X) is c(f(X))c(g(X)).

Proof of (2.22)

Take f(X) ∈ R[X ] primitive. Suppose f [X ] factorises in R[X ] as a product
of two non-units. Since f(X) is primitive any non-unit factors in R[X ] are of
degree ¿0, so it also factors as a product of two non-units in F [X ].

For the converse, suppose f(X) = g(X)h(X) in F [X ]. The coefficients of
g(X), h(X) are ∈ F ; multiplying by elements of R we can “clear the denomina-
tors” and have ag(X), bh(X) ∈ R[X ], so abf(X) = ag(X)bh(X); by (2.24) we
can choose ab = c(abf(X)) = c(ag(X))c(bh(X)) and ag(X) = c(ag(X))g1(X)
with g1 primitive and similarly for bh(X). But then g1(X)h1(X) is primitive by
(2.23), so abf(X) = c(ag(X))c(bh(X))g1(X)h1(X) and cancelling a factor of ab
f(X) = g1(X)h1(X) a product of non-units in R[X ].

Remark

A similar argument shows that for f(X) ∈ R[X ] not necessarily primitive,
if f(X) = g1(X)h(X) with g1(X) primitive in R[X ] and h(X) ∈ F [X ] then
f(X) = g1(X)h0(X) for some h0(X) ∈ R[X ]. Thus if I = (g1(X)) ⊳ F [X ], J =
(g1(X)) ⊳ R[X ] for g1 primitive then I ∩ R[X ] = J ; we would be disappointed
were this not the case but do need to verify this.

Theorem (2.25) (Gauss)

Let R be a UFD, then so is R[X ]: let f(X) = R[X ] be a nonzero nonunit
and write f(X) = c(f(X))f1(X) with f1(X) primitive; we know c(f(X)) can
be expressed essentially uniquely as a product of irreducibles in R (which are
irreducible in R[X ]), and any irreducible in R[X ] is either in R and irreducible in
R or primitive, so if f(X) factorizes as a product of irreducibles in R[X ] we can
collect those in R together and their product is c(f(X)) (up to associates) and
the product of the remainder is is f1(X). So for both existence and uniqueness
it suffices to proove for f primitive.

F [X ] is an ED, PID and UFD so we can factorise f(X) = p1(X) . . . pn(X)
with pi(X) irreducible in F [X ]. Then aipi(X) ∈ R[X ] for some ai ∈ R; let these
be ciqi(X) where ci = c(aipi(X)), qi(X) primitive in R[X ] and irreducible by
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Gauss’ Lemma. So a1 . . . akf(X) = c1 . . . ckq1(X) . . . qk(X); q1(X) . . . qk(X) is
primitive by (2.23) so by considering contents a1 . . . ak = uc1 . . . ck for some unit
u ∈ R. So a1 . . . akf(X) = (uc1 . . . ck)(u−1q1(X))q2(X) . . . qk(X), cancelling
and relabelling q1, f(X) = q1(X) . . . qn(X), a product of irreducibles in R[X ].

Say we also have f(X) = r1(X) . . . rl(X) a product of irreducibles. We are
assuming f(X) is primitive, so by Gauss’ Lemma (2.22) ri(X) is irreducible in
F [X ; then by uniqueness of factorization in F [X ], k = l and after reordering,
each qi(X) = uiri(X) for ui a unit in F . Let ui = ai

bi
(with ai, bi ∈ R, bi 6= 0),

then biqi(X) = airi(X) but qi(X), ri(X) are primitive so ai, bi are associates;
cancelling qi(X) and ri(X) are associates so the factorization is essentially
unique.

Corollay (2.26)

If R is a UFD so is R[X1, . . . , Xn]; this is trivial.

Theorem (2.27) (Eisenstein’s Criterion)

Let R be a UFD, f(X) = anXn + · · · + a0 ∈ R[X ] primitive with an 6= 0. If
for some irreducible p ∈ R we have p | a0, . . . , an−1 but p ∤ an, p2 ∤ a0 then
f(X) is irreducible in R[X ] (and thus in F [X ]): If f(X) = g(X)h(X) with
g(X), h(X) ∈ R[X ] let g(X) = rkXk + · · · + r0, h(X) = slX

l + · · · + s0; by
considering degrees k+ l = n. Since p | a0 = r0s0 but p2 ∤ a0, p divides precisely
one of r0, s0; wlog take p | r0, p ∤ s0. Let j be such that p | r0, . . . , rj−1 but p ∤ rj

[we can do this since p ∤ an = rksj ∴ p ∤ rk]. Now aj = rjs0 + rj−1s1 + · · ·+ r0sj

so p ∤ aj , so j = n meaning k = n, l = 0 but since f(X) is primitive this means
h(X) is a unit. So f(X) cannot be expressed as a product of two nonunits in
R[X ], i.e. is irreducible in R[X ].

Example

Take R = Z, then f(X) = Xn − p for p prime in Z and n > 1 is irreducible is
Z[X ], and hence in Q[X ], by Eisenstein. So any p prime in Z has no rational
nth root for n > 1.

Example

Cyclotomic polynomials Xp−1 + Xp−2 + · · · + 1 for p prime are irreducible in
Z[X ] (and hence in Q[X ]): Eisenstein doesnt’ immediately apply but we note
(X − 1)f(X) = Xp − 1 so substitute X = 1+Y , then Y f(Y +1) = (Y +1)p − 1
and f(Y + 1) = Y p−1 +

(

p
1

)

Y p−2 + · · · +
(

p
p−1

)

; we have p | each of the
(

p
i

)

but

p2 ∤
(

p
p−1

)

= p so Eisenstein applies, f(Y + 1) is irreducible and hence f(X) is
irreducible as required.

2.6 Gaussian Integers

R = Z[i] = {a+bi : a, b ∈ Z} with norm N(a+bi) = a2+b2 = (a+bi)(a−bi) = zz̄
where z = a + bi. This is multiplicative N(z1z2) = N(z1)N(z2), and the units
are precisely the elements with norm 1, namely ±1,±i. Z[i] is an ED and hence
a PID and UFD.
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The irreducibles are precisely the primes (by (2.16),(2.20)) [I shall use the
two terms interchangably in this section]. 2 = (1 + i)(1 − i) is not irreducible,
3 is irreducible since N(3) = 9 and there are no elements of norm 3, 5 =
(1 + 2i)(1 − 2i) is not irreducible; what are the primes?

Lemma (2.28)

Let p be prime in Z, then p is prime in Z[i] if and only if it cannot be expressed
as a sum of squares p = x2 + y2 in Z: N(p) = p2. p is irreducible in Z[i] if
and only if p 6= z1z2∀ nonunit zi ∈ Z[i]; if p = z1z2 then N(z1) = N(z2) = p,
so p = z1z̄1 = x2 + y2 where z1 = x + iy; conversely if p = x2 + y2 then
p = (x + iy)(x − iy) and is not irreducible.

Proposition (2.29)

The irreducibles in Z[i] are associates of:
a) prime integers p ∈ Z with p ≡ 3(mod4)
b) z ∈ Z[i] with zz̄ = x2 + y2 = p, a prime integer satisfying p = 2 or

p ≡ 1(4).
Observe if p ∈ Z[i] prime with p ≡ 3(4) it cannot be x2 + y2 since the only

squares in mod 4 are 0,1. For p = 2, 2 = (1+ i)(1− i) a product of irreducibles.
For p ≡ 1(4), p = 4n + 1 consider the field Fp; its multiplicative group

has 4n elements (since it doesn’t include 0); by Question 10 on the second
Example Sheet for this course, it is cyclic. So there is a unique element of order
2, namely -1, and a unique element a of order 4 such that a2 = −1. Thus
p | a2 +1 = (a+ i)(a− i), but p ∤ a± i in Z[i] so p is not prime; it must factorize
p = z1z2 in Z[i]; the zi are nonunits so we must have N(zi) = p, i.e. each zi

is x + iy such that x2 + y2 = p, and the zi are irreducibles of the second form.
[Any z with zz̄ = x2 + y2 = p is clearly irreducible].

Now suppose α is irreducible in Z[i]; take p ∈ Z with p | N(α) = αᾱ. If
p ≡ 3(4) then p is prime in Z[i] so p is associate to one of the irreducibles α, ᾱ
(ᾱ is irreducible since α is), so α is associate to p and on the above list; if
p = 2 or p ≡ 1(4) then p = zz̄ | αᾱ are two factorizations of p ase a product of
irreducibles; Z[i] is a UFD so z must be associate to α or ᾱ and we are done by
the above.

Corollay (2.30)

Let n = pn1
1 . . . pnk

k be the (essentially) unique prime factorisation of n in Z.
Then n = x2 + y2 for some x, y ∈ Z if and only if for any pi with pi ≡ 3(4), ni

is even, as if n = x2 + y2 = zz̄ where z = x + iy we have N(z) = n. Express
z as a product of irreducibles in Z[i]; z = α1 . . . αs. We know the αi are of the
forms listed in (2.29), i.e. either N(αj) = p2

j with pj ≡ 3(4) or N(αj) = pj for
pj = 2 or pj ≡ 1(4). Then n = N(z) = N(α1 . . . αs) =

∏

N(αj) and n is of
the required form. Conversely if n = pn1

1 . . . pnk

k with the nj even if pj ≡ 3(4)
then we can replace any pj which are 2 or ≡ 1(4) with pj = αjᾱj and any
other primes by pj = αj with p2

j = αjᾱj . Then n is zz̄ for some z ∈ Z[i]; let

z = x + iy, then n = x2 + y2.
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Example

The (essentially) unique prime factorization of 65 in Z[i] is 65 = 5 × 13 =
(2 + i)(2 − i)(2 + 3i)(2 − 3i), so the only possible ways (up to associates [and
which factor is z or z̄]) to express 65 as zz̄ are given by z = (2+i)(2+3i) = 1+8i
or (2+i)(2−3i) = 7−4i, i.e. 65 = (1+8i)(1−8i) = 12+82, 65 = (7−4i)(7+4i) =
72 + 42.

2.7 Rings Z[α] of algebraic integers

This section is mostly statements and definitions rather than proofs:

Definition

α ∈ C is an algebraic integer if f(α) = 0 for some monic f(X) ∈ Z[X ], e.g.

i,
√

2, 1
2 (1+

√
−3) (this last being a root of X2−X +1. Z[α] ≤ C is the smallest

subring of C containing α; it is ∼= Z[X]
I

where I is the kernel of θ : Z[X ] → Z[α]
given by g(X) 7→ g(α).

Remarks

We can show (this is a reasonable exercise for the keen student) that for an
algebraic integer α the ideal I above is principal, i.e. generated by some fα(X) ∈
Z[X ]. ℧α will be monic and irreducible; it is the minimal polynomial of α.

The elements of Z are called rational integers since if α ∈ Q is an algebraic
integer then α ∈ Z.

Example

For α an algebraic integer with minimal polynomial fα(X) and p ∈ Z a prime,

by the isomorphism theorems Z[α]
(p)

∼= Z[X]
(fα(X),p)

∼= Fp[X]

(f̄α(X))
where f̄α(X) ∈ Fp[X ]

is obtained by taking the coefficients of fα(X) in modulo p; this follows from

the fact that Z[α] ∼= Z[X]
(fα(X)) .

For example, if we take α = i then fα(X) = X2 + 1 and we have Z[i]
(p)

∼=
Z[X]

(X2+1,p)
∼= Fp[X]

(X2+1) ; if p = 2 or p ≡ 1(4) this is not an ID but if p ≡ 3(4) then

this is an ID so X2 + 1 is irreducible in Fp[X ].
In the part II Number Fields course we consider fields of the form Q[

√
α];

inside these fields the algebraic integers form rings (though not necessarily Z[α].
There are 21 possibilities for which R is an ED; R is a UFD for infinitely many
α > 0 but onli in a boundednumber of cases (in fact 9) for α < 0, as was proven
by Baker of Trinity College.

2.8 Noetherian Rings, Hilbert’s Basis Theorem

Recall (2.21): a PID satisfies the ACC on ideals.
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Lemma (2.31)

R satisfies the ACC if and only if all its ideals are finitely generated: suppose
all ideals are finitely generated and I1 ≤ I2 ≤ . . . is an ascending chain with
Ij ⊳ R∀j. Then

⋃

j Ij ⊳ R so is finitely generated, say = (a1, . . . , an). But then
each ai is ∈ Ij(i) for some j(i); let k = maxi j(i), then (a1, . . . , an) ⊂ Ik so
Ik = Ik+1 = . . . as required. Conversely suppose J ⊳R is not finitely generated,
then pick a1 ∈ J, a2 ∈ J \ (a1), a3 ∈ J \ (a1, a2), . . . , then (a1) $ (a1, a2) $
(a1, a2, a3) $ . . . so the ACC does not hold.

Definition

A ring satisfying the ACC is Noetherian.

Example of a non-Noetherian ring

For F a field, F [X1, X2, . . . ] the ring of polynomials in a countably infinite
number of variables has (X1) $ (X1, X2) $ . . . so the ACC does not hold and
this ring is not Noetherian.

Theorem (2.32) Hilbert’s Basis Theorem

Let R be a Noetherian ring, then R[X ] is Noetherian: let J ⊳ R[x]. Consider
In = {an ∈ R :

∑n
i=0 aiX

i ∈ J}∪ {0}, the set of leading coefficients of elements
of J of degree n [and 0]. Then In ⊳ R, since for

∑n

0 aiX
i,

∑n

0 biX
i ∈ J so too

is
∑

(ai + bi)X
i, and

∑

airX
i ∈ J∀r ∈ R; In ⊂ In+1∀n since

∑n
0 aiX

i ∈ J ⇒
X

∑n

0 aiX
i ∈ J , so by assumption ∃N such that IN = IN+1 = . . . . By (2.31)

IN is finitely generated; let f1(X), . . . , fk(X) be polynomials of degree N in J
whose leading coefficients generate IN . Take f(X) ∈ J of degree m ≥ N ; since
Im = In there exist r1, . . . , rk ∈ R : r1f1(X) + · · · + rkfk(X) has the same
leading coefficient as f(X), so f(X) − (r1f1(X) + · · · + rkfk(X))Y m−N ∈ J is
of degree < m; repeating we have q1(X), . . . , qk(X) ∈ R[X ] such that f(X) −
(q1(X)f1(X) + · · ·+ qkfk(X)) ∈ J is of degree < N . Now consider polynomials
of degree < n in J ; for each j < N there is a finite set Sj of polynomials of
degree j in J whose leading coefficients generate Ij . Let S =

⋃

j<N Sj , a finite
set. Then if f(X) is of degree j < N then ∃r′i ∈ R such that f(X)−∑

r′igi(X)
where Sj = {g1(X), . . . , gl(X)} is ∈ J and of smaller degree than X ; thus we can
reduce the degree until we get 0, so J is generated by S ∪ {f1(X), . . . , fk(X)},
a finite set.

Corollay

Z[X1,...,Xn]
I

is Noetherian for any I ⊳ Z[X1, . . . , Xn]: by inductively applying

Hilbert, Z[X1, . . . , Xn] is Noetherian, then if J
I

is an ideal of Z[X1,...,Xn]
I

then it
corresponds to J ⊳ Z[x1, . . . , Xn] with I ⊂ J , then J is finitely generated since
Z[X1, . . . , Xn] is Noetherian so J

I
is finitely generated as required.

3 Modules

These are generalizations of vector spaces, where the coefficients are no longer
fields; we will concentrate on modules whose coefficients are taken from EDs,
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particularly Z and F [X ] for fields F .

3.1 Definitions, examples, submodules, homomorphisms,

quotient modules, direct sums

We take R to be a commutative ring throughout; if it were not we would need
to talk about left- and right modules.

Definition

The set M is an R-module if there is a binary operation + for which (M, +)
is an abelian group and a map R × M → M given by (r, m) 7→ rm such that
(r1 +r2)m = r1m+r2m, r(m1 +m2) = rm1 +rm2, r1(r2m) = (r1r2)m, 1m = m.

Examples

For R = F a field a module is simply a vector space over F .
For any R, Rn is an R-module under r(r1, . . . , rn) = (rr1, . . . , rrn); in par-

ticular this means R itself is an R-module under multiplication in R.
For any ring R, I ⊳ R and R

I
for such I are R-modules.

This and the next are the focus of this part of the course: for R = Z the Z-
modules are precisely the abelian groups, since if A is an abelian group written
additively then for n ∈ N0 we set na = a + · · · + a, (−n)a = −(na), then A is a
Z-module.

If V is a vector space over a field F , for a fixed linear map α : V → V , V is
an F [X ]-module under f(X)V = f(α)(V ); different α generally give different
modules.

For R ≤ S, S is an R-module under multiplication in S.

3.1.1 Definition

A subset N of an R-module M is an R-submodule if it is an additive subgroup
of M and rn ∈ N∀r ∈ R, n ∈ N ; the (overused) notation is N ≤ M .

Example

The R-module R has submodules I ⊳ R, the ideals of R; the submodules of a
vector space are its subspaces.

Definition

If N ≤ M the quotient module M
N

has elements m + N and r(m + N) = rm;

it is clearly an additive group (the quotient group M
N

) and the reader should
verify such multiplication is well defined.

Definition

An R-module homomorphism θ : M → N is a group homomorphism (i.e. sat-
isfies θ(m1 + m2) = θ(m1) + θ(m2)) with θ(rm) = rθ(m); the image of θ is an
R-submodule of N and its kernel is an R-submodule of M (exercises).
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3.1.2 Theorem (Isomorphism theorems)

Let θ : M → N be an R-module homomorphism, then M
ker θ

∼= Im θ ≤ N as
R-modules (i.e. we have a bijective R-module homomorphism between them);
the proof is left as an exercise.

As before, we have a one-to-one correspondence between submodules of M
M1

and submodules of M containing M1, and if M1 ≤ L ≤ M then
M
M1
L

M1

∼= M
L

.

Example

For the special case R = F , i.e. W ≤ V vector spaces, V
W

is a quotient space. θ :

V → U linear has V
ker θ

∼= Im θ ≤ U ; linear maps are F -module homomorphisms.

Definition

The annihilator of m ≤ M is Ann(m) = {r ∈ R : rm = 0}; the annihilator of
M is Ann M = {r ∈ R : rm = 0∀m ∈ M}; clearly this is

⋃

m∈M Ann(m). We
have Ann(m), Ann(M) ⊳ R since r1m = 0, r2m = 0 ⇒ (r1 + r2)m = 0, r1m =
0 ⇒ (rr1)m = 0∀r ∈ R.

Definition

For m1, . . . , mn ∈ M the submodule generated by m1, . . . , mn is Rm1 + · · · +
Rmn = {r1m2 + · · · + rnmn : ri ∈ R}; a module generated by one element is
cyclic.

3.1.3 Lemma

Rm ∼= R
Ann(m)∀m ∈ M , by applying the 1st isomorphism theorem (3.1) to

θ : R → M given by r 7→ rm.

Example

If R = F a field then the finitely generated modules are the finite dimensional
vector spaces.

Example

If R = Z the Z-submodules of Z are the ideals nZ; since these are principal
ideals they are cyclic modules.

Example

Z ≤ Z[α] for any algebraic integer α; Z[α] is a finitely generated Z-module
(the proof of this is an exercise, and uses the fact that α is a root a monic
polynomial).

3.1.4 Lemma

Let N ≤ M be R-modules, then if M is finitely generated then M
N

is finitely

generated; if m1, . . . , mn generate M then m1 + N, . . . , mn + N generate M
N
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Warning

This is not as trivial as it might seem, because it is not always the case that for
M finitely generated, N ≤ M is finitely generated, since if we let R = F [X1, . . . ]
the ring of polynomials over countably infinitely many variables, and let I be
the ideal of polynomials with zero constant term i.e. the union of the chain
(X1) $ (X1, X2) $ . . . , which does not satisfy the ACC for ideals so cannot be
finitely generated, thus has I ≤ R not finitely generated as an R-module, while
R = R1 is generated by 1.

Definition

Given R-modules M1, . . . , Mk the (external) direct sum M1 ⊕ · · · ⊕ Mk has el-
ements (m1, . . . , mk) for mi ∈ Mi, with addition (m1, . . . , mk)+(m′

1, . . . , m
′
k) =

(m1+m′
1, . . . , mk+m′

k) and scalar multiplication r(m1, . . . , mk) = (rm1, . . . , rmk).
There is also an internal direct sum: for Mi ≤ M if each element of M1 + · · ·+
Mk ≤ M is uniquely expressible as m1+· · ·+mk for mi ∈ Mi then M1+· · ·+Mk

is a direct sum; equivalently Mi ∩
∑

j 6=i Mj = {0}∀i.

Example

Rn = R ⊕ · · · ⊕ R

Proposition (3.4)

Let M be an R-module generated by m1, . . . , mk, then there is an R-module
homomorphism θ : Rk → M by (r1, . . . , rk) 7→ r1m1 + · · · + rkmk (the reader
should verify that this is indeed a homomorphism); this is clearly surjective.

Then M ∼= Rk

ker θ
by the isomorphism theorem.

Remark

θ is dependent on the choice of generating set.

Definition

If θ is an isomorphism, i.e. ker θ = {~0}, then we say the generating set
m1, . . . , mk is a basis.

Warning

{2, 3} is a generating set for Z (the Z-module) but no subset therof is a basis
(wheras in a vector space there would always exist such a subset).

ker θ is called the relation module (and depends on the choice of generators);
for (r1, . . . , rk) ∈ ker θ, r1m1+· · ·+rkmk = 0 is a relation. If the relation module
is finitely generated by ni = (ri1, . . . , rik) then M is generated by {m1, . . . , mk}
subject to the relations ri1m1 + · · · + rikmk = 0 for each i.
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3.2 Matricies over EDs, Equivalent Matricies, Smith Nor-

mal Form

For R an ED with Euclidean function φ : R \ {0} → Z≥0 we know that φ(ab) ≥
π(a) and ∀a, b ∈ R, b 6= 0, a = qb + r with r = 0 or φ(r) < φ(b), and hcf(a, b)
exists (though defined only up to associates); by the Euclidean algorithm it is
ax + by for some x, y ∈ R.

Definition

The elementary operations on an m × n matrix A are:
ER1: add c× the jth row to the ith row for some i 6= j; this can be achieved

by multiplying A on the left by the m × m matrix C + I where Ckl = 0 except
for Cij = c.

ER2: interchange rows i, j; this can be achieved by multiplying A on the
left by the m × m matrix C + I where Ckl = 0 except for Cii = 0 = Cjj , Cij =
1 = Cji.

ER3: multiply row I by a unit u ∈ R; achieved by multiplying A on the left
by C where Ckl = 0 except Ckk = 1 for k 6= i and Cii = u.

All these elementary operations can be reversed, so their associated matricies
are invertible.

We similarly have the elementary column operations EC1,EC2,EC3, achieved
by multiplying A on the right by particular invertible n × n matricies.

Definition

Two matricies A, B are equivalent if one can be obtained from another by a

sequence of elementary row and column operations; this implies B = QAP−1

for some suitable invertible P, Q.

Theorem (3.5) (Smith Normal Form)

Let A be an m×n matrix over an ED R. Then it can be transformed by elemen-

tary row and column operations to a diagonal matrix of the form

















d1

. . .
dr

0
. . .

0

















with di 6= 0∀i and d1 | d2 | · · · | dr; the di are unique up to associates, the
invariant factors, with d1 = hcf{aij} and dk [correction: d1 . . . dk; check in
supervision] the hcf of the k × k minors of A.

Definition

The k × k minors of an m × n matrix A are the determinants of the k × k
matricies obtained by deleting m − k rows and n − k columns of A.
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Lemma (3.6)

The ideal of R generated by the k × k minors of A is not changed under ele-
mentary operations. We shall only sketch the proof: for 1 × 1 minors i.e. the
entries of A, under the elementary operations each aij either remains the same,
is replaced by aij +cakj , aij +caik, aik or akj , or is multiplied by a unit; thus the
ideal generated by entries of the new matrix is a subset of the ideal generated
by the entries of A, but the elementary operations are reversible so the opposite
inclusion also holds and the two ideals are equal.

The proof of the general case is similar but messier. For example, for EC1,
adding c× the jth column to the ith colmn, a new submatrix of A containing
(part of) column i has determinant that of the original minor of A + c× the
determinant of the submatrix with column i replaced with column j; if the
submatrix also contains (part of) column j then this second determinant is of
a matrix with two columns equal so zero; if it does not, it is ± the determinant
of another minor of A. The proofs for the other operations are similar.

Proof of Theorem (3.5)

If A = 0 we are done, otherwise take A 6= 0; by interchanging rows and columns
(by ER2 and EC2) we may take A11 6= 0. Then we reduce φ(A11 by elementary
operations by the following three methods:

For the first case, if A11 does not divide some A1j (i.e. another element
of the first row) then by Euclid’s algorithm we have A1j = qA11 + r with
r 6= 0, φ(r) < φ(A11, then subtracting q× the first column from the jth column
we have A1j = r and exchanging columns 1 and j we have A11 = r 6= 0 with
φ(A11) smaller than before.

For the second case, if A11 does not divide some Aj1 we can proceed similarly.
For the third case, if we have A11 6= 0, A1j = 0∀j 6= 1, Aj1 = 0∀j 6= 1, A11 ∤

Aij for some i, j 6= 1 we use Euclid to write Aij = qA11 +r, then we add column
1 to column j, subtract q× row 1 from row i, swap rows 1 and i, then swap
columns 1, j. This gives A11 = r.

To reduce the matrix into SNF we first apply the first and second cases
to obtain a matrix where A11 divides all other entries of the first row and
column, then subtract multiples of the first row from other rows and the first

column from other columns to obtain a matrix of the form









d 0 . . . 0
0

. . . . . .
0









.

We repeatedly apply the third case and then return to applying the first and
second cases until A11 | Aij∀i, j 6= 1, then induct on the smaller matrix in
the bottom right corner to obtain the result. The resulting matrix will be
















d1

. . .
dr

0
. . .

0

















; for any k, the ideal generated by the k×k minors

of this matrix is clearly (d1, . . . , dk) and by (3.6) this is the ideal generated by
the k×k minors of our original matrix A, so the dk are unique up to associates.
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Example

A =

(

2 −1
1 2

)

; we add column 2 to column 1 (multiplying on the right by
(

1 0
1 1

)

), obtaining

(

1 −1
3 2

)

, then add column 1 to column 2 (multiplying

by

(

1 1
0 1

)

on the right) giving

(

1 0
3 5

)

, then subtract 3× row 1 from row

2 (multiplying on the left by

(

1 0
−3 1

)

) to obtain

(

1 0
0 5

)

, and we have

our matrix in SNF:

(

1 0
0 5

)

=

(

1 0
−3 1

)

A

(

1 1
1 2

)

. Although this may

seem a somewhat trivial example, to place even a 3× 3 matrix into SNF can in
practice take a long time.

3.3 Structure of finitely generated modules over EDs, abelian

groups

Lemma (3.7)

Let N ≤ Rm where R is an ED, then N is a finitely generated R-module: the
proof is by induction on m. Consider I = {r1 ∈ R : (r1, . . . , rm) ∈ N} ⊳ R (the
reader may check this is in fact an ideal); R is an ED so a PID so this I is (a) for
some a ∈ R; pick n1 = (a, a2, . . . , am) ∈ N (there must be such an n1 since a ∈ R
[???]). Then ∀(r1, . . . , rm) ∈ N∃r : r1 = ra so (r1, . . . , rm) − r(a, a2, . . . , am) =
(0, r2 − ra2, . . . , rm − ram) ∈ N , now applying induction to the submodule
H = {(0, r2, . . . , rm) ∈ N} ≤ {(0, r2, . . . , rm) ∈ Rm} ∼= Rm−1 H is finitely
generated, by some n2, . . . , ns. Then n1, . . . , ns generate N . Clearly this result
also holds for any Noetherian R.

Theorem (3.8)

For R an ED and N ≤ Rm, there exists a basis v1, . . . , vm of Rm and d1, . . . , dr ∈
R such that N has basis d1v1, . . . , drvr and d1 | d2 | · · · | dr: by (3.7) N
is finitely generated, say by x1, . . . , xn. Write these vectors as columns of an
m × n matrix A (rows are used instead in some books), then by Smith (3.5),
by using elementary operations we may put A into SNF [with possibly some
extra rows of zeroes). Observe that using row operations (multiplication on
the left by certain invertible matricies) changes the basis being used for Rm,
e.g. adding c× row j to row i replaces the (standard) basis e1, . . . , em of Rm

by e1, . . . , ei, . . . , ej − cei, . . . , em since a1e1 + · · · + amem = a1e1 + · · · + (a1 +
caj)ei + · · ·+ aj(ej − cei)+ · · ·+ amem; similarly column operations change the
generating set of N ; thus the elementary operations achieve a change of basis
for Rm and a change of generating set of N . When we reach SNF we are using
a basis v1, . . . , vm of Rm such that d1v1, . . . , drvr, 0, . . . , 0 is a generating set for
N , and by the definition of SNF we have d1 | · · · | dr as required.

Corollay (3.9)

Any submodule of Rm for R an ED is isomorphic to Rr for some r.
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Theorem (3.10)

Let M be a finitely generated R-module for R an ED, then M ∼= R
(d1)

⊕ · · · ⊕
R

(dr) ⊕ R ⊕ · · · ⊕ R for some d1 | · · · | dr.

Note firstly that if dk is a unit then R
(dk)

∼= {0} the zero module and so is

superfluous, so we can without loss of generality take all the dk to be non-units,
and secondly that this result gives that M is a direct sum of cyclic modules.

We have that M is finitely generated so ∼= Rm

N
(we have a homomorphism

θ : Rm → M by (r1, . . . , rm) 7→ r1m1 + · · · + rmmm where m1, . . . , mm is a
generating set of M); by (3.8) we can pick a basis v1, . . . , vm of Rm so that N
is generated by d1v1, . . . , drvr, then M ∼= Rm

N
∼= R

(d1)
⊕ · · · ⊕ R

(dr) ⊕ R ⊕ · · · ⊕ R

as required.

Example

For R = Z, let A be an abelian group written additively with generating set
a, b, c subject to relations 2a + 3b + c = 0, a + 4b = 0, 5a + 6b + 7c = 0. Then

A as a Z-module is ∼= Z3

N
where N is generated by {(2, 3, 1), (1, 4, 0), (5, 6, 7)} ⊂

Z3. Write these as columns of a matrix (note that some books will use rows)

B =





2 1 5
3 4 6
1 0 7



, then by elementary operations put B into SNF, in this

case





1 0 0
0 1 0
0 0 21



 by our result about HCFs of minors. Then we have A ∼=

Z
Z
⊕ Z

Z
⊕ Z

21Z
∼= Z

21Z
, so A is cyclic of order 21. This kind of calculation is very

common in algebraic topology.

Theorem (3.11) (Structure theorem for abelian groups)

A finitely generated abelian group (written multiplicatively) is isomorphic to
Cd1 × · · ·×Cdr

×C∞× · · ·×C∞ where d1 | · · · | dr and C∞ is the infinite cyclic
group; the proof is immediate by setting R = Z it (3.10). Note that for finite
groups there are no C∞ in the product so we have another proof of (1.19).

Proposition (3.12) (Primary decomposition)

For R a Euclidean Domain, R
(d)

∼= R

(p
n1
1 )

⊕ · · · ⊕ R
(pns

s )
where d = pn1

1 . . . pns
s is

the unique prime factorization of d (recall that R must be a UFD since it is an
ED). The proof comes from splitting off each R

(p
ni
i

)
using the following:

Lemma (3.13)

Let M ∼= R
(d) with d = r1r2 and r1, r2 coprime (i.e. gcd(r1, r2) = 1), then

M ∼= R
(r1)

⊕ R
(r2) (cf (1.20)): let m be a generator of M with Ann(m) = (d),

then since hcf(r1, r2) = 1∃x, y ∈ R : 1 = xr1 + yr2 by Euclid’s algorithm. So
m = 1m = xr1m + yr2m (⋆). Let M1 = Rr1m, M2 = Rr2m, then Ann(r1m) =
(r2), Ann(r2m) = r1 using unique factorization. So M1

∼= R
(r2))

, M2
∼= R

(r1)
, M1∩

M2 = {0} since if sm ∈ M1 ∩ M2 then s is a multiple of r1 and r2 so d | s and
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sm = 0; M = m1+M2 since m ∈ M1+M2 by (⋆) so the module homomorphism
M1 ⊕ M2 → M given by (m1, m2) 7→ m1 + m2 is an isomorphism, i.e.M is an
internal direct sum of M1 and M2.

Theorem (3.14)

Let R be an ED and M a finitely generated R-module. Then M ∼= a direct sum
of cyclic modules N1 ⊕ · · · ⊕ Ns with each Nj either ∼= R

(p
nj

j

for some prime pj

or ∼= R: use (3.10) to express M as a direct sum of cyclic modules Mi, then
using primary decomposition (3.12) express each Mi as a direct sum of cyclic
modules with annihilator (p

nj

j ); note that each prime only arises once from any
particular Mi, but different Mi can involve the same prime. The Annihilators
appearing for Nj are called the elemantary divisors.

Without proof, for each prime p in R and n ≥ 1 the number of components
∼= R

(pn) is independent of the method, i.e. the elementary divisors are uniquely

determined up to reordering. The proof of this is entirely possible at this level,
but takes around 20 minutes to lecture.

3.4 Modules over F [X], normal forms of matricies

For a linear map α : V → V where V is a finite dimensional vector space over
a field F , an endomorphism, V is a F [X ]-module by f(X)(v) = f(α)(v); let it
be M and let R = F [X ].

Example

For a cyclic F [X ]-module M , M ∼= F [X]
(f(X)) , f(X) is the polynomial of least

degree such that f(α) = 0; we may without loss of generality take f(X) monic
so it is the minimal polynomial of α.

1) For f(X) = Xr take a generator m of M , then m, Xm, X2m, . . . , Xr−1m
is a vector space basis of M = V (since it is m, α(m), α2(m), . . . , αr−1(m)),
and the matrix with entries in F representing α with regard to this basis is












0
1 0

1 0
. . . . . .

1 0













.

2) For f(X) = (X −λ)r we have (α−λ)r = 0. Set β = α−λι, then the min-
imal polynomial of β is Xr, then β may be represented by a matrix of the above

form, so α may be represented by a matrix of the form













λ
1 λ

1 λ
. . . . . .

1 λ













.

3) For a general minimal polynomial f(X), take m a generator for the

cyclic F [X ]-module F [X]
(f(X)) , then the module has an F -vector space basis by

m, Xm, . . . , Xn−1m where n = deg f(X) (this is a basis since all its elements are
linearly independent since f is the minimal polynomial of α). With respect to
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this basis, the endomorphism α is represented by the matrix













0 −a0

1 0 −a1

1 0 −a2

. . . . . . . . .
1 −an−1













where the ai ∈ F are the coefficients of f(X) = a0+a1X+· · ·+an−1X
n−1+Xn.

This matrix is called C(f(X)), the companion matrix.
For a general (non-cyclic) F [X ]-module we can use (3.10) to split it into a

direct sum of cyclic modules:

Theorem (3.15) (Rational Canonical Form)

The name of this result is misleading; it applies to general fields F , but is
so called because it was first proven for the rationals. Let α : V → V be a
linear map with V a finite dimensional F -vector space. Then regarding V as
a F [X ]-module M , M ∼= M1 ⊕ · · · ⊕ Mr with each Mi a cyclic F [X ]-module
∼= F [X]

(fi(X)) where f1(X) | · · · | fr(X); we may assume the fi(X) are non-units

in F [X ]. The fi(X) are the invariant factors, and an F -vector space basis may
be chosen for each Mi so that α is represented by a [block] matrix of the form








C(f1)
C(f2)

. . .
C(fr)









[where each of the C(fi) is a submatrix as

above]. The proof is by using the structure theorem (3.10); note that there
can’t be any copies of F [X ] in the direct sum since V is finite dimensional over
F . Then we pick a vector space basis for each Mi as in the example above.

Note

The minimal polynomial of α is fr(X), being a generator of Ann(M) as an
F [X ]-module.

The characteristic polynomial of α is the product f1(X) . . . fr(X) since the
characteristic polynomial of each C(fi) is fi(X).

The invariant factors fi(X) are unique (though as above this relies on a
result not proven in this course)

Given any square F -matrix A it is conjugate to one in rational canonical
form; this is the usual change of basis as in the Linear Algebra course.

When we know what the primes/irreducibles in F [X ] are then we can use the
structure theorem for modules over EDs where we have split the cyclic modules
further so that their annihilators are generated by powers of irreducibles; this
can be done for F = R and other fields but is most commonly done with F = C :

Theorem (3.17) (Jordan Normal Form)

Let α : V → V be a linear map with V a finite dimensional complex vector space
(an exercise for the reader is to find the equivalent result for real and other vector
spaces); then regarding V as a C[X ]-module M , M ∼= N1⊕· · ·⊕Ns where Nj

∼=
C[X]

((X−λj)
aj )

(with the λj not necessarily distinct); taking a complex vector space

basis for each Nj as in the second of the above examples, α is represented by a
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matrix of the form

















































λ1

1 λ1

1 λ1

. . . . . .
1 λ1

λ2

1 . . .
. . . . . .

1 λ2

. . .
λs

1 . . .
. . . . . .

1 λs

















































;

the proof is immediate by applying (3.14) to this case. Note that the “magic
solution” we had for differential equations in the 1A course of that name was
actually obtained by similar methods using a basis, since differentiation is a
perfectly good linear map.

Remarks

1) The submatricies













λj

1 λj

1 λj

. . . . . .
1 λj













are Jordan blocks or Jordan

λ-blocks.
2) The Jordan blocks are unique up to reordering (though this depends on

the unproven result that elementary divisors are unique up to reordering).

3) Note that we got JNF (3.16) by splitting the Mi in (3.15): Mi
∼= F [X]

(fi(X)) , fi(X) =
∏

(X−λ)aλi for distinct λ is the primary factorization. From Mi we get exactly
one λ-block for each λ with aλi

6= 0; consequently the largest λ-block is that
arising from fr(X) (because f1(X) | · · · | fr(X), so the highest power of (X−λ)
is (X − λ)aλr . But we noted that the minimal polynomial of α is fr(X) so we
have that mα(X) =

∏

λ distinct(X − λ)aλ where aλ = maxi aλi
, the size of the

largest λ-block.
4) We saw that the characteristic polynomial of α is the product f1(X) . . . fr(X),

so the characteristic polynomial is
∏

λ distinct(X − λ)bλ where bλ =
∑

i aλi
, the

sum of the sizes of the λ-blocks.
5) Recall from the Linear Algebra course, the geometric multiplicity of an

eigenvalue λ is the dimnsion of the λ-eigenspace, which = the number of λ-
blocks.

6) Any square complex matrix is conjugate to one in JNF.

Example (Solution of constant coefficient linear difference and recur-
rence equations)

Consider V the space of complex sequences that are solutions of zi+n+cn−1zi+n−1+
· · ·+ c0zi = 0 (⋆) ∀i ≥ 1; notice that V is finite dimensional since each sequence
∈ V is determined completely by its first n entries, using (⋆). Define α : V → V

40



by (z1, z2, . . . ) 7→ (z2, z3, . . . ), a left shift; this is linear. The minimal polynomial
of α is f(X) = Xn + cn−1X

n−1 + · · ·+ c0 from (⋆); this is the auxiliary polyno-
mial the reader should be familiar with. Then if f(X) =

∏

λ distinct(X − λ)aλ

there is exactly one λ-block for each λ with aλ 6= 0 since the geometric multi-
plicity of each λ is clearly 1 (the λ-eigenspace of α is 1-dimensional, consisting
of sequences for which left shift multiplies by λ, i.e. {(z, λz, λ2z, . . . ) : z ∈ C}).
We have a JNF for α consisting of one λ-block of size aλ for each λ, and the
corresponding complex vector space basis consists of sequences with kth entry
(

k
a

)

λk−a where 0 ≤ a ≤ aλ − 1 for each λ.
Similarly for differential equations, differentiation α : V → V is linear and

we have a finite dimensional vector space of solutions. The minimal polynomial
of α comes directly from the differential equation in question, and the usual
solutions are the basis associated with the JNF of α.

[This is the end of the course.]
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