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Outline

The basic themes of this course are metrics (distances), lengths of curves,
geodesics (the curve of minimum length between two fixed points), symme-
tries and groups of symmetries, and curvature (which then links into topology
by the Gauss-Banet Theorem

Geometries

We shall consider the Euclidean, spherical, and torus geometries, then the hy-
perbolic plane, embedded surfaces in Rn, and finally abstract surfaces.

1 Euclidean Geometry

We consider Rn equipped with the standard inner product (x, y) = x · y and
distance function d. A map f : Rn → Rn is an isometry (or rigid motion) of
Rn if d(f(P ), f(Q)) = d(P, Q)∀P, Q ∈ Rn. Recall than an n × n‘ matrix is
orthogonal if AAT = AT A = I; since (Ax, Ay) = (Ax)T (Ay) = xT AT Ay =
(x,AT Ay) = (AT Ax, y), A orthogonal ⇔ (Ax,Ay) = (x, y)∀x, y ∈ Rn. Since
(x, y) = 1

2 (‖x + y‖2 − ‖x‖2 − ‖y‖2), A is orthogonal ⇔ ‖Ax‖ = ‖x‖∀x. Thus
if f(x) = Ax + b then d(f(x), f(y)) = ‖A(x − y)‖ so f is an isometry ⇔ A is
orthogonal.

1.1 Theorem

Any isometry f : Rn → Rn is of this form: let e1, . . . , en be the standard basis,
let f(0) = b, f(ei) − b = ai for i = 1, . . . , n, then ‖ai‖ = ‖f(ei) − f(0)‖ =
d(f(ei), f(0)) = d(ei, 0) = 1∀i. For i 6= j (ai, aj) = − 1

2 (‖ai − aj‖2 − ‖ai‖2 −
‖aj‖2) = − 1

2 (‖f(ei)−f(ej)‖2−2) = − 1
2 (‖ei−ej‖2−2) = 0. Let A be the orthog

mat w/ columns given by the orthonormal basis a1, . . . , an. Let g : Rn → Rn

be the isometry given by g(x) = Ax + b. g(x) = f(x) for x = 0, e1, . . . , en. Now
g has an inverse g−1(x) = A−1(x− b) = AT (x− b) so h = g−1 ◦x is an isometry
fixing 0, e1, . . . , en.

Now, using a common technique, we claim h = ι and hence f = g; for general
x =

∑
xiei let y =

∑
i yiei = h(x); observe d(x, ei)2 = ‖x‖2 +1−2xi, d(x, 0)2 =

‖x‖2, d(y, ei)2 = ‖y‖2 + 1 − 2yi, d(y, 0)2 = ‖y‖2. Since h is an isometry s.t.
h(0) = 0, h(ei) = ei∀i, h(x) = y we have ‖x‖2 = ‖y‖2 and then xi = yi∀i and
we are done.

) Isom(Rn) is a group.
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Example

Reflections in affine hyperplanes: if H ⊂ Rn is an affine hyperplane defined by
~u·~x = c for some unit vector ~u and constant c, define RH by ~x 7→ ~x−2(~x·~u−c)~u
is an isometry (see ExS1Q1), called the reflection in H; note R(~x) = ~x∀~x ∈ H.
If ~x ∈ H, R(~a + t~u) = ~a− t~u.

Conversely, if S is an isometry fixing H (pointwise) and ~a ∈ H then the
conjugate R = T−~aST~a (where T~a is translation by ~a i.e. T~a(~x) = ~x + ~a) fixes
the hyperplane H ′ = T−~aH through the origin. If H is given by ~x·~u = c then this
H ′ is given by ~x·~u = 0, since c = ~a·~u. Then (R~u, ~x) = (R~u,R~x) = (~u, ~x)∀~x ∈ H,
so R~u = λ~u for some λ. But ‖R~u‖2 = ‖~u‖2 = 1 so λ2 = 1 and λ = ±1; R = ι or
R = RH′ by 1.1, so S = ι or S = T~aRH′T−~a; ~x 7→ ~x−~a 7→ ~x−~a−2(~x·~u−~a·~u)~u 7→
~x− 2(~x · ~u− c)~u i.e. S = RH .

On the ExS we see that any isometry can be decomposed as a product of
reflections.

∃ a natural subgp of Isom(Rn), the isometries fixing the origin, which by 1.1
is isomorphic to O(n) = O(n,R), the orthog gp of n × n mats. If A ∈ O(n),
det(A)2 = det(AAT ) = 1 ⇒ detA = ±1. The subgp of O(n) consisting of
elts w/ det = 1 is called the special orthog gp SO(n) e.g. SO(2) ⊂ O(2).

A =
(

a b
c d

)
∈ O(2) ⇔ a2 + c2 = 1, d2 + d2 = 1, ab + cd = 0. We set

a = cos θ, c = sin θ, b = − sin φ, d = cos φ, then tan θ = tanφ ⇒ φ = θ or θ ± π.

In the first case A =
(

cos θ − sin θ
sin θ cos θ

)
, a rotation through argle θ, and in the

second A =
(

cos θ sin θ
sin θ − cos θ

)
, a reflection in the line at angle θ

2 above the x

axis.

1.2 The group O(3,R)

If det A = 1 then det(A − I) = det(AT − I) = det A(AT − I) = det(I − A) ⇒
det(A − I) = 0 so 1 is an eigenvalue, i.e. ∃v1 (with, scaling, ‖v1‖ = 1) s.t.
Av1 = v1. Let W = 〈v1〉⊥; if w ∈ W then (Aw, v1) = (Aw,Av1) = (w, v1) = 0
so A(W ) ⊂ W and A |W is a rotation of the 2D space W ; if {v2, v3} is an
orthonormal basis for W the action of A on R3 wrt the ON basis {v1, v2, v3} is


1 0 0
0 cos θ − sin θ
0 sin θ cos θ


.

Now suppose det A = −1 there is an ON basis wrt which −A is a rotation

of the above form, so A =



−1 0 0
0 cos φ − sinφ
0 sin φ cosφ


 wrt some ON basis, where

φ = θ + π, i.e. A is a rotated reflection; in the special case φ = 0 A is a pure
reflection.

1.3 Curves in R3

Defn

A curve Γ in Rn is a cnts function Γ : [a, b] → Rn. Consider dissections D : a =
t0 < t1 < · · · < tN = b of [a, b] w/ N arbitrary; set Pi = Γ(ti), sD =

∑ ‖−−−−→PiPi+1‖.
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The length l of D is defined to be supD sD if it exists.
If D′ is a refinement of D the triangle inequality ⇒ sD ≤ sD′ , so (if it exists)

l = limmesh(D)→0 sD, where mesh(D) = maxi(ti − ti−1).

Proposition 1.4

If Γ is cntsly diffable then lengthΓ =
∫ b

a
|Γ′(t)|dt: write Γ(t) = (f1(t), f2(t), f3(t)),

then ∀s 6= t ∈ [a, b]Γ(t)−Γ(s)
t−s = (f ′1(ξ1), f ′2(ξ2), f ′3(ξ3)) for some ξi ∈ (s, t); since

the fi are unifly cnts on [a, b],∀ε > 0∃δ > 0 : |t − s| < δ ⇒ |f ′i(ξi) − f ′i(ξ)| <
ε
3∀ξ ∈ (s, t), so if |t − s| < δ then |Γ(t) − Γ(s) − (t − s)Γ′(ξ)| < ε(t − s)∀ξ ∈
(s, t); now take a dissection D w/ mesh(D) < δ and by the triangle inequality∑

(ti − ti−1)|Γ′(ti − 1)| − ε(b − a) < sD <
∑

(ti − ti−1)|Γ′(ti − 1)| + ε(b − a);
since |Γ′(t)| is cnts it is integrable and

∑
(ti − ti−1)|Γ′(ti−1)| →

∫ b

a
: Γ′(T )|dt

as mesh(D) → 0, so length Γ := limmesh(D)→0 sD =
∫ b

a
|Γ′(t)|dt; for (piecewise)

cntsly diffable curves Γ we can obtain the length by integrating |Γ′|.
Now we look at S = S2 ⊂ R3, the unit sphere centred on th origin. We are

interested in great circles, defined as the intersection of S with a plane through
~0. Through any two non-antipodal pts P, Q ∈ S, ∃! great circle (also called
spherical lines).

Defn

Distance d(P, Q) is defined as the length of the shorter of the two segments PQ

along the great circle (or π for antipodal points). Define ~P =
−−→
OP, ~Q =

−−→
OQ,

then d(P, Q) = cos−1(~P · ~Q).
Say we have a “spherical triangle” ABC; A, B,C pts on the sphere, AB,BC, AC

spherical line segments of length < π. Set ~A =
−→
OA etc. Let ~n1 = ~C× ~B

sin a , ~n2 =
~A×~C
sin b , ~n3 = ~B× ~A

sin c [where a is the length of the side opposite A etc]. The angles
of the spherical triangle are the angles between the defining planes of the sides,
taking the angle with 0 < α < π [α being the angle at A etc.]. Note that the
angle between ~n2 and ~n3 is π + α (or π − α), so ~n2 · ~n3 = cos(π + α) = − cos α
(and similarly for the other ~ni).

Thm 2.1 (cosine formula)

sin a sin b cos γ = cos c− cos a cos b: recall (~C × ~B) · ( ~A× ~C) = ( ~A · ~C)( ~B · ~C)−
(~C · ~C)( ~B · ~A) = (~a · ~C)( ~B · ~C)− ( ~B · ~A) since ‖C‖ = 1, so − cos γ = ~n1 · ~n2 =
(~C× ~B)·( ~A×~C)

sin a sin b = ( ~A·~C)( ~B·~C)−( ~B· ~A)
sin a sin b = (cos b cos a−cos c)

sin a sin b .

Corollary (Pythagoras)

When γ = π
2 , cos c = cos a cos b.

Thm 2.3 (sin formula)

sin a
sin α = sin b

sin β = sin c
sin γ : use ( ~A× ~C)× ( ~C × ~B) = ( ~C · ( ~A× ~B))~C; the LHS=−(~n1×

~n2) sin a sin b where ~n1 × ~n2 = ~C sin γ, so ~C · ( ~A × ~B) = sin a sin b sin γ. The
triple product is invariant under permutations so we have sin a sin b sin γ =
sin α sin b sin c = sin a sin β sin c.
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Assuming a, b, c < π, applying (2.1) we have cos c = cos a cos b+sin a sin b cos γ.
Unless γ = π, i.e. C lies on the line segment AB and hence c = a + b,
cos c > cos a cos b− sin a sin b = cos(a + b) ⇒ c < a + b.

Corollary (2.4) (Triangle inequality)

For P, Q, R ∈ S2, d(P,Q) + d(Q,R) ≥ d(P, R), with equality iff Q is on the line
segment PR (of shorter length). If d(P,R) = π i.e. P,R antipodal, then the
line PQ also pallel through R so d(P, R) = D(P, Q) + d(Q,R).

Proposition 2.5

Given a curve Γ : [0, 1] → S‘2 on S joining P to Q, l = length(Γ) ≥ d(P, Q);
moreover, if l = d(P, Q) the image of Γ is the spherical line segment PQ on S. An
outline of the pf is: given a dissection D of [0, 1] AS 0 = t0 < t1 < · · · < tN = 1,
let Pi = Γ(ti), SD =

∑N
i=1 |

−−−−→
Pi−1Pi| < S′D =

∑N
i=1 d(Pi−1, Pi). Since sin θ

θ → 1
as θ → 0, we have 2 sin θ ≤ 2θ ≤ (1 + ε)2 sin θ for θ sufficiently small, i.e.
S′D ≤ (1 + ε)SD for meshD sufficiently small, so S = S′ in limit. By repeated
triangle inequality d(P,Q) ≤ S′D∀D, so l ≥ d(P,Q).

If Γ is of length l = d(P, Q) then ∀t ∈ [0, 1], d(P, Q) = l = length Γ |[0,t]

+ length Γ |[t,1]≥ d(P, Γ(t)) + d(Γ(t), Q) ≥ d(P, Q), so d(P, Q) = d(P, Γ(t)) +
d(Γ(t), Q)∀t, so Γ(t) is on the shorter line segment PQ∀t, so the image of Γ is
the line segment as required.

Rk 2.9

So any curve of minimum length joining P, Q is a spherical line segment. More-
over, from the above length Γ | |[0, t] = d(P, Γ(t))∀t so the parameterization is
monotonic. For now we call such Γ (minimizing) geodesics.

1.4 Area of spherical triangles (Gauss-Bonnet)

Proposition 2.10

If ∆ is a spherical triangle w/ angles α, β, γ then its area is (α+β +γ)−π: Def
a double lune w/ angle α on S is the area cut out by two planes passing through
antipodal pts of S, w/ the angle between the planes α; the area of this is 4α. A
spherical triangle ∆ = ABC is the intersection of three, or equivalently merely
two, single lunes; ∆ and its antipodal triangle ∆′ are in all 3 of the double
lunes (w/ areas 4α, 4β, 4γ), but any other point of the sphere is in only one; the
diagram may make this clearer:
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Thus 4(α + β + γ) = 4π + 2 × 2 × A where A = the area of ∆ (= that of
∆′), since 4π is the total area of S, and we have the result.

Rk 2.11

For a spherical triangle, α + β + γ > π; the limit as the area of ∆ → 0 is
α + β + γ = π, the Euclidean case.

If M is a convex n-gon on S (for n ≥ 3) (i.e. ∀P,Q ∈ M the shorter line
segment joining P and Q lies in M) and the interior angles are α1, . . . , αn then
its area is

∑
αi − (n− 2)π, by subdividing into n− 2 spherical triangles.

1.5 Möbius geometry

Let C∞ = C ∪ {∞} have coordinate ξ. Consider the stereographic projection
π : S2 → C∞ defined by π(P ) = the point of intersection of the line NP with
C identified as the plane z = 0, where N = (0, 0, 1), with π(N) = ∞; this is
clearly a bijection; by similar triangles we can see π(x, y, z) = x+iy

1−z
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Lemma 2.12

If π′ is the stereographic projection from the south pole then π′(P ) = 1
π(P ) , since

if P = (x, y, z) then π(P ) = x+iy
1−z , π′(P ) = x+iy

1+z ∴ π(P )π′(P ) = x2+y2

1−z2 = 1.

Rk 2.13

Thus π′ ◦ π−1 : C∞ → C∞ is just circular inversion ξ 7→ 1
ξ .

1.6 Antipodal Points

For P = (x, y, z) ∈ S2, have π(P ) = ξ = x+iy
1−z , π(−P ) = −x+iy

1+z (−P =

(−x,−y,−z), the antipodal point of P ) so π(P )π(−P ) = −x2+y2

1−z2 = −1, so
π(−P ) = − 1

ξ
.

1.7 Möbius transformations

Recall that C∞ is acted on by the gp G of Möbius transformations acting on it;

if A =
(

a b
c d

)
∈ GL(2,C) then it defs a Möbius transformation on C∞ by

ξ 7→ aξ+b
cξ+d . For any λ ∈ C? = C \ {0} note λA defs the same M transformation;

conversely if A1, A2 def the same M trans we can easily find ∃λ ∈ C? : A1 = λA2,
so G = PGL(2,C) := GL(2,C

C? .
Alternatively we can always normalize A so det A = 1; if detA1 = 1 = det A2

and A1 = λA2 then we must have λ = ±1, so G = PSL(2,C) := SL(2,C)
{±1} . On

S2 we have the rotations SO(3) (recall the full isometry gp is O(3)).
Given 4 distinct points z1, z2, z3, z4 ∈ C∞, recall we have a unique M trans-

formation h sending z1, z2, z3 to 0, 1,∞ respectively. We define the cross-ratio
[of z1, z2, z3 and z4] to be the image of z4 under this h, which we can calculate
to be w = z4−z1

z4−z3

z2−z3
z2−z1

; by the way we have defined this it is clearly invariant
under M transformations.

Suppose Γ ∈ C is a circle or straight line containing z1, z2, z3, then the image
of it under the above h must be the real axis, so z4 ∈ Γ ⇔ h(z4) = w ∈ R; four
distinct points lie on a circle or straight line iff their cross-ratio is real.

On C∞ we have the action of PSU(2) = SU(2)
{±I} , the group of M transforma-

tions defined by matricies of SU(2) ⊂ SL(2,C); recall that SU(2) consists of

matricies of the form
(

a −b
b̄ ā

)
with |a|2 + |b|2 = 1 (geometrically these are

on S3 ⊂ R4); PSU(2) consists of M transformations of the form z 7→ az−b
b̄z+ā

.

Theorem 2.14

Via stereographic projection π every rotation of S3 gives rise to a M transfor-
mation defined by an element of SU(2) ⊂ SL(2,C):

Rotations R(z, θ) (i.e. rotation about the z axis




0
0
1


 by clockwise angle θ)

correspond to M transformations z 7→ eiθz and hence to matricies

(
e

iθ
2 0
0 e−

iθ
2

)
∈
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SU(2).

The rotation r(y, π
2 ) is given by the matrix




0 0 1
0 1 0
−1 0 0


 i.e.




x
y
z


 7→




z
y
−x


. In C∞ the corresponding map is ξ = x+iy

1−z 7→ ξ′ = z+iy
1+x ; this maps

−1 → ∞, 1 → 0, i → i so if it is given by a M transformation it must be
ξ′ = ξ−1

ξ+1 . Now we check this transformation: ξ−1
ξ+1 = x+iy−1+z

x+iy+1−z = x−1+z+iy
x+1−(z−iy) =

(z+iy)(x−1+z+iz)
(x+1)(z+iy)+x2−1 (since x2 + y2 + z2 = 1) = (z+iy)(x−1+z+iy)

(x+1)(z+iy+x−1) = ξ′ as required,
so this is an M transformation corresponding to this rotation.

But SO(3) is generated by r(y, π
2 and the set of rotations of the form

r(z, θ), 0 ≤ θ < 2π, since we observe r(x, φ) = r(y, π
2 )r(z, φ)r(y,−π

2 [r(y,−π
2 =

r(y, π
2 )3], and for any ~v ∈ S2, ∃φ, ψ s.t. g = r(z, ψ)r(x, φ) maps ~v to




1
0
0


,

by having the first rotation map ~v into the horizontal plane z = 0. Then
r(~v, θ) = g−1r(x, θ)g.

So any rotation can be written as a product of these two elements, so corre-
sponds to a product of M transformations with matricies ∈ SU(2), so we have
the result.

Theorem 2.15

The group SO(3) acting on S2 corresponds precisely with the subgroup PSU(2)
of M transformations acting on C∞, as given a M transformation ∈ PSU(2)
g(z) = az−b

b̄z+ā
with |a|2 + |b|2 = 1, if g(0) = 0 then b = 0 and aā = 1 ∴

a = e
iθ
2 for some θ and g corresponds to r(z, θ), in general (using a common

technique) let g(0) = w ∈ C, Q ∈ S2 s.t. π(Q) = w. Choose a rotation A of

S2 with A(Q) =




0
0
−1


 and let α be the corresponding element of PSU(2),

so α(w) = 0 ∴ α ◦ g fixes 0 and corresponds to a rotation B = r(z, θ), so g
corresponds to the rotation A−1B.

So there exist 2:1 maps SU(2) → PSU(2) ∼= SO(3). This is important to
physics; it is the central part of the concept of “spin”. This is the reason there
exists a non-closed path of translations in SU(2) going from I to −I which

corresponds to a closed path in SO(3), starting and ending at




1 0 0
0 1 0
0 0 1


.

Defn

The torus T = T 2 may be defined as a set R
2

Z2 ; points are represented by (x, y) ∈
R2 but identified under the equivalence relation (x1, y1) ∼ (x2, y2) ⇔ x1 − x2 ∈
Z, y1 − y2 ∈ Z. Alternatively, if Q is a closed square in R2 with verticies
(a, b), (a + 1, b), (a, b + 1), (a + 1, b + 1) then T is given by identifying opposite
sides of Q.
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The distance function d is defined by d(P1, P2) = minx1,x2∈R2 representing P1,P2 respectively |~x1−
~x2|; we can easily verify this is a metric.

Let f : R2 → T be the quotient map used in the definition; on the interior
Int(Q) of a square of the above form f : Int(Q) → T is a bijection onto an
open subset U of T , the complement of two “circles”. Clearly this map does not
preserve distances; however, for any P ∈ Int(Q) the restricion of f to a small
enough open ball about P is an isometry. Thus f |Int(Q) is a homeomorphism;
both f and its inverse are locally isometries and so continuous.

Note that this is the locally euclidean torus T ; its distance is very different
from that of the torus embedded in R3.

Defn

A topological triangle on X = S, T (more generally on any metric space X) is
the image R ⊂ X of a closed Euclidean triangle ∆ ⊂ R2 under a homeomorphism
(Exercise: a spherical triangle is a topological triangle). A (topological) triangulation
of X consists of a collection of topological triangles which cover X with the fol-
lowing properties: (This definition is only for 2D, though it is of course possible
to extend it to higher dimensions)

Two triangles are either disjoint, intersect at a common vertex, or intersect
on a common edge.

Each edge is the edge of precisely two triangles

Definition

The Euler number is defined by e = F − E + V where F is the number of
triangles (faces), E the number of edges and V the number of verticies.

Fact

The Euler number is independent of the choice of triangulation, with e(S2) =
2, e(T 2) = 0; a sketch proof may be given later in this course, a full proof
appears in the part II course “Algebraic Topology”.

Examples

Slice the sphere as by the three planes x = 0, y = 0, z = 0, dividing it into eight
triangles (there was some ambiguity in our earlier definition of a spherical trian-
gle; the spherical triangle is the smaller of the two areas meeting the definition,
i.e. that with area < 2π. This has F=8,E=12,V=6 so e = 2.

Divide the torus into nine squares as for a “noughts and crosses” game,
then draw all the diagonals running from top right to bottom left. This hase
F=18,E=27,V=9. Note that if we only divide the torus into four squares ini-
tially, this is not strictly speaking a triangulization, as there are triangles whose
intersection is two common verticies. However, this still obeys Euler’s rule;
F=8,E=12,V=4 so e = 0. Thus we can relax our definition somewhat from the
strict one required in Algebraic Topology:
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Definition

A (geodesic) polygonal decomposition of S2 (respectively T 2) consists of a finite
collection of geodesic polygons (each contained in an open hemisphere (respec-
tively corresponding to a Euclidean polygon in Int(Q))) which cover X with
the interiors (faces) of the polygons disjoint. The edges of the decomposition
are defined to be those of the polygons, likewise verticies, and any edge is the
edge of precisely two polygons of the collection, and no edge has a vertex as an
“interior point”. We can still define the Euler number:

Proposition 3.6

For any such geodesic triangle decomposition of S2 (respectively T 2) the Euler
number e = F − E + V is 2 (respectively 0): if the triangles are ∆1, . . . , ∆f

and the interior angles of each ∆i sum to Ti respectively, then
∑

Ti = 2πV
since at each vertex the angles sum to 2π. Also 3F = 2E since each triangle
has three edges and each edge is common to two triangles. So F = 2E − 2F .
For S2, by Gauss-Bonnet area(∆i) = Ti − π so 4π =

∑
i = 1F area(∆i) =∑

(Ti − π) = 2πV − πF = 2π(V − E + F so e = 2; for T we have Ti = π∀i so∑
i(Ti − π) = 0 = e.
This proof is immediately also valid for any decomposition into convex poly-

gons, by subdividing them into triangles (each subdivision increases both F and
E by 1 each, so does not change e).

As a proof of an earlier exercise: a spherical triangle is the radial projection
of a plane triangle onto S2, and such projection is a homeomorphism, so a
spherical triangle is a topological triangle.

Recall from analysis II the derivatives of maps: suppose U ⊂ Rn is open.
A map f = (f1, . . . , fm) : U → Rm is smooth (or C∞) if each fi has partial
derivatives of all orders. Clearly any such f is diffable since it has cnts partial
derivs.

The derivation of f at ~a ∈ U is a linear map df~a : Rn → Rm (in analysis
II we called this Df |~a, but there are good reasons for preferring this “little-d”
notation; see part II) such that ‖f(~a+~h)−f(~a)−df~a(h)‖

‖h‖ → 0 as h → 0 ∈ Rn.
When m = 1, df~a : Rn → R is determined by the partial derivatives of f

at ~a, ( ∂f
∂x1

(~a), . . . , ∂f
∂xn

(~a)) via matrix multiplication, i.e. it is (h1, . . . , hn) 7→∑
i

∂f
∂xi

(~a)hi. For general m df~a : Rn → Rm is determined by the m× n matrix

of partial derivatives J(f) =




∂f1
∂x1

. . . ∂f1
∂xn

. . . . . .
∂fn

∂x1
. . . ∂fn

∂xn


 at ~a, the Jacobian matrix

Example

Analytic functions f : U ⊂ C→ C in one complex variable x with U open have
|f(z+w)−f(z)−wf ′(z)|

|w| → 0 as w → 0 ∈ C. So if we set f ′(z) = a + ib, w = h1 + h2

then f ′(z)w = (ah1 − bh2) + i(ah2 + bh1); if we consider f as a smooth map

U → R2 then the linear map dfx : R2 → R2 is given by
(

a −b
b a

)
.
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Chain rule

Given smooth maps f : U ⊂ Rn → Rm, g : V ⊂ Rp → U with U, V open,
fg : V → Rm has derivative at p ∈ V given by d(fg)p = dfg(p) ◦ dgp. In terms
of Jacobian matricies this is that J(fg)p = J(f)g(p)J(g)p where the subscripts
are the points at which the matricies are evaluated and the product is matrix
multiplication.

Riemannian metrics on open subsets of R2

Let V ⊂ R2 open, and take coordinates (u, v) on R2. A Riemannian metric on
V , Edu2 +2Fdudv+Gdv2, is defined by giving C∞ functions E, F,G on V such

that the matrix
(

E(P ) F (P )
F (P ) G(P )

)
is positive definite ∀P ∈ V and hence (for

P ∈ V ) defines an inner product 〈, 〉p on R2, varying smoothly with P .

Non-examinable: explanation of origin for notation

The coordinate functions u : V → R, v : V → R have derivatives (at P ∈ V )
which are denoted by duP , dvP where duP (h1, h2) = h1, dvP (h1, h2) = h2. Thus
duP , dvP is the dual basis to the standard basis of R2. We drop the P s as the
maps are independent of P , then du, dv represents the dual basis at all points.

du2(~h,~k) := du(~h)du(~k), dudv(~h,~k) := 1
2 (du(~h)dv(~k)+dv(~h)du(~k)), dv2(~h,~k) :=

dv(~h)dv(~k). These are symmetric bilinear forms, with corresponding matricies(
1 0
0 0

)
,

(
0 1

2
1
2 0

)
,

(
0 0
0 1

)
respectively. So Edu2 + 2Fdudv + Gdv2 is

just the symmetric bilinear form defined by
(

E F
F G

)
.

Definition

Given a (piecewise) smooth curve γ = (γ1, γ2) : [0, 1] → V ⊂ R2, define its
length to be

∫ 1

0

√
Eγ̇2

1 + 2F γ̇1γ̇‘‘ + Gγ̇2
2dt. The area of a region W ⊂ V is

defined to be
∫

W

√
EG− F 2dudv, [of course both of these are only defined]

when this integral exists.

Example

V = R2, the Riemannian metric 4(du2+dv2)
(1+u2+v2)2 . We have met this already; the

stereographic projection π : S2 → R2 = C has for P ∈ S2 \{north pole}, π(P ) ∈
R2 and an inner product 〈, 〉π(P ) defined as follows:

The tangent space to S2 at P consists of vectors ~x such that ~x · −−→OP = 0
with the origin identified with P ; this is a vector space. For ~x1, ~x2 in this space,
~x1 · ~x2 = 〈dπP (~x1), dπP (~x2)〉π(p).

Suppose φ : V → Ṽ is a diffeomorphism, that is, a smooth map with a
smooth inverse, between open subsets of R2, and we have Riemannian metrics
on V, Ṽ giving ries to families of inner products 〈, 〉P for P ∈ V , 〈, 〉̃Q for Q ∈ Ṽ .
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Definition

φ is called an isometry if ∀P ∈ V, 〈~x, ~y〉P = 〈dφP (~x), dφP (~y)〉̃φ(P )∀~x, ~y ∈ R2. If
γ : [0, 1] → V is a smooth curve then γ̃ = φ ◦ γ : [0, 1] → Ṽ is a smooth curve
and 〈γ̃′(t), γ̃′(t)〉̃γ̃(t) = 〈dφP (γ′(t), dφP (γ′(t))〉̃φ(P ) = 〈γ′(t), γ′(t)〉γ(t) where P =

γ(t). So if φ is an isometry, length γ̃ = length γ =
∫ 1

0

√
〈γ|prime(t), γ′(t)〉dt.

Isometries also preserve areas, as shown in the printed notes for this course.

Disc model

The disc model for the hyperbolic plane is given by V = D ⊂ C the unit disc
with Riemannian metric 4(du2+dv2)

(1−u2−v2)2 . If ζ = u + iv we can write this as 4:dζ|2
(1−|ζ|2)2

where |dζ|2 = du2 + dv2. Lengths are scaled by 2
1−r2 where r2 = u2 + v2, and

areas are scaled by 4
(1−r2)2 .

Upper half-plane model

H = {z ∈ C : Im(z) > 0} is conformally equivalent to D via the Möbius
transformation ζ 7→ i(1+ζ)

1−ζ . Notice that this is equivalent to a rotation of the
Riemannian sphere - we are mapping the ”north“ hemisphere to the ”bottom“
hemisphere. If we use z for complex coordinates on H, z = x + iy we have
z = i(1+ζ)

1−ζ with inverse ζ = z−i
z+i .

We can in general see hyperbolic geometry as ”spherical geometry with the
sign changed”.

We want a metric on the upper half plane such that the above maps are
isometries: if we had the Euclidean inner product on the unit disc as a subset
of C, we can write 〈w1, w2〉 = Re(w1w̄2) = 1

2 (w1w̄2 + w̄1w2) so at z ∈ H, the
inner product on R2 = C induced from the Euclidean inner product at ξ = z−i

z+i ,
i.e. the inner product which makes the map an isometry, is given by forcing
the isometry condition: 〈w1, w2〉z = 〈 dξ

dz w1,
dξ
dz w2〉eucl = | dξ

dz |2Re(w1w̄2), i.e. we
obtain the Riemannian metric | dξ

dz |2(dx2 +dy2) = 4
:z+i|4 (dx2 +dy2) on H. From

ξ = z−i
z+i we can find 1

1−|ξ|2 = |z+i|2
4 Im z , so the metric on H corresponding to the

Riemannian metric 4|dξ|2
(1−|ξ|2)2 is 4 × 4

|z+i|4
(
|z+i|2
4+Im z

)2

|dz|2 = |dz|2
(Im z)2 = dx2+dy2

y2

[check: should that be 4 + Im z or 4 Im z?]
Consider PSL(2,R), the group of M transformations z 7→ az+b

cz+d with a, b, c, d ∈
R, det

(
a b
c d

)
= 1. The first condition gives the set of Möbius transforma-

tions mapping R ∪ {∞} into itself. We also want to ensure the upper half-
plane is mapped to itself (rather than to the lower half plane) wo we check:

i 7→ ai+b
ci+d = (b+ai)(d−ci)

c2+d2 ; the imaginary part of this is > 0 ⇔ det
(

a b
c d

)
> 0,

i.e. if and only if we can normalize
(

a b
c d

)
so its determinant is 1. Thus this

group is a group of Möbius transformations mapping H into itself.
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Proposition 4.4

The elements of PSL(2,R) are isometries of H, i.e. they preserve length of
curves.

Recall PSL(2R) is generated by translations z 7→ z + a, a ∈ R, dilations
z 7→ az, a ∈ R+ and the map z 7→ − 1

z . The first two of these are clearly
isometries. For z 7→ − 1

z the induced may on C = R2 is given by multiplication

by d(− 1
z )

dz = 1
z2 , and note Im(− 1

z ) = − 1
|z|2 Im z̄ = Imz

|z|2 , thus the metric is
1
|z|4 |dz|2
(Im z)2

|z|4
= |dz|2

(Im z)2 as required.

PSL(2,R) contains M transformations z 7→ az + b, a > 0 so acts transitively
on H.

Let l = the imaginary axis, g ∈ PSL(2,R), then g(l) is a circline orthogonal
to the real axis R = g(R). Let l+ = {it : t > 0}; its image is either a vertical
half-line or a semicircle (with ends on the real axis) (both in the upper half
plane since g maps this into itself); these are called the hyperbolic lines.

Lemma (4.6)

Through any two points z1 6= z2 ∈ H, ∃! hyperbolic line l through z1, z2; this
is clear if Re z1 = Re z2, otherwise the centre of the required semicircle is the
intersection of the perpendicular bisector of z1, z2 with the real axis.

4.7

PSL(2,R) acts transitively on the hyperbolic lines: given any hyperbolic line l,
∃g ∈ PSL(2,R) : g(l) = l+; this is clear for l a vertical line, otherwise for l a

semicircle with endpoints s < t ∈ R we take g(z) = z−t
z−s (note det

(
1 −t
1 −s

)
>

0) and observe g(t) = 0, g(s) = ∞.

Remark

If we compose g with z 7→ − 1
z we get h ∈ PSL(2,R) such that h(s) = 0, h(t) =

∞. We can also choose that a given point P ∈ l maps to i, by scaling.
We define ρ(z1, z2) =length along the hyperbolic line between z1, z2 (under

our metric).
Given z1, z2 ∈ H, ∃h ∈ PSL(2,R) sich that h(z?

1) = 0, h(z?
2) = ∞ where z?

i is
the endpoint of l as defined above nearer to zi, so h(z1) = iu, h(z2) = iv, u < v.
Since h is an isometry ρ(z1, z2) = ρ(iu, iv).

Let T : [0, 1] → H be such that T (t) = if(t) ∈ l+ where T (0) = iu, T (1) = iv
and df

dt is continuous and ≥ 0∀t. Then ρ(z1, z2) = ρ(iu, iv) = length T =
∫ 1

0

| df
dt |
f dt =

∫ 1

0

df
dt

f dt = log v
u .

The minimizing geodesics on H correspond to hyperbolic line segments:

Proposition 4.10

If γ : [0, 1] → H is a piecewise continuously differentiable curve from z1 to
z2, then length γ ≥ ρ(z1, z2), with equality if and only if γ is a monotonic
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parameterization of the hyperbolic line segment [z1, z2]; without loss of general-
ity take z1 = iu, z2 = iv, u < v. Suppose γ = γ+iγ2 is as above, then length γ =∫ 1

0

√
(dγ1

dt )2 + (dγ2
dt )2 dt

γ2(t)
≥ ∫ 1

0
|dγ2

dt | dt
γ2(t)

≥ ∫ 1

0
dγ2
dt

dt
γ2(t)

= [log γ2(t)]]10 = log( v
u ) =

ρ(z1, z2) with equality if and only if both these inequalities are equalities, i.e.
dγ1
dt ≡ 0 so γ1 ≡ 0 (and γ runs along the imaginary axis) and dγ2

dt ≥ 0 so we
have the result; since we considered general piecewise continuously diffentiable
curves these statements may be false at the finitely many points where γ is not
continuously differentiable, but this does not affect the conclusion.

Remark

Given z1, z2, z3 we can consider a curve γ consisting of the hyperbolic line seg-
ments [z1, z2] followed by [z2, z3], then length γ = ρ(z1, z2)+ρ(z2, z3) ≥ ρ(z1, z3)
with equality if and only if z2 lies on [z1, z3] (this is why we bothered considering
piecewise continuously differentiable curves above). Thus ρ is a metric.

We can now use this to show that any continuous curve from z1 to z2 has
length ≤ ρ(z1, z2), bu the same proof as in the Euclidean and spherical cases.

Geometry of disc model D

M transformations sending the unit circle to itself and D to itself correspond to
elements of PSL(2,R) acting on H and hence are isometries of D; they form a
group G.

Hyperbolic lines in D are given by circle segments orthogonal to the unit
circle, including diameters (since M transformations (such as the equivalence
between D and H) preserve angles).

G acts transitively on the set of (hyperbolic line l, P ∈ l); cf (4.7).
D has Riemannian metric 4|dz|2

((1−|z|2)2 ; the elements of G are isometries of D.
On the disc:

(4.12)

Rotations z 7→ eiθz are elements of G (this is trivial)
If a ∈ D then g(z) = z−a

1−āz as a map is ∈ G: if |z| = 1 observe that
|1 − āz| = |z̄(1 − āz)| = |z̄ − ā| = |z − a| so |g(z)| = 1, and g(a) = 0 ∈ D so
g(D) = D and g ∈ G.

Remark

See example sheet 2; in fact any element of G is of the form z 7→ eiθ
(

z−a
1−āz

)
for

some θ and a ∈ D.
This group is “half” the isometries of D; it does not include reflections (and

nor does PSL(2) on H).

Proposition 4.14

If 0 ≤ r < 1 then ρ(0, reiθ) = 2 tanh−1 r; in general for z1, z2 ∈ D, ρ(z1, z2) =
2 tanh−1

∣∣∣ z1−z2
1−z̄1z2

∣∣∣; see example sheet 2 for a similar formula in H.
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ρ(0, reiθ) = ρ(0, r) =
∫ r

0
2dt

1−t2 = 2 tanh−1 r; in general let l be the hyperbolic
line through z1, z2 and apply z 7→ z−z1

1−z̄1z ∈ G; this maps z1 → 0, l → a diameter
of D, wlog the real axis, and under this z2 → | z1−z2

1−z̄1z2
| and we have the result.

Examples

Hyperbolic circles are Euclidean circles; transform the centre of the circle to 0
and this is clear, and since the transformation is a M transformation it trans-
forms Euclidean circlines into Euclidean circlines; since the equivalence between
D and H is also a M transformation this also means circles in H are Euclidean
circles (in both cases we cannot have lines because the transformations map the
interior of D into the interior of D (or H, and in this case recall the point at
infinity is not in the interior of H)).

Given a point p and hyperbolic line l with p /∈ l, ∃! hyperbolic line l′ with
l′ 3 p, l′ ⊥ l and the distance along this line is the minimum distance between
p and l; this is clear by transforming p onto 0.

Lemma 4.17

Suppose g is an isometry of H fixing all points of l+ = {iy : y > 0}. Then g = ι
or g(z) = −z̄∀z ∈ H, i.e. g is reflection in the y axis.

For any p /∈ l+, ∃! hyperbilic line l′ through p and ⊥ l+, but the minimum
distance between p and l+ is the distance from p to the point of intersection
of l′, l+, say q; q is mapped to itself and distances are preserved so p must be
mapped to one of the two points p, p′ (where p′ is the reflection of p in l+). We
now claim that if ∃p /∈ l+ with g(p) = p then g = ι and otherwise g is reflection in
l+: take wlog p ∈ the positive quadrant H+. If g(P ) = P then for any point A of
H+ if g(A) = A′ then ρ(A′, P ) = ρ(A,P , but ρ(A′, P ) = ρ(A′, B) + ρ(B,P ) for
B the intersection of [A, P ′], [A′, P ], but by symmetry this is ρ(A,B) + ρ(B,P )
contradicting the triangle inequality [since B is not on the line [A,P ]].

Let R be reflection in l+. For any hyperbolic line l choose T ∈ PSL(2,R)
such that T (l) = l+, then define Rl = T−1RT ; from this lemma this is the
unique non-identity isometry fixing all points of l.

We can also define Rl geometrically; the image of P is the point on the
perpendicular l′ from P to l equidistant from l as P but 6= P .

4.19

Any isometry g of H is either an element of PSL(2,R) or an element in its
coset R · PSL(2,R) where R is reflection in l+; suppose g(l+) = l, choose T
such that T l = l+ and consider Tg, i.e. we can wlog take g(l+) = l+. Then
composing if necessary with z 7→ − 1

z and scaling by a real number, we can take
g(0) = 0, g(∞) = ∞, g(i) = i. Thus g fixes all the points of l+ and by (4.17) g
is ι or R and we are done; by “unrolling” this process we have g of the required
form. See the second example sheet for this course for a similar classification of
the isometries of D.

We call the isometries of the form z 7→ az+b
cz+d , a, b, c, d ∈ R, ad − bc > 0 the

direct isometries. By the same proof as in the Euclidean case, any isometry
is the composition of at most three reflections, and direct isometries are the
composition of at most two reflections.
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For regions R ⊂ H, the area of R is
∫∫

R
dxdy
y2 . We want to consider triangles;

it is convenient to also include triangles with points on the boundary.
For a triangle T = ABC with angles α, β, γ, possibly some of which are 0,

the area of T is π− (α + β + γ); note this is - what it was in the spherical case;
this is an example of curvature, which will be covered later in the course.

We first proove the result for γ = 0; we use H and can wlog take C = ∞
(notice that in this proof we implicitly assume isometries preserve areas; we
shall proove this later). Then by translation and scaling by a real number we
can take A,B to be on the unit semicircle (centre 0); by angle chasing we find
B is eiβ , A = ei(1−α). Then the side BC is the line x = cos β and similarly, so
the area of T is

∫ cos β

cos(π−α)

∫∞√
1−x2

dydx
y2 =

∫ cos β

cos(π−α)
dx√
1−x2 = [− cos−1 x]cos β

cos(π−α) =
π−α−β. Then for a general γ we transform the triangle so A,B lie on the unit
circle and C lies on the line x = cos(π−α); let δ be the angle between BC and
C∞. Let ∆1 = AB∞, ∆2 = CB∞, then the area of T is area(∆1)−area(∆2) =
π − α− (β + δ)− (π − δ − (π − γ)) = π − α− β − γ as required.

Parallel and Ultraparallel lines

In Euclidean geometry, for a line l and P /∈ l there is a unique line l′ 3 P not
intersecting l; there is no such l′ in the spherical case.

We define lines l1, l2 in D are parallel if they only meet on the boundary
|z| = 1 and ultraparallel if they do not meet on the full set |z| ≤ 1. In H we take
wlog l1 = l+, then the l2 parallel to it are the vertical lines and the semicircles
with one endpoint at 0, and the ultraparallel lines are the semicircles with both
endpoints ¿0 or both endpoints ¡0.

On the second example sheet we proove that two hyperbolic lines are ul-
traparallel if and only if they have a common perpendicular. Note also that
ultraparallel lines are some finite minimum distance apart, while parallel lines
converge.

We saw that we can stereographicly project the sphere onto C[∪{∞}]. We
can also form D by projecting the hyperboloid S+ defined by q(~x) = x2 +

y2 − z2 = −1 for z > 0 onto D ⊂ C by projection with centre




0
0
−1


,

π(x, y, z) = x+iy
1+z , with inverse σ(u, v) = ( 2u

1−r2 , 2v
1−r2 , 1+r2

1−r2 ) where r2 = u2 + v2.
σu = dσ(u,v)(e1) = ∂σ

∂u = 2
(1−r2)2 (1 + u2 − v2, 2uv, 2u), σv = 2

(1−r2)2 (2uv, 1 +
v2 − u2, 2v); the reader may verify these are linearly independent for any (u, v)
with u2 + v2 < 1. Then σu, σv generate the tangent space to S+ at σ(u, v),
and the Lorentzian inner product 〈~x, ~x〉 = q(~x) determines a symmetric bi-
linear form on this vector space, and hence via dσ, which identifies e1 with
σu and e2 with σv, determines a bilinear form Edu2 + 2Fdudv + Gdv2 on D
via E = (e1, e1) := 〈dσ(e1), dσ(e1)〉 = 〈σu, σu〉 = 4

(1−r2)2 , F = (e1, e2) :=
〈dσ(e1), dσ(e2)〉 = 〈σu, σv〉 = 0, G = (e2, e2) := 〈dσ(e2), dσ(e2)〉 = 〈σv, σv〉 =

4
(1−r2)2 ; this gives the hyperbolic metric 4(du2+dv2

(1−r2)2 on D.

Definition

S ⊂ R3 is a smooth embedded surface if each point of S has an open neigh-
bourhood U = W ∩ S for W open in R3 and map σ : V → U from some open
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V ⊂ R2 such that σ is a homeomorphism, i.e. σ(u, v) = (x(u, v), y(u, v), z(u, v))
is C∞ (has continuous derivatives of all orders).

At each point Q = σ(P ) ∈ U , the vectors σu(P ) = ∂σ
∂u (P ) = dσP (e1) and

σv(P ) are linearly independent.
σ is called a smooth parameterization of U ⊂ S; (u, v) are called smooth coordinates

on U .
The tangent space TS,U is the subspace of R3 generated by σu, σv.

Proposition 5.2 [or possibly 5.3]

Suppose σ : V → U and σ̃ : Ṽ → U are smooth parameterizations of U . Then
the homeomorphism φ = σ−1 ◦ σ̃ : Ṽ → V is a diffeomorphism, that is a smooth
map with a smooth inverse, with σ̃ = σ ◦ φ.

The Jacobian matrix




xu xv

yu yv

zu zv


 has rank 2 everywhere since its columns

are σu, σv. Since φ is a homeomorphism, it suffices to proove it is a diffeomor-

phism locally. Wlog take det
(

xu xv

yu yv

)
6= 0 (as the determinant of at least

one such minor is 6= 0) at (u0, v0) ∈ V . Consider F : V → R2 given by projec-
tion π of σ, i.e. f(u, v) = (x(u, v), y(u, v)). Now we apply a stronger form of
the Inverse Function Theorem than was prooven in the Analysis II course and
have that F is a local diffeomorphism at (u0, v0), i.e. ∃ open neighbourhoods
(u0, v0) ∈ N ⊂ V ⊂ R2, F (u0, v0) ∈ N ′ ⊂ R2 such that F |N |N → N ′ is
a diffeomorphism. Now σ |N : N → σ(N) is a homeomorphism onto an open
subset of U ; since F |N : N → N ′ is a homeomorphism so too is the projection
π : σ(N) → N ′ ⊂ R2. Set Ñ = σ̃−1(σ(N)) open in Ṽ and F̃ = π ◦ σ̃ : Ñ → N ′.
Then φ |Ñ= σ−1 ◦ σ̃ is σ−1 ◦ π−1 ◦ π ◦ σ = F−1 ◦ F̃ on Ñ ; since F−1 and F̃ are
C∞ so is φ |Ñ ; similarly the same is true of φ−1 |N so φ is a diffeomorphism.

Corollary 5.3

The tangent space TS,Q is independent of the choice of parameterization σ :
V → U 3 Q; (5.2) implies that given σ : V → U a smooth parameterization
of S any other smooth parameterization is of the form σ̃ = σ ◦ φ with φ =
(φ1, φ2) : Ṽ → V ⊂ R2 a diffeomorphism. Let (ũ, ṽ) be coordinates on Ṽ ,

then σ̃ũ = ∂φ1
∂ũ σu + ∂φ2

∂ũ σv, σ̃ṽ = ∂φ1
∂ṽ σu + ∂φ2

∂ṽ σv where J(φ) =
(

∂φ1
∂ũ

∂φ2
∂ũ

∂φ1
∂ṽ

∂φ2
∂ṽ

)
is

invertible, and the result is clear.

Remark

σ̃ũ × σ̃ṽ = det(J)σu × σv. Define the unit normal to S at Q as ~N = ~NQ =
σu×σv

‖σu×σv‖ ; this is unique up to its sign.
The inverse θ : U → V of σ : V → U ⊂ S is called a chart. A collection of

charts covering S is called an atlas.
Given a smooth parameterization σ : V → U ⊂ S ⊂ R3 we define a Rieman-

nian metric on V by 〈~a,~b〉P = 〈dσP (~a), dσP (~b)〉R3 , i.e. the Riemannian matrix
at coordinates (u, v) has E = |σu|2 = σu · σu, F = σu · σv, G = |σv|2. We will
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refer to this as the first fundamental form; we may also see this as a family of
inner products on the tangent spaces to points of S.

The inner product for the σ̃ chart 〈~a,~b〉̃P for ~a,~b ∈ R2 is 〈dσ̃P (~a), dσ̃P (~b)〉R3

(where 〈, 〉R3 denotes the standard inner product on R3) which is 〈dφP (~a), dφP (~b)〉φ(P );
similarly by the chain rule dσ̃P = dσφ(P ) ◦dσ(P ) and by definition 〈~a′,~b′〉φ(P ) =
〈dσφ(P )(~a′), dσφ(P )(~b′)〉R3 , so with regard to the induced Riemannian metrics on
V, Ṽ , the diffeomorphism φ is an isometry.

If we have Riemannian metrics on V, Ṽ by Edu2 + 2Fdudv + Gdv2, Ẽdũ2 +

2F̃ dũṽ+G̃dṽ2 then this is the statement that ~at =
(

Ẽ F̃

F̃ G̃

)

P

~b = ~atJ t

(
E F
F G

)

φ(P )

J~b∀~a,~b ∈

R2 where J = J(φ) the Jacobian matrix, i.e.
(

Ẽ F̃

F̃ G̃

)
= J t

(
E ◦ φ F ◦ φ
F ◦ φ G ◦ φ

)
J .

Length and energy

For Γ : [a, b] → S a smooth curve we define length(Γ) =
∫ b

a
‖Γ′(t)‖dt, energy(Γ) =∫ b

a
‖Γ′(t)‖2dt (many books insert a factor of 1

2 ; cf kinetic energy. This is
sometimes called action). If Im(Γ) ⊂ U with θ : U → V a chart given by
θ = σ−1 set γ = θ ◦ Γ : [a, b] → V , a smooth curve. Then by the chain rule
and the fact that Γ = σ ◦ γ, 〈Γ′(t), Γ′(t)〉R3 = 〈γ′(t), γ′(t)〉P so length(Γ) =
length(γ) =

∫ b

a

√
E(γ(t))γ̇2

1 + 2F (γ(t))γ̇1γ̇2 + G(γ(t))γ̇2
2dt and similarly for en-

ergy. We could define the length of curves in this way, but doing so is senseless
since we have a perfectly good definition of length in R3; however:

Area

With the same notation, for a “nice” region T ⊂ U we define its area to be (when
it exists)

∫
θ(T )

√
EG− F 2dudv; since ‖σu×σv‖2 + (σu ·σv)2 = ‖σu‖2‖σv‖2 this

is
∫

θ(T )
‖σu × σv‖dudv; this definition is far more important than for length

since we do not have a clear notion of area “upstairs” on the surface in R3. This
means we need to proove:

Proposition

This definition is independent of the choice of parameterization σ : V → U . A
corollary of this is that we can define the area of regions not contained in the
image of a single chart (since area is additive, and the area of a region “upstairs”
is now well defined, we can just subdivide the region “upstairs”), though this is
generally not very useful since we usually have a chart covering almost all of the
surface. Given charts θ̃, θ for U and φ the transition function σ−1 ◦ σ̃ : Ṽ → V ,

for P ∈ Ṽ

(
Ẽ F̃

F̃ G̃

)

P

= J t

(
E ◦ φ F ◦ φ
F ◦ φ G ◦ φ

)

φ(P )

J (*); by the change of

variable formula for integrals on R2 for any continuous H on θ(T ) = φ(θ̃(T )),∫
θ(T )

Hdudv =
∫

φ−1(θ(T ))=θ̃(T )
H ◦ φ|J(φ)|dũdṽ; setting H =

√
EG− F 2 on V ,

H̃ =
√

ẼG̃− F̃ 2 on Ṽ and taking determinants in (*) H̃ = (H ◦ φ)|detJ(φ)|
and

∫
θ(T )

Hdudv =
∫

θ̃(T )
H̃dũdṽ as required.

17



Suppose V ⊂ R2 is open with a Riemannian metric, and γ = (γ1, γ2) :
[a, b] → V a smooth curve. Then:

Definition 6.1

γ is a geodesic curve if d
dt (Eγ̇1 + F γ̇2) = 1

2 (Euγ̇2
1 + 2Fuγ̇1γ̇2 + Guγ̇2

2), d
dt (F γ̇1 +

Gγ̇2) = 1
2 (Evγ̇2

1 +2Fvγ̇1γ̇2 +Gvγ̇2
2)∀t; we have E = E(γ1(t), γ2(t)) etc. are func-

tions of t; this may seem a rather abstract definition but we have the following:
Suppose γ(a) = p, γ(b) = q. Then a proper variation of γ is a smooth

map h : [a, b]×)(−ε, ε) ⊂ R2 → V such that h(t, 0) = γ(t)∀t ∈ [a, b], h(a, τ) =
p, h(b, τ) = q∀τ ∈ (−ε, ε). For each τ ∈ (−ε, ε) we have a smooth curve γτ :
[a, b] → V by γτ (t) = h(t, τ).

Proposition 6.2

The curve γ satisfies the geodesic equations if and only if it represents a sta-
tionary point of the energy for all proper variations; let energy(γ) =

∫ b

a
(Eu̇2 +

2Fu̇v̇ + Gv̇2)dt =
∫ b

a
I(t, u, v, u̇, v̇)dt, then by the Euler-Lagrange equations γ

is a stationary point for energy if and only if d
dt (

∂I
∂u̇ = ∂i

∂u , d
dt (

∂I
∂v̇ = ∂i

∂v . Since
∂I
∂u̇ = 2(Eu̇+F v̇), ∂I

∂u = Euu̇2 +2Fuu̇v̇ +Guv̇2 and similarly for v, these are just
the geodesic equations.

For S ⊂ R3 an embedded surface and σ : V → U ⊂ S, θ = σ−1 : U → V , if
γ : [a, b] → U then γ = θ◦Γ is a smooth curve on V ; call Γ a geodesic if and only
if γ is a geodesic; this is the case if and only if Γ represents a stationary point
for the energy

∫ b

a
‖γ′(t)‖2dt, so in particular this definition does not depend

on the choice of chart; this also means we can define when an arbitrary curve
Γ : [a, b] → S is a geodesic.

Corollary 6.3

If Γ on S minimizes the energy for curves joining P = Γ(a) to Q = Γ(b)
then it is a geodesic in the above sense: for any a < a1 < b1 < b the curve
Γ1 = Γ |[a1,b1] minimizes energy for curves joining Γ(a1) to Γ(b1). If a1, b1 are
chosen so that Im(Γ1) ⊂ some image of a chart U then Γ1 is a geodesic since it
represents a stationary point for energy; varying a1, b1 along the curve we have
the result. In fact, if Γ locally minimises the energy (i.e. for any t0 ∈ (a, b),
∃ε > 0 : Γ |[t0−ε,t0+ε] minimises energy for curves joining its endpoints, then Γ
is a geodesic. Without proof, the conversely is also true: al geodesics minimise
energy locally; see later for the relation between energy and length (and recall
that the two geodesics joining two non-antipodal points on a sphere are the
short and long great circle arcs between them).

Proposition 6.5

For a smooth curve Γ on an embedded surface S, the geodesic equations are
equivalent to d2Γ

dt2 being always normal to S; wlog take Γ : [a, b] → U ⊂ S, σ :
V → U a parameterization, then Γ = σ ◦ γ with γ(t) = γ1(t)e1 + γ2(t)e2, so by
the chain rule Γ̇(t) = (dσ)γ(t)γ̇(t) = (dσ)γ(t)(γ̇1(t)e1 + γ̇2(t)e2 = γ̇1(t)σu + γ̇2σv,
so d2Γ

dt2 ⊥ 〈σu, σv〉 ⊂ R2 ⇔ d
dt (γ̇1σu+γ̇2σv)·σu = d

dt (γ̇1σu+γ̇2σv)·σv = 0, and we
can show that this is equivalent to the geodesic equations. So if Γ is a geodesic
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on S then d
dt (Γ̇ · Γ̇) = 2Γ̇ · Γ̈ = 0 ∴ ‖dΓ

dt ‖2 is constant. This is the difference
between defining geodesics in terms of energy or length; if we were to define our
geodesics just in terms of length the parameterization would be unrestricted,
wheras this condition tells us something about the parameterization.

[lecture missed at this point]
For a surface of revolution S paramaterized by σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

e.g. the embedded torus f(u) = a + b cos u, g(u) = b sin u on V given by
α < u < α+2π, β < v < β +2π with 0 < b < a, σu = (f ′ cos v, f ′ sin v, g′), σv =
(−f sin v, f cos v, 0); the first fundamental form with regard to this parameter-
ization is du2 + f2dv2 and the geodesic equations for γ(t) = (u(t), v(t)) are
ü = f(u) df

du v̇2, d
dt (f(u)2v̇) = 0. We assume without loss of generality that

‖γ̇‖ = 1 i.e. u̇2 + f(u)2v̇2 = 1 [lulz, the lecturing was at ludicrous speed by this
point; apologies for any mistakes].

It is hard to find results about general geodesics, even in very simple cases
like this, for example are the geodesics dense on the (embedded) torus (the
answer is yes, but the proof of this is nonobvious).

Proposition 6.15

i) Every unit speed meridian (curve along an “unrevolved” shape) is a geodesic;
we have v constant so the second equation is satisfied, and by the unit speed
condition u̇ is constant so the first equation is also satisfied.

ii) a (unit speed) parallel (line which is the revolution of a dot) u = u0 is
a geodesic if and only if df

du |u0= 0 i.e. u0 is a stationary point of f : if u = u0

for a unit speed parallel then f(u)2v̇2 = 1 ⇒ v̇ = ±1
f(u0)

, a nonzero constant; the

second equation is satisfied and the first is satisfied if and only if df
du |u0= 0.

Curvature

Suppose η : [0, 1] → R2 is a smooth curve with unit speed η′ · η′ = 1 (note
this implies η′ · η′′ = 0; recall that the curvature κ at a point η(s) is defined by
η′′(s) = κ~n where ~n is a unit normal and κ ≥ 0 (alternatively, we could define
that ~n is such that (η′, η′′, ~n) is always a right- or left-handed tuple and then κ
may be negative.

If we reparamaterize by a smooth function f : [c, d] → [0, l] with f ′(t) > 0∀t
and set γ(t) = η(f(t)) then γ̇(t) = df

dtη
′(f(t)) (and hence ‖γ̇‖2 =

(
df
dt

)2

);
moreover η′′(f(t)) = κ~n where κ is the curvature at γ(t). γ(t + δt) − γ(t) =
df
dtη

′(f(t))δt + 1
2

(
(d2f

dt2 )η′(f(t)) + (df
dt )

2η′′(f(t))
)

(δt)2 + . . . . But η′ · η′ = 1 ⇒
η′ · η)′′ = 0 ⇒ η′ · ~n = 0 ∴ (γ(t + δt) − γ(t)) · ~n = 1

2κ‖γ̇‖2(δt)2. Observe
‖γ(t + δt) − γ(t)‖2 = ‖γ̇‖2(δt)2 + . . . so 1

2κ is just the ratio of the quadratic
terms of these two expansions, i.e. limδt→0

(γ(t+δt)−γ(t))·~n
‖γ(t+δt)−γ(t)‖2 .

Given a parameterization σ : V → U ⊂ S for V ⊂ R2, Taylor’s Theorem
implies σ(u + δu, v + δv) − σ(u, v) = σuδu + σvδv + 1

2 (σuu(δu)2 + 2σuvδuδv +
σvv(δv)2)+ . . . , so “deviation of σ from the tangent plane” is (σ(u+δu, v+δv)−
σ(u, v)) · ~N = 1

2 (L(δu)2 +2Mδuδv+N(δv)2)+ . . . where L = σuu · ~N, M = σuv ·
~N, N = σvv · ~N ; the second fundamental form on V is Ldu2 +2Mdudv +Ndv2.
where L,M, N are C∞ functions on V defined by this.
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Now ‖σ(u + δu, v + δv) − σ(u, v)‖2 = E(δu)2 + 2Fδuδv + g(δv)2 where
E = ‖σu‖2 and similarly, i.e. Edu2 + Fdudv + Gdv2 is the first fundamental
form.

Definition

The Gaussian Curvature of S at P is K := LN−M2

EG−F 2 (note that we have not
yet prooved this is independent of parameterization); K > 0 means the second
fundamental form is positive or negative definite, K < 0 means it is indefinite
and K = 0 means it is semidefinite but not definite; note this does not imply
the surface is locally flat (however, if the second fundamental form is 0 this does
imply the surface is locally flat).

Proposition 7.2

If ~N denotes the unit normal of the surface σ then at a given point, ~Nu =

aσu + bσv, ~Nv = cσu + dσv (†) where
(

L M
M N

)
=

(
a b
c d

) (
E F
F G

)
;

in particular K = ad − bc: since ~N · ~N = 1 we have ~Nu · ~N = 0 = ~Nv · ~N ;
similarly since ~N · σu = 0 we have ~Nu · σu + ~N · σuu = 0 ⇒ ~Nu · σu = −L;
similarly ~Nu · σv = −M and so forth. Dotting (†) with σu, σv we have −L =
aE + bF,−M = cE + dF,−M = aF + bG,−N = cF + dG and we have the
matrix equation, and taking determinants we have the particular result.

Corollary 7.3

K is independent of paramaterization; by 7.2, Nu × Nv = Kσu × σv; if we
reparamaterize U by σ̃ : Ṽ → U with φ : Ṽ → V a diffeomorphism, recall
σ̃ũ × σ̃ṽ = det(J)σu × σv where J = J(φ). Ñ = ±N depending on the sign
of det J . By the chain rule, Nũ = ∂u

∂ũNu + ∂v
∂ũNv and similarly for Nṽ so

Nũ ×Nṽ = det(J)Nu ×Nv so det(J)Kσu × σk = det(J)Nu ×Nv = Nũ ×Nṽ =
K̃σ̃ũ × σ̃ṽ = K̃ det(J)σu × σv and K = K̃.

Example

A surface of revolution obtained from a unit speed curve η(u) = (f(u), 0, g(u))
has K = −f ′′

f ; see question 9 on the third example sheet for this course.

Theorem 7.4

Suppose S is an embedded surface with coordinate patch σ : V → U on which
the first fundamental form takes the shape du2 +G(u, v)dv2, then the Gaussian
curvature K is −(

√
G)uu√
G

; this result should be proven on the third example sheet
for this course. Also see the later coverage of geodesic polars.

For example, a surface of revolution created by revolving (f(u), 0, g(u))
about the z axis has σ(u, v) = (f(u) cos v, f(u) sin v, g(u)); the first fundamental
form is du2 + f2(u)dv2, so K = −f ′′

f .
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Corollary

For P ∈ S ⊂ R3 with S an embedded surface, we have local geodesic polar
coordinates (ρ, θ) at P and hence also G(ρ, θ) which depend only on the metric
(which was before shown to be dρ2 +G(ρ, θ)dθ2), so the curvature K = −(

√
G)ρρ√
G

(The point P which corresponds to ρ = 0 is not actually in the coordinate patch,
but by continuity the result holds), so the curvature at P depends only on the
metric and we have Gauss’ Theorema Egregium: the curvature of an embedded
surface depends only on the first fundamental form, and not on the embedding.

The proof is an example of Gauss’ “Moving Frame” technique: we set ~e =
σu, ~f = σv√

G
and together with ~N these form an orthonormal triad. Since ~e·~e = 1

we have ~e · ~eu = 0 and similar results, so we write [sometimes ommiting vector
arrows from now on] eu = αf + λ1

~N, ev = βf + µ1
~N, fu = −α′e + λ2

~N, fv =
−β′e + µ2

~N (?). Since e · f = 0 [and of course e · ~N = 0, and similarly] we have
eu · f + e · fu = 0, ev · f + e · fv = 0 so in (?) we have α′ = α, β′ = β.

α = eu · f = σuu · σv√
G

= (σu·σv)u√
G

− 1
2

(σu·σu)v√
G

= 0 − 0 = 0, β = ev · f =

σuv · σv√
G

= 1
2

Gu√
G

(since G = σv · σv) = (
√

G)u.

Apply (?) again: λ1µ2 − λ2µ1 = eu · fv − fu · ev = ∂
∂u (e · fv)− ∂

∂v (e · fu) =
−βu−0 = −(

√
G)uu. Now ~Nu× ~Nv = (aσu +bσv)×(cσu +dσv) = (ad−bc)σu×

σv = K(σu × σv) where ~N = σu×σv√
G

= e × f . Now ~Nu × ~Nv · ~N = K
√

G but

also = ( ~Nu × ~Nv) · (e × f) = (Nu · e)(Nv · f) − (Nu · f)(Nv · e) = (N · eu)(N ·
fv) − (N · fu)(N · ev) since N · e = 0 ⇒ Nu · e + N · eu = 0 and similarly. So
K
√

G = λ1µ2 − λ2µ1 = (−√G)uu ∴ K = −(
√

G)uu√
G

as required.

Definition

An abstract smooth surface S is a metric space (or equivalently a topological
space, since we have a natural metric by the infinum of lengths of curves) with
homeomorphisms θi : Ui → Vi from open Ui ⊂ S to open Vi ⊂ R2 such that
S =

⋃
i Ui and ∀i, j, φij := θi◦θ−1

j : θj(Ui∩Uj) → θi(Ui∩Uj) is a diffeomorphism.
We define charts and atlases as before. We say S is closed if it is compact.

For an abstract surface S equipped with an atlas, a Riemannian metric on
S is given by Riemannian metrics on the images Vi of the charts θi : Ui → Vi

subject to the compatibility condition that ∀i, j, 〈dφP (~a), dφP (~b)〉φ(P ) under the
metric on Vi = 〈~a,~b〉P under the metric on Vj∀P ∈ θj(Ui ∩Uj)∀~a,~b ∈ R2 where
φ = φij i.e. the φij are isometries. For Γ : [0, 1] → S a smooth curve we locally
compose Γ with charts θ : U → V to give smooth curves γ = θ ◦ Γ; we define
‖Γ′(t)‖ = 〈γ′(t), γ′(t)〉

1
2
γ(t) =

√
Eγ̇2

1 + F γ̇1γ̇2 + Gγ̇2
2 and this is independent of

the choice of chart (for example for the locally Euclidean torus T our charts are
simply translation onto squares in R2, clearly isometries of the locally Euclidean
metric); then we define length(Γ) =

∫ 1

0
‖Γ′(t)‖dt; the reader should compare and

contrast embedded and abstract smooth surfaces.

Examples

The standard geometries: R2 with metric dx2 + dy2, S2 ⊂ R3 and indeed any
embedded surfaces, and the disc D ⊂ R2 with metric 4(dx2+dy2)

(1−x2−y2)2 or upper half-
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plane H ⊂ R2 with metric dx2+dy2

y2 . Based on these examples we might ask why
we make this definition when we could simply work with Riemannian metrics
on open subsets of R2 and embedded surfaces, but we do need it because the
locally Euclidean torus as introduced earlier is compact so not an open subset
of R2, but cannot be realised as an embedded surface in R3 [as will be shown
either later, or on the third example sheet for this course].

A map f : X → Y between abstract spaces is smooth if for any charts
θ : U → V on X and θ? : U? → V ? on V with U ∩ f−1(U?)) 6= ∅, the
composite map f : θ(U ∩ f−1(U?)) → V ? = θ? ◦ f ◦ θ−1 is smooth; f is called a
diffeomorphism if it is smooth with smooth inverse.

f is called a local isometry if for all pairs of charts as above the map f is an
isometry, i.e. ∀P ∈ θ(U ∩ f−1(U?))∀~a,~b ∈ R2, 〈~a,~b〉P = 〈d~fP (~a), d ~fP (~b)〉?f(P );
the first inner product is the local inner product for the θ chart, the lecond that
for the θ? chart.

The metric determines local geodesic polar coordinates (ρ, θ) at a given point
P , with regard to which the metric takes the form dρ2 + G(ρ, θ)dθ2 (with the
metric at P itself found by the limit of this as the point in question tends to P );
we can then define curvature as per (7.4), i.e. K = −(

√
G)ρρ√
G

; this is equivalent
to the usual definition of curvature in the embedded case. We take this to be
the definition of curvature in the abstract case.

Examples

For these three examples we have a transitive isometry group, so we only need
to find our results for one point.
R2 has ρ = r and the metric is dρ2 + ρ2dθ2;

√
G = ρ and K = 0.

S2 has metric dρ2 + sin2 ρdθ2;
√

G = sin ρ ⇒ (
√

G)ρρ = −√G ⇒ K = +1.
The disc model of the hyperbolic plane has metric ( 2

1−r2 )2(dr2 + r2dθ2).
Take geodesic polars (ρ, θ) where ρ = 2 tanh−1 r, then dρ2 = ( 2

1−r2 )2dr2 but

r = tanh ρ
2 ⇒ 4r2

(1−r2)2 = sinh2 ρ so the metric is dρ2 + sinh2 ρdθ2 ∴
√

G =

sinh ρ ⇒ (
√

G)ρρ =
√

G ⇒ K = −1.

Lemma 7.8

Suppose S is a surface with Riemannian metric g with curvature K, then under
the scaled metric c2g on S with c > 0 the curvature becomes K

c2 , e.g. the sphere
of radius c > 0 has constant curvature 1

c2 .

Theorem 7.9

If S is equipped with a Riemannian metric g with constant curvature K, then
after rescaling the metric S is locally isometric to an open subset of S2,R2 or
the hyperbolic plane, according as K is > 0, = 0, < 0 respectively.

Theorem 7.10 (Gauss-Bonnet)

If T = ABC is a geodesic triangle on an abstract smooth surface S equipped
with a Riemannian metric with angles α, β, γ then

∫
T

KdA = (α+β+γ)−π. If S
is a closed (i.e. compact) surface then

∫
S

KdA = 2πe(s) where e(s) is the Euler
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number [for triangulizations of this surface]. By the same argument as in 3.6, the
first part of this theorem implies the second:

∫
S

KdA =
∑

triangles Ti

∫
Ti

KdA =∑
Ti

(αi + βi + γi − π) =
∑

Ti
(αi − βi − γi)− πF but

∑
Ti

(αi + βi + γi) = 2πV

and 3F = 2E so
∫

S
KdA = 2πe(S). We shall not actually proove the result in

this course, but as an “explanation of why it’s true”, consider decomposing a
triangle into smaller triangles (cf the proof of Cauchy’s Theorem in the Complex
Aanlysis course)); for constant curvature we have already proven the result, so
we take the limit as the triangles become small enough that the curvature is
approximately constant on them (if we want an actual rigoorus proof, this is
more easily obtained by applying calculus to the definition of curvature - cf the
proof of Gauss-Bonnet in the hyperbolic case). Alternatively we can similarly
consider small geodesic circles.

Assuming (7.10) we can define the Gaussian curvature K at a point P on
a surface to be limarea 4→0

P
angles of 4
area 4 ; this is possibly the best way to show

that K is well defined in the general case.
This is the end of this course; it leads particularly to the part II courses

Geometry of Group Actions, Riemannian Surfaces, Differential Geometry, Al-
gebraic Topology and General Relativity.
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