
Galois Theory

May 14, 2008

There are three flavours to this course; on the surface it appears to be a
historical narrative, but as we look deeper we will see it is a survey course
masquerading as a historical narrative, and finally it emerges that it is in fact
a historical narrative masquerading as a survey course masquerading as a
historical narrative. The course in some sense starts with the fundamental
question: what are numbers? What do concepts like

√
2,

3
√

2 and π mean, and
what are the differences between the types of things these are; can we square
the circle? Many of these questions were asked by the Greeks but could not be
solved until much later.

The first part of the course is in many ways like high school algebra, but
done properly and tying up all the loose ends. In the second part, we look at the
answers to this question, and the way it leads to a rephrasing of the question
itself; then, in the final part of the course we return to a narrative approach,
ending in the contemporary.

Notation/Revision

Rings are taken to be commutative with multiplicative identity, e.g. Z; a field is
a ring such that ∀r , 0,∃r−1 e.g. Q,R, Fp := Z

pZ . For a ring R we denote the units

in R by R⋆ e.g. Z⋆ = {±1}; R is a field if and only if R⋆ = R \ {0}. R[x] is the poly-
nomial ring in the variable x, i.e. {

∑

l≥0 rlx
l : only finitely many rl are nonzero}

considered as a ring. (We know this exists, since formally (in the same way we
can construct the naturals from power sets of the empty set) R[x] is the set of
functions N → R with finite support, with the evident ring structure; in this
formalism e.g. x is the function 1 7→ 1, n 7→ 0∀n , 1, but we will not use this
definition in practice). When we iterate this we write R[x1, . . . , xn] rather than
R[x1] . . . [xn]. If f =

∑

rix
i ∈ R[x], a ∈ R then we define f (a) =

∑

ria
i, “evaluate

f at a”; this gives a map R[x] → the set of functions R → R. Beware; this map
is neither injective nor surjective in general, e.g. ex < R[x] for the surjectivity,
and for the injectivity consider Zp[x]; there are only pp functions Zp → Zp but
there are infinitely many polynomials in Zp[x]; more explicitly xp and x define
the same function, by Fermat’s little theorem.

As an exercise, the reader should show that if R has no zero divisors (i.e. is
an integral domain) then R[x] is an ID and R[x]⋆ = R⋆.

If k is a field (k always denotes a field from now on) then k[x] is an ED: for
a, b ∈ k[x], b , 0 we can write a = qb + r for unique q, r with deg r < deg b; this
has the corollaries:
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i) k[x] is a PID; every ideal I ≤ k[x] is of the form ( f ) = f k[x] for some f ∈ I;
indeed f is an element of minimal degree in I.

ii) k[x] is a UFD

iii) For f ∈ k[x], f is irreducible iff ( f ) is prime iff ( f ) is maximal iff k[x]
( f ) is a

field; this statement allows us to construct lots of fields, e.g. R[x]
x2+1

.
iv) For a, b ∈ k[x]\ {0}, (a)+ (b) is an ideal, so a principal ideal, i.e. of the form

(g), and this g = gcd(a, b).
v) If f ∈ k[x] \ {0} then f has at most deg( f ) roots in k (recall that α is a root

of f means f (α) = 0)
As an exercise the reader may proove all these; as an example, the proof of

v) is done by induction on deg f ; if it = 0 f is constant and we are done; if f
has no roots we are done, otherwise let α be a root, then f (x) = (x− α)g(x) with
deg g = deg f − 1, etc.

We define k(x) is the ring of rational functions on x, i.e. the fraction field of

k[x], the set of equivalence classes
f

g =
r
s if f s = rg over { f

g : g , 0}. Note that

k[x1, . . . , xn] is a UFD, but not a PID if n > 1.
The reader should also familiarise themselves with Eisenstein’s criterion, as

shown on the printed sheet.

1 Algebraic and transcendental field extensions

Let L be a field and K ⊂ L a subfield, i.e. a subring which is also a field. Unlike
groups, where we would normally start from a group G and then study its
subgroups H ⊂ G, when considering fields it is more profitable to start from K
and then study its extensions L (we define L is an extension of K if K is a subfield
of L). We write L/K for field extensions, e.g. C/R,R/Q,C/Q,K(x)/K, L/K where

K = C(z), L =
C(z)[y]

y2=z3−z
. We will study lots of cases of L = K[z]

f (z) where f is irreducible

as such fields appear frequently in geometry; in fact this is the function field of
an elliptic curve.

We observe that if L/K is a field extension, L is a vector space over K; using
this vector space structure means we can add elements of L and multiply them
by elements of K; we’re “forgetting” that we can also multiply elements of L
and every nonzero element of L is invertible. Thus, to get a mental idea of what
a field extension is, we can consider it to be a vector space with these two extra
properties.

We define [L : K], the degree of the field extension, as dimK L; if this is
finite we say L/K is a finite extension, otherwise it is an infinite extension; e.g.
[C : R] = 2, [R : Q] = ∞ by countability; [C : Q] = ∞, [K(x) : K] = ∞, and
in our particular example above [L : K] = 2 by the basis 1, y; more generally
[L : K] = deg f as 1, x, . . . , xd−1 is a basis for L.

For K a field, we always have a smallest subfield that contains 1: We always
have the ring homomorphism Z → K defined by 1 7→ 1 (which really does
define it completely), and then there are two possibilities; either this is injective
in which case Q ⊂ K and we define char K = 0, or else 1 + · · · + 1 = 0 for some
prime number p of 1s, in which case Fp ⊂ K and we define char K = p. Then this

smallest subfield is K
Q

or K
Fp

respectively. For example, Fp(x) has characteristic p.
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We define that a field F is a finite field if #F, the number of elements of F, is
< ∞.

Lemma: let F be a finite field, then char F = p for some prime p and #F = pn

for some n ≥ 1, since #F < ∞ ⇒ the map Z → F is not injective so we must
have Fp ≤ F for some prime p; then F is a vector space over Fp; this is necessarily
finite dimensional, so F � Fn

p as vector spaces, so #F = pn.
We shall soon see that there exists a unique finite field of order pn for every

n, but it is not unique up to unique isomorphism (the reader who understands
this phrase already has nothing to learn from this course; it shall be explained
in the second half of this course).

For L/K, α ∈ L define K[α] to be the smallest subring of L containing α and
K (this notation appears as though it might be confusing, but isn’t; see later);
similarly K(α) is the smallest such field, also called the field obtained from K by

adjoining α. So K[α] = {
∑n

0 r jα
j : r j ∈ K, some N},K(α) = { f

g : f , g ∈ K[α], g , 0}.
For example, Q[i] ⊂ C = {r0 + r1i + r2i2 + . . . } = {r0 + r1i : r0, r1 ∈ Q} and this is
also Q(i).

So for x indeterminate (indeterminates will always be written x in this
course) we have a ring homomorphism Φ : K[x] → L given by x 7→ a and then
K[α] is just the image of this Φ (so the above notational conflict isn’t actually a
problem). We define that α is transcendental over K if this homomorphism is
injective and algebraic over K otherwise, e.g. i is algebraic overQ by the above.

If Φ is not injective then kerΦ is an ideal in a PID so = ( f ) for some f ;
we define the minimal polynomial of α/K (/K should be read “over K) is a
polynomial f of minimal degree for which f (α) = 0; we can wlog take f monic.
We define degK(α) to be the degree of this f , e.g. degQ i = 2 since its minimal

polynomial is x2 + 1. Notice that the constant in f is never zero because if it
were we could divide f by x to reduce its degree; in fact we have slightly more:

Lemma: f is irreducible, as were f = rs with deg r < deg f ,deg s < deg f
then we have f (α) = r(α)s(α) = 0 so one of r(α), s(α) is 0 contradicting minimality
of f .

So if α is algebraic, K[α] = K[x]
( f ) with f irreducible, so K[α] is a field and

therefore = K(α); note this means K(α) is not the image of a homomorphism
K(x) → K(α) if α is algebraic, since if φ : M → L is a homomorphism of fields
then it is necessarily injective.

For a direct proof that K[α] is a field rather than appealing to the GRM course,
let g ∈ K[α]\{0} and consider multiplication by g as a function Mg : K[α]→ K[α]
γ 7→ γg; Mg is injective as K[α] ⊂ L, a field, so there are no zero divisors. Mg is a
K-linear endomorphism of a finite dimensional vector space (i.e. a vector space
map - the K-linear just means the vector space is over K), so since dimK K[α] < ∞
it is also surjective and ∃γ ∈ K[α] such that Mg(γ) = 1 i.e. gγ = 1.

We have the obvious proposition that α is transcendental over K ⇔ Φ :
K[x]→ K[α] is an isomorphism, and hence extends to an isomorphism K(x)→
K(α); in particular all transcendental field extensions K(α) are isomorphic since
they are isomorphic to K(x), so e.g. Q(π) � Q(e); we shall not study them much
for this reason.

Proposition: For L/K a field extension TFAE:
i) α algebraic /K ii) [K(α) : K] < ∞ iii) dimK K[α] < ∞ iv) K[α] = K(α) v) K[α]

is a field. These are mostly obvious other than that prooved above; for iv)⇒i),
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if K(α) = K[α] then α−1 exists, call it
∑N

0 riα
i so

∑N
0 riα

i+1 − 1 = 0, an algebraic
relation satisfied by α, so α is algebraic.

Warning: the notion of algebraic or transcendental depends on K e.g. 2πi ∈
C is algebraic overRwith minimal polynomial x2+4π2 but transcendental over
Q (which is a serious theorem that we may proove at the end of this course;
if we do not do so then the dedicated reader is recommended to look up a
proof of the result). The minimal polynomial also depends on the fiesd, e.g. for

L = C, α =
√

i the minimal polynomial is x4 + 1 overQ but x2 − i overQ(i); note

that the dimension of Q[
√

i] over Q is 4 while its dimension over Q[i] is 2 but
the dimension of Q[i] over Q is also 2 and 2 × 2 = 4; this leads us to:

1.1 Theorem: “Tower Law”

Let M/L/K field extensions: then M/K is finite iff M/L and L/K are finite, and
in that case [M : K] = [M : L][L : K]; this follows from the more general
proposition that if V is a vector space over L and L/K a finite field extension
then V is finite dimensional over L iff it is finite dimensional over K and in this
case dimK V = dimL V[L : K]; for the forward implication if xi is a basis of V
over L and l j a basis of L over K then the {xil j} form a basis of V as a K-vector
space, and if V is finite dimensional over K then it’s certainly finite dimensional
over L.

For example let L = Q(
3
√

2,
4
√

5) ⊃ Q; we have from the tower law Q ⊂
Q(

3
√

2) ⊂ L than 3 | [L : Q] (as the minimal polynomial of
3
√

2 over Q is x3 − 2)

and similarly 4 | [L : Q] so 12 | [L : Q], but x4 − 5 is a polynomial satisfied by
4
√

5

overQ(
3
√

2), so [L : Q(
3
√

2)] ≤ 4 and [L : Q] ≤ 12 ∴= 12; therefore [L : Q(
3
√

2)] = 4

so x4 − 5 is irreducible over Q(
3
√

2) (which is unsurprising).

For example, let ω = e
2πi
p where p is an odd prime, α = ω + ω−1; what is

deg
Q
α? We have ωp = 1 so ω is a root of xp−1

x−1 = 1 + x + · · · + xp−1 = f (x); this is
irreducible overQ by eisenstein’s criterion on f (x+ 1); the reader is once again
advised to familiarise themselves with this.

So [Q(ω) : Q] = p−1; now α ∈ Q(ω) so by the tower law onQ ⊂ Q(α) ⊂ Q(ω),
deg

Q
(α) | p − 1, but ω2 − αω + 1 = 0 so ω is a root of x2 − αx + 1 over Q(α);

Q(α) ⊂ R but Q(ω) not so [Q(ω) : Q(α)] > 1 so it must = 2 and so by the tower

law ]Q(α) : Q] =
p−1

2 .

1.2 Corollaries of the tower law

If L/K is a finite extension and α ∈ L then α is algebraic over K and deg(α) | [L :
K], since K ⊂ K(α) ⊂ L; therefore if [L : K] = p prime and α ∈ L \K then K(α) = L
as [K(α) : L] | p and , 1.
α1, . . . , αn are algebraic over K iff [K(α1, . . . , αn) : K] < ∞: for the reverse

implication if K(α1, . . . , αn) is finite over K then K(αi is a subspace therof so also
finite over K, for the forward implication we induct; αi+1 is algebraic over K so
algebraic over K(α1, . . . , αi) (since it satisfies the same polynomial it does over
K), so by tower law on K(α1, . . . , αi+1)/K(α1, . . . , αi)/K, K(α1, . . . , αi) is finite.

As a particular case of this, if α, β are algebraic then so are α + β, αβ, αβ (for

β , 0); we can find the polynomials they satisfy explicitly by, if we e.g. want
to find γ = α + β, considering 1, γ, γ2 etc, using our algebraic relations for α, β
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to simplify these, and looking for a linear relation. (Excercise: if a, b, ab are not

squares then [K(
√

a +
√

b) : K] = 4.
Corollary: if L/K is a field extension then the elements of L which are

algebraic over K form a subfield.
We define an extension L/K is algebraic if every α ∈ L is algebraic over

K; for example, a finite extension L/K, K(α) for α algebraic, or Q := {α ∈ C :
α algebraic /Q}; this is a field and by definition each of its elements is algebraic.

Note that dimQ = ∞ as e.g.
n
√

3 ∈ Q∀n and [Q(
n
√

3) : Q] = n so [Q : Q] ≥ n∀n.
As an aside, an extension L/K is algebraic iff L is the (possibly infinite) union

of its subfields which are finite over K.
Lemma: for M/L/K field extensions, M/K is algebraic iff M/L and L/K are;

for the forward implication if M/K algebraic then α ∈ M is algebraic over K so
certainly algebraic over L, and L ⊂M must be algebraic over K; for the reverse
if α ∈M algebraic over L then r0 + r1α+ · · ·+ rdα

d = 0 for some r0, . . . , rd ∈ L; set
L0 = K(r0, . . . , rd); then each ri is algebraic over K (as L is algebraic over K) so L0

is finite over K; α is algebraic over L0 so [L0(α) : L0] < ∞ and by the tower law
[L0(α) : K] < ∞ so α is algebraic over K.

1.5: Interlude: Constructions with Ruler and Compass

This section is non-examinable. The probably-innacurate history is that a few
thousand years ago the Greeks were trying to understand the real numbers.

They had discovered that
√

2 is irrational, but now what is
3
√

2? Clearly it is

irrational, but is it “worse” than
√

2? In actuality the Greeks had discovered
almost all of the content of this section - they knew how to approximate cubics
arbitrarily closely (at least as applied to geometric problems), or solve the three
classical problems we will mention here with the use of conic sections and other
curves - they just didn’t have the “right formalism” to express their solutions,
i.e. algebra.

We will show that certain geometrical constructions are impossible with
“straightedge and compass”. More formally, we call some points “constructible”;
the set of constructible points is defined inductively as follows:

We are initially given two constructible points
The line through two constructible points is called a constructible line
The intersection point of two constructible lines [if it exists] is constructible
The circle with center a constructible point passing through another con-

structible point is called a constructible circle [private definition].
If they/it exists, the intersection points of a constrictible line and a con-

structible circle, or of two constructible circles, is constructible.
There is something of a “game” of discovering which points are con-

structible, and it is important to appreciate how much of an achievement many
of these results were for the Greeks, who hadn’t grown p with algebra the way
we do. However, we will now solve this game.

First, some examples of what we can do:
1) We can draw the line through a constructed point P perpendicular to the

constructed line QR: for P on QR, firstly we draw the circle (P,Q) (i.e. the circle
with centre P through Q) and let Q′ be its intersection with QR (not at Q); then
we draw the circle (Q,Q′) and the circle (Q′,Q). The line through the two points
where these two circles intersect is then the required line. For P not on QR, we
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draw the circle (P,Q), and call the intersection of this with QR Q′, then proceed
as before.

2) We can draw the line parellel to a line l passing through a point P; we
draw the line k through P perpendicular to l by 1), then the line through P
perpendicular to k, again by 1).

3) We can mark off a length defined by two constructible points Q,R on
another line l, starting from a point P on l: construct the line parallel to l
through R, draw the circle (R,Q) to obtain the point Q′ in the “right” direction,
[then draw the line parallel through RP through Q′ and its intersection with l
is the required point].

These examples imply we can construct cartesian coordinates in the plane -
we make the initial points be (0, 0) and (0,1).

Definition: λ ∈ R is constructible if |λ| is the distance between two con-
structible points.

Lemma: p=(a,b) is constructible ⇔ (a, b) ∈ R is constructible: for the for-
ward implication, given p we can take its coordinates by dropping perpendic-
ulars to the x and y axes, for the reverse mark off the distances along the x and
y axis, construct perpendiculars to the axes at these, and their intersection is p.

Proposition: the constructible real numbers form a subfield ofR, isnce if a, b
are constructible so are a + b,−a, ab and 1

a (for a , 0; the first two are obvious
from example 3) above, for multiplication and division we use similar triangles;
given a right triangle of line segments r, s and hypotenuse l1, and another line
segment r′ from the same line as r, we can construct a similar triangle by
drawing l2 ‖ l1 and s′ ⊥ r′ to meet it. Then we have r

s =
r′

s′ , so we can construct

s′ = ab by setting r = 1, s = a, r′ = b and s′ = 1
a by r = a, s = 1, r′ = 1.

Proposition: if a > 0 is constructible so is
√

a; draw the circle of diameter
a+1; then construct the line y perpendicular to a diameter l of the circle through
a point p on l, 1 away from the circumference. Then draw the radius to the
intersection of y and we have a right angled triangle of base a−1

2 and hypotenuse

r = a + 1 so by pythagoras y =
√

a.
Theorem: let Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn = K ⊂ R be a chain of subfields of R

such that (⋆⋆) for each i, Fi+1 is obtained by adjoining
√

r to Fi where r , 0 ∈ Fi

and r is not a square in Fi. Then every element of of K is a constructible real
number, and if a ∈ R is constructible then there is such a chain of subfields
with a ∈ K: for the forward implication every element of K is constructible
by the previous propositions. For the converse, an exercise, we set F0 = Q

and induct on the number of steps needed to construct a (recall we start with
(0, 0), (1, 0); the intersection of lines constructed through points in Fi is still in Fi,
and intersection of two circles or a circle and a line can only introduce square
roots.

Corollary: If a ∈ R is constructible then it is algebraic overQwith deg
Q

a = 2i

for some i; the proof is immediate by the tower law. Note the converse is false;
not all reals of degree 2i over Q are constructible.

Now we move on to solve three great problems of antiquity; first, “squaring
the circle”, constructing a square whose area is the same as that of a circle of ra-
dius 1, is impossible as it necessitates constructing

√
πwhich is impossible since

π is transcendental (but this is not a “real” solution as we have yet to actually
proove the transcendentality ofπ. Second, “duplicating the cube”, constructing

a cube whose volume is twice that of a given cube, requires constructing
3
√

2
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but the degree of this over Q is 3 so it is impossible. Finally, we cannot trisect
angles in general; it suffices to proove that we cannot trisect π3 ; cos π3 =

1
2 so it

is constructible, but cos π9 ain’t; let α = cos π9 and we will show this is algebraic

but of degree 3; for any θ, cos 3θ = 4 cos3 θ = 3 cosθ (as (eiθ)3 = cos 3θ + i sinθ
etc.); putting θ = αwe get 1

2 = 4α3 − 3α i.e. α is a root of 8x3 − 6x− 1, but this is
irreducible overQ (to proove this, we just need to check that there are no linear
factors ax + b; we can do this using Gauss’ lemma to find that we would need
b = ±1, a = 8 and check cases, or by eisenstein, or by checking all the possible
values modulo 5). Finally, the regular p-gon for p prime is not constructible
if p − 1 is not a power of 2, since this amounts to constructing cos 2π

p , but we

showed last lecture that this has degree
p−1

2 (since it is 1
2 (e

2πi
p + e−

2πi
p )). For which

numbers are constructible in general, see later; Gauss showed which n-gons
can be constructed, but this leads into polynomials, and thence into quintics
and the “big result” of this course.

2 Splitting Fields

Let f ∈ K[X] Then a field extension L/K is a splitting field for f if f = (x −
α1) . . . (x− αd) in L (i.e. f splits into linear factors) and L = K(α1, a . . . , αd) where
the αi are the roots of f in L. Examples are for K = Q, Q(i) is a splitting field
for f (x) = x2 + 1 over Q, and Q(α, αω) is a splitting field for f (x) = x3 − 2 over

Q where α is the (real) cube root of 2 and ω = e
2iπ
3 . Note that deg

Q
α = 3 =

deg
Q

(αω) = deg
Q

(αω2) (and these are the three roots of f ), as each of these

has minimal polynomial x3 − 2. However, deg
Q
ω = 2 since x3−1

x−1 is its minimal
polynomial, so we have [Q(α, ω) : Q] = 6 > 3; notice that this field is obtained
by adjoining two of the roots of f , one is insufficient. A final example is that for

f (x) = xp−1
x−1 with p prime (this is

∏p−1

1
(x − ωi) where ω = e

2πi
p , Q(ω) is a splitting

field, of degree p − 1.
The existence of splitting fields is not as obvious as it might seem. In the

above examples we hadC as a containing field, so we knew that the roots of the
polynomials existed (since we could factorize them over C, and could obtain
the splitting fields by just adjoining all these roots fromC. However, in general,
we have no such containing field; given an arbitrary field K it is not at all clear
that we can extend this to a field in which a given polynomial can be factored.
However, we have the following:

Theorem: existence of splitting fields: for any f ∈ K[x], a splitting field for

f over K exists. If f is irreducible then K[x]
( f ) is a field, called K f . Then K f /K is a

field extension; put α = x + ( f ) ∈ K f . It is then clear that 1, α, α2, . . . , αd−1 where
d = deg f = degK(α) forms a basis for K f /K and f (α) = f (x) + ( f ) = ( f ) = 0 in
K f . So K f = K(α) where f (α) = 0; this is the field obtained from K by adjoining
one root α of f . Now we just iterate this to proove the theorem: we induct on
deg f ; if deg f = 1 then K f = K and we are done, otherwise we assume that any
polinomial of degree < deg f over any field K has a splitting field, then let g be

an irreducible factor of f and consider Kg =
K[t]
(g) ; let α = t + (g), then g(α) = 0 in

Kg, so since g | f , f (α) = 0 so f (x) = (x − α) f1(x) for some f1(x) ∈ Kg[x]. Now by
the inductive hypothesis there is a splitting field L = Kg(α2, . . . , αd) for f1 over
Kg where α2, . . . , αd are the roots of f in L. Then L is a splitting field for f over
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K, since f factors as f (x) = (x − α) f1(x) = (x − α)(x − α2) . . . (x − αd) and since
Kg = K(α), L = K(α)(α2, . . . , αd) as required.

2.1 Uniqueness of splitting fields

This is quite subtle, and in a sense the heart of the course: for example, con-
sider K = R and we want to construct C. The obvious way to do this is

to set f (x) = x2 + 1 and define C = R f =
R[x]
x2+1

; this builds C with a distin-

guished element i, the image of x in R[x]
x2+1

. Now suppose we instead took

g(y) = y2 + 2y + 2 (i.e. (y + 1 + i)(p + 1 − i)), and consider
R[y]

y2+2y+2
= Ry;

this is also isomorphic to C, and has a distinguished element, the image of
y. But there is no canonical way to identify this with either −1 − i or −1 + i; we

have two equally valid isomorphismsRg → R f given by y 7→ −1−x, y 7→ −1+x,
but we have to choose which we use.

Theorem: “uniqueness of splitting fields”. Let f ∈ K[x], L a splitting field
for f . If φ : K ֒→M [This curly arrow denotes injectivity; recall field homomor-
phisms are always injective] is a homomorphism of fields and φ( f ) splits (into
linear factors) in M, f (x) =

∑

aix
i, φ( f ) =

∑

φ(ai)x
i ∈M[x], then we can extend φ

to a homomorphism φ̄ : L→M, and moreover firstly if M is a splitting field for
f then φ̄ is an isomorphism, and secondly the number of such homomorphisms
φ̄ is ≤ [L : K] with equality iff f has no multiple roots in L (and hence in M): we
induct on [L : K]. If f splits in K i.e. [L : K] = 1 then we are done, otherwise let
αi ∈ L \ K be a root of f , and g the minimal polynomial of α1 over K. Now, we
will use the following key lemma, which we shall proove in a moment: for L/K
a field extension and g ∈ K[x] an irreducible polynomial, there is a bijection be-
tween homomorphisms φ̃ : Kg → L such that φ̃(k) = k∀k ∈ K and roots α of g in

L. By this, homomorphisims K(α1)→ M biject with roots of φ̃(g) in M. As φ( f )
splits in M and g | f , φ(g) splits in M, so there are ≤ deg g = [K(α1) : K] homo-
morphisms with equality iff g has distinct roots. Now we induct by applying
the result with K replaced with K(α); choose a homomorphisim φ′ : K(α)→ M
extending φ (this is equivalent to choice of a root of g); [L : K(α)] < 0L : K] so
we may induct; φ̄ exists and the number of such extensions is ≤ [L : K(α)], so
the total number of homomorphisms is ≤ [L : K(α)][K(α) : K] = [L : K] with
equality if there are repeated roots.

Now, for the first property, if M is a splitting field then M = K(β1, . . . , βd)
where βi are the roots of f (or strictlyφ( f )), but if φ̄ : L→M is a homomorphism
and αi are the roots of f in L then φ̄(αi) are roots of f in M, so the image of φ̄
contains all the βi, so φ̄ is surjective; it is automatically injective.

Define that if L/K,M/K are extensions of K then a homomorphism φ : L→M
is a K-homomorphism if φ |K= id, i.e. φ(k) = k∀k ∈ K, e.g. z 7→ z is an

R-homomorphism but not a C-homomorphism.
Now, a proof of the key lemma from above: for L/K a field extension and

f ∈ K[x] there is a bijection between K-homomorphisms φ : K f → L and roots

α of f in L, where K f is the field K[x]
( f ) : a K-homomorphism K[x]

( f ) → L is precisely

a ring homomorphism φ : K[x] → L such that firstly φ(k) = k∀k ∈ K and
secondly kerφ = ( f ), by the first isomorphism theorem. Such aφ is determined
by φ(x), since then we have φ(

∑

rix
i) =

∑

φ(r1)φ(x)i. But φ( f (x)) = f (φ(x)),
so φ( f ) = 0 ⇔ kerφ ⊃ ( f ); since f is irreducible the ideal generated by f is
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maximal so this⇔ kerφ = ( f )⇔ φ(x) is a root of f in L. Note that this implies
the number of K-homomorphisms K f → L is finite and ≤ deg f .

Corollary: If α, β ∈ L are algebraic over K, then ∃ a K-isomorphism K(α) →
K(β) with α 7→ β ⇔ α, β have the same minimal polynomial; for the reverse
implication if f is the minimal polynomial for both α and β then we have
isomorphisms K f → K(α),K(β); for the forward implication, if there is a K-
isomorphism θ : K(α) → K(β) then we have an isomorphism K f → K(β) where
f is the minimal polynomial of α, so by the key lemma f (β) = 0 and the minimal
polynomial g of β divides f , but similarly f | g so f = g.

Example: For K = Q ⊂ C, f (x) = x3 − 2 with roots α, αω, αω2 with α ∈ R as
before. Since both α, αω have minimal polynomial f there is a Q-isomorphism
Q(α) → Q(αω). Note that Q(α) ⊂ R but Q(αω) is not a subset of R; this
isomorphism “sees only the internal structure of the field”, not how the fields
“sit” in C.

3 Finite Fields and Separability

Which fields do we know exist? Thus far we only really know about Q (which
we constructed fromZ), R which was a closure of Q, C an extension of R, and
the finite fields Z

pZ (if the reader has seen the p-adics we will know about these

as well). In this section we shall construct all the finite fields.
Proposition: For K a field and G ≤ K× a finite subgroup, G is cyclic: G is

abelian so by the structure theorem for finite abelian groups G � Z
m1
× · · · × Z

mr

where m1 | m2 | · · · | mr and #G = m1 . . .mr. So if α ∈ G then αmr = 1, since each
mi | mr, i.e. every element of G is a rooot of xmr − 1. But there are at most mr

such roots, so we have m1m2 . . .mr ≤ mr, so r = 1 i.e. G = Z
mr

and G is cyclic.
Corollary: if #K is finte then K× is a cyclic group, of order pn − 1 (since we

already have #K = pn, e.g. F×7 = 〈3〉. However, this is nonconstructive - there is
no way of guessing a generator, and e.g. 2 does not generate F×

7
; in fact there is

no canonical choice of generator even in Fp.
Let K be a finite field, #K = q = pn with p prime. Then every α ∈ K satisfies

αq = α, i.e. is a root of xq − x, and xq − x = x(xq−1 − 1) factors into linear factors
with distinct roots, since any α , 0 is a root of xq−1−1 and there are q−1 distinct
such α; α = 0 is a root of x, so K is a splitting field of xq−x over Fp. We now have
uniquemess given the order #K = q = pn; we want to show such a K always
exists, but we can do this by defining it as the splitting field of xq − x over Fp, so
now we just need to prove that xq − x has distinct roots, and the splitting field
so defined will have size q as required:

For K a field, define the formal derivative d
dx |K[x]→ K[x]. This is a K-linear

map defined by xn 7→ nxn−1; the reader may verify as an exercise the “Leibnitz

rule” that d
dx ( f g) =

d f

dx g + f
dg

dx and the chain rule d
dx f (g(x)) =

d f

dx (g(x))
dg

dx . We

write f ′(x) for
d f

dx where this would not be ambiguous. Note that this is “not a
trick”; the ability to do calculus in these fields is enormously useful and widely
applicable.

Lemma: For L/K a field extension, α ∈ L, f ∈ K[x], α is a simple root
(i.e. occurs only once) iff f ′(α) , 0: f (x) = (x − α)g(x) by Leibnitz ⇒ f ′(x) =
(x − α)g′(x) − g(x), so this is 0 iff g(α) = 0 i.e. f has multiple roots iff gcd( f , f ′)
has degree > 1.
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Example: Let K be a field of characteristic p and k ∈ K not a pth power, e.g.
K = Fp(y) the field of rational functions in y, b = y. Consider f (x) = xp−b ∈ K[x];
let L be a splitting field for f over K, α ∈ L a root of f , i.e. αp = b. Then f ′(x) =
pxp−1 = 0 ⇒ α is a multiple root; in fact (x − α)2 = xp − (p

1

)

xp−1α + · · · + (−α)p =

xp + (−α)p = xp − αp (since if p is even, i.e. 2, then + is the same as -).
We shall now abandon this example.
Proposition: For R a ring, char R = p, the map F : R → R x 7→ xp is a

ring homomorphism, called the “Frobenius” map: we just need that F(x + y) =
Fx + Fy, i.e. (x + y)p = xp + yp, but (x + y)p = xp +

(p
1

)

xp−1y + · · · + yp, and

p | (p
i

)∀0 < i < p.
Theorem: finite fields exist and are unique: let q = pn, n ≥ 1, p prime, then

1) there is a field Fq with #F = q, and any field of q elements is isomorphic to
this, 2) Fq is the splitting field of xq − x over Fp, and 3) Fq contains a subfield

of order pk iff k | n. Clearly 2 ⇒ 1, as above; for 2), let K be the splitting field
of xq − x over Fp, so K = Fp(α1, . . . , αq) where α

q

i
= αi. If α, β are two roots of

xq − x then so are α ± β, αβ, αβ for β , 0; the last two of these are obvious, and

(α + β)pn
= (αp + βp)pn−1

= · · · = αpn
+ βpn

by repeated application of Frobenius.
Therefore the field generated by the roots of xq + x is just the union of the roots,
so #K ≤ q. But if α is a root of xq − x then it is not a root of d

dx (xq − x) = −1, so
xq − x has q distinct roots and #K = q. For 3), for the only if part, if Fp ⊂ L ⊂ Fq

then #L = pl for some l, then by the tower law l | n; for the if part is sufficient

to prove that xpl − x | xpn − x if l | n, since then {α ∈ Fq : αpl
= α} is a subfield as

required by 2). But y − 1 | ys − 1 = (y − 1)(1 + y + · · · + ys−1), so applying this
with y = xr, xr − 1 | xrs − 1; then applying this with r = pl − 1, rs = pn − 1, n = lk
say; we have pl − 1 | plk − 1.

Note that Fq ,
Z
qZ , in general.

3.5: Separability

Define f ∈ K[x] is separable if it splits into distinct linear factors in a splitting
field; otherwise it is inseparable. For example, Xq − X ∈ Fp[X] is separable, but
xp − y ∈ Fp(y)[x] is inseparable. So f is separable iff gcd( f , f ′) = 1.

Proposition: 1) Let f ∈ K[x] be irreducible, then f is separable iff f ′ , 0 2)
If char K = 0 then every irreducible polynomial is separable 3) If char K = p
then an irreducible f ∈ K[x] is inseparable iff f (x) = g(xp) for some g ∈ K[x].
For 1), wlog take f monic; f is irreducible so gcd( f , f ′) must be 1 or f ; if f ′ = 0
then this gcd is f , i.e. f has multiple roots so it is inseparable, otherwise as
deg f ′ < deg f this gcd cannot be f so it must be 1 and f is separable. For 2)
and 3), if f (X) =

∑

riX
i then f ′(X) =

∑

i≥1 iriX
i−1 so f ′(X) = 0 ⇔ iri = 0∀i ≥ 1;

if char K = 0 then iri = 0 ⇒ ri = 0, so f is a constant (which by convention we
take to not be irreducible); if char k = p then iri = 0⇒ ri = 0 whenever p ∤ i, so
f (X) =

∑

i≥0 rpiX
i = g(xp) for g(x) =

∑

rpixi.
Definition: 1) If α is algebraic over K then α is separable iff the minimal

polynomial of α is; otherwise it is inseparable. 2) An extension L/K is separable
iff every α ∈ L is separable over K; for example if char K = 0 then all algebraic
extensions are separable; we shall see later that separable extensions are the
“correct” analogue of algebraic extensions in fields of other characteristics. If

char K = p, Fp(y
1
p ) is inseparable.
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Corollary of key lemma: let α be algebraic over K with minimal polynomial
f and L/K be an extension in which f splits, then α is separable iff there are
exactly deg f = degα K-homomorphisms K(α)→ L.

Proposition: Suppose α algebraic and separable over K, then
K(α)

K is separa-
ble, i.e. all β ∈ K(α) are separable. The proof is by counting; let f be the minimal
polynomial of α over K, β ∈ K(α), g the minimal polynomial of β over K, with
m = deg g. Let M be a splitting field for f g; this means in particular that M is
an extension in which g splits, so by the key lemma we need to show that there
are precisely m = deg g K-homomorphisms K(β)→ M, then β is separable and
we are done. Map from the set of K-homomorphisms φ : K(α) → M to the set
of K-homomorphisms φ̄ : K(β) → M by φ 7→ φ̄ := φ |K(β); since α is separable
there are [K(α) : K] = mn such φ by the key lemma; we have that there are
≤ [K(β) : K] such φ̄ and need to show equality. Since α is separable over K it is
separable over K(β), since roots of its minimal polynomial remain distinct as its
minimal polynomial over K(β) divides its minimal polynomial over K. So for a
given φ̄ : K(β)→ M there are precisely n = [K(α) : K(β)] K(β)-homomorphisms
φ : K(α) → M extending φ̄ (by the key lemma), so the fibres (definition: if
f : X → Y is a map then f−1(y) = {x ∈ X : f (x) = y} is called the “fibre of f ” (at
y); the term comes from projection maps, since if we are e.g. projecting a 3D
surface onto a 2D plane, this set really does look like a fibre) of the map φ 7→ φ̄
have cardinality exactly n, so the number of distinct φ̄ is mn

n = m as required.
We will often use this trivial proposition: i) for L/K a field extension, f , g ∈

K[x], gcd( f , g) is the same whether computed in K[x] or L[x]; hence lcm( f , g) =
f g

gcd( f ,g) is also: put h = gcdK( f , g), h1 = gcdL( f , g), then h | f , h | g in K[x] so

also in L[x] so h | h1 is L[x], but h = p f + qg for some p, q ∈ K[x] so h1 | h in
L[x] so (h) = (h1), and ii) the lcm of a finite set of separable polynomials is
separable, since we can compute the lcm in any field extension; choose one in
which all the polynomials split into linear factors, which are distinct (within
each polynomial) by hypothesis, then the lcm clearly also splits into distinct
linear factors.

The following theorem is very important, much more so than its immediate
application that M/K is separable if M/L, L/K are. In some sense it is the first
real theorem of the course.

Theorem of the primitive element: let L = K(α1, . . . , αn, β), L/K a finite
extension [implying β is algebraic], each αi separable over K. Then ∃γ ∈ L such
that L = K(γ) - this result is new even in characteristic 0 where all algebraic
things are separable. If #K < ∞ then #L < ∞ so L× is a cyclic group; let γ be
a generator therof, then L = K(γ). Otherwise, #K = ∞: we induct on n; if we
can show K(α, β) is K(γ) with γ separable, then K(α1, β) = K(β1 for some β1 so
K(α1, α2, β) = K(α2, β1) = K(β2) for some β2, etc. We will show that for “most”
[i.e. almost all] c ∈ K the subfield K(β + cα) is L; then we can put γ = β+ cα and
we are done. We will do this by determining the minimal polynomial of α over
K(γ); we need that it has degree 1.

Let f be the minimal polynomial of α/K (this notation is read “over K”),
g the minimal polynomial of β/K, M a splitting field for f g. In M, f (x) =
(x − α)(x − α′2) . . . (x − α′n) with α and all the α′

i
distinct since α is separable;

g(x) = (x−β1) . . . (x−βm). Consider h(X) = g(γ−cX) ∈ K(γ)[X]; h(α) = g(γ−cα) =
g(β) = 0, f (α) = 0 so x − α | gcd( f , h). If f and h have no other common roots,
we win, since then gcd( f , h) = X − α ∴ X − α = f p + hq for some polynomials
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p, q ∈ K(γ)[X] so X − α ∈ K(γ)[X]. To compute gcdK(γ)( f , h) we only need

to compute gcdM( f , h), so it is enough to show h(α′
i
) , 0∀2 ≤ i ≤ n. But

h(θ) = 0 ⇔ g(γ − cθ) = 0 ⇔ γ − cθ = β j for some j. But γ = β + cα so

h(α′
i
) = 0⇔ ∃ j : β j − β = c(α − α′

i
), so h(α′

i
) = 0 only for c ∈ { β j−β

α−α′
i
}, a finite set; as

#K = ∞we can choose a c for which this is not the case.
An example: K = Q, L = Q[

3
√

2, i]; [L : K] = 6. β1 = i, β2 = −i, α =
3
√

2, α′2 =

ωα, α′3 = ω
−1α where ω = e

2πi
3 ; note M ) L. So L = Q[i + c

3
√

2] for any c , 0 ∈ Q,

since the set we have to avoid here is ±i−i
3√

2(ω±1−1
, which does not intersect Q.

An exercise, to contemplate rather than actually do: 1,
3
√

2, (
3
√

2)2, i, i
3
√

2, i(
3
√

2)2

form a basis of L/Q so an arbitrary element γ ∈ L is a linear combination of

these. For each such γ, determine the subfield K(γ) ⊂ Q(i,
3
√

2); in particular,
show there are only finitely many subfields.

Corollary: If L
K is finite and separable then L = K(γ) for some γ ∈ L.

Proposition: For M/L, L/K finite separable extensions, M/K is finite separa-
ble: L = K(α),M = L(β) by the theorem of the primitive element, so M = K(α, β);
by the theorem of the primitive element M = K(γ) some γ, so we now just
need to show γ is separable over K. We have K ⊂ K(α) ⊂ K(α, β) = K(γ); let
m = [K(α),K], n = [K(γ) : K(α)], then [K(γ) : K] = mn. Let T de a field in
which the minimal polynomials of α, β, γ split, then for γ separable we need to
show there are mn K-homomorphisms K(γ) → T: since α separable /K there
are m distinct K-homomorphisms K(α)→ T, but β is also separable /K so /K(α)
so for each such K-homomorphism there are n distinct K(α)-homomorphism
K(α, β)→ T extending it, so there are mn distinct K-homomorphisms K(γ)→ T,
as required.

Example: K = Fp(x, y), L = K(x
1
p , y

1
p ) has [L : K] = [L : K(x

1
p )][K(x

1
p ) : K] = p2.

There is no γ such that L = K(γ), as for any γ ∈ L we have γ =
∑

0≤i, j≤p ai jx
i
p y

j
p

with the ai j ∈ K so γp =
∑

a
p

i j
xiy ∈ K so [K(γ) : K] ≤ p and K(γ) , L. Thus

we really did need the separability hypothesis in the theorem of the primitive
element.

4 Algebraic Closure

Definition: K is algebraicly closed if every nonconstant polynomial f ∈ K[x]

has a root in K (i.e. f splits in K).
Lemma: TFAE: i) K is algebraicly closed, ii) If L/K is an extension with α ∈ L,

α algebraic /K then α ∈ K iii) if L/K is an algebraic extension then L = K; these
are all obvious.

Example: C is algebraicly closed, as is Q = {α ∈ C : α algebraic /Q} - the
proof of this is an exercise.

Definition: An extension L/K such that i) L is algebraic /K and ii) L is

algebraicly closed is called an algebraic closure of K, e.g. Q is an algebraic

closure of Q. Without proof, every field has an algebraic closure L and if L1, L2

are two algebraic closures of K then ∃ (not generally unique) K-isomorphism

φ : L1 → L2; the algebraic closure of K is often denoted K.

For an example, Fp: choose a sequence ri fromN such that ri | ri+1∀i and for
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any n ∈ N∃i such that n | ri; ri = i! works fine. Let F(i) = Fpri so F(1) ⊂ F(2) ⊂ . . . .
Then let Fp =

⋃

i F(i) (the reason for this construction is to be able to define
⋃

i Fpi

in a meaningful way, since e.g. Fp2 * Fp3 . This is Fp; it is algebraicly closed,

since if f (x) ∈ Fp[x] then f has only finitely many coefficients, so they all lie in
some Fq, then we have a splitting field for f , which is finite, Fq′ for some q′ = qN

so f splits in Fq′ [x] ⊂ Fp[x].
The proof of the above result which we didn’t proove is along similar lines:

we take a field K and adjoin all roots of polynomials in it to it. Then we adjoin
all roots of polynomials over this field to it, and though it might seem that this
process would continue indefinitely, we get an algebraicly closed field by set
theory set theory mohammed jihad. The axiom of choice is invoved.

5 Galois Extensions

So far we have considered the properties of
K(α)

K only in terms of the properties of

a single root α of f , where f is the minimal polynomial of α. Recall K[α] = K[x]
( f ) .

Now we want to understand all the roots of f , and the relations between them;
in particular, the nonuniqueness of isomorphisms.

Definition: For L/K a field extension, Aut(L/K) = the set of φ : L → L field
homomorphisms which are isomorphisms, such that φ |K= 1, i.e. the set of
K-homomorphisms which are isomorphisms. This [group] exactly captures the
failure of isomorphisms to be unique: if φ : M → L is a K-isomorphism and
σ ∈ Aut(L/K) then σφ is another K-isomorphism M → L, and conversely if
φ1, φ2 : M→ L are two K-isomorphisms then φ1φ

−1
2
∈ Aut(L/K).

Example: Suppose L/K has degree 2, so L = K(α) for any α ∈ L \ K. So if
the minimal polynomial of α is f (x) = x2 + bx + c = (x − α)(x − α′) in a splitting
field for f , but we have α + α′ = b, αα′ = c. As α ∈ L, α′ = b − α ∈ L, so
L is a splitting field for f and L = K(α′) also. Now by the key lemma, the
K-homomorphisms K(α) → L biject with the roots of f in L, so there is a K-
homomorphism σ : K(α) = L → K(α′) = L sending α 7→ α′; we then have
σ(α′) = σ(b − α) = b − α′ = α, so σ switches the roots of f . So σ : L → L
is a field automorphism and a K-homomorphism, i.e. σ ∈ Aut(L/K), and
by the key lemma there are no other non-identity elements of Aut(L/K). So
the only remaining question is whether σ = 1, but if α = α′ then 2α = β,

so assuming charK , 2 this implies α =
β

2 ∈ K, contradicting α ∈ L \ K so
σ , 1; if charK , 2 then a quadratic field extension (i.e. one with [L : K] = 2)
has Aut(L/K) = Z

2 . Examples are Aut(Q(i)/Q) or Aut(C/R), with generator

a+bi 7→ a−bi, or Aut(Q(1+
√

2)/Q) with generator σ : a+b(1+
√

2) 7→ a+b(1−
√

2),

i.e. c + d
√

2 7→ c − d
√

2, since 1 ±
√

2 are the roots of the minimal polynomial

of 1 +
√

2. Note that this σ is not continuous when we consider Q(1 +
√

2) as a
subfield of R; these symmetries do not respect the topology of the embedding.

If charK = 2 then Aut(L/K) = Z2 ⇔ {α2 : α ∈ L} , K.

Example: L/K = Q(
3
√

2)/Q; the minimal polynomial f (x) = x3−2 = (x−α)(x−
ωα)(x − ω2α) is its factorization over C, where ω = e

2πi
3 , α =

3
√

2. ωα,ω2α < L so
the key lemma implies since f (x) has only one root in L, Aut(L/k) = {1}.

Example: L = K(x), rational functions in one variable over K. It is an exercise
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to find that Aut(L/K) = PGL2(K) :=
SL2(K)

scalar matricies ,

(

a b
c d

)

x = ax+b
cx+d (i.e. möbius

transforms); it is clear that these transforms are all field automorphisms, so the
exercise lies in showing that there are no others.

If [L : K] = ∞ then #Aut(L/K) is also infinite. [Lecturer wrote if #K = ∞
then..., but that’s bollocks].

Example: L/K such that [L : K] = 4, charK , 2. L is generated /K by two
elements of degree 2, called a “biquadratic” field extension; L = K(α, β) with
K(α),K(β) quadratic (we will take quadratic extensions to implicitly mean they

are separable). So α2 + bα + c = 0 for some b, c ∈ K ∴ α = −b±
√

D
2 where

D = b2 − 4ac; replacing α by
√

D (since K(
√

D = K(α)) we can wlog take the

minimial polynomial of α to be x2 −D. Now Aut(K(
√

D)/K) = Z2 generated by

σ :
√

D 7→ −
√

D. Say α2 = a, β2 = b, then we have a unique K(α)-isomorphism
L → L by β 7→ −β, called σβ, and similarly σα. Then σασβ = σβσα, σ

2
α = 1 = σ2

β

so Aut(L/K) ⊃ Z2 ×
Z
2 . Now by the key lemma any K-automorphism of L must

permute the roots of x2 − a and also the roots of x2 − b, but if φ : L→ L fixes α, β
then it fixes all of L pointwise. So Aut(L/K) ⊂ Sym(2) × Sym(2) = Z

2 ×
Z
2 and

Aut(L/K) = Z2 ×
Z
2 .

Lemma: i) for L/K a field extensions, f ∈ K[x], σ ∈ Aut(L/K), α ∈ L is a root
of f iff σα is, ii) If L = K(α!, . . . , αn), σ ∈ Aut(L/K) such that σαi = αi∀i then σ = 1
(these two are obvious from the above), and iii) if L is a splitting field for f then
Aut(L/K) ⊂ Sym{α1, . . . , αr} the group of permutations of r letters, where the αr

are the distinct roots of f ; this follows from the first two parts.
This lemma raises the question: which subgroup of Symr is Aut(L/K)?
Example: For L/K biquadratic, L is a splitting field for (x2 − a)(x2 − b) so

Aut(L/K) = Z2 ×
Z
2 ( sym4.

Not every field extension is a splitting field, e.g. Q(
3
√

2)/Q, so there is some
content to the following:

Theorem: For L/K a finite extension, Aut(L/K) is finite; K(x)/K shows that
we do need the hypothesis. As one proof, we have L = K(α1, . . . , αn) for some
αi ∈ L; let f1, . . . , fn be the respective minimal polynomials of α1, . . . , αn and M
a splitting field for f1 f2 . . . fn, then if σ ∈ Aut(L/K) then σ permutes the roots of
each fi by the above lemma, and conversely if σ fixes the roots of each fi then it
fixes the αi so is the identity on L, i.e. Aut(L/K) ⊂

∏

symdeg f so is finite.

An alternative proof: we shall never use this, but the proof contains useful
ideas:

Theorem: For L/K a finite extension, #Aut(L/K) ≤ [L : K]; in particular
Aut(L/K) is finite. We shall below proove #Aut(L/K) | [L : K] without reference
to this result, so this theorem is truly useless. We shall deduce it from the
following:

Proposition (Linear Independence of Characters): Let Γ be a group, possibly
infinite, L a field and σ1, . . . , σn : Γ → L× distinct group homomorphisms.
Then σ1, . . . , σn are linearly independent over L, i.e. if y1, . . . , yn ∈ L are such
that

∑

yiσi(g) = 0∀g ∈ Γ then yi = 0∀i (this is a special case of a theorem in
representation theory): suppose not and let n be minimal for such a relation to
exist; clearly we have n ≥ 2 and yi , 0∀i. Since σ1 , σ2, ∃g ∈ Γ such that σ1(g) ,
σ2(g), then ∀h ∈ Γ,

∑

yiσi(gh) =
∑

yiσi(g)σi(h) = 0; multiplying
∑

yiσi = 0 by
σ1(g) we have

∑

yiσ1(g)σi(h) = 0, but subtracting,
∑n

i=2 yi(σi(g)−σ1(g))σi(h) = 0∀h
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and this is a shorter relation, a contradiction.
Proof of the above theorem: Aut(L/K) ⊂ the set of K-linear vector space

maps φ : L→ L; this is a vector space over K but also over L by (lφ)(x) = l(φ(x));
the dimension of this is [L : K] = n (we have a basis by δi : x j 7→ δi j), so the
theorem implies #Aut(L/K) ≤ dimL of this vector space, which is n.

This is the most important piece of theory in the course: suppose we have a
polynomial over a field. Can we find its roots? Somewhat weaker, can we find
its splitting field? We shall see that Aut(L/K) controls the field extension, and
more; it controls finding the roots; in fact it tells us [almost] everything.

Let L be a field, G ⊂ Aut(L/K) a finite subgroup (e.g. G = Aut(L/k) for L/K
a finite extension). Then:

Definition: LG = {l ∈ L : gl = l∀g ∈ G} the fixed field or field of invariants;
prooving this is a field is a trivial exercise. An example is for L = Q(i),G = Z

2

spanned by σ : i 7→ −i we have LG = Q.
Write K = LG, then we ask what we can say about L/LG. For examule, for

L = K(y) the field of rational functions and G a finite subgroup of PSL2(K), what
is L/LG?

Lemma: everyα ∈ L has degree≤ #G over K; in particular L/K is an algebraic
extension. Set f (x) =

∏

σ∈G(x − σα) ∈ L[x], then deg f = #G, f (α) = 0. G acts
on L so acts on L[x] by σ(

∑

αix
i) =

∑

σ(αi)x
i. Each σ : L[x] → L[x] is a ring

homomorphism: σ( f + g) = σ( f ) + σ(g), σ( f g) = σ( f )σ(g), and (L[x])G = LG[x]
(= K[x]). But τ f (x) =

∏

σ∈G τ(x − σα) =
∏

σ∈G(x − τσ(α)) =
∏

σ∈G(x − σα) =
f (x)∀τ ∈ G, as σ 7→ τσ is a bijection of G. So f (x) ∈ (L[x])G = LG[x].

Lemma: L/LG is separable: let α ∈ L, then must show that the minimal
polynomial of α/LG has distinct roots. Let {σα : σ ∈ G} = {α1, . . . , αr} be the
orbit of α under G (with the αi distinct). Set g(x) =

∏r
i=1(x − αi), then we have

g(α) = 0 and g has distinct roots, but we also have σg(x) = g(x)∀σ ∈ G as any
such σ permutes the αi. So g(x) ∈ LG[x], so the minimal polynomial f of α/LG

divides g so has distinct roots.
Lemma: let α ∈ L, then the minimum polynomial of α is g(x) =

∏

β∈Gα(x− β)
where Gα is the orbit of α under G as above; in particular degα = #Gα: we
have already seen the minimal polynomial divides g so we just need that g
is irreducible: if we had g = f1 f2 for some fi ∈ LG[x] then in L[x], g(x) =
(x−α1) . . . (x−αr) so f1(x) =

∏

αi∈A(x−αi), f1(x) =
∏

αi∈B(x−αi) for some partition

of Gα as A∪B. But since fi(x) ∈ LG[x] = (L[x])G, G permutes the roots of each fi,
i.e. GA = A,GB = B, but since A ∪ B is a single orbit we must have one of A,B
empty and we have the result.

Example: let L = Q(i,
√

2),G = Z
2 ×

Z
2 = Aut(L/K) where K = Q; note that

here LG = K [this is not always the case]. If γ = i,Gi = {±i} so the minimal

polynomial is (x − i)(x + i) = x2 − 1; if γ = 1 + i +
√

2, the minimal polynomial

is (x − 1 − i −
√

2)(x − 1 + i −
√

2)(x − 1 − i +
√

2)(x − 1 + i +
√

2) (which we can
calculate as a polynomial over Q.

Now we have two algorithms for computing the minimal polynomial of
γ ∈ L; we can comupte 1, γ, . . . , γ[L:K] and look for a linear relation, or use
∏

β∈Gγ(x− β); it should be clear that this second method is both faster and nicer,
since it “tells us more about what’s really going on”.

Proposition: L/LG is a finite extension: choose α ∈ L such that [K(α) : K]
is mayimal; it is ≤ #G by the first of the three Lemmas above. Take β ∈ L;
we shall show that any such is ∈ K(α) (i.e. K(α) = L): β is algebraic over K
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so also over K(α), so [K(α, β) : K(α)] is finite; we then have [K(α, β) : K] =
[K(α, β) : K(α)][K(α) : K] finite; α, β are separable over K so by the theorem of
the primitive elemnte K(α, β) = K(γ) for some γ ∈ K(α, β) so K ⊂ K(α) ⊂ K(γ,
and [K(γ) : K] ≥ [K(α : K] but [K(α) : K] is maximual so [K(γ) : K] = [K(α) : K]
and K(γ) = K(|alpha) so γ ∈ K(α) [so β ∈ K(α).

Theorem (Artin): Assume L is a field and G ≤ Aut(L) finite, then i) [L :
LG] = #G and ii)Aut(L/LG) = G: set K = LG, then by the above proposition
L = K(γ) or some γ and degγ = #Gγ so we need #Gγ = #G, i.e. stabGγ = 1,
but every σ ∈ stabGγ acts trivially on K(γ)[= L] but since G ⊂ Aut(L), nontrivial
elements of G act nontrivially on L and we have the result. We could also
have finished this proof by saying [L : LG] ≤ #G by the proposition above but
#G ≤ [L : K] by linear independence of field automorphisms: but this is very
much overkill. For the second part of the theorem, we have G ≤ Aut(L/K)
and want to show equality: LAut(L/K) ⊂ LG but LG = K with K ⊂ LAut(L/K)

by the definition of Aut(L/K), so LAut(L/K) = LG = K. So by the first part,
[L : LAut(L/K)] = #Aut(L/K) = [L : LG] = #G so G = Aut(L/K).

This theorem is useful for computing examples, e.g. L = C(y),G = 〈σ, τ〉
where σy = i

y , τy = −y. What is LG? First we work out what G is: σ2y =
i
i
y

= 1, τ2y = y, στ = τσ : y 7→ − i
y , so G = Z

2 ×
Z
2 . The orbit of y under G is

{y, i
y ,−y,− i

y }; set K = LG, then the minimal polynomial of y/K is (x− y)(x+ y)(x−
i
y )(x + i

y ) = (x2 + y2)(x2 + 1
y2 ) = x4 + (y−2 − y2)x2 − 1; set w = y2 − y−2; since the

coefficients of this minimaly polynomial must be ∈ K, w ∈ K (or we can check
it is invariant under the actions of G), so C(w) ⊂ K = LG ⊂ L = C(y); by Artim,
[L : LG] = 4, but we have just shown the minimal polynomial of y over C(w)
has degree 4, so K = C(w).

In fact there is Luroth’s theorem: for C ( K ⊂ C(y), ∃w ∈ C(y) such that
K = C(y). This theorem is proven in a course on algebraic curves which
should appear in part II but does not this year, or in one on Riemann surfaces;
essentially it says that the only curve of genus 0 is P1.

Lemma: Aut(Fqn/Fq) = Z
n (where q = pk as usual): let φ(x) = xq, then φ ∈

Aut(Fqn/Fq) (φ is the kth power of the “Frobenius” ring homomorphism x 7→ xp);

this gives us a map Z → Aut(Fqn/Fq) by i 7→ φi. It is clear that n 7→ φn = Id,

and if 0 < i < n then φi(x) , x for some x ∈ Fqn , as (Fqn )φ
i

the set of fixed

points of the field under φi is Fqi . So we have an injective map Zn → Aut(Fqn/Fq)
which is also surjective, either by the fact that #Aut(Fqn/Fq) ≤ [Fqn : Fq] = n by
linear independence of characters, or immediately from Artin’s theorem since

F
Z
n

qn = Fq.

Definition: An extension L/K is Galois if i) L/K is finite and ii) K = LAut(L/K).
If L/K is Galois we call Aut(L/K) its Galois group.

For G ⊂ Aut(L), L/LG is Galois; by Artin this means Galois extensions L/K
are separable.

Theorem L/K is Galois iff L is a splitting field for a separable polynomial
over K; we shall proove this just below.

Proposition: For L/K a finite extension, #Aut(L/K) | [L : K] with equality iff
L/K is Galois: set M = LAut(L/K), then K ≤ M ≤ L, so [L : M] = #Aut(L/K) by
Artin. So by the tower law [L : K] = [M : K]Aut(L/K).

Theorem, including the above unproven statement: TFAE: i) L/K Galois,
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i.e. L/K is finite and ∀l ∈ L \ K∃σ ∈ Aut(L/K) : σl , l. ii) ∃ a finite subgroup
G ⊂ Aut(L) such that K = LG. iii) L is the splitting field of a separable polynomial
iv) L/K is separable and the minimal polynomial of each α ∈ L splits into linear
factors in L. That i) implies ii) is trivial and the converse to this is by Artin;
we saw that ii) implies iv) in the proof of Artin (the linear factors have roots
{gα : g ∈ G}). ii) trivially implies iv): if L = K(α1, . . . , αn) let fi be the minimal
polynomial of each αi, then the lcm of these fi is separable and L is its splitting
field. Finally iii) implies i): if L is the splitting field of a separable polynomial f ,
then by the umiqueness of splitting fields and our key lemma, far above, there
are [L : K] K-homomorphisms L→ L, i.e. #Aut(L/K) = [L : K] and we are done
by the above proposition.

Corollary: any finite separable extension L/K is contained in a Galois exten-
sion: K ≤ L ≤ N with N/K Galois: if L = K(α1, . . . , αn), then let N be the splitting
field of the lcm of the minimal polynomials of the αi, which is separable, and
by the above theorem N/K is Galois. Moreover, no proper subfield of this N
is Galois (this is an exercise); if K ≤ L ≤ N′ is an extension such that N′/K is
Galois but no proper subfield therof is, then ∃ an L-isomorphism N → N′ (by
uniqueness of splitting fields).

Corollary: If K ≤ M ≤ L are field extensions and L/K Galois then L/M is
Galois; properties iii) and iv) in the above theorem hold for L/K so they hold
for L/M.

Fundamental Theorem of Galois Theory

Let L/K be a Galois extension, G = Aut(L/K). Then there is a bijection between
subgroups of G and fields M with K ≤ M ≤ L (called intermediate subfields),
H 7→ LH with inverse M 7→ Aut(L/M); in particular this means there are only
finitely many intermediate subfields. To proove this it is enough to check that
both compositions of the two maps are identities; H 7→ LH 7→ Aut(L/LH) is the
identity as Aut(L/LH) = H by Artin, and M 7→ Aut(L/M) 7→ LAut(L/M) is also the
identity since L/M is Galois by the above corollary, so LAut(L/M) =M.

Example: L = Fqn ,K = Fq,G = Aut(Fqn/Fq) = Z
n : the subgroups of Zn bi-

ject with the intermediate subfields; such subgroups are given by integers m
dividing n, then L〈φ

m〉 = Fqm - but we knew this already.

Example: L = Q(i,
√

2),Q = K,G = Z2 ×
Z
2 = 〈σ, τ〉where σ : i 7→ −i, τ :

√
2 7→

−
√

2. We have subgroups 1, 〈σ〉, 〈τ〉, 〈στ〉, 〈σ, τ〉; these correspond respectively

toQ(i,
√

2),Q(
√

2),Q(i),Q(i
√

2),Q[, so these are precisely the intermediate field
extensions].

Some properties of the bijection between subgroups of G and interme-
diate fields M in the FTGT: it is order reversing (H′ ≤ H ⇒ LH′ ≥ LH,
M ≤ M′ ⇒ Aut(L/M′) ≤ Aut(L/M). Less obviously, LN/K is Galois iff N ⊳ G
(the notation is “is a normal subgroup of”), and in this case Aut(LN/K) = G

N ;
this is plausible, since we have L/M/K with [L : K] = #G = #Aut(L/K), [L : M] =
#H = #Aut(L/M), and [M : K] = #G

#H , which of course would be # G
H but there

is a quotient group G
H iff H is normal. To proove the result, suppose N ⊳ G,

and put M = LN; observe that for σ ∈ G, σM = M since if l ∈ M, n ∈ N then n
fixes σl, as nσl = σσ−1nσl = σn′l for some n′ ∈ N, since N is normal, but n′l = l
as l ∈ LN = M. So G acts on M, i.e. we have a map G → Aut(M/K)), but
the set of σ ∈ G for which the restriction to LN is the identity is Aut(L/LN),
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the kernel of this map, which = N by Artin, so G
N injects into Aut(M/K);

[L : LN] = #N, [LN : K] = # G
N , #Aut(LN/K) ≤ # G

N but the left hand side is G
N

so we have equality and the extension is Galois as required.
For the converse, suppose K ⊂M ⊂ L, M = LH for H = Aut(L/M(). Suppose

M/K Galois, then M is the splitting field of some separable polynomial f/K,
so for σ ∈ G = Aut(L/K), if σ permutes the roots of f then σM = M. But
Aut(L/σM) = σAut(L/M)σ−1, since g is a member of the left hand side ifff
gσM = σM ⇔ σ−1gσM = M, which is the case iff σ−1gσ ∈ Aut(L/M), so since σ
fixes M, σHσ−1 = H∀σ ∈ G, i.e. H ⊳ G.

Definition: If f ∈ K[x] is a separable polynomial (where we consider a re-
ducible polynomial to be separable iff its irreducible factors are), the Galois group of f

GalK( f ) = Aut(L/K) where L is a splitting field for f/K; uniqueness of splitting
fields implies this is well defined.

Suppose we ask: what is GalQ(x3 − 3x+ 1)? Or, weaker, what is f ’s splitting
field?

Lemma: for f ∈ K[x] separable, f is irreducible iffGal( f ) acts transitively on
the roots of f : let L be a splitting field, {α1, . . . , αr} the roots of f in L; write this
set as a disjoint union X1 y · · · y Xk, where each Xi is a single orbit under G.
Put fi =

∏

α j∈Xi
(x − α j) so f = f1 . . .k, and each fi ∈ K[x] has σ fi = fi∀σ ∈ G.

An extended example: cubics. Let f ∈ K[x] be an irreducible separable cubic
f (x) = x3+ ax2+ px+ q, let L be a splitting field so f (x) = (x−α1)(x−α2)(x−α3) ∈
L[x], so expanding α1 + α2 + α3 = −a, α1α2 + α2α3 + α3α1 = p, α1α2α3 = −q, L =
K(α1, α2, α3) = K(α1, α2) = K(α2, α3) = K(α3, α1) since α3 = a − α1 − α2 and
similarly. So we have a tower of fields K ≤ K(α1) ≤ K(α1, α2) = L, with
[K : K(α)] = 3 as f is irreducible. So there are two possibilities: either K(α1) =
K(α1, α2) in which case [L : K] = 3, or K(α1) , K(α1, α2), impyling the quadratic

polynomial (x − α2)(x − α3) =
f (x)

x−α1
∈ K(α1)[x] is irreducible, so [L : K(α1)] = 2 ∴

[L : K] = 3 × 2 = 6. observe that if [L : K] = 3 there are no intermediate field
extensions; we knew this already since p is prime, but now we have a “better”
and generalizable reason: the FTGT, as Z3 has no subgroups.

Now we shall determine G = Gal( f ) and all intermediate subfields: for
deg F = 3,G ⊂ S3; the subgroups of S−3 are 1, three copies of Z2 by 〈(12)〉, 〈(13)〉, 〈(23)〉,
Z
3 = 〈(123)〉 = H = A3 and S3 itself; from the above G acts transitively on {1, 2, 3}
so the only possibilities are G = A3 (in which case [L : K] = 3) and G = S3

(in which case [L : K] = 6); in the first case there are no intermediate sub-
fields and nothing to say, but if G = S3 we have something new: we know
what the subgroups of S3 are. Consider L〈(23)〉; (23) : α2 7→ α3, α3 7→ α2, so
K ⊂ K(α1) ⊂ L〈(23)〉 ⊂ L; by Artin [L〈(23)〉 : L] = 2 and we know [K(α) : K] = 3 so
L〈(23)〉 = K(α1); similarly we have 1 corresponds to L, (12) to K(α3), (23) to K(α1),
(31) to K(α2), S3 to K, and A3 = H to some new subfield: K ≤ LH ≤ L; [L : LH] = 3
so [LH : K] = 2; we have a unique subfield M such that [M : K] = 2 i.e. M is

quadratic. So M = K(
√

D) for some D ∈ K (assuming charK , 2), i.e. we have a
δ ∈ L such that δ2 = D ∈ K, Hδ = δ (i.e. (123)δ = δ), but (12)δ , δ and similarly.

Suppose we have this case: G = S3 so we have K ⊂ M ⊂ L where M = LA3 ,
with [M : K] = 2, [L : M] = 3 i.e. M/K is a quadratic extension (we have M/K
Galois since A3 ⊳ S3, but we knew this already since it is a quadratic extension).
So we look for δ ∈ L \ K such that M = K(δ); we assume charK , 2. We want
(12)δ , δ, (123)δ = δ. It would be nice to have δ2 = D ∈ K (and in fact we shall
do so). We observe that δ = (α1 − α2)(α2 − α3)(α3 − α1) has these properties;
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(12)δ = −δ [, δ, since charK , 2], so δ2 = D is fixed by all of S3 su must be
∈ K. D = 0 ⇔ αi distinct, i.e. f is separable (recall we assume f irreducible;
we haven’t yet proven D ∈ K if f is not separable, but we shall do so, and it is
reasonable; informally the δwe have defined “should” detect separability).

We have shown that [L : K] = 6 ⇒ D is not a square in K, as M = K(
√

D)
is the unique subfield of L with M/K quadratic (by FTGT). But conversely, if

[L : K] = 3 then D as we have defined it must be a square, as
√

D = δ is fixed by
A3 = 〈(123)〉 = Aut(L/K) so δ ∈ K.

Therefore, “we win”; we have a useful result, because we can compute
D = δ2 from f without having to first find the roots α1, α2, α3 of f ; the reader
may verify that D = a2p2− 4p3− 4a3q− 27q2+ 18apq; this is too “messy” to easily
remember, but if a = 0 then we have the much nicer form D = −4p3 − 27q2, so
if charK , 3 we consider g(x) = f (x − a

3 ) which has the same splitting field as f

but no coefficient of x2. D is called the “discriminant”.
Corollary: suppose charK , 2, f (x) = x3 + px + q ∈ K[x] irreducible. Let

D = −4p3 − 27q2 ∈ K; then f is separable iff D , 0, and [in this case] Gal( f ) = S3

if
√

D < K or A3 if
√

D ∈ K.
An example: K = Q, f (x) = x3 − 2; we have D = −27 × 22 = −33 × 22 < 0

which is not a square, so G = S3 (as we knew already). f (x) = x3 − 3x2 + 1 has
D = −4 × −27 − 27 = 34 which is a square (in Q), so Gal( f ) = A3; f (x) = 3x2 + 1
has D = −5 × 33 < 0 which is not a square, so Gal( f ) = S3.

Remark: if f (x) ∈ Q[x] has only one real root, then its splitting field has
degree 6; this is obvious since adjoining the real root of f could not give the
complex roots, but can also be shown (and this is an exercise) by computing D
and checking it is not a square. This is useful as if we have f ′(x) > 0∀x ∈ R (e.g.
f (x) = x3 + 3x + 1) then we know f is increasing in x so has at most 1 real root.

We can of course proove that our above expression for D is valid by simply
expanding it, but can we find one in general? Informally, one must exist,
because D is a function of the αi invariant under S3, so must be some function
of a, p, q; more formally:

Proposition: For K a field with charK , 2, f ∈ K[x] irreducible, and L a
splitting field for f , let f (x) =

∏

(x − αi) in L[x]. Then: i) D ∈ K and D , 0⇔ f
separable, ii) D is a square in K ⇔ Gal( f ) ⊂ An, iii) D is a polynomial in the
coefficients of f . For the first two parts, put δ =

∏

i< j(αi − α j) ∈ L, so δ2 = D,
and let G = Gal( f ) ⊂ Sn; it is clear that δ , 0 ⇔ f is separable, and if σ ∈ G we
have σδ = −δ for σ < An and δ for σ ∈ An, so G ⊂ An ⇔ σδ = δ∀δ ∈ G ⇔ δ ∈
LG = K ⇔ D = δ2 is a square in K. We shall now proove the third part much
more slowly:

6 Symmetric Polynomials

Let R be a ring (e.g. Z), R[z1, . . . , zn] the polynomial ring in n variables over
R. Sn acts on this by permuting variables: wzi = zw(i) for any w ∈ Sn, e.g.
(123)z3

1
z2z7

4
= z3

(123)1
z(123)2z7

(123)4
= z3

2
z3z7

4
. Define the symmetric polynomials by

R[z1, . . . , zn]Sn = { f ∈ R[z1, . . . , zn] : w f = f∀w ∈ Sn}, i.e. f is symmetric if
f (z1, . . . , zn) = f (zw1, . . . , zwn)∀w ∈ Sn. Examples are the “elementary symmetric
polynomials”: e1 = z1 + · · ·+ zn, e2 =

∑

i< j ziz j (i.e. z1z2 + z1z3 + · · ·+ z1zn + z2z3 +

· · · + zn−1zn), and generally ek =
∑

i1<···<ik
zi1 . . . zik .
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Theorem: every symmetric polynomial f ∈ R[z1, . . . , zn]Sn can be written
uniquely as a polynomial in e1, . . . , en, i.e. the map R[e1, . . . , en]→ R[z1, . . . , zn]Sn

(where the LHS is just a polynomial ring in n variables) ek 7→
∑

i1<···<ik zi1 . . . zik is

an isomorphism of rings. For example,
∑

z2
i
= e2

1
− 2e2; as an exercise the reader

should express
∑

z3
i

in terms of e1, e2, e3.
Corollary/Application: for K a field, f ∈ K[x], L = K(α1, . . . , αn) a splitting

field for f , if f (x) = xn − a1xn−1 + · · · ± an = 0 we have a1 = α1 + · · ·+ αn, . . . , an =

α1 . . . αn, then by the theorem any symmetric function of the roots can be written
as a polynomial in the coefficients ai of f ; in particular, for D =

∏

i< j(zi − z j)
2 ∈

Z[z1, . . . , zn]Sn we must have some polynomial ∆(e1, . . . , en) ∈ Z[e1, . . . , en] such
that ∆(z1 + · · · + zn, . . . , z1 . . . zn) =

∏

i< j(zi − z j)
2 [i.e. ∆(a1, . . . , an) = D].

Claim: for n = 3, ∆(0, p, q) = −4p3 − 27q2: ∆(a, p, q) =
∏

1≤i< j≤3(zi − z j)
2, a ho-

mogenous polynomial of degree 6, so a linear combination of e6
1
, e4

1
e2, e

3
1
e3, e1e2e3, e

3
2
, e2

3
as these are all the monomials of [degree] 6; the only terms not involving e1 are
the last two, so we have ∆(0, p, q) = cp3 + dq2 for some c, d; ∆ vanishes if there
are repeated roots, so consider (x − α)(x − α)(x + 2α) = x3 + (−3α2)x + 2α3, so
we have ∆(0,−3α2, 2α3) = 0 i.e. c(−3α2)3 + d(2α3)2 = 0 ⇒ −27c + 4d = 0. Then
evaluating ∆ at x3 − x = x(x − 1)(x + 1) by explicit computation we find it is 4,
i.e. ∆(0,−1, 0) = 4⇒ c = −4 ∴ d = −27.

Now the proof of the theorem: forλ = (λ1, . . . , λn) ∈Nn write zλ = zλ1

1
. . . zλn

n ,

a monomial. Then {zλ : λ ∈ Nn} is a basis of R[z1, . . . , zn]. Totally order Nn

by λ < µ if λ1 < µ1 or λ1 = µ1 and λ2 < µ2 or...; this is called lexicographical
ordering. Now if λ is such that λ1 ≥ · · · ≥ λn then λ ≥ wλ∀w ∈ Sn, i.e. every
orbit Snλ̃ has a maximal element λ which is λ̃ reoordered so that λ1 ≥ · · · ≥ λn.
So {

∑

µ∈Snλ zµ|λ has λ1 ≥ · · · ≥ λn ≥ 0} forms a basis of R[z1, . . . , zn]Sn (as this set
is precisely the distinct elements of {

∑

µ∈Snλ zµ}).
Now, for surjectivity of our map, let f ∈ R[z1, . . . , zn]Sn . Write f = czλ +

∑

µ<λ [terms in zµ]; this is czλ1−λ2

1
(z1z2)λ2−λ3 . . . (z1 . . . z

λn−1−λn

n−1
(z1 . . . zn)λn+ remain-

ing terms; since f is symmetric λ has λ1 ≥ · · · ≥ λn. But ek = z1 . . . zk+ some
terms zµ with µ < (1, . . . , 1, 0, . . . , 0), so by carefully expanding we can show

that the f = ceλ1−λ2

1
. . . eλn−1...λn

n−1
eλn

n + some terms in zµ for µ < λ.

Now f − ceλ1−λ2

1
eλ2−λ3

2
. . . eλn−1−λn

n−1
eλn

n is ∈ Z[z1, . . . , zn]n with leading term zµ for
some µ < λ, so we induct ({ν : ν ≤ λ} is a finite set).

For injectivity, suppose g ∈ R[e1, . . . , en] is such taht g(
∑

i zi,
∑

i< j ziz j, . . . , z1 . . . zn) =

0 in R[z1, . . . , zn]Sn , then we need g = 0. Induct on n; the n = 1 case is triv-
ial. For n > 1, set zn = 0; then observe ek 7→

∑

1≤i1<···<ik≤n zi1 . . . zik becomes
∑

1≤i1<···<ik≤n−1 zi1 . . . zik , i.e. e̊K := eK |zn=0 is “eK for n−1 variables” for K ≤ n−1, and
0 for K = n. So g(e̊1, . . . , e̊n−1, 0) 7→ g(

∑

1≤i≤n−1 zi, . . . , z1 . . . zn−1, 0) = 0; by induc-
tion g(e1, . . . , en−1, 0) is the zero polynomial, so g(e1, . . . , en) = enh(e1, . . . , en) for
some h ∈ R[e1, . . . , en] with z1 . . . znh(

∑

i zi, . . . , z1 . . . zn) = 0 in R[z1, . . . , zn]Sn . But
z1 . . . zn is not a zero divisor in R[z1, . . . , zn] so we must have h(

∑

zi, . . . , z1 . . . zn) =
0, but we can wlog take g to be of minimal degree such that g , 0 and
g(

∑

zi, . . . , z1 . . . zn) = 0. So h = 0.
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7 Cyclotomic Extensions

Let L be a field. Define µn(L) = {α ∈ L : αn = 1}, the nth roots of 1 in L. µn is a
finite subgroup of L× (its elements are the roots of xn − 1, so there are at most n
of them), so a cyclic group.

Definition: ξ ∈ µn is a primitive nth root of 1 if the order of ξ is n,⇔ #µn =

n, µn = {ξk : k ∈ Z}. If ξ is primitive then ξk is primitive whenever gcd(k, n) = 1,
i.e. k ∈ (Zn )×, since gcd(k, n) = 1⇔ kr + sn = 01 for some r, s,⇔ r = k−1 ∈ Zn .

If L is the splitting field for xn − 1 over some K then #µn(L) = n ⇔ xn − 1 is
separable⇔ gcd(xn − 1, d

dx (xn − 1) = nxn−1) = 1 ⇔ n , 0 in K, i.e. charK ∤ n or
charK = 0 (⋆⋆); we shall assume this is the case.

Definition: the nth cyclotomic extension of K is the splitting field L of xn − 1

over K. Let G = Aut(L/K); by our assumption (⋆⋆) L/K is separable so Galois,
and [so] there exist primitive nth roots of unity in L; let ξ ∈ µn(L) be primitive,
then:

Lemma: i) L = K(ξ): in L[x], xn−1 =
∏

α∈µn(L)(x−α) = (x−1)(x−ξ) . . . (x−ξn−1),
as all roots of 1 are powers of ξ; L is a splitting field for xn − 1 so L = K(ξ). ii)

There is an injective homomorphism χ : G ֒→ ( ZnZ
×

by χ(σ) = α where σξ = ξα;
moreover this χ is independent of the choice of ξ: if σ ∈ G, σξ also has order
precisely n, since (σξ)n = σ(ξn) = 1. So σξ = ξα for some α ∈ (Zn )× [Zn is this
lecturer’s notation for the integers modulo n], so χ is well defined. If τ ∈ G and
τ(ξ) = ξβ then στ(ξ) = σ(ξβ) = (σξ)β = ξαβ (as σ, τ are field homomorphisms), so
χ(στ) = χ(σ)χ(τ) and χ is a group homomorphism. For injectivity, if χ(σ) = 1
then σξ = ξ so since L = K(ξ σ must be the identity. Now for independence of
choice of ξ, if ξ′ is another primitive nth root of unity, = ξk for some k ∈ (Zn )×.

Then χ(σ) = a ⇒ σξ = ξa ⇒ σ(ξ′) = σ(ξk) = ξka = (ξ′)a, so we would have
the same result if we defined χ in terms of ξ′. iii) χ is surjective, and hence
an isomorphism, iff G acts transitively on primitive nth roots of 1: G acts
transitively iff ∀k ∈ (Zn )×∃σ ∈ G : σξ = ξk ⇔ χ is surjective.

Corollary: G is abelian.
Warning: note that χ need not be surjective in general, e.g. K = C ⇒ L =

C⇒ G = {1} so χ is never surjective.
Example: K = Fq, charK ∤ n, L the splitting field of xn − 1. Claim χ : G =

Aut(L/K) ֒→ (Zn )× identifies G with the subgroup 〈q〉 ⊂ (Zn )× (where by q we of
course really mean q + nZ; the lecturer sometimes uses q̄ to denote this coset).
Proof: Gal(L/K) = 〈φq〉where φq(x) = xq∀x, the Frobenius map.

Example: K = Q, n = p prime, ω = e
2πi
p : [Q(ω) : Q] = #(Zp )× (Eisenstein), so χ

is surjective. [These last two examples not verified - blame my dad]
Definition: Φn(x) =

∏

k∈(Zn )× (x − ξk), the nth cyclotomic polynomial. If σ ∈ G

then σ permutes the primitive nth roots [of 1], so σ fixes Φn(x) and Φn(x) ∈
L[x]G = K[x].

Corollary: Φn(x) is irreducible⇔ χ is surjective⇔ [L : K] = #G = #(Zn )×: Φn

is irreducible iff G acts transitively on the roots of Φn, i.e. on primitive roots,
but this is part iii) of our lemma above.

If d | n then xd − 1 | xn − 1; dividing xn − 1 by all these “obvious” factors we
obtain Φn, because every α ∈ µn is a primitive dth root of 1 for precisely one
value of d | n, namely d = ord(α), and all primitive dth roots of 1 occur. So we
can defineΦn inductively by xn−1 = φn(x)

∏

d|n,d,nΦd(x). Note that this implies
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Φn(x) ∈ Z[x], so we can regard it as being ∈ K[x] for any field K.
Theorem: Φn(x) ∈ Q[x] is irreducible. As an exercise the reader should use

Eisenstein to show this where n = pk for some prime p and integer k (we have
already done this for n = p). We shall give a proof due to Dedekidnd (1857):
recall Gauss’ lemma, that if f ∈ Z[x] is monic and factors in Q[x] then it factors
in Z[x]. So suppose Φn(x) = f g for some f , g ∈ Z[x]; we want to show that if ξ
is a rooot f f then ξa is a root of f∀a with (a, n) = 1, since then all roots of Φ are
roots of f and so g = 1. Write a as a product of primes pi; we have pi ∤ n. Then it
is enough to show that if ξ is a root of f then ξp is a root of f for any prime p ∤ n.
Suppose this were not the case: ξp is a primitive nth root of 1, but f (ξp) , 0, so
g(ξp) = 0, i.e. ξ is a root of f (xp). So f (x), g(xp) have a common factor (since they
have a common root ξ). Now reduce modulo p; let f̄ (x) =

∑

āix
i ∈ Zp [x], where

f (x) =
∑

aix
i ∈ Z[x]. f 7→ f̄ is then a ring homomorphism (as f g = f̄ ḡ), and

ḡ(xp) = (g(x))p, so h | f ⇒ h̄ | f̄ , h | g(xp) ⇒ h̄ | ḡp, so some factor of h divides ḡ,
i.e. f̄ , ḡ have some common factor, so Φn has a multible root, but p ∤ n so Φn is
separable so has no multiple roots, a contradiction.

Corollary: If K = Q, L = Q(ξ) where ξ = e
2πi
n , then [L : K] = #(Zn )× and χ is

an isomorphism Gal(Q(ξ)/Q)→ Z
n .

We shall write Q(ξn) for the nth cyclotomic extension of Q, i.e. the splitting
field for xn − 1 over Q; ξn is a primitive nth root of 1. We have Φn is irreducible
over Q, so [Q(ξn) : Q] = #(Zn )×. By the fundamental theorem of Galois theory,

intermediate subfields Q(ξn) ⊃ M ⊃ Q biject with subgroups 1 ≤ H ≤ (Zn )×

by M = Q(ξn)H; since (Zn )× is abelian, its subgroups are all normal so M/Q is

Galois, with Galois group
( Zn )×

H . This raises two questions: what is the structure

of (Zn )× (in particular, what are its subgroups?), and what are the corresponding
subfields?

We’ll first compute some examples [we shall sometimes write ξ for ξn]. If
n = p a prime, then (Zp )× = F×p is a cyclic group � Z

p−1 , so there is a unique

subfield for each k ∈ N with k | p − 1. So, example 1: if p = 5, (Z5 )× = Z4 and ∃!

intermediate subfield of degree 2, generated byη = ξ5+ξ
−1
5
= 2 cos 2π

5 = −1+
√

5,

so we have Q(ξ5) ⊃ Q(η) = Q(
√

5) ⊃ Q; in fact we have more generally:
Lemma: For any n ≥ 3 (which implies 2 | #(Zn )×, as we shall see in a

moment), there is a unique subfield M ⊂ Q(ξn) such that [M : Q] =
#(Zn )×

2 , i.e.

[Q(ξn) : M] = 2, namely M = Q(η) = Q(cos 2π
n ) where η = ξn + ξ

−1
n : ξn is a

root of the quadratic polynomial x2 − ηx + 1 ∴ [Q(ξ) : Q(η)] ≤ 2, but the field
automorphism ξ 7→ ξ−1 fixes η but not (for n ≥ 3) ξ, so this is exactly 2 and we
have the result.

Example 2: n = 7,Q(ξ7),Gal(Q(ξ7)/Q) = (Z7 )× = Z
6 =

Z
2 ×

Z
3 ; let the Galois

group be 〈σ〉 and choose σ = 3, i.e. (Z7 )× = {1, 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5}.
We already know η = ξ7 + ξ

−1
7

has degree 6
2 = 3 over Q; let’s write down its

characteristic polynomial. Artin tells us to consider the orbit of η under G; we

know σ3 fixes η, as Z2 = 〈σ3〉 and η ∈ Q(ξ7)
Z
2 (and we can see σ3(ξ) = ξ−1, so this

is right); the orbit is {η = ξ + ξ−1, ση = ξ3 + ξ−3, σ2η = ξ2 + ξ−2}, so by Artin the
minimal polynomial is (x − η)(x − ση)(x − σ2η), which we can expand out and
find to = x3 + x2 − 2x − 1. An exercise is the following generalization: Artin’s
theorem implies that every intermediate subfield ofQ(ξp) is generated by sums
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of powers of ξp.

What about Z3 ⊂ Gal(Q(ξ7)/Q)? Z
3 = 〈σ2〉; we average the orbit of the

subgroup 〈σ2〉 on ξ, and get ξ + σ2ξ + σ4ξ = ξ + ξ2 + ξ4 =: ǫ. Then by Artin,

Q(ǫ) = Q(ξ7)
Z
3 , so [Q(ǫ)|Q] = 2. Then Gǫ = {ǫ, ǫ′} where ǫ′ = σξ + σξ2 + σξ4 =

ξ−1+ξ−2+ξ−4. Then the minimal polynomial of ǫoverQ is (x−ǫ)(x−ǫ′) = x2+x+2,
which we find because the coefficient of x is ξ + ξ2 + · · · + ξ6 which must = 1,
and then the constant term can be found by similar group-theoretic reasoning
(though we can easily verify this result holds by simply expanding out). This is

a quadratic equation with discriminant −7, so Q(ǫ) = Q(
√
−7), which suggests

the following:
Proposition: for p > 2 a prime, the unique quadratic extension of Q con-

tained in Q(ξp) is Q(
√±p), where the ± is (−1)

p−1
2 . As a sketch of one method

of proving this, let G = (Zp )× = 〈σ〉; set α = ξ + σ2ξ + · · · + σp−3ξ; this is fixed

by 〈σ2〉 ⊂ G, so Q(α) is the quadratic extension of Q; Gα = {α, σα} where
σα = σξ+σ3ξ+ · · ·+σp−2ξ. An exercise: compute α×σα, and hence the minimal
polynomial of α, (x−α)(x− σα) = x2 + x+α× σα, and hence the discriminant of
this quadratic, to find the result. This method is due to Gauss, and the intricate
sums nvolving powers of ξ that it is necessary to use in this exercise are called
Gauss sums. They are “really there” [in that they are useful far beyond this
proof], and behave “nicely” because µ, the set of roots of xn − 1, is a group.

Now, a full proof by an alternative method: recall that if K is a field and f ∈
K[x] a polynomial, L the splitting field of K, ∆ the discriminant of f (

∑

i< j(αi−α j)
2

where the αi are the roots of f in L), we have K ⊂ K(
√
∆) ⊂ L with [K(

√
δ) :

K] = 1 or 2; it is 1 iff Gal( f ) ⊂ An, 2 iff Gal( f ) 1 An. We claim ∆(xp − 1) =

(−1)
p−1

2 pp, which then implies the proposition, since
√

pp = p
p−1

2
√

p < Q, so

Q ( Q(
√
∆) = Q(

√±p) ⊂ Q(ξp). First, a lemma: let f (x) = (x − α1) . . . (x − αn),
then ∆( f )± f ′(α1) . . . f ′(αn): f ′(x) =

∑n
i=1(x−α1) . . . (x−αi−1)(x−αi+1) . . . (x−αn),

so f ′(αi) = (αi − α1) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αn), as all the other terms

vanish. So f ′(α1) . . . f ′(αn) =
∏

i, j(αi −α j) which = (−1)
p(p−1)

2
∏

i< j(αi −α j)
2, as we

have changed the sign of
p(p−1)

2 terms in the product.

So if f = xp − 1, f ′ = pxp−1 so ∆ = ±ppξ(1+2+···+p−1)(p−1), as the roots are
1, ξ, . . . , ξp−1; this = ±pp either by careful explicit evaluation (which gives the
sign explicitly), or by observing that ∆ ∈ Z so ξN ∈ Z, so ξN = ±1.

Corollary: Gal(Q(ξp)/Q) 1 Ap.

Exercise: compute ∆(xpm − 1) explicitly, and ∆(xn − 1), and hence the unique
quadratic extension of Q contained in Q(ξn).

Example: p = 17, Q(ξ17); the Galois group is ( Z17 )× = Z
16 with subgroups 1 ≤

Z
2 ≤

Z
4 ≤

Z
8 ≤

Z
16 , so the corresponding subfields areQ(ξ17) ⊃ K3 ⊃ K2 ⊃ K1 ⊃ Q;

from above we have K1 = Q(
√

17). Clearly [Ki : Ki−1] = 2 so Ki = Ki−1(
√

k) for
some k ∈ Ki−1. So every element of Q(ξ17) is a “constructible” (by ruler and
compass) real. But K3 = Q(η) where η = ξ17 + ξ

−1
17
= 2 cos 2π

17 , so cos 2π
17 is

constructible. So we can construct the regular 17-gon by ruler and compass.
Theorem (Gauss): a regular n-gon is constructible iff n = 2kp1 . . . pr where

the pi are distinct Fermat primes (of which the only known are 3,5,17,257,65537):
[Q(ξn) : Q(cos 2π

n )] = 2, so cos 2π
n is constrictible iffQ(ξn) is a constructible field.

For the forward implication, if Q(ξn) is constructible, [Q(ξn) : Q] = #(Zn )× is
a power of 2, then as an exercise the reader may show if n = pe1

1
. . .per

r for the
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pi distinct primes, then #(Zn )× = φ(n) =
∏

i pei−1
i

(pi − 1), the “Euler φ function”.

So odd primes p can only occur once in n, otherwise pi | pei−1 | #(Zn )×, so

n = 2kp1 . . . pn; then observe that if p is prime and p − 1 = 2m then m must be
a power of 2, as otherwise write m = qr with q > 1 odd, and then xq + 1 =
(x + 1)(xq−1 − xq−2 + · · · + 1), so putting x = 2r we have a factorization of 2m + 1,
but we assumed this was prime, a contradiction.

For the converse, if n is of this form, then we have #(Zn )× is a power of 2, and

now by the structure theorem for finite abelian groups it must = Z
2a1
× Z

2ar for
some a1 ≥ a2 ≥ · · · ≥ ar; then we need a chain of subgroups whose subquotients
(i.e. the quotient of the two subgroups) have order 2, but this is immediate
by induction on the order - we just need a subgroup H of index 2 in Z

2a1
, then

H × Z
2a2
× · · · × Z

2ar is a subgroup of index 2 and we induct.

Exercise, as seen in the fourth example sheet: if n = 2a23a3 5a5 . . . then (Zn )× =
∏

p>2:ep>1( Z
pep−1 × Z

p−1 )× ( Z
2e2−2 × Z2 ), with the last term only appearing if e2 ≥ 1, since

( Zpn )× = Z
p−1 ×

Z
pn−1 for n ≥ 1, p , 2 and Z

2 ×
Z

2n−2 for p = 2, and ( Zmn )× = (Zm )× × (Zn )×

if (m, n) = 1.
Corollary/exercise: every finite abelian group is a quotient of (Zn )× for some

n; this follows from Dirichlet’s theorem on arithmetic progressions of primes,
which implies Z

p−1 has lots of factors. So every abelian group occurs as a

Galois group of an extension of Q. But much more is true: recall we have
Q ⊂ L ⊂ Q(ξn) ⇒ Gal(L/Q) is abelian. The converse of tihs is also true: if L/Q
is an abelian extension, then there is an n such that L ⊂ Q(ξn). This is called
the “Kronecker-Weber Theorem”, a part of “abelian class field theory”,one of
the high points of early 20th century mathematics, and the GL1 case of the
“Lenglands Program”, which remains an important research area even today.

Note that if F is finite then G is the Galois group of some extension, since
G ⊂ Sn for some n, by e.g. taking n = #G and letting G act on itself; then take
L = K(z1, . . . , zn) and L/LG is an extension as required.

8 Kummer extensions

(These are extensions of the form Q(
n
√
θ) for θ , 1)

Proposition: let L be a splitting field for xn−θ ∈ K[x] where charK ∤ n, θ , 0.
Then L contains a primitive nth root of 1, ξ, so K ⊂ K(ξ) ⊂ L, and Aut(L/K(ξ)) =
Z
d , a cyclic group, for some d | n. Moreover, xn − θ is irreducible iff d = n:
d

dx (xn−θ) = nxn−1, so charK ∤ n⇒ gcd(nxn−1, xn−θ) = 1, asθ , 0, i.e. xn−θhas n

distinct rootsα1, . . . , αn in L. But ( αi

α j
)n =

αn
i

αn
j
= θθ = 1, so α1

α1
, α2

α1
, . . . , αn

α1
are n distinct

nth roots of unity, all in L, i.e. #µn(L) = n, so we have a primitive nth root ξ of 1
in L, and the rootsαi areα, αξ, . . . , αξn−1 [for e.g. α = α1], so L = K(ξ, α). Define a
map χ : Aut(L/K(ξ))→ Z

n by χ(σ) = j where σα = ξ jα; this is well defined, since

for any σ ∈ Aut(L/K(ξ)), σα is a root of xn − θ so must = ξ jα for some j. Then
if τα = ξkα then στ(α) = σ(ξkα) = ξkσα, since σ fixes K(ξ), so = ξkξlα = ξk+lα, so
χ(στ) = χ(σ) + χ(τ) and χ is a group homomor (note it depends on our choice
of ξ); as before, χ is injective. So Aut(L/K(ξ)) is a subgroup of Zn , so must be
Z
d for some d | n. Finally, xn − θ is irreducible over K(ξ) iff Aut(L/K(ξ)) has a
single orbits on its roots, ⇔ #Aut ≥ n ⇔ #Aut = n ⇔ [L : K(ξ)] = n (writing
Aut for Aut(L/K(ξ))).
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Example: x6 + 3 ∈ Q[x] is irreducible by Eisenstein; L = Q(
6
√
−3, ξ6; recall

Φ6 = x2 − x + 1 so ξ6 =
1
2 (1 +

√
−3) so Q(ξ6) = Q(

√
−3); x6 + 3 is not irreducible

over Q(
√
−3) since it = (x3 +

√
−3)(x3 −

√
−3).

We have K ⊂ K(ξ) ⊂ L = K(ξ, α). Let G = Gal(L/K); we have N ⊳ G where
N = Gal(L/K(ξ)),N � Zd with d | n; Aut(K(ξ)/K) = G

N ⊂ (Zn )× abelian. But note
taht G need not be abelian, as e.g. S3 = Gal(X3 − 2) is not.

Example: semidirect product Zp ⋊ (Zp )×, which can be considered as the

group of matricies

(

µ a
1

)

for µ ∈ (Zp )×, a ∈ Zp [I think this is meant to be an

example of how a product of abelian groups may be nonabelian. By the end of
this course, none of the students attending had any idea what the lecturer was
going on about].

(Aside: semidirect products: suppose G is a group acting on another group
N by group automorphisms; write gn for (φ(g))(n). Then G × N forms a group
G⋊N [this sign may or may not be back-to-front; the lecturer used it either way
around at various points, whilst assuring us only one orientation was correct]
under multiplication (g1, n1)(g2, n2) (informally, = g1g2g−1

2 n1g2n2 = g1g2g2n1
n2)

= g1g2, g2n1
, n2). For example, (Zp )× acts on Zp by multiplication ab = ab. Observe

that if Γ is a group and N⊳Γ thenΓ acts on N by conjugation. Semidirect products
give us some of the groups of this form, but not all of them, since if Γ = G ⋊ N
then we have N ⊳ Γ and G a subgroup of Γ, So if ΓN is a subgroup of Γ, then it
is a semidirect product. It is an exercise for the reader to find an explicit N ⊳ Γ
such that ΓN is not a subgroup)

Corollary: Let θ ∈ K, suppose charK ∤ n, and K contains a (and therefore all)
primitive nth root of unity. Let L be a splitting field for xn − θ. Then Aut(L/K)
is cyclic, of order dividing n.

Amazingly, this corollary has a converse:
Theorem: let L/K be Galois with Aut(L/K) = Zn - “L/K is a cyclic extension”.

Suppose charK ∤ N and K contains a primitive nth root of unity. Then ∃θ ∈ K

such that “L = K(
n
√
θ)”, i.e. xn − θ is irreducible [over K] and L is a splitting

field for it. This is an important theorem, though its proof is not hard: let
Aut(L/K) = 〈σ〉 = {1, σ, . . . , σn−1}. Consider L as a K-vector space; dimK L = n.
σ : L → L is a K-vector space map; as σn = 1 we have all eigenvalues of σ
are nth roots of 1 (and so the eigenvalues are in K), there is an eigenvalue of σ
which is a primitive nth root (as otherwise σ has smaller order [than n]), and σ
is diagonalisable, since as charK ∤ n it has n distinct eigenvalues. Let ξ ∈ K be a
primitive nth root of 1 which is an eigenvalue of σ and α ∈ L be acorresponding
eigenvector: σα = ξα. Then α < K as K = L〈σ〉, but σ(αn) = (σα)n = (ξα)n = αn

so αn ∈ K; let it be θ. Then xn − θ = (x − α)(x − ξα) . . . (x − ξn−1α), as (ξiα)n =

αn = θ. So xn − θ is an irreducible polynomial over K, as its roots form a
single orbit under Aut(L/K) = 〈σ〉, so the splitting field for xn − θ, K(α), has
degree n, but it is contained in L and [L : K] = n, so K(α) = L and we have the
result. Moreover, we can explicitly find α: the linear map pξ : L → L given by
pξ(x + ξ

−1σx + ξ−2σ2x + · · · + ξ−(n−1)σn−1x) (or, if the reader prefers, this divided
by n, so that the map really is projection) has pξ(L) non-zero and projects L onto
Kα, the eigenspace of σ with eigenvalue ξ.

Example: cubics f (x) = x3 + px + q where charK , 2, 3; ∆ = −4p3 − 27q2, δ =√
∆, L is the splitting field of f , L = K(α1, α2, α3), f (x) = (x − α1)(x − α2)(x − α3)
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with α1 + α2 + α3 = 0. Suppose ξ3 =
1
2 (1 +

√
−3) ∈ K, i.e.

√
−3 ∈ K, and

δ = (α1−α2)(α2−α3)(α3−α1) ∈ K, and f is irreducible over K. Then, since δ ∈ K,
Aut(L/K) ⊂ A3 =

Z
3 ; since f is irreducible we have equality, so by the theorem,

L = K(
3
√
θ) for some θ ∈ K; this is a nonobvious result. So any element of L,

in particular the roots of f , is a linear combination of 1,
3
√
θ, (

3
√
θ)2, so we can

“solve such a cubic by radicals”; we shall do this in a moment.
So any cubic (in charK , 2, 3) is solvable by radicals: we can write f (x) =

x3 + px + q by completing the cube, put K′ = K(
√

3,
√
∆), L′ the splitting field

of f over K′ (i.e. the splitting field of (x3 − 1)(x2 − ∆) f (x) over K). If f is not
irreducible over K′ it factors as the product of a quadratic and a linear, and we
can already solve quadratics by radicals so we can solve f . If f is irreducible

we’re in the situation above, so ∃θ ∈ K′ such that L′ = K′(
3
√
θ); such a θ is of the

form c1 + c2

√
−3+ c3

√
∆+ c4

√
−3∆ for ci ∈ K, so we can write all elements of L′,

and in particular the roots of f , as things involving sums of iterated nth roots -
we can solve the cubic by radicals.

So, let’s find the roots of f : set β = pξ−1(α1) = α1 + ξα2 + ξ
2α3, γ = pξ(α1) =

α1 + ξ
2α2 + ξα3. So 1, β, γ form a basis of L/K, each lying in the σ-eigenspace

with respective eigenvalues 1, ξ−1, ξ; by the theorem β3, γ3 ∈ K; we would like
to find them in terms of the coefficients of f . Then we will be done, since
α1 =

1
3 (β + γ), α2 =

1
3 (ξ2β + ξγ), α3 =

1
3 (ξβ + ξ2γ).

Claim: 1) βγ = −3p 2) β3, γ3 are the roots of x2 + 27qx − 27p3; given this,

by 2) we have β3, γ3 = 1
2 (−27q ± 3

√
−3∆), so put θ = 1

2 (−27q + 3
√
−3∆), then

β =
3
√
θ, γ =

β

p .

We prove the claim by explicit computation: 1) βγ = (α1 + ξα2 + ξ
−1α3)(α1 +

ξ−1α2+ξα3) = α1
1
+α2

2 +α
1
3+ (ξ+ξ2)

∑

αiα j = (α1 +α2+α3)2− 3p = −3p. 2) by 1),

β3γ3 = −27p3, so we have to compute β3+γ3; we find it is 3(α3
1
+α3

2
+α3

3
)+18α1α2α3;

then as f (αi) = 0, α3
i
= −pαi + q, so

∑

α3
i
= −p

∑

αi + 3q = 3q and β3 + γ3 = −27q,

so (x − β3)(x − γ3) = x2 + 27qx − 27p3 as required.
Definition: i) L/K is an extension by radicals if there is a chain K = L0 ⊂ L1 ⊂

· · · ⊂ Lr = L where each Li is obtained from Li−1 by adjoining a single root of
xn − θi for some θi ∈ Li−1, ii) L/K is contained in an extension by radicals if we

have an extension by radicals L′/K such that K ⊂ L ⊂ L′, i.e. if every element of
L can be written as a sum of iterated nth roots.

Definition: f ∈ K[x] is solvable by radicals if its splitting field is contained

in an extension by radicals, e.g. any quadratic or cubic is solvable by radicals.
[Herafter] assume L/K is Galois with G = Aut(L/K)
Lemma/Example: Suppose K contains a primitive |G|th root of unity and

G is abelian; then L/K is an extension by radicals: we have G � Z
n1
× · · · × Znk

,

induct on #G. Put N = Z
n1

; we have N ⊳ G since G is abelian, so K ⊂ KN ⊂ L,

then [L : LN] = Z
n , so by the fundamental theorem of Galois theory LN/K is

Galois with Galois group G
N , but G

N is abelian, � Zn2
× · · ·× Znk

, so by the induction

hypothesis LN/K is an extension by radicals. Now L/LN is a cyclic extension,
ond K (and hence LN) contains all nth roots of unity, so by Kummer theory

L = LN(
n1
√
θ) for some θ ∈ LN and we are done.

Corollary: If G is abelian, and K arbitrary with charK ∤ #G, then L/K is
contained in an extension by radicals: put l = #G, and we have an extension
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L ⊃ K, but then L ⊂ L(ξl) ⊃ K(ξl) ⊃ K, where L(ξl is a splitting field for xl − 1.
We claim Aut(L(ξl)/K(ξl)) ֒→ Aut(L/K), i.e. is a subgroup of Aut(L/K): since
L/K is Galois, L is the splitting field of some polynomial f ∈ K[x], so L(ξl)
is the splitting field of this f regarded as a polynomial over K(ξl). Now if
σ ∈ Aut(L(ξl)/K(ξl)) then σ preserves f , so permutes its roots, so σ(L) ⊂ L, so we
have a map Aut(L(ξl)/K(ξl)) → Aut(L/K). This map is injective, as σ = 1 iff it
fixes all the roots of f (so σ ∈ Aut(L(ξl)/K(ξl)) fixes all the roots of f ⇔ σ fixes all
the roots of f over K, as all the roots are the same,⇔ σ : L→ L is the identity).
So K ⊂ K(ξl) ⊂ L(ξl) is an extension by radicals, by the above, so L ⊂ L(ξl) is
contained in an extension by radicals.

Example: If L is the splitting field of xn − θ, K ⊂ K(ξn) ⊂ L, [L : K(ξn)] =
N = Zd ⊂

Z
n , [K(ξn) : K] = G

N =
Z
k ⊂ (Zn )× (k | #(Zn )×). Note that the above proof

works for G not necessarily abelian, e.g. x3 − 2 has G = S3, but the above proof
holds, so in fact we only need a weaker condition. We used the properties that
1) ∃N ⊳G such that G

N is cyclic, 2) N is one of the class of groups we can handle
by this proof (this is what our earlier talk of being “built out of cyclic groups”
referred to), and 3) if G is in this class and H ≤ G, then H is also in this class.
We therefore define the following, which clearly has the first two properties;
we will need to prove the third.

Definition: G is solvable if there is a chain of subgroups 1 = G0 ≤ G1 ≤ · · · ≤
Gr = G such that i) each Gi ⊳Gi+1, ii) Gi+1

Gi
is a cyclic group. (exercise: equivalent

to define by i) as given and ii′): Gi+1

Gi
is abelian).

Examples of solvable groups: i) abelian groups, ii) (Zn ) ⋊ (Zn )× as defined

above (Zn is the normal subgroup and (Zn )× the quotient group). iii) (exercise)

B := {

























a1 b1 . . . . . .
0 . . . . . . . . .
. . . . . . . . . bn−1

. . . . . . 0 an

























∈ GLn(Fp)}, the group of upper-triangular invert-

ible matricies over Fp (note the n = 2 case proves ii), since as mentioned above

we can write the elements of Zn ⋊ (Zn )× as

(

a b
1

)

for a ∈ (Zn )×, b ∈ Zn . iv) If G is

simple then it is not solvable.
Proposition: i) If G is solvable and G ≤ G then H is solvable: if G is solvable

we have a chain of subgroups 1 = G0 ≤ · · · ≤ Gr = G; put Hi = Gi ∩H, then we
have 1 = H0 ≤ H1 ≤ · · · ≤ Hr = H. If h ∈ Hi+1 then hGih

−1 = Gi since Gi ⊳ Gi+1,
so h(Gi ∩ H)h−1 ⊂ Gi ∩ H, so Hi ⊳ Hi+1 Then it is an exercise that Gi+1∩H

Gi∩H ֒→ Gi+1

Gi

by h(Gi ∩ H) 7→ hGi is an (injective) group homomorphism, so Hi+1

Hi
, ii) For G a

group and N ⊳ G, G is solvable iff N and G
N are solvable - exercise.

Theorem (Galois, the night before he died, if that wasn’t just the lecturer
making a joke): Let f ∈ K[x], charK = 0 or charK > deg f . Let L be the splitting
field of f . Then f is solvable by radicals iff Gal(L/K) is solvable.

Example: x5+2x+6 ∈ Q[x] has Galois group S5 which isn’t solvable, so isn’t
solvable by radicals.

We have prooved the reverse implication above; for the forward, assume f
is solvable by radicals (then we need to show Gal(L/K) is a solvable group): we
have a chain of field K = K0 ⊂ K1 = K0(β1) ⊂ K2 = K1(β2) ⊂ · · · ⊂ Kr = Kr−1(βr) =
M, where βr1

i
∈ Ki−1, and f splits completely in M, i.e. L ⊂ M. Let N = lcm{ri};

replace K0 with K(ξN) where ξN is a primitive Nth root of 1, and inductively
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replace Ki by Ki−1(βi); all our assumptions still hold.
Case 1: suppose M/K is Galois. We have K ⊂ L ⊂ M; it is enough to show

that Aut(M/K is solvable, as then by the fundamental theorem of Galois theory
L/K is Galois and Aut(L/K) is a quotient of Aut(M/K), and quotients of solvable
groups are solvable. Set Gi = Aut(M/Ki); we have Aut(M/K) ⊃ G0 ⊃ G1 ⊃ · · · ⊃
Gr = {1}. As ξN ∈ K0, for i ≥ 1 Ki = Ki−1(βi) ⊃ Ki−1 is a Galois extension, since it
is a splitting field for xni−βni , and cyclic by Kummer theory: it has Galois group
a subgroup of Zni

. For i = 0, K0 = K(ξN)/K is Galois also. But now M/K is Galois,
so MlKi is Galois, but by the above Ki+1/Ki is Galois, so by the fundamental

theorem of Galois theory, Gi ⊳ Gi+1 and Gi+1

Gi
is a subgroup of Zni

, so cyclic. So G
is solvable.

Case 2: if M/K is not Galois, we can reduce to case 1 by the following
proposition:

Proposition: Let M/K be an extension by radicals, then there is an extension
N/M by radicals such that N/K is Galois.

We do really need to prove something here: consider K = Q, L = Q(
√

2),M =

Q(
4
√

2 =

√√
2); we have L/K and M/L quadratic so Galois, but M/K is not Galois,

since if it were, it would have to be the splitting field of x4 − 2, but it doesn’t

contain i
4
√

2; informally, this happens because we didn’t adjoin

√

−
√

2 to L to
make M, but to make a Galois extension we need to do the same thing to all
the roots in L/K, not just one of them. (For a more rigorous proof, we can find

Aut(Q(
4
√

2)/Q) = Z2 , but we clearly have 4 = [Q(
4
√

2 : Q] , #Aut(Q(
4
√

2)/Q).
Lemma: For L/K Galois, θ ∈ L, K ⊂ L ⊂ L(β) where βn = θ, and ξn ∈ K, ∃ an

extension N/L(β) by radicals such that N/K is Galois. Given this, we have the
proposition: inductively, we work up the chain. K0/K is Galois; we apply the
lemma to K1 = K0(β), and optain N1 such that N1/K is Galois and an extension
by radicals and K1 ⊂ N1. Then apply the lemma to N1(β2)/N1, obtaining N2

such that N2/K is Galois and an extension by radicals and K2 ⊂ N2, and so on.
Proof of lemma: Let G = Aut(L/K), h(x) =

∏

σ∈G(xn − σθ) ∈ L[x]. Then
h(x) ∈ L[x]G, which = K[x] as L/K is Galois. Also, as L/K is Galois, it is the
splitting field of some polynomial f ∈ K[x]. Let N be the splitting field of f h
over K; then N/K is Galois. N is the splitting field of f h, and hence of h, over L,
so N is obtained from L by adding, for each σ ∈ G, all the roots of xn − σθ. So N
is a radical extension of L, as we obtained it from L by adding 1) the primitive

nth roots of 1 and 2) ∀σ ∈ G, a single root
n
√
σθ.

9 Quartics

[Suppose] f ∈ K[x],deg f = 4. We want to find the roots of f and find its Galois
group; by Kummer theory the second will give us the first. Let L be the splitting
field [of f ], assume charK ≥ 5, then f (x) = (x − α1)(x − α2)(x − α3)(x − α4) (over
L), and by completing the fourth power we can wlog take α1 + α2 +α3 + α4 = 0,
so f (x) = x4 + px2 + qx + r. Assume f is irreducible; the Galois group acts
transitively on {α1, . . . , α4}, so the possible Galois groups are S4,A4,D4 =

Z
4 ⋊

Z
2 =

〈(1234), (12)(34)〉, Z4 = 〈(1234)〉,V = {1, (12)(34), (13)(24), (14)(23)} � Z2 ×
Z
2 (there

are three subgroups of S4 isomorphic to Z4 , but they are all conjugate; likewise
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for D4. There are many subgroups� Z2 ×
Z
2 , but none of the others act transitively

on {1, 2, 3, 4}. We have V ⊳ S4.
Now, how do we determine G, and hence solve f ?

i) Let ∆ = disc( f ) =
∏

i< j(αi − α j)
2, δ =

√
∆. If δ ∈ K, we have G ⊂ A4 so G is

one of V,A4; if δ < K, G 1 A4 so G is one of Z4 ,D4, S4.
ii), G is solvable, V ⊳ S4, so V ⊳ A4; we have 1 ⊳ V ⊳ A4 ⊳ S4 with quotients

Z
2 ×

Z
2 ,
Z
3 ,
Z
2 respectively. So S4 is solvable. So we have 1 ≤ G∩V ≤ G∩A4 ≤ G,

where G may be V (in which case we have 1 ≤ V ≤ V ≤ V), A4 (1 ≤ V ≤ A4 ≤ A4),
D4 (1 ≤ V ≤ V ≤ D4), Z4 (1 ≤ Z

2 ≤
Z
2 ≤

Z
4 ), or S4 (1 ≤ V ≤ A4 ≤ S4). The

corresponding fields are L ⊃ M := LG∩V ⊃ LG∩A4 = K(δ) ⊃ K, so we need
to study M = LG∩V. We Have [L : M] = 1, 2 or 4 and [M : K(δ)] = 3 or

1, as G∩A4

G∩V is a subquotient of A4

V , so its quotient group is a subgroup of Z3 (for

H ≤ G,G1⊳G2 ≤ G,H∩G1⊳H∩G2 we have an injection G2∩H
G1∩H →

G2

G1
), [K(δ) : K] = 1

or 2. So either M/K(δ) is a cubic extension, in which case M = K(δ)( 3
√
σ) for some

θ ∈ K(δ), or M = K(δ).
L = K(α1, . . . , α4). Given any γ ∈ L,

∑

g∈G∩V gγ is ∈ LV∩G = M. We want to
partially symmetrise polynomials in α1, . . . , α4 (remark for interest: we could
do this universally, using the symmetric function theorem), e.g. α1 7→ α1 +

α2 + α3 + α4 = 0. [L : M] ∈ 1, 2, 4, so we should average quadratic (and
possibly quartic) polynomials; a convenient choice of polynomials to aveage
is β = α1 + α2, γ = α1 + α3, ǫ = α1 + α4 (we have β = −(α3 + α4) etc.). β, γ, ǫ
span the same space as α1, α2, α3, α4. β2 = (α1 + α2)2 = −(α1 + α2)(α3 + α4); recall
V = {1, (12)(34), (13)(24), (14)(23)}, so Vβ2 = β2, i.e. β2 ∈ M; similarly for γ2, ǫ2.
Furthermore we have Gβ2 [lecturer here put =, but must mean ⊂] {β2, γ2, ǫ2}.

Claim: LG∩V = K(β2, γ2, ǫ2); we clearly have⊃. To show equality, it is enough
to show Aut(L/K(β2, γ2, ǫ2)) = G ∩ V, by Artin. So it suffices to show that
β2, γ2, ǫ2 are distinct, as then {g ∈ S4 ∩ G : gβ2 = β2, gγ2 = γ2, gǫ2 = ǫ2} = G ∩ V
(e.g. if γ2 , ǫ, we have (12) < this set, as (12)γ2 = ǫ2. [Lecturer became
incomprehensible] (By orbit-stabiliser, the elemnts which fix {β2, γ2, ǫ2}must be
D4). If β2 = γ2 then β = ±γ, i.e. α2 = α3 or 2α1 + α2 + α3 = 0, which implies
α1 = α4. But the roots α1, . . . , α4 are distinct (charK > 3, so the extension is
separable).

Define g(x) = (x−β2)(x−γ2)(x−ǫ2), the “resolvent cubic”, which is ∈ K[x] as
G permutes its roots; as the roots are G-invariant, the coefficients are symmetric
fuctions ofα1 . . . , α4, so we can write g(x) in terms of the coefficients p, q, r of f (in
fact, as we can show by carefully expanding out, g(x) = x3+2px2+(p2−4r)x−q2),
and as M is the splitting field of g/K and g is a cubic, which we can solve, we
can find all the roots of f by radicals: we solve for β2, γ2, ǫ2 by solving cubics,
take square roots to get β, γ, ǫ (choosing signs such that βγǫ = −q - we have a
free choice of the signs of β, γ, but then must take ǫ = − q

βγ ), and then β, γ, ǫwere

a basis, so we can find the roots: α1 =
1
2 (β + γ + ǫ), α2 =

1
2 (β − γ − ǫ), etc.

But in the process wee have almost determined the Galois group: if g is
reducible, then M = K(δ), i.e. G fixes at least one of β2, γ2, ǫ2, which is the case

iff G ∩ V = G ∩ A4 (since it means # G∩A4

G∩V = 1), which is the case iff G is one of

D4,
Z
4 ,V. So we have four cases: if ∆ is a square (in K) and g reducible then the

Galois group is V, if ∆ is a square but g irreducible then the group is A4, if ∆ is
not a square and g is reducible then the group is one of D4,

Z
4 , and if ∆ is not

a square and g is irreducible then the group is S4. We can see this as having
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checked [G : G∩A4] by ∆ and [G∩A4 : G∩V] by g; together these distinguish
all the possibilities except for the case where the group may by D4 or Z4 . We can
continue this analysis, and find polynomials in p, q, r when g is reducible and δ
not a square, which detect whether the group is D4 or Z4 .

A fun/silly application: for charK , 2, set α =

√

r + s
√

t for r, s, t ∈ K. When

can this be written as
√

a +
√

b for some a, b ∈ K? We have solved this: write
down a quartic with α as a root, e.g. f (x) = (x2 − r − s

√
t)(x2 − r + s

√
t) =

x4 − 2rx2 + (r2 − s2t). Let L be the splitting field of f ; since f was obtained by

iterated square roots, [L : K] ∈ 1, 2, 4, 8. L = K(
√

a,
√

b) (“L is biquadratic”) iff

G = Aut(L/K) is V = Z2 ×
Z
2 . So If |G| = 8, we cannot write α in the form

√
a+
√

b

(i.e. if the group is D4, we cannot do this); if |G| = 4, the case Z4 is not ok either.
So L is biquadratic iff ∆ = disc( f ) is a square (A4 and S4 are impossible, as they

have orders other than 1,2,4,8). We know the roots of f are ±α,±
√

r − s
√

t, so

we can easily calculate ∆ =
∏

i< j(αi − α j)
2 = 28s4t2(r2 − s2t), which is a square iff

r2 − s2t is a square in K.

10 Function Fields, and a dictionary

C[x] is the set of polynomial functions C → C; C(x) is the fraction field therof,
the set of rational functions C \ {a finite set of points} → C. Let K = C(x), L =

K(
√

x3 − x) =
C(x)[y]

y2=x3−x
. L/K is a Galois extension since it is quadratic; its Galois

group G = 〈σ〉where σy = −y, σx = x. We ask what is the “meaning” of L? L is

the fraction field of R =
C[x,y]

y2=x3−x
, so we first examine R. We claim it is the ring

of polynomial functions on E = {(x, y ∈ C2 : y2 = x3 − x}: C[x, y] is the set of
polynomial functions C2 → C, and the function y2 = x3−x vanishes on E by the
definition of E, so is ≡ 0 on E, so all functions in the ideal (y2 = x3 + x) vanish
on E, so R is a well defined ring of functions on E, and the functions we get are
defined by polynomials, and the rest of the claim is true by the definition of
E. So L is the set of rational functions on E\ some finite set of points; the finite

set of points where γ(x, y) =
p(x,y)

q(x,y) is not defined is the set of (x, y) ∈ E where

q(x, y) = 0.
The field inclusion K = C(x) ֒→ L comes from the ring inclusion C[x] ֒→ R,

which corresponds to a map on spaces p : E → C by (x, y) 7→ x. For each x
except 0, 1,−1 we have two possible ys (so there are two preimages in p−1(x));
the map p : E → C is a 2:1 covering map, except at 3 points of E. Z

2 = 〈σ〉
acts on E by σ(x, y) = (x,−y); 〈σ〉 permutes the two points in the fibre of [a
general x]. E

〈σ〉 = the set of orbits of Z2 on E = C, so we have a covering space

E \ 3 points → C \ 3 points with covering group Z
2 , and the Galois group G is

the group of this covering.
We can use this to sketch E: we can consider E as two planes above the plane

of C; over a small disc not including 0,1,-1, the preimage in E is two disjoint
discs each of which bijects with our disc in C. But over 0,1,-1, what happens?

Around x = 0, if |x| << 1 then we have x3 − x = −x(1 − x2) ≈ −x, so in a
small disc around x = 0, the equation looks like y2 = x (the lecturer changing
x to −x for amusement). What does y2 = x look like? Consider the projections
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p : (x, y) 7→ x, q : (x, y) 7→ y; q is a bijection, so P = {(x, y) : y2 = x} is isomorphic
to C. So the preimage of a small disc about 0 is a single disc. y2 = x looks like a
single copy of C, but “wrapped around itself twice”; if we have an arc γ(t) = eit

for t ∈ [0, π] then under p : y 7→ y2 this becomes a circle, and similarly for the
same map for t ∈ [π, 2π]. So the inverse image of a circle in the x plane is a
circle wrapped around twice; Kummer extensions yn = x are wrapped around
n times.

What is E = {(x, y) ⊂ C : y2 = x3 − x}? To visualise, we first sketche it over
R; whe get an ellipselike section through 0 and -1, and then a disjoint curve
passing through 1 on which y tends towards ±∞ as x→ ∞ (we can verify this

because 2 f
dy

dx = 3x2 − 1, so if x ≥ 1, y > 0 we have y′ > 0 so the curve keeps
increasing, but for y < 0 y′ < 0 so the curve keeps decreasing also.

Now in C2, let Γ = {(x, y) ∈ E : y ∈ R, x ∈ [−1, 0] ∪ [1,∞)} = p−1([−1, 0] ∪
[1,∞)). Then E \Λ disconnects into two pieces, each = C \ ([−1, 0]∪ [1,∞)) - if

you pick a branch of
√

x3 − x and move around continuously, you never get to
the other branch, as to do so you would have to circle around 0, 1 or −1. So E
is two copies of this cut plane, “glued together”: to do this we round the cuts a
little, then take two copies, turn one over, and glue them along the edges of the
cut. This gives us a pair of planes which come together to meet in a donut-like
hole and then at a similar hole stretched out to infinity - if we add the point
at infinity, we just have two spheres each with a circle missing, and are gluing
along these circles, thus making a torus. So E is a torus minus a single point.

So the solutions of algebraic equations have topologies; they are (interest-
ing) topological spaces, and the Galois group is the covering group (group of
deck transformations). A Galois extension corresponds to a covering map in
topology. We have a dictionary: if X is a topological space, it corresponds C(X)
the ring of continuous functions X→ C under pointwise addition and multipli-
cation; if X is an algebraic variety or complex manifold, this corresponds to the
subring O(X) of algebraic or holomorphic functions X→ C, respectively. Then
if K(X) is the fraction field of O(X), the union of the sets of functions defined on
U over all open U ⊂ X [I have no idea, really], p ∈ X corresponds to a maximal

ideal in O(x), mp = { f ∈ O(x) : f (p) = 0}; we have
O(x)
mp
= C.

An idea: any commutative ring can be thought of al the ring of functions on
some topological space; points of this topological space correspond to maximal
ideals of R, and algebraic properties of R translate into geometric properties of
this topological space.

[Now the final, utterly incomprehensible lecture]
The Galois group is an avatar of the fundamental group π1(X). If X is a

complex manifold/topological space/etc. we have O(X) the ring of holomor-
phic/continuous/etc. functions X → C. Then a map π : X → Y of spaces
corresponds to a ring homomorphism O(Y)→ O(X) by f 7→ f ◦ π.

The reader may verify that if π is surjective then the map O(Y) → O(X) is
injective; in this case it induces a map from K(Y), the fraction field of O(Y), to
K(X). Then π−1(y) is a finite set ∀y ∈ Y iff K(Y)/K(X) is an algebraic extension.
If K(Y)/K(X) is Galois, then there is a finite group G acting on X, freely on an

open set X̊, and X̊
G = Y̊ is open in Y.

For p ∈ X, { f ∈ O(X) : f (p) = 0} is a maximal ideal corresponding to the
point p.

For number fields and function fields of Riemann surfaces (algebraic curves),
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we have finite extensions K/Q,K/C(x) respectively. Functions defined every-
where on our curve then correspond to rings of integers in K:

Points on a curve correspond to maximal ideals, which correspond to prime

ideals, so e.g. for the curve
C[x,y]

x3−x=y2 and number field Q(i)/Q, points a ∈ C with

prime ideal (x+ a)C[x] ( C[x]
(x−a) = C), a corresponds to a prime p and so to pZ, and

thus to Z
pZ = Fp. Then an interesting question is: what is the analogue of a small

disc on the curve? But first:

11 Reduction modulo p

If f ∈ Z[x], p prime, f (x) =
∑

aix
i, let f̄ (x) =

∑

āix
i ∈ Fp[x]. We can study f by

studying its reduction modulo p for various p, e.g. if f̄ is irreducible then so is
f . For another example, if f (x) = x4 + 5x2 − 2x − 3, consider this modulo 2; it is
x4 + x + 1 = (x2 + x + 1)2. Modulo 3, it is x4 − x2 + x = x(x3 − x + 1). So it must
be irreducible over Z, as if it had a factorization over Z then its factorizations
modulo p would be refinements of this, which is impossible.

Theorem (without proof): if f is monic, f ∈ Z[x], p prime and f̄ separable,
then, considered as subgroups of Sn, Gal( f/Q) ⊃ Gal( f̄/Fp). Corollary: if
f̄ = h1 . . . hr ∈ Fp[x] with the hi irreducible of di, then Gal( f ) contains an element
of cycle type (d1, . . . , dr) (i.e. a composition of disjoint cycles with these lengths);
it is an exercise to deduce this from the theorem. Note that if f̄ is separable then

so is f , since ∆( f̄ ) = ∆( f ).
Going back to our consideration of a small disc: by the implicit function

theorem we can take the centre to be 0 and have a single local coordinate x. Then
functions become locally power series, elements of C[[x]]. We can approximate

these by cutting off f after n terms, getting elements of C[[x]]
xn =

C[x]
xn .

Definition: Zp, the p-adic integers, is {(X1,X2, . . . ) ∈ Zp ×
Z
p2 × · · · : xi = xi+1

mod pi} (“Zp = lim←
Z

piZ
”, an “inverse limit”). This is a ring under componen-

twise addition and multiplication. We can map Z → Zp by n 7→ (n mod p, n
mod p2, . . . ); this is an injective ring homomorphism.

Claim: if n ∈ Z with p ∤ n then 1
n ∈ Zp: since p ∤ n, gcd(pi, n) = 1∀i, so

∃ai, bi such taht ain + pibi = 1, i.e. ai is, informally speaking, 1
n mod pi. Then

1
n = (a1, a2, . . . ).

So we have Z(p) = {mn ∈ Q : p ∤ n} ֒→ Zp; note p 7→ (0, p, p, . . . ), which does
not have an inverse inZp, since it is 0 modulo p (we have a ring homomorphism
Zp → Fp by (X1,X2, . . . ) 7→ X1). Exercise: Zp is a PID, with unique prime ideal

pZp (so
Zp

pZp
= Fp).

Definition: Qp = FracZp (i.e. the fraction field of Zp), “p-adic numbers”.

This is = Zp[ 1
p ], so Q ⊂ Qp.

An analogy: Zp is likeC[[x]],Qp is like Laurent seriesC((x)),Qp is likeC((x)),

which (exercise) =
⋃

n∈ZC((x
1
n )); [Qp : Q] = ∞.

Proposition: xp − x ∈ Zp[x] factors completely in Zp[x], i.e. Zp contains all
(p − 1)st roots of unity. We need:

Lemma: if a, b ∈ Z, a ≡ b mod pn for som en ≥ 1, then ap = bp mod pn+1.
Proof: a = b + pnr⇒ ap = bp + pbp−1pnr =

(p
2

)

bp−2p2nr2 + · · · ⇒ ap ≡ bp mod pn+1.
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Now, proof of the proposition: xp − x factors into distinct linear factors
in Fp[x]. We shall use the lemma to “lift” this to Zp: let ā ∈ Fp, a0 ∈ Z any

integer such that a0 mod p = ā. Put a1 = a
p

0
; a

p

0
≡ a0 mod p by Fermat. Then

by the lemma, a
p

1
= (a

p

0
)p ≡ a

p

0
mod p2, by the lemma this = a1 mod p2. Put

a2 = a
p

1
= a

p2

0
, then a

p

2
= (a

p

1
)p =≡ a

p

1
= a2 mod p3 by the Lemma, and so on. So

set τ(ā) = (a0, a
p

0
, a

p2

0
, . . . ), and we have that this is Zp, and also that τ(ā)p = τ(ā),

and if ā , b̄ then τ(ā) , τ(b̄) (as they’re different modulo p). So this gives p
distinct solutions to xp = x ∈ Zp (and so, as should be clear anyway, any choice
of a0 gives the same result).

Corollary: τ : F×p → Zp is a group homomorphism; we have τ(a)τ(b) = τ(ab),
but τ(a) + τ(b) , τ(a + b). The map is called the “Teichmuller lift”.

Example:
√
−1 ∈ Z5 is 2, so τ(2̄) = (2, 25, 2125, . . . ) ≡ (2, 7, 57, . . . ).

So we have F×p → Z×p ֒→ Qp ⊃ Q; τ(F×p ) = {γ ∈ Qp : γp−1 = 1}. But

Q ⊂ Qp ֒→ Qp, so we have identified the elements of F×p with the (p − 1)st roots

of 1 in C, by picking an isomorphism Qp → C. So this is the “true” reason those
roots form a group, and the nonuniqueness of the group structure on them
corresponds precisely to the non-canonicalicity of our choice of isomorphism

from Qp to C.
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