
Graph Theory
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This course is about graphs. The good thing about studying graphs is that
they are discrete, simple objects. They have no hidden structure - if we talk
about e.g. a group of order p, it takes clever maths to work out this is actually
cyclic, wheras with a graph, all of the structure is obvious. There are almost
no prerequisites from previous courses; this could almost have been a IB course,
and whenever we state a theorem it is clear what it means. The downside is
that there is no obvious way to start the proof of a theorem - we can’t take a
basis, we can’t take ǫ > 0, we have to think of something clever.

The only slight link to any previous course is that if you liked the optimiza-
tion course, you should like this.

A theorem referred to by a single number (e.g. “Theorem 4”) refers to the
theorem of that number in the current section (e.g. theorem 2.4 if this was in
section 2)

0.1 Outline

There are seven chapters: an introduction, conectivity and matching (the most
IA/IB-like chapter), extremal problems (the heart of graph theory, and quite
hard; however, though many of the theorms look like their proofs must be really
ugly, these proofs then turn out to be quite elegant), colourings, Ramsey theory,
Random Graphs (the other hard chapter; this section is useful for proving that
certain types of graph exist, by proving that a randomly generated graph has
a nonzero probability of having the property we want) and algebraic methods
(which are good for proving taht certain types of graph don’t exist).

0.2 Prerequisites

There are essentially none; the reader should understand the concepts of
(

n
r

)

,
R2, eigenvalues, and the mean and variance of a probability distribution; it is
nice but not essential to have seen “max flow min cut”.

0.3 Books

A book should not be necessary for this course; what is covered here is what is
examinable. There is one good book for this course (Bollboa’s Modern Graph
Theory (also sometimes seen under its old title Graph Theory - An Introductory
Course), which gives you the right “feel” for which things are important, easy,
or hard), one decent book (Dieltel’s Graph Theory, which is less good at this
“feel” aspect, but a good book), and many bad books (the best of which is
Bondy and Murty’s Graph Theory with Applications).
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1 Introduction

A graph is a pair (V, E) where V is a set and E ⊂ V (2) := {{x, y} : x, y ∈ V }
the set of unordered pars from V ; we will take V finite unless otherwise stated.
Note that this definition means there are no “loops” (edges from a vertex to
itself), no multiple edges between the same pair of vertices, and no directed
edges. We call V (G) := V the vertex set of G and E(G) := E the edge set of
G. The order of G is |G| = |V (G)|; the size of G is e(G) = |E(G)|. We often
write x ∈ G to mean x ∈ V (G).

Some examples are the empty graph En for which V = {x1, . . . , xn}, E = ∅,
the complete graph Kn for which V = {x1, . . . , xn}, E = V (2), the path Pn of
length n, for which V = {x1, . . . , xn+1}, E = {xixi+1 : 1 ≤ i ≤ n} (beware
that some books take Pn to have n vertices), and the cycle Cn of length n ≥ 3,
for which V = {x1, . . . , xn}, E = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1} [of course
we work with the familiar “drawing” versions of graphs, not these cumbersome
sets, but the limitations of typesetting engulf me].

Graphs G = (V, E), H = (V ′, H ′) are isomorphic if there exists as bijection
f : V → V ′ such that xy ∈ E ⇔ f(x)f(y) ∈ E′. We say H is a subgraph of G if
V ⊂ V ′ and E ⊂ E′, e.g. Cn is a subgraph of Kn. For xy ∈ E we write G− xy
for the graph (V, E − {xy}); similarly G + xy.

If xy ∈ E we say x and y are adjacent or neighbours; the neighbourhood of
x is Γ(x) = {y ∈ V : xy ∈ E}; the degree of x is d(x) = |Γ(x)|.

If V (G) = {x1, . . . , xn} then the degree sequence of G is d(x1), . . . , d(xn);
the maximum degree ∆(G) and minimum degree δ(G) are defined in the obvious
way. If d(x) = k∀x ∈ G we say G is regular of degree k, e.g. Cn is 2-regular
and Kn is (n− 1)-regular.

In a graph G, an x− y path is a set x = x1, . . . , xk = y (with k ≥ 1) of
distinct vertices of G such that xixi+1 ∈ E∀1 ≤ i ≤ k − 1; it has length k − 1.
We say G is connected if ∀x, y ∈ V ∃x − y path in G; informally, G is “in one
piece”. It is important to remember that not all graphs are connected.

We write x ∼ y if ∃ an x − y path; this is an equivalence relation, though
note that we cannot simply concatenate paths as this might give a path which
crossed itself, which would not be allowed (instead we e.g. take the part of
the x − y path up until it first reaches a node in the y − z path, and then the
remainder of the y − z path, as an x − z path for transitivity). A walk is a
sequence x1, . . . , xk such that xixi+1 ∈ E∀1 ≤ i ≤ k− 1; clearly G has an x− y
walk iff it has an x− y path.

Trees

These are an important concept; many important techniques first become aparrent
when we apply them to trees, and later on we will often use trees as the base
cases for induction.

A graph is acyclic if it contains no cycle. A tree is a connected acyclic graph.

1.1 Proposition

For G a graph, TFAE:
G is a trees
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G is minimal connected (i.e. G is connected but G − xy is disconnected
∀xy ∈ E

G is maximal acyclic (which means the obvious thing)
For a) implies b), G is connected by definition; were G − xy connected for

some xy then we have an x − y path P , but then P + yx is a cycle in G,
contradiction.

For b) implies a), G is connected; if it has a cycle C then choose xy ∈ C and
G− xy is connected, because for any a, b ∈ V we have an a− b path in V , but
if it uses the edge xy we can replace this with C − xy and have an a − b walk
in G− xy, contradiction.

For a) implies c), we have an x− y path P in G so G+xy contains the cycle
P + yx.

For c) implies a), if G is not connected then take x, y in different components
of G, then G + xy remains acyclic, contradiction.

A vertex x ∈ a tree T is called a leaf or end vertex if d(x) = 1.

1.2 Proposition

Any tree T with |T | ≥ 2 contains a leaf: let P = x1, . . . xk be a longest path in
T Then Γ(xk) ⊂ P by maximality of P , but Γ(xk)∩P = {xk−1} as T is acyclic,
so d(xk) = 1. This “longest path” technique is useful when we want to take a
vertex which is intuitively “far away from the centre” of the graph; also note
taht the proof actually shows we have at least two leaves.

An alternative proof is that if T has no leaf we will “go for a walk”; choose
x1x2 ∈ E, then repeatedly choose xk+1 ∈ Γ(xk)\{xk−1}; this must repeat since
T is finite, so we have a cycle.

For a graph G with W ⊂ V we write G[V ] for the subgraph spanned by W ,

with vertex set W and edge set E(G) ∩W (2). For x ∈ V we write G − x for
G[V \ {x}].

1.3 Proposition

For T a tree on n ≥ 1 vertices, e(T ) = n − 1: we induct on n, the n = 1
case is trivial and for T on n ≥ 2 vertices we let x be a leaf, then T − x is
a tree on n − 1 vertices so e(T − x) = n − 2 by the induction hypothesis, so
e(T ) = e(T − x) + 1 = n− 1.

Many books say that all proofs of this proposition are inductive, and indeed it
is hard to see how we could arrive at a number like n−1 without using induction;
however, we can do a noninductive proof using the idea of a spanning tree; a
spanning tree T of a graph G is a subgraph of G with V (T ) = V (G) which is
a tree. Clearly every connected G has a spanning tree, by removing edges until
it is minima connected and applying proposition 1.1. We can then proove the
above proposition by showing that any connected G has a spanning tree T of
n− 1 edges; then we are done since if G is a tree then the only spanning tree of
G is G itself (e.g. by minimal connectedness):

For x, y ∈ G define the distance from x to y d(x, y) is the minimal length
of any x − y path. Now to construct our spanning tree we fix x0 ∈ G, then
for each other x ∈ V we let a be a shortest x − x0 path; say it is xx′ . . . x0.
Then let T consist of all of the xx′; this is certainly n − 1 edges, and T is
connected: for any x we take xx′x′′ . . . x0, and this is a path to x0. T is acyclic
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since we note that each vertex has only one edge connecting it to a vertex
closer (or even equally close) to x0 (that is, there is precisely one y ∈ Γ(x) with
d(x0, y) ≤ d(x0, x). So, if T had a cycle C, choose x ∈ C of maximum distance
from x0, say d(x, x0) = k, but then both neighbours of x (in C) are at distance
≤ k from x0, a contradiction.

Of course, there is an inductive step therein, but it is deeply buried: we only
know the path xx′x′′ . . . reaches x0 by induction.

A forest is an acyclic graph; thus G is a forest iff every component of G is
a tree. For G connected, xy ∈ E is a bridge if G − xy is disconnected; thus a
connected graph G is a tree iff every edge is a bridge. For G connected, x ∈ G is
a cutvertex if G− x is disconnected; clearly if G has a bridge then (for |G| > 2)
it has a cutvertex, but the converse is false.

1.4 Bipartite Graphs

A graph G is bipartite on vertex classes V1, V2 if V1, V2 partition V (i.e. V1∪V2 =
V, V1 ∩ V2 = ∅) and E(G) ⊂ {xy : x ∈ V1, y ∈ V2} (i.e. there are no edges
inside V1 or V2. For example, a path is bipartite by alternating its vertices
between V1 and V2 (we shall see below that all trees are bipartite); we define the
complete bipartite graph Kn,m by |V1| = n, |V2| = m, E = {xy : x ∈ V1, y ∈ V2}.

Proposition: G is bipartite iff it has no odd cycle. Define a circuit in G isa
closed walk, i.e. a walk x1, . . . xl where xl = x1. Note that if G has an odd
circuit then it has an odd cycle; if x1 . . . xkx1 is an odd circuit and xi = xj ,
wlog 1 ≤ i < j ≤ k, then one of xixi+1 . . . xj and xjxj+1 . . . xkx1 . . . xi is odd,
then induct on k. Then for the forward implication the vertices of any cycle
must alternate between V1 and V2, for the reverse wlog take G connected (since
if each component of G is bipartite, so is G); fix x1 ∈ G and put V1 = {x ∈
G : d(x, x1) even}, V2 = {x ∈ G : d(x, x1) odd}. Now if we had x, y ∈ V1 or
x, y ∈ V2 with xy ∈ E then xy together with the shortest paths from x1 to x, y
forms an odd circuit.

1.5 Planar Graphs

A graph G is planar if it can be drawn in the plane without crossing edges; a

plane graph is such a drawing. Rigorously, for x, y ∈ R2, x 6= y a polygonal arc
from x to y is a finite union of (closed) straight line segments x1x2∪x2x3∪· · ·∪
xk−1xk with x1 = x, xk = y that are disjoint except for xixi+1 ∩ xi+1xi+2 =
{xi+1}. For G a graph with vertex set {V1, . . . , Vn} a drawing of G consists of

distinct points x1, . . . , xn ∈ R2 together with a polygonal arc Pij between xi, xj

for each ViVj ∈ E such that Pij∩Pkl = ∅ for i, j, k, l distinct and Pij∩Pik = {xi}.
For x, y ∈ R2 \G (by which we really mean a drawing of G) we write x ∼ y if
∃ a polygonal arc in R2 \G from x to y; the components (equivalence classes)
of this are called the faces. The boundary or a face consists of G∩ its closure;
note that it need not be a cycle or even connected; also the faces on each side
of an edge are not necessarily distinct.

We’ll assume various facts about R2 without proof; for example, a cycle has
two faces, and the boundary of a face consists of vertices and (whole) edges.
These facts are all obvious by induction on the total number of line segments,
since we insist that our edges are polygonal arcs.
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Remarks: Every tree is planar, with exactly one face; induction va removing
a leaf.

The following theorem is not as obvious as it might seem, since we can have
distinct drawings of the same graph; consider drawing a hexagonal 6-cycle with
vertices at the left, right, top left, top right, bottom left, bottom right, then
connecting top left to bottom left and top right to bottom right; we can do this
with both edges outside the hexagon or one outside and one inside, and these
are genuinely different drawings as e.g. the first contains a face with 6 edges
and the second does not. However, in fact the number of faces is fixed:

1.6 Theorem: Euler’s Formula

For G a connected plane graph with n [¿0] vertices, m edges and f faces then
n−m + f = 2; note this is not true if G is not connected, e.g. En: If G has no
cycles then G is a tree so m = n − 1 and f = 1 so n−m + f = 2 as required;
otherwise G has a cycle so choose an edge e in this cycle; then G−e is connected
and has n vertices, m − 1 edges and f − 1 faces (really, because C divides the
plane into two), so we have the result by induction. This theorem is great for
showing that many graphs are not planar.

Theorem: For G a plane graph with n ≥ 3 vertices and m edges, m ≤ 3n−6;
this is a very small bound since a general graph will have O(n2) edges. Note
that this is the best possible bound; if we draw a line with n − 2 points on it,
one point a above the line at the left end and one point b below at the left end,
and join each of a and b to each of the other vertices this has 3n− 6 edges. We
wlog take G connected (by adding edges if necessary), then n−m + f = 2, but
if we sum over faces F the number of edges in the boundary of F the result is
≥ 3f as each face has at least 3 edges in its boundary (taking m ≥ 3), but the
result is ≤ 2m as each edge is counted at most twice, so 3f ≤ 2m i.e. f ≤ 2m

3
so n−m + 2m

3 ≥ 2 and m
3 ≤ n− 2 as required.

Corollary: K5 is not planar, since n = 5, m = 10 but 10 � 3× 5− 6. Hence
any graph containing K5 is non-planar; in fact we have more; if we define a
subdivision of a graph G to be a graph obtained by replacing edges of G with
(disjoint) paths, then any graph containing a subdivision of K5 is not planar,
as otherwise K5 itself would be planar.

Proposition: K3,3 is not planar; this is a well known puzzle; note that m ≤
3n− 6 for this graph. However, the graph is “triangle-free”; that is none of its
faces can ever be triangles, so if drawn in the plane we must have ≥ 4 edges
on the boundary of each face; substituting and repeating the above we have
m ≤ 2(n−2) which is false for this graph. More generally, if we define the girth
of a graph to be the length of its shortest cycle (or 0 if there is no cycle) then if
G is planar of girth ≥ g then m ≤ max( g

g−2 (n − 2), n− 1) (the n− 1 is “silly”

but necessary to make the result valid for very small graphs).
Corollary: If G contains a subdivision of K5 or K3,3 then G is not planar.

This leads to Kuratovsky’s Theorem, which states that the converse is true; if
G does not contain any subdivision of K5 or K3,3 then it is planar. The proof
of this is not hard, but ugly; it would take at least 2 lectures to cover all the
cases of what can go wrong when attempting to draw G. However, the result
can be used without proof to satisfy us that if G does not contain a subdivision
of K5 or K3,3 then we will always be able to draw it.
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2 Connectivity and Matchings

Matchings are the most important thing we can do with bipartite graphs; in one
sense they are what they were invented for, and they have many real applications
if you’re of the perverse persuation that cares about such things. Connectivity
is a notion of “how connected” a graph is; it is normal for this to be hard to
understand.

For G a bipartite graph with vertex classes X, Y a matching from X to

Y is a set {xx|prime : x ∈ X} of edges of G such that x 7→ x′ is injective,
or equivalently a set of |X | independent edges (i.e. edges with no vertices in
common). When do these exist?

We use the “matchmaker” terminology: X are boys, Y are girs, xy is an
edge if x knows y; then the problem becomes pairing up each boy with a girl he
knows [this is reversed from the usual way of labelling the sets].

Clearly we cannot always find a matching; if d(x) = 0 for some x ∈ X then
we will not be able to match x; similarly if Γ(x1) = Γ(x2) = {y} then we cannot
have a maching. For A ⊂ X write Γ(A) for

⋃

x∈X Γ(x), then it is clearly a
necessary condition that |Γ(A)| ≥ |A|∀A ⊂ X ; this is called Hall’s condition.
Then we have:

2.1 Theorem (Hall’s Theorem or Hall’s Marriage Theo-
rem)

If G is a bipartite graph with vertex classes X, Y then G has a matching from
X to Y iff Hall’s condition holds; the forward implication is trivial, and we have
two equally nice proofs for the reverse:

Proof 1: we induct on |X |; the |X | = 1 case is trivial [and the |X | = 0 one
more so]. For |X | > 1 consider the unhelpful-seeming question: do we have
|Γ(A)| > |A|∀A ⊂ X (other than A = X, ∅). If this is so, we can take any
x ∈ X and y ∈ Γ(x), then Hall’s condition clearly holds on G′ = G − x − y so
we have a matching from X \ {x} to Y \ {y} so by also matching x → y we
have a matching for G. Otherwise, we have some A ( X with |Γ(A)| = |A|; let
G′ = G[A∪Γ(A)], G′′ = G[(X \A)∪ (Y \Γ(A))]. We clearly have a matching in
G′ from A to Γ(A), since ∀B ⊂ A, ΓG(B) = ΓG′(B) ⊂ Γ(A) so Hall’s condition
holds on G′ and we have one by induction. For B ⊂ X \ A, consider A ∪ B;
we have |ΓG(A ∪ B)| ≥ |A ∪ B| = |A| + |B| so |ΓG(A ∪ B) \ Γ(A)| ≥ |B| i.e.
|ΓG′′(B)| ≥ B so Hall’s condition holds and we have a matching on G′′ also;
combinind these we have a matching on G.

Proof 2: Form a directed network by adding a source s joined to each x ∈ X
by an edge of capacity 1, a sink t joined to each y ∈ Y by an edge of capacity
1, and make the edges of G directed from X to Y with capacity ∞ (i.e. some
large positive integer). Then an integer-valued flow of size |X | is precisely a
matching from X to Y , so by the integrality theorem of max-flow min-cut we
just need to show that every cut has capacity |X |. So, given a cut (which recall
is a set of vertices containing s and not containing t), write it as {s} ∪ A ∪ B
with A ⊂ X, B ⊂ Y , and we need to show that the capacity of the edges out of
this is ≥ |X |. We can wlog take Γ(A) ⊂ B, otherwise the capacity is ∞, then
there are |X | − |A| edges flowing out of the cut from s and |B| edges flowing
out of B, so the capacity is |X | − |A|+ |B| ≥ |X | − |A|+ |B| since |B| ≥ |A|.
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A matching of defficiency d in a bipartite graph with vertex classes X, Y
consists of |X | − d independent edges.

2.2 Corollary (Defect Hall)

It is surprising that this is merely a corollary and there is no need to go back
through the proof of Hall to obtain this result - Hall “generalizes itself”, which
is a good sign in a theorem: For G a bipartite graph with vertex classes X, Y ,
G has a matching of deficiency d from X to Y iff |Γ(A)| ≥ |A| − d∀A ⊂ X ;
note that this is a generalization which reduces to Hall in the case d = 0. The
forward implication is of course trivial; for the reverse, form G′ by adding d
points to Y , each joined to all of X , then |ΓG′(A)| ≥ |A|∀A ⊂ X , so by Hall
there is a matching in G′, which gives a matching of deficiency d in G.

2.3 Corollary

Let S1, . . . , Sn be sets; a transversal for S1, . . . , Sn consists of distinct points
x1, . . . , xn with xi ∈ Si. The sets have a transversal iff |⋃i∈A Si| ≥ |A|∀A ∈
S1∪· · ·∪Sn: the forward implication is trivial, for the reverse wlog take all the Si

finite, then form a bipartite graph by X = {1, . . . , n} (or possibly copies of these,
if the numbers themselves are elements of some of the Si), Y = S1 ∪ · · · ∪ Sn,
i ∈ X joined to j ∈ Y if j ∈ Si. Then a transversal is precisely a matching from
X to Y , but for any A ⊂ X we have |Γ(A)| = |⋃i∈A Si| ≥ |A| so we have the
result by Hall.

This is really an alternate formulation of Hall; a matching in a bipartite
graph G with vertex classes X = {x1, . . . , xn}, Y is precisely a transversal for
Γ(x1), . . . , Γ(xn). Of course we also have a defect form: ∃ a transversal for all
but d of S1, . . . , Sn iff |⋃i∈A Si| ≥ |A|−d∀A ∈ {1, . . . , n}, with the proof exactly
as for Hall.

A typical application of Hall: Hall turns up in many areas of maths, often
where we would not expect it. Let G be a finite group, H a subgroup therof;

we have the left cosets L1, . . . , Lk = g1H, . . . , gkH of H in G, with k = |G|
|H| ; we

also have the right cosets R1, . . . , Rk = Hg′1, . . . , Hg′k, which are not in general
the same. Can we choose a set of representatives of the left cosets that are also
representatives of the right cosets? i.e. g1, . . . , gk such that g1H, . . . , gkH are
precisely the left cosets and Hg1, . . . , Hgk are precisely the right cosets. To do
this we just need to label the Li, Ri such that Li∩Ri 6= ∅∀i, as then we can just
take gi ∈ Li∩Ri∀i, so we seek a matching in a graph G from X = {L1, . . . , Lk}
to Y = {R1, . . . , Rk} (with possibly some sets being copies if there are sets
which are both left and right cosets), where Li is joined to Rj if they intersect.
So by Hall, STP |Γ(A)| ≥ |A|∀A ⊂ X , but this is obvious since all the Li and
Rj have the same size |H |, so any union of n left cosets cannot be covered by
< n right cosets. Note that this proof is not only nonobvious from group theory,
but cannot even be translated into the language of group theory, since the proof
of Hall requires induction, and we cannot induct by removing a coset as this
would give something which is no longer a group.
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Connectivity

This is the idea of “how connected” a graph is; a [large] tree is connected
but “only barely”, in that if we remove a point we disconnect it; a cycle G is
connected and has G − x connected ∀x ∈ G, but we can remove two points to
disconnected; a cube (that is the graph of 8 vertices arranged as the corners of
a cube with the obvious edges) is even better.

For G connected with |G| > 1, the connectivity κ(G) of G is the smallest |S|
for which we can have S ⊂ V(G) such that G−S is disconnected or a single point
(this last condition being so that the “right thing” happens with small graphs;
the graph of a single point is technically connected, but we want any cycle to
have connectivity 2 (including the 3-cycle), and removing all the neighbours of
a point “should” disconnect the graph; see below). We say G is k-connected if
κ(G) ≥ k; then G is k-connected iff no set of size < k disconnects G or makes
it a single point, or equivalently |G| > k and no set of size k disconnects G.
Examples are that a tree T is not 2-connected, cycles are 2-connected but not
3-connected, the cube is 3-connected, and Kn is (n − 1)-connected. Note that
we can have κ(G − x) > κ(G), e.g. where G is a cycle with an extra point x
connected to one vertex of the cycle.

Remark: as referenced above, we always have κ(G) ≤ δ(G), as we can choose
x ∈ G with d(x) = δ(G), then S = Γ(x) has G−s either disconnected or = {x}.

We know G is connected if ∀a, b there is an a− b path in G; it would be nice
if we had for G k-connected, ∀a, b∃k independent a−b paths (by which we mean
their vertices other than a, b are disjoint). For G connected, a 6= b vertices, we
say S ⊂ V (G) separates a from b (or is an a − b separator) if a and b are in
different componets of G \ S (i.e. every a− b path meets S).

2.4 Theorem (Menger’s Theorem)

This is “the” theorem on connectivity, and quite subtle: for G a graph, a 6= b
non-adjacent vertices of G, if all a− b separators have size ≥ k then there is a
family of k independent a− b paths.

First, some remarks: the converse is trivial, since any separator must contain
at least one point from each of the k paths. An equivalent form of this result is
therefore that the minimum size of an a− b separator = the maximum number
of independent a − b paths. We need to have the non-adjacency condition
as otherwise the theorem is false [Imre is lying here]. Menger is actually a
generalization of Hall: for a bipartite graph G on X, Y with |Γ(A)| ≥ |A|∀A ⊂
X , form G′ by adding vertices s joined to all of X , t joined to all of Y ; then
a matching is precisely a family of |X | independent s − t paths, so if we have
Menger then we only need to proove every separator has size ≥ |X |; if S = A∪B
for A ⊂ X, B ⊂ Y is a separator then Γ(X−A) ⊂ B so |A|+ |B| ≥ |A|+ |Γ(X−
A)| ≥ |A|+|X−A| and we have Hall. Thus, the proof for this theorem cannot be
“easy” (because prooving Hall itself was hard); in particular we cannot just take
a point from each path in the maximum independent set of such and assume
this forms a separator, because in general it will not.

A direct proof: let k be the minimal size of any a− b separator; we will now
find k independent paths. If this is not possible, take a minimal counterexample
(we are doing “grown-up induction” here); in particular take a minimal k and
a minimal e(G) for this k. Let S be an a − b separator with |S| = k. We first
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consider the case where (⋆)S * Γ(a), S * Γ(b): form G′ from G by replacing
the component of G\S containing a by a single point a′ joined to all of S. Then
e(G′) < e(G), and in G′ there is no a′ − b separator of size < k, as any such
would also be an a− b separator in G. So by minimality we have k independent
a′ − b paths in S, i.e. k paths B1, . . . , Bk from b to S, disjoint except at b; we
can similarly have k paths A1, . . . , Ak from a to S, disjoint except at a, and
it can never be that an Ai intersects a Bj as then these would form an a − b
path missing S. So, since S consists of precisely k points, putting these paths
together we have k independent a− b paths.

Now, the case where (⋆) cannot hold: every a− b separator S of size k is a
subset of Γ(a) or Γ(b). Now we have k ≥ 2 as the theorem is true for k = 1;
we also cannot have any x ∈ Γ(a) ∩ Γ(b), as if so then all a− b separators S in
G− x have size ≥ k − 1 since S ∪ {x} separates a and b in G, so by minimality
there are k− 1 independent a− b paths in G− x, so together with axb we have
k paths as required. Now take a shortest a − b path, ax1x2 . . . xrb with r ≥ 2.
Now consider G−x1−x2; This has a separator S of size k− 1 by minimality; if
it had a separator of size k− 2 we would have a separator of G of size k− 1. So
S∪{x1}, S∪{x2} are separators in G; since x1 /∈ Γ(b) we have S∪{x1} ⊂ Γ(a);
similarly S ∪ {x1} ⊂ Γ(b) so S ⊂ Γ(a) ∩ Γ(b) = ∅, a contradiction.

As an alternative proof we can apply the vertex-capacity form of max flow
min cut: form a directed network by replacing each edge xy with directed edges−→xy,←−xy, and give each vertex capacity 1; then an integer-valued flow of size k is
exactly a family of k independent a − b paths, and by the integrality form of
max-flow min-cut we just need that every vertex cut-set has size ≥ k, i.e. every
a− b separator has size ≥ k.

2.5 Corollary

This is sometimes also called Menger’s Theorem, as are results 6 and 7 below.
For a graph G, |G| > 1, G is k-connected⇔ ∀a 6= b ∈ G∃k independent a−b

paths; for the reverse implication we certainly have G connected, and |G| > k;
no set of size < k can disconnect G, as if so we could choose a, b in different
components under this. For the forward implication if a, b non-adjacent we are
done by Menger: G is k-connected so no set of size < k can separate a and b. If
a, b adjacent let G′ = G− ab [arrgh, it’s painful to watch], then G′ is certainly
k − 1 connected so by Menger we have k − 1 independent a − b paths is G;
together with ab these form a set as required.

For G connected, |G| > 1, the edge connectivity λ(G) of G is the smallest size
of a W ⊂ E(G) such that G \W is disconnected; we say G is k-edge-connected
if λ(G) ≥ k. So (always assuming |G| > 1) G is 1-edge-connected iff it is
connected, 2-edge-connected iff it has no bridge (and note this is different from
being 2-connected), and so on. So e.g. λ(C) = 2 for a cycle C. λ(G) ≤ δ(G)
since removing all the edges joined to any one point disconnects the graph.

2.6 Theorem (Edge form of Menger)

For G a connected graph and a, b distinct vertices therof, the minimum size of
W ⊂ E(G) separating a from b (i.e. such that a, b lie in different components
of G − W ) = the maximum number of edge-disjoint a − b paths. We could
just proove this by max-flow min-cut, but the following idea is more useful in
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general: the line graph L(G) of a graph G has vertex set E(G) with e joined
to f if they meet (share a vertex) [in G]. A path is L(G) gives rise to a path
in G and vice versa. Form G′ from L(G) by adding vertices a′, b′ and edges a′e
for any e ∈ G with a ∈ e, similarly b′e. Then κ(G′) = λ(G) [Imre claims that
this statement is redundant; I am unconvinced], since λ(G) was already ≤ δ(G)
so adding a′, b′ did not break this equality, so we are done by vertex Menger
applied to G′.

2.7 Corollary

For G a graph, |G| > 1, G is k-edge-connected iff ∃k disjoint a − b paths
[∀a 6= b ∈ G]; the reverse implication is obvious, the forward by the edge form
of Menger.

3 Extremal problems

This is the heart of graph theory; we ask when a graph contains “something
nice”; the first result is very easy, but this will not be so for the rest of the
theorems in the chapter.

An Eulerian circuit in a graph G is a circuit passing through each edge
exactly once, i.e. x1 . . . xk = xi succh that ∀xy ∈ E(G)∃!1 ≤ i ≤ k − 1 with
xy = xixi+1; we say G is Eulerian if it has such a circuit. Clearly not all graphs
are Eulerian, e.g. any graph with a bridge will not be; when is a graph Eulerian?

3.1 Proposition

A connected graph G is Eulerian iff d(x) is even ∀x ∈ G (hence a general graph
G is Eulerian iff all degrees are even and at most one component of G has an
edge): for the forward implication if x appears k times in an Eulerian circuit
then d(x) = 2k. For the reverse we induct on e(G); if e(G) = 0 we are done. For
G connected with e(G) > 0 and d(x) even ∀x ∈ G, suppose G is not Eulerian;
take C a longest circuit in G with no repeated edge. Note E(C) > 0 since G
has a cycle, since d(x) ≥ 2∀x ∈ G so G is not a tree. Let H be a component
of G − E(C) with e(H) > 0 [which must exist as C is not Eulerian], then H
is connected and dH(x) is even ∀x ∈ H since dH(x), dC(x) are both even. So
by the induction hypothesis H has an Euler circuit C′, but now C, C′ are edge-
disjoint circuits which share a vertex (H must meet some vertex of C as G is
connected), so we can combine them to form a longer circuit than C with no
repeated edges, a contradiction.

For G a graph of order n we say G is Hamiltonian if it has a cycle of length
n (i.e. a cycle through all the vertices); such a cycle is a Hamiltonian cycle.
This is clearly not the case for a graph with a cutvertex. Unlike the question
of being Eulerian, there is no “nice” double implication for when a graph is
Hamiltonian; one reason to believe no such exists is that there could not be
some kind of “parity” condition, as if G is Hamiltonian so is G + xy for any
edge xy /∈ G. So instead we ask how “large” must a graph on n vertices be
to ensure that it is Hamiltonian. A silly approach is to ask how many edges
we need; this is silly as a single vertex with d(x) = 1 will make the graph
not Hamiltonian, so if we take G to be the complement (the complement of
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G = (V, E) is Ḡ| = (V, V (2) \ E)) of V = {x1, . . . , xn}, E = {x1x2, . . . , x1xn−1}
then e(G) =

(

n
2

)

− (n− 2) but G is not Hamiltonian.
A better question is what value of δ(G) ensures G is Hamiltonian. As a lower

bound, for n even we take two disjoint copies of K n
2
, then δ(G) = n

2 − 1 but G
is not Hamiltonian; for n odd we can do slightly better and take two copies of
K n+1

2
meeting at a single point. Then δ(G) = n−1

2 but G is not Hamiltonian.

3.2 Proposition

For a graph G of order n ≥ 3, δ(G) ≥ n
2 ⇒ G Hamiltonian: G is connected since

if x, y are non-adjacent then Γ(x), Γ(y) ⊂ V \{x, y}must meet by the pigeonhole
principle. Let x1 . . . xl be a longest path in G (we take a path rather than a
cycle since it is easier to reason inductively about these - we can simply add a
vertex to make a slightly longer one). Note l ≥ 3 as |G| ≥ 3 and G connected.
WLOG G has no cycle of length l; if l = n and it does we are done, and for l < n
if we had an l-cycle C then since G is connected there is some x /∈ C adjacent to
some y ∈ C, giving us a path on l + 1 points (by C− one edge and the edge to
x), a contradiction. So x1x2 /∈ E; moreover (and this is the heart of the proof)
we cannot have 2 ≤ i ≤ l with x1xi, xi−1xl ∈ E [as then we have such a cycle
x1 − xi−1 − xl − xi − x1]. Now Γ(x1) ⊂ {x2, . . . , xl}, γ(xl) ⊂ {x1, . . . , xl−1} by
maximality of paths, and Γ(x1) is disjoint from γ+(x1) := {xi : xi−1 ∈ Γ(xl)},
but the sizes of both these sets are ≥ n

2 and they are both ⊂ {x2, . . . , xl}, a
contradiction.

Note that we didn’t use the “full strength” of δ(G) ≥ n
2 ; the proof actually

shows that the result holds if ∀x, y non-adjacent, d(x) + d(y) ≥ n.

3.3 Proposition

For G a graph of order n ≥ 3, connected with δ(G) ≥ k
2 for some k < n, G has

a path of length k; note that we do need k < n by e.g. G = K k
2 +1; also we

need that G is connected by considering two copies of Kk. The proof is all as
for proposition 2: let x1 . . . xl be a longest path in G, note l ≥ 3, suppose l ≤ k,
then wlog G has no l-cycle, so Γ(x1), Γ+(xl) are disjoint subsets of {x2, . . . , xl}
each of size ≥ k

2 , a contradiction. This was a proposition rather than a theorem,
since we have better:

3.4 Theorem

For G a graph of order n, if e(G) > n(k−1)
2 then G ⊃ Pk; equivalently if G + Pk

then e(G) ≤ n(k−1)
2 . This bound cannot be improved upon, at least for k | n;

consider the graph consisting of n
k

disjoint Kk. We induct on n; for n ≤ 2 the
result is trivial; otherwise, suppose G has |G| ≥ 3 and does not contain a Pk.

Then we want e(G) ≤ n(k−1)
2 ; this is linear in n so we can wlog take G connected

(otherwise the result holds by inductive hypothesis on its components). If n ≤ k

we have e(G) ≤ n(k−2)
2 trivially; otherwise, by proposition 3, G has a vertex of

degree ≤ k−1
2 , but then G− x is a graph on n− 1 vertices not containing a Pk,

so e(G− x) ≤ (n−1)(k−1)
2 . So e(G) ≤ n(k−1)

2 as required.
Both proposition 2 and theorem 4 are extremal results; they answer the

question, how large (in some sense) can a graph be with a certain property?
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Often the property in question is not containing some fixed graph. Next we
shall consider the graph Kk, e.g. how big can e(G) be for a triangle-free graph?

Turán’s Theorem

How many edges can a graph on n vertices have if it does not contain a Kr?
For r = 3 we’d try G = Ka,b where a + b = n; clearly a = b or near to this is
best i.e. G = K n

2 , n
2

for n even and K n+1
2 , n−1

2
for n odd.

More generally, we say G is k-partite on classes V1, . . . , Vk if V1, . . . , Vk par-
tition V and G[Vi] = ∅∀i; clearly G k-partite ⇒ G + Kr. If additionally
E(G) = {xy : x ∈ Vi, y ∈ Vj , i 6= j} then we say G is complete k-partite.

The Turán graph Tk(n) is the complete k-partite graph on vertex classes
V1, . . . , Vk with

∑ |Vi| = n with |V1|, . . . , |Vk| as equal as possible (integers
a1, . . . , ak are as equal as possible if |ai − aj | ≤ 1∀i, j). We certainly have
Tr−1(n) + Kr since it is (r − 1)-partite, and Tr−1 is maximal [i.e. locally
maximum] Kr-free; if we add any edge this forms a Kr.

If k | n then all classes [in Tk(n)] have size n
k
, so d(x) = n− n

k
= n(1− 1

k
)∀x;

in general the casses have size ⌈n
k
⌉ or ⌊n

k
⌋ and the degrees are n−⌈n

k
⌉ or n−⌊n

k
⌋.

To form Tk(n − 1) from Tk(n) we remove a point from a largest class (i.e. a
point of minimum degree) (1), and to form Tk(n) from Tk(n−1) we add a point
to a smallest class (2).

3.5 Theorem (Turán’s Theorem)

Let G be a graph on n vertices, then e(G) > e(Tr−1(n))⇒ G ⊃ Kr. Clearly this
is the best possible bound, since Tr−1(n) + Kr. If we know G is (r− 1)-partite
we are immediately done by AM-GM or similar, but there is no reason G needs
to be (r − 1)-partite, e.g. C5 + K3 but is not bipartite. The proof would seem
to necessarily be fiddly, since e(Tr−1(n)) is a complicated and fiddly function of
n and r; however, it is not:

We shall strengthen the proposition to make it easier to proove (this may
initially seem implausible, but is actually reasonably common when inducting):
we shall proove that if |G| = n, e(G) = e(T (n)) (writing T (n) for Tr−1(n)
throughout this proof) and G + Kr then G ∼= T (n), which implies the theorem
by maximality of T (n). We induct on n; the result is trivial for n ≤ r −
1. Given G with |G| = n > r, e(G) = e(T (n)), G + Kr choose x ∈ G with
d(x) = δ(G) and let G′ = G − x. Then we claim δ(G) ≤ δ(T (n)): we have
∑

y∈G dG(y) =
∑

y∈T (n) dT (n)(y) and the dT (n)(y) are as equal as possible. So

|G′| = n−1, G′ + Kr, E(G′) = e(G)− δ(G) ≥ E(T (n))− δ(T (n)) = e(T (n−1))
by (1), so δ(G) = δ(T (n)) and G′ ∼= T (n− 1) by the induction hypothesis. Let
the vertex classes of G′ be V1, . . . , Vr−1; we cannot have Γ(x)∩Vi 6= ∅∀i as then
we would have G ⊃ Kr, but d(x) = n−1−min|Vi| by (2) so Γ(x) =

⋃

j 6=i Vj for
some i with |Vi| minimal, so G ∼= T (n) as required. Note that there are actually
many nice proofs of this result.

The Problem of Zarankiewicz

This is a bipartite analogue of Turán: how many edges can a bipartite graph G
with n vertices in each class have if G + Kt,t? Write Z(n, t) for this maximum.
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3.6 Theroem

Take t ≥ 2 (we do not care whether the result is true for the trivial t < 2 cases).

Then Z(n, t) ≤ 2n− 1
t t

1
t + nt; in particular Z(n, t) ≤ 2n2− 1

t for sufficiently large
n: Let G be bipartite on vertex classes X, Y with |X | = |Y | = n, G + Kt,t.
Let the degrees in x be d1, . . . , dn; we shall show that the average degree d in
X is ≤ n1− 1

t t
1
t + t. We can wlog take di ≥ t− 1∀i as if di < t− 1 we can add

an edge without creating a K(t,t). For each t-set (set of size t A ⊂ Y , we will
double-count the number of x ∈ X with A ⊂ Γ(x): there can be at most t − 1
such as G + K(t,t), so the number of (x, A) with x ∈ X, A ∈ Γ(x), |A| = t is

≤ (t − 1)
(

n
t

)

, but also =
∑

(

di

t

)

(this is valid since we took di ≥ t− 1∀i) so we

have
∑

(

di

t

)

≤ (t− 1)
(

n
t

)

.

Now the function
(

x
t

)

, defined for real x as x(x−1)...(x−t+1)
t! is a convex fuction

of x for x ≥ t − 1 (e.g. write y = x − t + 1, then this is (y+t−1)...(y+1)y
t! , a

nonnegative linear combination of powers of y) so by Jensen,
∑

(

di

t

)

≥ n
(

d
t

)

so

n
(

d
t

)

≤ (t − 1)
(

n
t

)

. Using very crude approximations, since we only really care

that the result is O(n2− 1
t ), we have n(d−t+1)t

t! ≤ (t−1)nt

t! , i.e. (d − t + 1)t ≤
(t− 1)nt−1 so d− t + 1 ≤ n1− 1

t (t− 1)
1
t and d ≤ n1− 1

t t
1
t + t.

We ask whether this is the right value: does Z(n, t) grow like n2− 1
t for fixed

t? For t = 2, for G bipartite and G + K2,2 (= C4), we want to know whether

we can make e(G) as large as cn
3
2 ; making e(G) grow linearly is trivial (e.g. a

2n-cycle), but getting it to grow even as fast as n1.01 is somewhat difficult; in

fact it is possible, though difficult, to find examples of G with e(G) = cn
3
2 ; these

examples come from algebra, cf projective planes. So the bound is correct for
the t = 2 case. For t = 3 the bound is also correct, though this is even harder
to show; for t ≥ 4 the result remains unknown.

Non-examinable: the Erdős-Stone Theorem

Only the statement of this theorem is examinable: For a fixed graph H write
Ex(n, H) for max{e(G) : |G| = n, G + H}; then e.g. Turán’s theorem is that

Ex(n, Kr) ∼ (1 − 1
r−1)

(

n
2

)

, or more precisely Ex(n,Kr)

(n

2)
→ 1 − 1

r−1 as n → ∞.

Define that e(G)

(n
2)

is the density of G. We have from the fourth result in this

section that Ex(n, Pk) ∼ n(k−1)
2 ; how does Ex(n, H) behave for general H as

n → ∞. This seems an impossibly general question, but in fact this theorem
will answer it.

We have from Turán that e(G)

(n
2)

> 1− 1
r−1 ⇒ G ⊃ Kr; what if we have e(G)

(n
2)

>

e.g. 1 − 1
r−1 + 0.001. Write Kr(t) for Tr(rt); informally this is “Kr blown up

by t”. Then, remarkably, 1− 1
r−1 + 0.001⇒ G ⊃ Kr(t)∀t (for sufficiently large

n [depending on t]), and in general:

Erdős-Stone Theorem: ∀r, ǫ, t, e(G)

(n

2)
> 1 − 1

r−1 + ǫ ⇒ G ⊃ Kr(t) for n

sufficiently large. As a very vague sketch of the proof, suppose we have G of
average degree ≥ (1 − 1

r−1 + ǫ)n. 1) We have a large H ⊂ G with δ(H) ≥
(1 − 1

r−1 + δ)n′ where n′ = |H | for some δ > 0; the proof of this is similar to
the result from the first example sheet that if the average degree of a graph is d
then we have H with δ(H) ≥ d

2 . 2) By induction on r, H ⊃ Kr−1(t
′) for some
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large t′; write K for this Kr−1(t
′). 3) We have lots of points in H \K which are

joined to ≥ t members of each class of K 4) we have at least t of these points
joined to the same t-set in each class of K by the pigeonhole principle.

For a given H , choose the least r with H r-partite, e.g. H = the Petersen
graph is not bipartite but is 3-partite, so r = 3. Then Tr−1(n) + H since it is

(r−1)-partite, so Ex(n,H)

(n
2)

≥ 1− 1
r−1 . But by Erdős-Stone, e(G)

(n
2)
≥ 1− 1

r−1 +ǫ⇒
for sufficiently large G, G contains any Kr(t), so contains any r-partite graph;

in particular it contains H . So Ex(n,H)

(n
2)

→ 1 − 1
r−1 for the least r such that H

is r-partite.
This has almost entirely solved the problem: for most types of H we know

Ex(n, H) grows like some multiple of
(

n
2

)

. However, for H bipartite we only

have that Ex(n,H)

(n

2)
→ 0, not the precise growth speed of Ex(n, H), and in fact

this is unknown for most H , e.g. it is not known for H = C2n for n ≥ 6.

4 Colourings

An r-colouring of a graph G is a function c : V (G) → [r] := {1, . . . , r} such
that c(x) 6= c(y)∀xy ∈ E(G); the chromatic number χ(G) of G is the leasst r
for which G has an r-colouring.

Examples: χ(Pn) = 2, χ(Cn) = 2 if n is even, 3 if n is odd, χ(Kn) =
n, χ(En) = 1 (and χ(G) ≥ 2∀ non-empty graphs), χ(T ) = 2 if T is a tree
(inductively via removing a leaf), and χ(Km,n) = 2; in fact any bipartite graph
is clearly 2-colourable (i.e. has a 2-colouring), and conversely if c is a 2-colouring
of G then G is bipartite by X = {x ∈ G : c(x) = 1}, Y = {x ∈ G : c(x) = 2};
similarly G is r-colourable iff it is r-partite. So by the corollary to Erdős-Stone,
Ex(n,H)

(n
2)

→ 1− 1
χ(H)−1 as n→∞.

We clearly have χ(G) ≤ n = |G|; we can improve this substantially:

4.1 Proposition

A graph G with ∆(G) = ∆ has χ(G) ≤ ∆ + 1; note this is the best possible
bound, by e.g. G = a complete graph or odd cycle: order G as x1, . . . , xn and
colour each xi in turn; when we come to colour xi, we have at most ∆ colours
unusable because we already have neighbours of xi that colour, so we have a
remaining colour to colour xi.

Note that we can have χ(G)≪ ∆, by e.g. the “star” graph K1,n. We could
view this proof as an “application” of the greedy algorithm: for a given ordering
x1, . . . , xn of V (G), colour each xi in turn, always using the smallest possible
colour. Note that the greedy algorithm may use more than χ(G) colours to
colour a given graph. Also note that although K ⊃ Kr ⇒ χ(G) ≥ r the
converse is false (e.g. C5 + K3); in fact there is no simple formula known for
χ(G).

Although it might make more sense to do the general theorems about colour-
ing now, these can be quite intimidating if we do not have a good “feel” for
colouring; therefore we shall first cover:
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Colouring Planar Graphs

How many colours do we need to colour a planar graph? 3 is insufficient since
e.g. K4 is planar.

4.2 Proposition (6-colour theorem)

Any planar G is 6-colourable: induct on |G|, trivial for |G| ≤ 6. Given a planar
G with |G| > 6, we claim δ(G) ≤ 5: since e(G) ≤ 3n − 6 as G is planar, so
∑

x∈G d(x) ≤ 6n− 12, so we have some x with d(x) ≤ 5. Then G− k is planar,
so by the induction hypothesis it has a 6-colouring; then Γ(x) has at most 5
colours, so we can colour x.

4.3 Theorem (5-colour theorem)

If G is planar then it is 5-colourable; as before we induct on |G|, the result
is true for |G| ≤ 5, and given a planar G with |G| > 5 we can take x ∈ G
with d(x) ≤ 5, and by induction we have a 5-colouring of G − x. Therefore,
we are done unless d(x) = 5 and all 5 colours appear in Γ(x); in this case say
Γ(x) = {x1, x2, x3, x4, x5} going clockwise around x [for some drawing of G],
and wlog take c(xi) = i∀i. Then, consider whether there is a 1-3 path (a path
along which the colours 1 and 3 alternate) from x1 to x3. If not, let H be the
1-3 component of x (the set of all vertices reachable from x by 1-3 paths), and
we have x3 /∈ H ; swap the colours 1 and 3 on H , then we still have a colouring
of G − x, but x1 is now of colour 3, so we can colour x by colour 1. If we do
have such a 1-3 path, we cannot have a 2-4 path from x2 to x4 [as x2, x4 lie in
different components of G− this 1-3 path], so we can swap colours 2 and 4 on
the 2-4 component of x2 and then use colour 2 for x.

The i − j paths here are called Kempe chains; we shall see why when we
cover the 4-colour theorem.

Suppose we instead want to colour the faces if a plane graph such that dis-
tinct faces sharing an edge have different colours; this problem is called colouring
a plane map. Given a plane graph G we form the dual graph G′ by taking a
vertex in each face of G and joining two vertices if their faces share an edge;
this is planar, and colouring this is the same as colouring the faces of G. So by
theorem 4.3 every plane map is 5-colourable.

The 4-colour theorem, that if G is planar then G is four-colourable, was
finally proven in 1976 by Appel and Haken (though a flawed proof given by
Kempe in 1879 stood for 11 years before its mistake was spotted). In the proof
of theorem 3 we used the fact that “a vertex of degree 1, 2, 3, 4, or 5” forms an
unavoidable set (i.e. every plane G contains at least one element of the set) of
reducible configurations (configurations which could not be part of a minimal
counterexample); Appel and Haken found a similar set, but of around 1900
configurations, for 4-colouring, making extensive use of computers. Some people
believe the existence of these configurations, and thus the 4-colour theorem, is
an “accident of nature”; others believe a “nicer” proof “should” be found; as
yet, while there are alternative proofs, none of them can avoid the dependence
on computers.

[Now we return to colouring general (non-planar) graphs]
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We have χ(G) ≤ ∆ + 1∀G and we can have equality in this bound by e.g.
Kn, or Cn for n odd. We wish to improve this.

Remark: if G is connected and not regular, we can certainly colour it with
∆ colours: choose xn with d(xn) < δ, then choose xn−1 adjacent to xn (as G
connected), xn−2 ∈ G \ {xn, xn−1} adjacent to {xn, xn−1} (i.e. adjacent to at
least one member of this set) and so on; then run greedy on the order x1, . . . , xn;
for i < n we have xixj ∈ E for some j > i [so at most ∆ − 1 already-coloured
neighbours of xi] so can colour xi, and then we can colour xn, with ∆ colours.

4.4 Proposition (Brooks’ Theorem)

If G is connected and not a complete graph or odd cycle then χ(G) ≤ ∆ :=
∆(G): by the above remark we can wlog take G regular, and ∆ ≥ 3 since
the ∆ ≤ 1 case is trivial and for ∆ = 2 G is a cycle. Let G be a minimal
counterexample(|G| minimal); wlog G is 2-connected as if it has a cutvertex x
then for each component Gi of G− x, G[V (Gi) ∪ {x}] is ∆-colourable, and by
permuting the colours on each of these graphs we can take a single colour for
x and combine these colourings to obtain a colouring of G. If G is 3-connected
(this is the main case), then choose xn; we must have some x1, x2 ∈ Γ(xn) with
x1x2 /∈ E as otherwise we have a K∆+1 by xn ∩ Γ(xn); since G is connected
there can be no other vertices and G is a Kn. Now G \ {x1, x2} is connected
as G is 3-connected, so ordering its vertices x3, . . . , xn as in the results with
∀3 ≤ i ≤ n− 1∃j > i : xixj ∈ E; running greedy on x1, x2, . . . , xn then uses at
most ∆ colours.

If G is not 3-connected, choose a separator {x, y}; let Gi be the components
of G \ {x, y} together with x and y. Then each Gi has a ∆-colouring by the
above remark, as dGi

(x) ≤ ∆ − 1∀i. If xy ∈ E, x, y have different colours in
the colouring of each Gi, so we can combine these to give a ∆-colouring of G;
otherwise, if in each Gi we have at least one of dGi

(x), dGi
(y) being ≤ ∆− 2 we

can recolour such that x, y have different colours in Gi and are done. Otherwise,
we have some Gi with dGi

(x) = dGi
(y) = ∆ − 1; wlog take i = 1. Then we

must have k = 2 and dG2(x) = dG2(y) = 1; if we let ΓG2(y) = {v} then {x, v} is
a separator which does not have this problem (since 1 < ∆− 1).

The Chromatic Polynomial

This carries more information about G than χ(G): for any graph G and t ∈
1, 2, 3, . . . , let PG(t) be the number of t-colourings of G (thus χ(G) is the least
t with PG(t) > 0. For example, PKn

(t) = t(t − 1) . . . (t − n + 1), by colouring
each of the vertices in turn, PEn

(t) = tn, PPn
(t) = t(t− 1)n (recall that Pn has

n + 1 vertices); more generally PT (t) = t(t− 1)n−1 for any tree on n vertices T ,
by induction via removing a leaf. PCn

(t) is less obvious. Note that we did not
define that PG(t) was a polynomial; however, it appears to be one in all these
examples; is this always the case?

For a graph G and e = xy ∈ E(G), the contraction of G by e, G
e
, is formed

by replacing x and y with a new vertex z joined to Γ(x) ∪ Γ(y).
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4.5 Lemma

DFor G a graph and e = xy ∈ E(G), PG = PG−e − PG
e
; this is called the

deletion-contraction relation or cut-fuse relation: every t-colouring of G is a t-
colouring of G − e, and conversely, any t-colouring of G − e in which x, y get
different colours is a colouring of G, and the t-colourings of G in which x and y
get the same colour correspond precisely to the t-colourings of G

e
. Thus we have

the result; in practice we shall use this as the definition of PG (but we could
not have defined PG by this (together with the base case G = En), as it is not
clear that that would be well defined; we might contract G in a different order
and obtain a different result).

4.6 Proposition

PG(t) is a polynomial in t: we induct on e(G); for e(G) = 0 we are done as
PEn

(t) = tn; given G with e(G) > 0 choose an edge e, then PG−e, PG
e

are

polynomials by the induction hypothesis, so PG = PG−e − PG
e

is also.

Recall that for T a tree, PT (t) = tn − (n− 1)tn−1 + . . . , which suggests the
following:

4.7 Proposition

For G a graph on n vertices with m edges, the leading terms of PG(t) are
tn − mtn−1: we induct on e(G), the e(G) = 0 case is done. Given G with
e(G) > 0, choose an edge e, then we have PG−e(t) = tn − (m − 1)tn−1 +
. . . , PG

e
(t) = tn−1 + . . . , so PG(t) = tn −mtn−1 + . . . .

In fact we can get other information about G from PG, e.g. it turns out
the third term of PG(t) is (

(

n
2

)

− the number of triangles of G) × tn−1. Note
also that since PG is a polynomial we can talk about PG(t) for non-integer real
(or even complex) values of t. The 4-colour theorem can be phrased as the
statement that any planar G has PG(4) > 0, i.e. PG does not have a root at 4;
there is hope that working from this may eventually yield a “better” proof of
the 4-colour theorem , though there is none as yet; however we do know that

e.g. PG(φ + 2) 6= 0 (where φ = 1+
√

5
2 ).

Edge-Colourings

A k-edge-colouring of a graph G is a map c : E(G) → {1, . . . , k} such that
c(e) 6= c(f) whenever e, f share a vertex; the smallest k for which a k-edge-
colouring exists is the edge-chromatic number or chromatic index of G, written
χ′(G) (so χ′(G) = χ(l(G)), but this is in fact quite irrelevant; it doesn’t help
us calculate χ′(G) at all). Some examples are χ′(Cn) = 2 if n is even, 3 if n is
odd. Note that χ′(G) can be very different from χ(G), e.g. the “star” K1,n has
χ(G) = 2, χ′(G) = n.

We clearly have χ|prime(G) ≥ ∆(G)∀G; for any point of degree ∆, we must
use ∆ colours to colour the edges around it. The example of a n oddcycle shows
we can have χ′(G) > ∆(G); however, we have:
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4.8 Theorem (Vizling’s Theorem)

For any graph G, χ|prime(G) = ∆ or ∆ + 1 (writing ∆ for ∆(G) as usual):
we induct on e(G); for e(G) = 0 we are done as we can 0-edge-colour. Given
G with e(G) > 0 choose an edge e and take a ∆ + 1-edge-colouring of G − e;
let e = xy1. At each vertex there is at least one colour not being used (since
d(y) < ∆ + 1∀y ∈ G). Choose a maximal sequence y1, y2, . . . , yk of distinct
vertices and corresponding sequence of colours c1, . . . , ck such that xyi is of
colour ci−1∀2 ≤ i ≤ k and ci is not used at yi∀1 ≤ i ≤ k; we must be able to
do this since G is finite. By maximality of this sequence we either have ck is
not used at x or ck = ck for some j < k. In the first case, recolour by giving
xyi the colour ci∀1 ≤ i ≤ k, then we have a ∆ + 1-edge-colouring of G. If
ck = cj for some j < k, we may wlog take j = 1, since we can recolour xyi with
colour ci∀1 ≤ i < j, leaving xj as the edge we need to colour. Let c be a colour
unused at x; if there is no c− c1 path from x to yi, swap c and c1 on the c− c1

component H of x, and we can then give xy1 colour c1; similarly if there is no
c− c1 path from x to yk, swap c and c1 on the c− c1 component of yk, and now
we can colour by giving xyi colour ci for 1 ≤ i ≤ k − 1 and xyk colour c. So
we can assume H contains y1, yk, but H has ∆(H) ≤ 2 by the definition of an
edge-colouring, and dH(x) = dH(y1) = dH(yk) = 1, but thiis s impossible.

Graphs on Surfaces

We know that any G drawn on a plane (or equivalently, by projection from a
point in a face, a sphere) has χ(G) ≤ 5; in fact it is ≤ 4. What about graphs
drawn on other surfaces? E.g. we find can draw K7 on a torus.

Define the (technically, compact orientable)surface of genus g to be a sphere
with g “handles” “attached” (in fact these are all the surfaces embeddable into
R3, but we will not use this fact; this is not a course in topology). For the
plane/sphere we know n−m + f = 2 (for G connected), and n−m + f ≥ 2 for
any planar G (by adding edges to make G connected). For G on a torus we can
ahve n −m + f = 2 by drawing our graph in a small region, but we can also
have n−m + f = 1 by e.g. drawing C3 as “loop” going around the hole in the
middle of the torus, or even n−m + f = 0 by drawing a “bowtie” on 5 vertices
by C3 as before, and then a second “loop” with a common vertex going around
the “tube” of the torus. In fact, more generally, any G drawn on the surface of
genus g has n −m + f ≥ 2 − 2g = E, the Euler characteristic. For m ≥ 3 we
have 3f ≤ 2m as usual; thus n−m + 2

3m ≥ E, so m ≤ 3(n− E)) (this is true
for m ≥ 3 if E = 2, and if E 6= 2 it is trivially true for m < 3 and thus true
∀m).

4.9 Theorem (Heawood’s Theorem)

A graph G drawn on a surface of Euler characteristic E ≤ 0 has χ(G) ≤
⌊ 7+

√
49−24E
2 ⌋ =: H(E) (note H(2) = 4, so yet again we “almost” have the

4-colour theorem): let χ(G) = k, we then need to proove k ≤ H(E). Choose a
G with minimal number of vertices such that χ(G) = k; we have δ(G) ≥ k − 1
by minimality of G (if we had a vertex v of degree at most k − 2, then G \ v
is k − 1-colourable by minimality of G, but then G is k − 1-colourable), and
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n ≥ k. We have m ≤ 3(n−E) from above, so
∑

x∈G d(x) = 2m ≤ G(n−E), so

δ(G) ≤ 6(n−E)
n

= 6− 6E
n

. Thus k − 1 ≤ δ(G) ≤ 6− 6E
n
≤ 6− 6E

k
, since E ≤ 0.

So k2 − k ≤ 6k − 6E, i.e. k2 − 7k + 6E ≤ 0, so k ≤ 7+
√

49−2E
2 , and as k is an

integer we have the result.
Equality holds in this theorem, and in fact it is even possible to draw KH(E)

on the surface of Euler characteristic E (≤ 0), a result which took 75 years to
proove.

5 Ramsey Theory

The theme of this chapter is “can we find some order, given enough disorder?”.
Suppose we 2-colour [the edges of] K5 [i.e. we have some c : E(K6) → {1, 1},
not generally with different colours for edges meeting at a point], our chaos; can
we always find a monochromatic K3 (i.e. a K3 on which c is constant), a piece
of order? Yes: choose x ∈ V (K6); we have d(x) = 5, so at least 3 edges incident
at x have the same colour, wlog xy1, xy2, xy3 are red. Now if any edge yiyj is
red, we have a red K3 by {x, yi, yj}; otherwise we have a blue K3 by {y1, y2, y3}.

What happens more generally? Is there an n such that any 2-coloured Kn

contains a monochromatic K4? What about a K5?
In general, we write R(s) for the smallest n (if it exists) such that whenever

Kn is 2-coloured in this sense, we have a monochromatic KS ; we shall show this
exists and find out roughtly how fast it grows. E.g. the above shows R(3) ≤ 6;
in fact R(3) = 6 as we can colour a K5 by drawing it as a “pentagram” and
colouring the outside red and the inside blue; this contains no monochromatic
K3.

We want to induct, but it is hard to “jump” from e.g. “containing a
monochromatic K3” to “containing a monochromatic K4”; therefore we shall
consider the notion of “containing a red K3 or a blue K4” as an intermediate
step. More generally, for s, t ≥ 2 we write R(s, t) for the least n (if it exists)
such that whenever Kn is 2-coloured we have a red Ks or a blue Kt. Then
R(s) = R(s, s); clearly we have R(s, t) = R(t, s) and R(s, 2) = s. (We could
equivalently define R(s, t) is the smallest n (if it exists) such that every graph
G on n points has either KS ⊂ G or Kt ⊂ Ḡ, by identifing red edges with edges
of G and blue edges with edges not in G).

5.1 Theorem (Ramsey’s Theorem)

R(s, t) exists ∀s, t; moreover R(s, t) ≤ R(s − 1, t) + R(s, t − 1) (for s, t ≥ 3):
enough to show that if R(s− 1, t), R(s, t− 1) exist then R(s, t) ≤ R(s− 1, t) +
R(s, t− 1), then we will have the existence of R(s, t)∀s, t by induction on s + t.
Set a = R(s − 1, t), b = R(s, t − 1); we shall follow a similar approach to that
used in the above example. Given a 2-colouring of Ka+b, choose x ∈ V (Ka+b),
then id(x) = a+ b−1, so we have ≥ a red edges or ≥ b blue edges incident with
x; in the first case, consider the Ka spanned by the endpoints of a red edges
from x; by the definition of a this contains either a red Ks−1 [which, together
with x, forms a red Ks, or a blue Kt; the other case is similar.

Remarks: This means given s, t, any graph on n vertices has either Ks ⊂ G
or Kt ⊂ Ḡ, for sufficiently large n. Very few of the “Ramsey numbers” are
known exactly; see later.
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5.2 Corollary

Let s, t ≥ 2, then R(s, t) ≤
(

s+t−2
s−1

)

; in particular R(s) ≤ 22s: we induct on s+ t,
if s = 2 or t = 2 we are done. Given s, t ≥ 3, R(s, t) ≤ R(s−1, t)+R(s, t−1) ≤
(

s+t−3
s−2

)

+
(

s+t−3
s−1

)

=
(

s+t−2
s−1

)

.
What about more colours? Write Rk(s1, . . . , sk) for the smallest n (if it

exists) such that whenever Kn is k-coloured, ∃ a Ksi
of colour i for some 1 ≤

i ≤ k. Then:

5.3 Corollary

Let Rk(s1, . . . , sk) exists ∀k ≥ 1, si ≥ 2; proof by “turquoise spectacles”: we
induct on k, the k = 1 case is trivial. Given s1, . . . , sk with k ≥ 2, let n =
R(s1, Rk−1(s2, . . . , sk)). Then for any k-colouring of Kn, view this as a 2-
colouring with colours 1 and 2 ∪ · · · ∪ k; by the definition of n we either have a
Kn1 of colour 1 or a KRk−1(s2,...,sk) coloured with the k − 1 colours 2, 3, . . . , k,
so by the definition of Rk−1(s2, . . . , sk) we have the result. (Alternatively, we
could copy the proof of the theorem, and obtain that Rk(s1, . . . , sk) ≤ Rk(s1 −
1, s2, . . . , sn) + · · ·+ Rk(s1, . . . , sk−1, sk − 1).

What about colouring r-sets rather than edges, e.g. for r = 3 we colour
each triangle red or blue (with the same edge possibly appearing in differently
coloured triangles); do we get e.g. a 4-set all of whose triangles are the same
colour? Note taht this is asking for a much denser chromatic structure than be-
fore, and if we tried to find these by “brute force” by hand or even by computer,
we would imagine it to be impossible.

For X a set and r ∈ N write X(r) = {A ⊂ X : |A| = r}; unless stated
otherwise we shall take X = [n] = {1, 2, . . . , n}. Write R(r)(s, t) for the smallest
n (if it exists) such that whenever X(r) is 2-coloured we have either a red s-set
or a blue t-set (so R(2)(s, t) = R(s, t); we clearly have R(1)(s, t) = s + t − 1 by
pigeonhole). We have R(r)(s, t) = R(r)(t, s), R(r)(s, r) = R(r)(r, s) = s.

5.4 Theorem (Ramsey for r-sets

(Some books call this Ramsey’s theorem; this is also true of the next two theo-
rems in this section)

Let r ≥ 1, s, t ≥ r; then R(r)(s, t) exists. The idea behind this proof that is
in our proof of teh r = 2 case (theorem 1) we actually used the r = 1 case, in
order to say that a point with a + b− 1 edges from it must have a red edges or
b blue red edges from it. Now the proof: we induct on r, the r = 1 case is just
pigeonhole. Now given r > 1, we induct on s+ t; for s = r or t = r we are done.
Then for s, t > r, we claim R(r)(s, t) ≤ R(r−1)(R(r)(s− 1, t), R(r)(s, t− 1)) + 1:
let a = R(r)(s − 1, t), b = R(r)(s, t − 1), n = R(r−1)(a, b) + 1. Then given a
2-colouring c of X(r), choose x ∈ X and let Y = X \ {x}. Then c induces a
2-colouring of Y (r−1) by c′(A) = c(A∪ {x}), so by the definition of R(r−1)(a, b)
we have either a red a-set (under c′) or a blue t-set; wlog assume the first case,
we have a red a-set Z, i.e. A ∪ {x} is red ∀A ∈ Z(r−1). But then by definition
of a, Z contains either a blue t-set (under c), in which case we are done, or a
red (s− 1)-set, which together with x forms a red s-set.

Remarks: the result similarly holds for k colours (e.g. by “turquoise specta-
cles”). The bounds this gives us on R(r) are quite large, since, informally speak-
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ing, R(r) is obtained by iterating R(r−1) about s+t times; if we define f1, f2, · · · :
N → N by f1(x) = 2x, and for n ≥ 2, fn(x) := fn−1(fn−1(. . . fn−1(1) . . . ))

where we iterate the function x times. So f1(x) = 2x, f2(x) = 2x, f3(x) = 22...2

where there are x exponents, f4 we do not have notation for, but we can cal-

culate e.g. f4(1) = 2, f4(2) = 4, f4(3) = 65536, f4(4) = 22...2

where there are
65536 exponents. Then our bound on R(r)(s, t) is on the order of fr(s+ t); such
large bounds are a common feature of such “double induction” proofs.

Infinite Ramsey Theory

Given a 2-colouring of N(2), can we always find an infinite monochromatic M ⊂
N? E.g. 1. Colour ij red if i + j is even, blue if i + j odd, then e.g. M = {n :
n even} works, 2. Colour ij red if max{n : 2n | i + j} is even, blue otherwise;
then e.g. M = {22, 24, 26, . . . } works, 3. Colour ij red if i + j has an even
number of (distinct) prime factors, blue otherwise; here it is not even obvious
whether M exists.

Note that asking for an infinite red set is much harder than arbitrarily large
finite red sets, e.g. if we draw disjoint red K2, K3, K4, . . . and colour all the
other edges blue then we have arbitrarily large red sets but no infinite red set.

5.5 Theorem (Infinite Ramsey)

Let N(2) be 2-coloured, then ∃ an infinite monochromatic M ⊂ N: choose a1 ∈ N,
then ∃ an infinite B1 ⊂ N\{a1} such that all edges from a1 to B1 have the same
colour c1. Then choose a2 ∈ B1; there then exists an infinite B2 ⊂ B1 \ {a2}
such that all edges from a2 to B2 have the same colour c2; continuing in the
same way we obtain a sequence of points a1, a2, · · · ∈ N and colours c1, c2, . . .
such that aiaj has colour ci∀i < j; then we must have infinitely many ci the
same, say ci1 = ci2 = . . . ; then M = {ai1 , ai2 , . . . } is a set as required.

Remarks: similarly the result holds for k colours. The technique here is
called a “2-pass” proof. Note that in our example 3. above, no explicit set M
is known.

Example: any sequence in R (or any totally ordered set) has a monotone
subsequence: given a sequence x1, x2, . . . colour N(2) by giving ij for j < j
colour “up” if xi ≤ xj , “down” if xi > xj , and apply the theorem.

What about colouring r-sets? e.g. for r = 3, if we 2-colour N(3) by giving
ijk for i < j < k colour red if i | j + k, blue otherwise; M = {1, 2, 4, 8, . . .}
works.

5.6 Theorem (Infinite Ramsey for r-sets

Let r ≥ 1, and N(r) be 2-coloured, then there is an infinite monochromatic
M ⊂ N: we induct on r, the r = 1 case is obvious. Given r1, given a 2-colouring
c of N(r), choose a1 ∈ N; then we have an induced 2-colouring of (N \ {a1})(r−1)

by c′(F ) = c(F ∪ {a1}), so we have (by the induction hypothesis) an infinite
monochromatic set B1 for c′, i.e. there is a colour c1 such that every r-set
{a1} ∪ F for F ⊂ B1 has colour c1. Now choose a2 ∈ B1; we have an induced
colouring of (B1 \ {a2})(r−1) so get an infinite B2 ⊂ B1 and colour c2 such that
every r-set {a2}∪F for F ⊂ B2 has colour c2; continuing inductively we obtain
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a1, a2, · · · ∈ N and colours c1, c2, . . . such that any r-set ai1ai2 . . . air
(of course

with i1 < i2 < · · · < ir) has colour ci1 , but infinitelymany of the ci must agree;
say ci1 = ci2 = . . . . Then M = {ai1 , ai2 , . . . } is a set as required.

Example: (unlike the previous example, this is actually impossible without
Ramsey theory) we know that given points (1, x1), (2, x2), · · · ∈ R2 we can find
a subsequence such that the “induced function”, the function piecewise linear
between these points, is monotone. Can we insist that the induced function
is actually convex or concave? Yes: we colour N(3) by giving ijk the colour
“convex” if (j, xj) lies below the line between the other two points, “concave”
otherwise.

Exact Ramsey Numbers

Very few of the non-trivial R(s, t) (i.e. s, t ≥ 3 are known exactly; the full set
of known cases is R(3, 3) = 6, R(34) = 9, R(3, 5) = 14, R(3, 6) = 18, R(3, 7) =
23, R(3, 8) = 28, R(3, 9) = 36, R(4, 4) = 18, R(4, 5) = 25; other than that we
know e.g. 43 ≤ R(5, 5) ≤ 49. Proving the lower bounds on Ramsey numbers
is hard, since we need to find a very disordered graph, but by its very nature
this is difficult to construct - there must be no pattern, there is no way to use
induction to produce such a thing. As an example, we can show R(4, 4) > 17

by 2-colouring Z(2)
17 by giving ij colour red if i− j is a square modulo 17, blue

otherwise, but it is hard to verify that this colouring contains no monochromatic
K4, and this example does not extend to any other cases.

The only known number for > 2 colours is R3(3, 3, 3) = 17; the only known
number for r-sets for r > 2 is R(3) ∗ 4, 4) = 13. Finding these numbers is hard,
because it requires us to find the paradoxical notion of the exact amount of
disorder required. We might try “throwing a computer at it”, but to e.g. show

R(5, 5) > 43 we would need to examine each of the
(

43
5

)

5-sets in each of 2(432 )

possible colourings, but 2(43
2 ) > 10250 so this is completely implausible.

6 Random Graphs

The results of this section of the course are nice, the first theorem especially so.
There will be a lot of estimation in this section, but the reader should not be
scared of this; it should always be clear that our estimates bound the quantities
in question.

How fast does R(s) grow? We know R(s) ≤ 4s; what about a lower bound?
It is easy to see R(s) > (s−1)2, by drawing s−1 sets of size s−1 and colouring
the edges within each set red, and the edges between sets blue. In the 1940s it
was believed that perhaps this is close to the best bound, and R(s) = O(s2).
It can be shown by clever algebra that R(s) is at least O(s3), and with some
very hard algebra we can construct examples which show R(s) is at least O(s4).
However, we have:

6.1 Theorem (Erdős, 1947)

Let s ≥ 3, then R(s) > 2
s
2 : choose a colouring of Kn at random, by taking each

edge to be red with probability 1
2 , blue otherwise, independently of each other.
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Then the probability of a fixed s-set being monochromatic is 2 × (1
2 )(

s
2), and

there are
(

n
2

)

s-sets, so the probability of there being a monochromatic s-set is at

most
(

n
s

)

21−(s
2). So we must have R(s) > n if

(

n
s

)

21−(s
2) < 1, i.e.

(

n
s

)

< 2(s
2)−1.

But
(

n
s

)

≤ ns

s! and s! ≥ 2
s
2+1 (by induction on s; recall we’re taking s ≥ 3), so

we are done if ns ≤ 2
s2

2 , i.e. n ≤ 2
s
2 .

This is a “random graphs” argument. In this particular case we could rewrite

the argument by saying there are 2(n

2) colourings, and a given s-set is monochro-

matic in 2× 2(n
2)−(s

2) of them, so we are done if
(

n
s

)

21+(n
2)−(s

2) < 2(n
2); however,

this is a bad viewpoint for later in this section, where we will not be taking all
graphs to be equally likely. Note the proof gives no hint as to how to construct
such a colouring, and in fact no exponential lower bound on R(s) is known - so
if we need to find an actual graph on e.g. 106 points with no K40 in G or Ḡ,
the best thing really is to draw a random graph.

We now have
√

2
s ≤ R(s) ≤ 4s; no better bounds are known, and there are

heuristic arguments that R(s) should be each of
√

2
s
, 2s, 4s.

The probability space G(n, p) is defined on the set of all graphs on {1, . . . , n}
by choosing each edge independently to be present with probability p, absent
otherwise. So e.g. in the proof of theorem 1 we worked in G(n, 1

2 ). It can be
useful to consider p 6= 1

2 .

Recall that in Zarankiewicz we had z(n, t) ≤ 2n2− 1
t (for t fixed and n large;

recall z(n, t) is the size of the largest bipartite graph on n vertices containing
no Kt,t). We would like a lower bound better than the trivial linear bound.
We could choose a random bipartite graph G on vertex classe X, Y with |X | =
|Y | = n by choosing each edge independently with probability p and choosing p
to make the expected number of Kt,ts < 1; now the number of possible Kt,ts is
(

n
t

)2
, and the probability a fixed Kt,t is contained in G is pt2 , so the expected

number of Kt,ts in G is
(

n
t

)2
pt2 < 1

4n2tpt2 , so taking p = n− 2
t we have the

expected number of Kt,ts being < 1
4 , so the probability that G has no Kt,t is

> 3
4 . Now the expected number of edges is pn2; then P (e(G) > 1

2pn2) > 1
2 , so

there must be some G + Kt,t with e(G) > 1
2pn2 = 1

2n2− 2
t . However, we can do

better:

6.2 Theorem

Z(n, t) > 1
2n2− 2

t+1 - this is an improvement worth making over the result in the
discussion above, because even though it is only important in the small t cases,
the small t cases are quite interesting. The idea behind this proof is that if a
graph G has m edges and r copies of Kt,t, we can remove an edge from each
coopy fKt,t to obtain a graph with ≥ m−r edges and no Kt,t, so Z(n, t) ≥ m−r.
Choose a random bipartite G (on vertex classes X, Y with |X | = |Y | = n), by
taking each edge independently with probability p. Let M = e(G) (a random
variable) and R be the number of Kt,ts in G. Then E(M) = pn2 and E(R) is
the number of possible Kt,ts times the probability that a fixed Kt,t is contained

in G, which comes to
(

n
t

)2
pt2 . So E(M − R) = pn2 −

(

n
t

)2
pt2 ≥ pn2 − 1

2n2tpt2

(recall expectation is linear E(A + B) = E(A) + E(B), without needing to

assume the random variables are independent), so take p = n− 2
t+1 , then we have

E(M −R) ≥ n2− 2
t+1 − 1

2n2t− 2t2

t+1 ; the exponent in the last term is 2t2?2t−2t2

t+1 so
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our result is 1
2n2− 2

t+1 , so there is a graph G with m− r ≥ 1
2n2− 2

t+1 , and we have
the result. This technique is called “modifying a random graph”.

Graphs with large χ(G)

To make χ(G) ≥ k, we can just take G ⊃ Kk. But we need not have a Kk ⊂ G
to have χ(G) ≥ k, by e.g. G = C5. In fact we can have χ(G) much larger than
the clique number. For example, in Theorem 1, the graph G (i.e. the graph
consisting of the red edges) was on n = 2

s
2 vertices with no Ks ⊂ G, and no

independent (definition: containing no edges) set of size s, but for any colouring

each class is an independent set, so χ(G) ≥ 2
s
2

s−1 , which is much greater than the
clique number of at most s − 1. In fact, we can construct triangle-free graphs
G with χ(G) large, though this is not easy.

Could we have large girth, but still have χ(G) large (e.g. a triangle-free
graph has girth at least 4), e.g. girth at least 10 but χ(G) ≥ 100? The lecturer
claims this appears unlikely; however:

6.3 Theorem

∀k, g, there is a graph G with χ(G) ≥ k, Girth(G) ≥ g. The idea is to find a
graph G on n vertices such that the number of short cycles (i.e. cycles of length
< g is ≤ n

2 and each independent set has size at most n
2k

; then we are done, as
by removing a vertex from each sthort cycle we obtain a graph H with girth at

least g and χ(H) ≥
n
2
n
2k

= k. So, choose a random G ∈ G(n, p) where p = n−1+ 1
g

(we will see why this was chosen later). Let Xi be the number of i-cycles in G
for 3 ≤ i ≤ g − 1, and X be the number of cycles of length < g, =

∑

Xi. Then
E(Xi) ≤ nipi, since there are ≤ ni possible i-cycles, each of which would need

i edges to form. So E(X) ≤∑g−1
i=3 (np)i =

∑g−1
i=3 n

i
g ≤ gn

g−1
g = n g

n
1
g

< n
4 for n

large, since g

n
1
g

→ 0. Thus P (X ≤ n
2 ) > 1

2 (as otherwise we have E(X) ≥ n
4 ).

Let t = n
2k

(wlog taking n a multiple of 2k) and let Y be the number of [sets

of size t] that are independent. Then E(Y ) =
(

ns
t

)

(1 − p)(
t
2), as there are

(

n
t

)

possible t-sets and
(

t
2

)

possible edges in each. This is ≤ nte−p(t
2), as 1 − x <

e−x∀x ∈ R. In turn this is ≤ exp( n
2k

log n−n−1+ 1
g n2

8k2 )→ 0 as n→∞ (because

n log n − n × n
1
g → −∞), so E(Y ) < 1

2 for n large, so P (Y = 0) > 1
2 and

∃G ∈ G(n, p) with X ≤ n
2 and Y = 0, as required.

The Structure of a Random Graph

What does a “typical” random graph G ∈ G(n, p) look like? How do the
properties of G vary as p varies?

One interesting question is: does G have no isolated vertices? We would
expect the probability of this to be some function increasing in p, but how? In
fact we find a “threshold effect”; the probability remains very small below some
critical value of p, then rapidly climbs and becomes very close to 1. The “jump”
or “threshold” must happen below p =constant, since for any constant p, the
probability a given vertex is isolated becomes exponentially (in n) small, so the
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probability of an isolated vertex is also small. So we ask: where does the jump
happen?

Probability Digression

Let X be a random variable taking values in 0, 1, 2, . . . . To show P (X = 0) is
large we show the mean µ = E(X) is small, as for any t we have µ ≥ P (X ≥ t)t,
so P (X ≥ t) ≤ µ

t
, a property sometimes called “Markov”. So P (X ≥ 1) ≤ µ,

so P (X = 0) ≥ 1− µ.
To show P (X = 0) is small, it is not enough to show that µ is large, e.g.

X = 0 with probability 0.999, 1010 with probability 0.001. So we must look at
the variance V = E((X − µ)2) = E(X2)−E(X)2. For any t, P (|X − µ| ≥ t) =
P (|X−µ|2 ≥ t2) ≤ V

t2
, by Markov; this result is sometimes called “Chebyshev”.

Thus P (|X−µ| ≥ µ) ≤ V
µ2 ; in particular P (X = 0) ≤ V

µ2 . So to show P (X = 0)

is small, we show V
µ2 is small.

Suppose X is the number of some event A which occur. Then µ = E(X) =
∑

A P (A) (note there is no need to assume the A are independent). For variance,
we have E(X)2 =

∑

A,B P (A)P (B) (i.e.
∑

A

∑

B P (A)P (B)), and E(X2) =
∑

A,B P (A ∩ B) (since e.g. X =
∑

A IA ∴ X2 =
∑

A,B IAIB =
∑

A,B IA∩B),
which is

∑

A,B P (A)P (B|A), so the variance V =
∑

A,B P (A)(P (B | A)−P (B))
(note that many terms in this sum are zero, e.g. any terms where A, B are
independent).

6.4 Theorem

Let λ be constant, and G ∈ G(n, p) where p = λ log n
n

. Then if λ < 1, then
G almost surely has an isolated vertex, and if λ > 1 then G almost surely
has no isolated vertices, where by “almost surely” we mean “with a probability
which → 1 as n → ∞” (i.e. p = log n

n
is a “threshold” for the property of

having an isolated vertex): let X be the number of isolated vertices of G. Then
µ = E(X) = n(1 − p)n−1 = n

1−p
(1 − p)n. For λ > 1 (the easy case) we have

µ ≤ n
1−p

e−pn = n
1−p

e−λ log n = n1−λ

1−p
, which → 0 as n → ∞ since λ > 1, so we

certainly have P (X = 0) → 1. For λ < 1 we have 1 − p ≥ e−(1+δ)p for any
δ > 0, for p sufficiently small (which we will have, since log n

n
→ 0), so µ ≥

n
1−p

e−(1+δ)pn = n
1−p

e−(1+δ)λ log n = n1−(1+δ)λ

1−p
; choosing δ such that (1+δ)λ < 1,

we have µ → ∞ as n → ∞. Now for the variance, V = n(1 − p)n−1(1 − (1 −
p)n−1)+ n(n− 1)(1− p)n−1((1− p)n−2− (1− p)n−1), since there are n terms in
which A = B and n(n−1) terms in which A 6= B in our expression above for V .
This is ≤ µ+n(n−1)(1−p)n−1p(1−p)n−2 ≤ µ+ p

1−p
n2(1−p)2n−2 = µ+ p

1−p
µ2,

so V
µ2 ≤ 1

µ
+ p

1−p
→ 0 as n→∞, so P (X = 0)→ 0.

A different kind of “threshold” effect is observed in the clique number of a
random graph. Let p be fixed, 0 < p < 1; then what is the distribution of the
clique numbers of G ∈ G(n, p)? We would guess some form of Gaussianesque
distribution for the probability of a clique number between 1 and n, but in fact
there is an integer a such that the clique number is almost surely a or a + 1
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6.5 Theroem

Let 0 < p < 1 be fixed, and let d be a real number with
(

n
d

)

p(d

2) = 1, which
must exist by continuity. Then G ∈ G(n, p) almost surely has clique number
⌊d⌋ or ⌈d⌉ or ⌊d⌋ − 1 (with more work, we can eliminate this last possibility).
The proof is non-examinable, since it is horrible; the following is a sketch, the
“easily” checked sections are done by expansion and repeated application of
Stirling’s formula:

Fix an integer k and let X be the number of Kks in G, so µ = E(X) =
(

n
k

)

p(k

2). We need to show that if k ≤ d − 1 then almost surely X 6= 0 and if

k ≥ d + 1 then almost surely X = 0. If k ≥ d + 1, µ =
(

n
k

)

p(k
2) which can be

easily checked to→ 0, so P (X = 0)→ 1. If k ≤ d−1, µ =
(

n
k

)

p(k

2) can be easily

checked to →∞; now V =
(

n
k

)

p(k
2)

∑k
s=2

(

k
s

)(

n−k
k−s

)

(p(k
2)−(s

2) − p(k
2)) (

(

k
s

)(

n−k
k−s

)

is
the number of B meeting A in S points; the s = 0, 1 cases give independent

events, so those terms are 0), so V
µ2 ≤ 1

µ

∑k
s=2

(

k
s

)(

n−k
k−s

)

p(k
2)−(s

2), which can be

checked to be dominated by the first and last terms (i.e. it is ≤ a constant times

the sum of the first and last terms), so ≤ λ(
(

k
2

)(

n−k
k−2

)

p(k
2)−1 + 1), and the first

term in this bracket is at most a constant by the definition of k [check this -
I couldn’t bear to - it might only grow slower than n], so the whole thing is a
constant, and V

µ2 → 0, so P (X = 0)→ 0.

7 Algebraic Methods

The diameter of a graph G is maxx,y∈Gd(x, y). How “big” can a graph of small
diameter be? If G has diameter 1 it must be complete, but if G has diameter
2, how many vertices can it have if it has max degree ∆?

Expanding out from a fixed point x, we see that |Γ(x)| ≤ ∆, so |G| ≤
1 + ∆ + ∆(∆− 1) (since it consists only of x, at most ∆ neighbours therof, and
at most ∆− 1 other neighbours of each of these), i.e. 1 + ∆2. If |G| = 1 + ∆2,
then G must be regular; a k-regular graph of diameter 2 on n = 1 + k2 vertices
is called a Moore graph (of diameter 2) (equivalently this is a k-regular graph
for which ∀x 6= y∃! path of length ≤ 2 from x to y).

For k = 2, C5 is such a graph; for k = 3 the Petersen graph (as seen on the
example sheets; the graph consists of a pentagon, a five-pointed star inside it,
and five “radial” edges).

For k = 4, we find it is impossible to make such a graph. For k > 4 it
“ought” to remain impossible, but how can we prove this?

For G a graph on vertex set {1, . . . , n} = [n], the adjacency matrix is the
n × n matrix A with Aij = 1 if ij ∈ E(G), 0 otherwise. Clearly A is real and
symmetric. The matrix A contains all the information of G, but we might ask:
what is the use of viewing it as a matrix? Consider A2: (A2)ij =

∑

k AikAkj ,
which we can see is the number of walks of length 2 from i to j; similarly (A3)ij

is the number of walks of length 3 from i to j, and so on.
x 7→ Ax is a linear map Rn → Rn; thus (Ax)i =

∑

j Aijxj =
∑

j∈Γ(i) xj , so
if x is some vector we can draw the graph with numbers x1 at point 1, x2 at
point 2 etc. Then to calculate Ax, each (Ax)j is just the sum of the values at
the neighbours of j.
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So e.g. if A is k-regular then we have (1, . . . , 1) 7→ (k, . . . , k), i.e. (1, . . . , 1)
is an eigenvector with eigenvalue k. So we look at eigenvectors and eigenvalues.
Since A is real and symmetric, it is diagonalisable, and has a basis of eigenvec-
tors; say we have eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and correspond eigenvectors
e1, . . . , en (which we may take to form an orthonormal basis if we like). We of-
ten write λmax for λ1 and λmin for λn. Note that

∑

λi = trA = 0, so λmax > 0
and λmin < 0 (unless G = En). To find the eigenvalues is in principle easy in
any case, but in practice it is best to “stay awake” rather than just “ploughing

through”. For example, G = C4 has A =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









, so rkA = 2 and we

have 0 as a double eigenvalue. Then clearly A(1, 1, 1, 1) = (2, 2, 2, 2) from the
graph, so 2 is an eigenvalue; the last eigenvalue must be −2, either because the
sum of the eigenvalues is 0, or because A(1,−1, 1,−1) = (−2, 2,−2, 2).

Take x ∈ Rn, say x =
∑

ciei, with ‖x‖ = 1, i.e.
∑

c2
i = 1. Then Ax =

∑

ciλiei, so the inner product (x, Ax) [lecturer’s notation for x ·Ax] is
∑

λic
2
i .

So min‖x‖=1(x, Ax) = λmin (attained by cn = 1 and the other ci being 0),
max‖x‖=1(x, Ax) = λmax(⋆).

7.1 Proposition

For any graph G, i) if λ is an eigenvalues then |λ| ≤ ∆ (= ∆(G): choose
an eigenvector x for λ and choose i with |xi| maximal; wlog xi = 1. Then
(Ax)i =

∑

j∈Γ(i) xj , so |(Ax)i| ≤ ∆, so |λ| ≤ ∆ ii) for G connected, ∆ is

an eigenvalue iff G is regular; for the reverse implication let x = (1, . . . , 1),
then Ax = (∆, . . . , ∆). For the forward, from [the proof of] i) we must have
d(xi) = ∆ and xj = 1∀j ∈ Γ(i), then we can repeat this for each k ∈ Γ(j),
etc. to get d(xk) = ∆∀k since G is connected iii) for G connected, −∆ is
an eigenvalue iff G is regular and bipartite: for the reverse implications let
x = (1, . . . , 1,−1, . . . ,−1) where the 1s are on one vertex class X of G and the
−1s are on the other vertex class Y . For the forward, from i) we must have
d(i) = ∆ and xj = −1∀j ∈ Γ(i), then repeat for each k ∈ Γ(j) and so on. So
we have d(j) = ∆∀j ∈ G, and for every jk ∈ E, either xj = 1, xk = −1 or vice
versa. So G is regular and has no odd cycle, so is bipartite. iv) λmax ≥ δ: let
x = (1, . . . , 1), then (Ax)i ≥ δ∀i, so (Ax, x) ≥ δn = δ(x, x), so λmax ≥ δ by (⋆).

Note that from ii), if ∆ is an eigenvalue, it has multiplicity 1, as its only
eigenvector is (1, . . . , 1).

Eigenvalues can link in to aother graph paramaters, e.g. we know χ(G) ≤
∆ + 1; we can strengthen this to:

7.2 Proposition

For any graph G, χ(G) ≤ λmax + 1: we induct on |G|, the |G| = 1 case is
done. Given G with |G| > 1, choose v ∈ G with d(v) = δ(G). Then we claim
λmax(G \ v) ≤ λmax; then we can colour G \ v by the induction hypothesis, and
then we can colour v, as d(v) ≤ λmax by iv), above. Proof of this claim: let
B be A with the row and column corresponding to the vertex v removed; wlog
these are the last row and column. For any x = (x1, . . . , xn−1) put y = (~x, 0),
then (Bx, x) = (Ay, y) and so λmax(G \ v) ≤ λmax by (⋆).
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Now, we look towards Moore graphs.
A graph G is strongly regular with paramaters k, a, b if G is k-regular, any

two adjacent points have exactly a common neighbours, and any two non-
adjacent points have exactly b common neighbours, e.g. C4 has (2, 0, 2), C5

has (2, 0, 1), and in general a Moore graph of degree k is strongly regular with
paramaters (k, 0, 1) (for an example of a strongly regular graph with a 6= 0, the
graph made by drawing 3 triangles and then joining the corresponding points
of each has (4, 1, 2)).

7.3 Theorem (Rationality condition for strongly regular
graphs)

Let G be a graph on n verticies, strongly regular with parameters (k, a, b), b > 0.

Then the numbers 1
2 (n − 1 ± (n−1)(b−a)−2k√

(a−b)2+4(k−b)
) are integers: G is connected as

b > 0, so k is an eigenvalue with multiplicity 1. What are the other eigenvalues?
We have (A2)ij = k if i = j, a if i 6= j and ij ∈ E, b if i 6= j and ij /∈ E. So
A2 = kI + aA + b(J − I − A) where J is the n× n matrix all of whose entries
are 1.

So A2 +(b−a)A+(b−k)I = bJ . For λ 6= k an eigenvalue with eigenvector x
we have x ⊥ (1, . . . , 1), since we can take our eigenvectors to be orthogonal. So
Jx = 0; applying both sides of this equation to x, (λ2+(b−a)λ+(b−k))x = 0, so

λ2+(b−a)λ+b−k = 0. So the eigenvalues other than k are
a−b±

√
(b−a)2+4(k−b)

2 ;
let these eigenvalues be λ, µ with respective multiplicities r, s. So we have r+s =
n − 1 since there are n eigenvalues in total, and λr + µs = n − k since the
eigenvalues must sum to 0. Solving these two equations for r and s gives the
two numbers in the statement, but r and s are multiplicities of eigenvalues so
must be integers.

7.4 Corollary

If there is a Moore graph of degree k, then k ∈ {2, 3, 7, 57} (we have seen
examples C5 for k = 2, the Petersen graph for k = 3, and an example can be
found by computer for k = 7. In the k = 57 case it is unknown whether an
example exists). By the previous theorem applied to k = k, n = k2+1, a = 0, b =

1, 1
2 (k2± k2−2k√

1+4(k−1)
) are integers, so either k2− 2k = 0 or 1+4(k− 1) = 4k− 3

is a square. In the first case we have k = 2; in the second say 4k− 3 = t2. Then

we must have t | (k2 − 2k) = ( t2+3
4 )2 − 2( t2+3

4 ); multiplying by 16, we must
certainly have t | (t2 + 3)2 − 8(t2 + 3) = t4 − 2t2 − 15, so t | 15. So we have
four possibilities; t = 1 gives the impossible case k = 1, t = 3 gives k = 3, t = 5
gives k = 7 and t = 15 gives k = 57.

[This would appear to be the end of the course]
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