
Fluids

July 5, 2008

Books

Several books are listed in the printed notes for this course. Of these, the
best are M van Dyke’s “An album of fluid motion”, which illustrates our re-
sults with wonderful pictures of actual fluids, and DJ Acheson’s “Elemental
Fluid Dynamics”. It is also very much worth looking at G M Homsy et al’s
“Multimedia Fluid Mechanics”, and, finally, the pictures and course notes at
www.damtp.cam.ac.uk/user/ngb23/FD.

The reader should ensure they are familiar with last year’s Vector Calculus
course before starting this one.

We shall use [f ] to denote the dimensions of f , and ≡ to mean equality of
dimensions. Recall that ~u · ~∇ represents a directional derivative in the direction
of ~u.

The definition of a fluid is in some sense the most important part of this
course, and there is no truly good definition. The critical difference between a
fluid and a solid is that a fluid cannot resist the forces applied to it - one way
of describing this is to say that fluids cannot support shear stress when at rest
- but of course we are only really interested in fluids when they are moving. It
is not always obvious whether something is a fluid, as e.g. “silly putty” behaves
as a fluid on long timescales but not short ones.

Two important ideas in fluids

Fluids contain many molecules. Some physicists will therefore attempt to model
them by considering each molecule individialy, but this is impractical to calcu-
late. We will instead consider “packets” of fluid, large enough that the particu-
late nature of the fluid is not apparent, but small enough that the packet can
be treated as having a single velocity, which is simply the average velocity over
the small volume of the packet.

There are two ways to view a fluid. In Lagrangian mechanics, as is usually
used with systems of solids, we consider specific packets, and follow their position
and velocity over time. However, simpler and generally more useful for fluids
is the Eulerian method where we consider fixed points and trace the velocity
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there over time as the specific packet changes; we shall be using this method
exclusively during this course, which will initially give some confusing results.

There are three main ways of visualizing fluid flows, which are equivalent
if the flow does not change over time. A pathline is the trajectory of a single
fluid packet over time. Streaklines are locus of positions (at the end of the
time interval) of all the packets passing through a fixed point in a given time
interval. Finally a streamline is a sort of instantaneous pathline, intuitively
made by composing infinitesimal instantaneous streaklines at a fixed time.

We use ~x to mean the vector (x, y) and similar. For a flow ~u (~x, t) and
example (yt, 1):

Pathlines are curves ~X (t) found by solving ∂
∂t
~X (t) = ~u

(
~X (t) , t

)
, with

boundary condition ~X = ~x0 when t = 0; in our example we find (eliminating t
from the result to find the line in terms of x and y) X = x0 + 1

2y0 (Y − y0)
2

+
1
3 (Y − y0)

3

Streaklines are curves ~X (s, x0, t) where s is an arclength parameter along

the ltceakline found by solving ∂ ~X
∂t

= ~u
(
~X, t

)
with ~X = ~x0 when s = t. In this

case we eliminate s to obtain the streakline as a function of t; in our example
we have X = 1

2 tY
2 − 1

6Y
3; note that this is different from the pathline

Streamlines are again curves ~X (s, x0, t) but with ∂ ~X
∂s

= ~u (~s, t), and ~X = ~x0

at s = 0. In our example, eliminating s we have X = x0 + 1
2

(
Y 2 − y2

0

)
t which is

different again. However, in part IB these curves are generally coincident (this
is the case precisely if the flow is steady); in this case streamlines are generally
the easiest to calculate.

Material Derivative

This is the rate of change with time as seen when following a particular fluid
parcel. We derive this derivative by δf = f (~x+ δ~x, t+ δt) − f (~x, t) = δ~x ·
∇f + ∂f

∂t
δt (plus higher order terms which disappear in the limit); the first term

here is the spatial gradient of f and the second is the temporal gradient at

constant ~x. We have δ~x = ~u (~x, t) δt, so δf =
(
(~u · ∇) f + ∂f

∂t

)
δt; Taking the

limit what in fluid mechanics is called Df
Dt

is ∂f
∂t

+ ~u · ∇f ; we sometimes write
this as D

Dt
= ∂

∂t
+ ~u · ∇. Compare this with the chain rule for differentiation.

This is sometimes called the Lagrangian derivative though this is misleading.
It is the sum of the Eulerian temporal derivative and what is called the advected
or convected derivative.

Kinematic boundary cond

We have a first order DE so need one boundary cond; there is no mass change
at the boundary i.e. no normal flow, ~u · ~n = 0; while the tangential flow is
important we will not cover it in this course. If the boundary moves with vel
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~U (~x, t) then there is no normal frow in its rest frame, i.e. ~u · ~n = ~U · ~n on the
boundary curve c.

Incompressibility

In general Dρ
Dt

+ ρ∇ · ~u = 0
In IB we have ρ constant so ∇ · ~u = 0; this is obviously false IRL. Most

immediately this excludes sound, suggesting it is only valid for |~u| << c the
speed of sound; note that c is very small in e.g. air-water mixtures. c for a
given substance is found by c2 = ∂p

∂ρ
|S , the change of pressure with density

where entropy is constant. With this restriction we can still model most water
flows e.g. rivers, water waves, subsonic aircraft, bubble motion, and incident
jets.

Stream Functions

These are 2D flows, say varying only in x, y. We can express them in 2D
cartesian coordinates (u, v, 0) with ∂

∂z
≡ 0. Recall as in VC that for ~u = (P,Q, 0)

as ∇ · ~u = 0 we must have ∂P
∂y

= ∂Q
∂x

, and then we have P = ∂ψ
∂x

etc. for some
potential ψ obtainable by integration. ψ = c for constant c gives the streamlines,
tangential to ~u. Where ~∇ψ is larger, i.e. the streamlines are closer together,
|~u| is bigger. The volume flux through any curve from ~x0to ~x1 is given by∫ x1

x0
~u · ~ndS = ψ (x1) − ψ (x0)

Summarizing, D
Dt

= ∂
∂t

+ ~u · ∇, D
Dt
ρ+ ρ∇ · ~u = ~0, ~u · ~n = ~U · ~n and ∇ · ~u =

0. In 2D cartesians this last condition gives ~u = (ψy,−ψx); in 2D polars,
ur = 1

r
∂
∂θ
ψ, uθ = − ∂

∂r
ψ, in axisymmetric cylindrical polars (i.e. uθ = ∂θ ≡ 0)

ur = − 1
r
∂
∂z

Ψ, uz = 1
r
∂
∂r

Ψ and in axisymmetric spherical polars (uφ = ∂φ ≡ 0)
ur = 1

r2Sθ
∂θΨ, uθ = 1

r2Sθ
∂rΨ where Sθ means sin θ.

Note that if ~u = ∇ × ~A ~A is a vector potential and we have ∇ · ~u = 0
automatically; this is the case for these examples, in the first two ~A = (0, 0,Ψ),
in the last two ~A =

(
0, Ψ

r
, 0

)
.

Motion of a material line elt

A material line elt (or curve) is a small line elt (or curve) of fluid material,
i.e. it moves with the fluid. Say we have a small line segment δ~l, with the
endpoints initially at ~x, ~x + δ~l; then in time δt, the first endpoint moves to

~x + ~u (~x) δt but the second moves to ~x + δ~l + ~u
(
~x+ δ~l

)
δt (neglecting higher

order terms), so δ~l becomes δ~l +
(
~u

(
~x+ δ~l

)
− ~u (~x)

)
δt = δ~l +

((
δ~l · ∇

)
~u
)
δt

i.e. D
Dt
δ~l =

(
δ~l · ∇

)
~u, or D

Dt
δli = δlj∂jui; ∂ui

∂xj
called the velocity gradient

tensor. We can interpret this as saying that the rate of change of a line element
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(following the motion of the fluid) is either proportional to the change of velocity
in the direction of the line element, or proportional to the velocity gradient
tensor.

There are two types of forces on fluids; volume forves, where the force on
a volume elt δv is some ~F (~x, t) δv; these are often conservative with PE some
χ per unit volume so ~F = −∇χ or some φ per unit mass so ~F = −ρ∇φ, e.g.
gravity has φ = −gz so ~F = ρ~gδv; ρδv is the mass of δv.

Surface forces have the force on a surface elt with unit normal ~n is ~F (~x, t, ~n) δA;
we ignore friction and then the surface force is ⊥ the surface with magnitide
indep of orientation; normally ~Fδa = −p (~x, t)~nδA the pressure.

Momentum Equations

These are really simply conservation of momentum

Momentum Integral

For an arbitrary volume V fixed in space w/ sufficiently smooth surface ∂V
and outward unit normal ~n the momentum inside V is

∫
V
ρ~udV . This changes

due to 3 processes: momentum flux across the boundary, surface forces and
volume forces. The momentum flowing out of dS in time δt will be ρ~u ·~ndS~uδt;
we have d

dt

∫
V
ρ~udV = −

∫
∂V

ρ~u (~u · ~n) dS −
∫
∂V

p~ndS +
∫
V
~FdV where p is the

surface force (pressure) per unit area and ~F the body force per unit volume
e.g. gravity ρg; this equation is the equivalent of ~F = m~a for fluids; also
expressed as d

dt

∫
V
ρuidV = −

∫
∂V

ρuiujnjdS −
∫
∂V

pnidS +
∫
V
FidV ; ρuiuj

is called the momentum flux tensor. We use the div thm:
∫
V

∂
∂t
ρuidV =

−
∫
V

∂
∂xj

ρuiujdV −
∫
V

∂p
∂xi

dV +
∫
V
FidV ; shrinking V to a point this becomes

ui

(
∂ρ
∂t

+ ∂
∂xj

(ρuj)
)
+ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi
+Fi; the first term is 0 by the in-

compressibility condition so ρ
(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi
+Fi and ρD~u

Dt
= −∇p+ ~F ;

this is Euler’s Equation
An alternate, more heuristic derivation comes from considering a small

cuboid of fluid δx1 × δx2 × δx3 as though it were a particle; use m~a = ~F .
The pressure on the two faces ⊥ the x1 axis is p1 and p1 + ∂p1

∂x1
δx1; the mass of

the fluid is ρδx1δx2δx3 so ρδx1δx2δx3
Du1

Dt
= − ∂p1

∂x1
δx1δx2δx3 + F1δx1δx2δx3 as

the pressures are acting on faces of area δx2δx3; sim for the other cpts gives the
equation as above. If we consider viscosity there is a µ∇2~u term on the RHS,
which makes the equation much harder to solve as it becomes second order.

Applications of momentum integral

The momentum integral sometimes enables us to gain useful results where cal-
culating the complete fluid motion is impossible; such things are frequently the
case in fluid mechanics.
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In general pressure increases when velocity decreases and vice versa

Bernoulli’s Streamline Thm

For steady flows with potential forces, ρ
(
∂~u
∂t

+ (~u · ∇) ~u
)

= −∇ (p+ χ) , ~F =

−∇χ. ∂~u
∂t

= 0 so ρ (~u · ∇) ~u = −∇ (p+ χ). Recall from VC ~u × (∇× ~u) =
∇

(
1
2u

2
)
− (~u · ∇) ~u [I shall omit~ for vectors from now on except where ambi-

guity would result]; let ∇ × u = ω be the vorticity; ρ is constant so ρ~u × ~ω =
∇

(
1
2ρu

2 + p+ χ
)
; we define H = 1

2ρu
2 + p+ χ; this is the energy per unit vol-

ume; the first term is KE, the second the pressure energy or compressibility and
χ is the potential.(~u · ∇)H = ρ~u · ~u× ~ω = 0 so H is constant along streamlines;
similarly (~ω · ∇)H = 0, H is const along vortex lines which are lines tang to
small vecs representing the ~ω field.

Applications

Emptying a container from a small hole in the bottom - we find the outward
v satisfies 1

2v
2 = gh where h is the height of liquid in the container, which we

expect since this means its KE is equal to the lost PE.
A Pitot tube is a small tube used for measuring airspeed; at the inner end

we have u ≈ 0 and pressure p1, while at the outer end fluid is flowing in at some
velocity U and at atmospheric pressure pa. We have 1

2ρaU
2 +pa = p1 so we can

find U by
√

2(p1−pa)
ρa

.
Using a venturi meter to measure flow in pipes - we attach a small open

pipe to the top of our pipe and measure the height h of fluid in the small
pipe supported by the pressure in the larger pipe. At some point the pipe
has flow velocity U1, cross section A1 and pressure p1; then further allong the
pipe narrows to smaller cross section A2, so we expect the fluid here to have
greater velocity U2 and therefore lower pressure p2. Applying Bernoulli we have
1
2ρU

2
1 + p1 = 1

2ρU
2
2 + p2. By mass conservation we have A1U1 = A2U2, so

p1 − p2 = 1
2ρU

2
1

(
A2

1

A2
2
− 1

)
, > 0, if we measure at both points this will be ρgδh

so we can measure this δh to find U1.
A 2D (horizontal) liquid jet hitting an inclined plane (at angle β from the

horizontal, so that for β < π
2 the bottom points towards the jet) at speed U

with initial cross section area a and output area a1 at the bottom, a2 at the top.
We neglect gravity; the pressure on the free surface at the edge of the jet must
be pa; the velocity must therefore remain U on the free surface by Bernoulli,
so we have the output velocity being U at both ends. Then by mass cons
a = a1+a2 and by steady momentum flux ‖ the plane ρaU2cβ = ρa2U

2−ρa1U
2

so a1 = 1
2a (1 − cβ) , a2 = 1

2a (1 + cβ); note both these are ≥ 0. ⊥ the plane
ρaU2sβ is the force on the plane per unit ⊥ distance; if we consider the couple
we find the force moves the plane so it is ⊥ the stream.
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Further examples are an aerofoil, where we have velocity along the top sur-
face u+ > u− on the bottom surface. so p+ < p−, or the situation where two
ships approach closely alongside each other while moving in the same direction;
we get a larger velocity U through the gap so a smaller pressure, resulting in
a force pulling them together. Likewise, as seen on the example sheet, a barge
can ground on a deeper bottom than we would expect because when the gap
between the barge and the bottom becomes narrow the fluid speed through it
increases so the pressure decreases. A vacuum pump works by passing a high
velocity past the end of a tube creating a low pressure which sucks fluid out of
said tube. Stability of a table tennis ball in a uniform flow should be investi-
gated by the reader. Finally if ~u = 0 then p+χ is constant everywhere, so under
gravity p = p0 − ρgz where z is height - there is a linear decrease of pressure
with height due to the weight of the overlying fluid.

Alternatively, we have the local eqn 0 = −∇p − ρg~̂z; taking cpts, pz =
p0 − ρgz, px = py = 0. Consider the pressure force on an arbitrary volume
V in fluid of density ρ: ~F = −

∫
∂V

(p0 − ρgz)~ndS which by the div thm is

−
∫
V
∇ · (p0 − ρgz) which is ρgV −̂→z . This is of course the weight of displaced

fluid.

2.6 Vorticity

This is like angular momentum for fluid parcels; we have already defd ~ω = ∇×~u
or ωi = ǫijk

∂
∂xj

uk. In cartesians this gives ~ω = (wy − vz, uz − wx, vx − uy)

where ~u = (u, v, w) , uz = ∂u
∂z

etc.
Consider rigid body rotation of a fluid: ~u = ~Ω × ~x where ~Ω is the angular

velocity vector [I think]; then ωi = ǫijk∂juk = ǫijk∂jǫklmΩlxm = Ωi
∂xj

∂xj
−

Ωj
∂xi

∂xj
= 3Ωi−Ωi = 2Ωi so ~Ω = 2~Ω; compare this with ∇× the Euler eqn, which

gives ∇×
(
∂~u
∂t

− ~u× ~ω
)

= −∇ × ∇
(
p
ρ

+ χ+ 1
2u

2
)

i.e. ∂~ω
∂t

− ∇ × (~u× ~ω) = 0;

∇ × (~u× ~ω) = (~ω · ∇) ~u − ω (∇ · ~u) + ~u (∇ · ~ω) − (~u · ∇) ~ω [the reader should
check this as I haven’t]; ∇ · ~ω = ∇ · ∇ × ~u = 0 and ∇ · ~u = 0 so this is
(~ω · ∇) ~u+ (~u · ∇) ~ω and substituting this back in we have D~ω

Dt
= (~ω · ∇) ~u; this

is similar to the motion of a material line elt D
Dt
δ~l =

(
δ~l · ∇

)
u; we shall see

more of this later.
In suffix notation this is Dωi

Dt
= ωj

∂ui

∂xj
; ∂ui

∂xj
is the velocity gradient ten-

sor; we express it in symmetric and antisymmetcir parts as 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
+

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
and call this eij+ 1

2ǫjikωk(yarly, check it if you don’t believe me)

where eij is called the pure strain. The vortex line elts move as if they were
material line elts, i.e. vortex lines move with the fluid; like everything in IB
this depends on the assumptions that ρ is constant and µ ≡ 0. For example,
for a rotating cylindrical small elt if the cylinder is stretched, ~ω is axial so also
stretched in direct proportion; this is rise to the “ballerina effect” and can be
seen in e.g. a plughole vortex. In rotating systems like the Earth it is very

6



important e.g. for modelling the weather.

2.7 Kelvin’s Circulation Thm

This is an integral form of the vorticity eqn: define circulation C (t) for a closed
curve Γ (t) (which moves with the fluid, i.e. a material curve) by C (t) =

∮
Γ ~u ·d~l

(note this is
∫
S
~ω · ~ndS for a capping surface S by Stokes’ Thm); dC

dt
=

∮
Γ
D~u
Dt

·
d~l+

∮
Γ ~u · Dδ

~l
Dt

=
∮
Γ −∇

(
p+χ
ρ

)
·d~l+

∮
Γ ~u ·

(
δ~l · ∇

)
~ud~l [check intermediate steps;

result is correct]; the last term is
∮
Γ

1
2∇~u2δ~ld~l so this is

[
1
2u

2 − (p+χ)
ρ

]
which is

0 as Γ is closed. In particular if C = 0 everywhere at t = 0, C = 0 forever and
letting Γ shrink to a point if ~ω = 0 at t = 0 ~ω = 0 forever. This divides fluid
mechanics into 2 sections: ~ω = 0 i.e. ∇×~u = 0, called irrotational flow, which is
essentially a closed field, and ~ω 6= 0 called rotational flow which is much harder.

Irrotational flows are called potential flows because if ∇× ~u = 0 ~u = ∇φ for
some potential φ. A flow initially irrotational everywhere remains irrotational
everywhere; this situation is quite common as it occurs when we start from
rest or if we have uniform (so irrotational) flow coming from upstream. We
have ~u = ∇φ + f (t); we can find φ by reversing this φ ( ~x1, t) =

∫ x1

x0
~u (~x, t) · d~l.

Mass conservation ∇ · ~u = 0 gives ∇2φ = 0 and we have our boundary cond
~U · ~n = ~u · ~n = ~n · ∇φ = ∂φ

∂~n
, so we simply need to solve Laplace’s eqn (which is

linear) with von Neumann BCs

Examples

There are many types of sol to this eqn, which correspond to different problems.
In axisymmetric spherical polars the general sol is φ =

∑∞
n=0 (Anr

n +Bnr
−n)Pn (cos θ)

where Pn are the Legendre functions or polynomials P0 = 1, P1 = cos θ, P2 =
1
2

(
3 cos2 θ − 1

)
, . . . ; in general we will only use these first few modes, e.g.

φ = −m
4π

1
r

giving ~u = ∇φ = m
4π

r̂
r2

, radial flow ∝ 1
r2

[r̂ being a unit vector
in the direction of ~r]; the flow out of a sphere of radius R is 4πR2uR = m, indep
of R as we would expect from mass cons; this is a point source of strength m

(or point sink for m < 0). φ = Ur cos θ ≡ Uz gives ~u = ∇φ = Uẑ, uniform flow;
likewise in cartesians φ = ~U · ~x gives ~u = ~U constant.

In 2D polar or cylindrical geometry the general sol is φ = K+A0 ln r+B0θ+∑∞
n=1 (Anr

n +Bnr
−n) einθ; this can of course be expressed in sins and coses for

An, Bn real. For example φ = m
2π ln r gives u = m

2π
r̂
r
; radial flow ∝ 1

r
, and the

flow out of a circle of raduis R is 2πRuR = m; this is a line or 2D point source
of strength m. Or φ = κ

2πθ gives ~u = κ
2π

θ̂
r
, circilar flow ∝ 1

r
with the circulation

around a circle of radius R being κ, independent of R since ∇× ~u = 0; this is a
line vortex of circulation κ.

If we consider uniform flow coming in at speed U from −∞ and flowing past
a sphere of radius a, taking θ = 0 to be the direction of the incoming flow.
There is no vorticity in the incoming uniform flow so ∇2φ = 0 for r > a; the
flow should be uniform at ∞ so φ → urcθ as r → ∞, and ∂φ

∂r
= 0 at r = a
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- there is no flow in or out of the sphere. Since the problem is linear the sol
is unique [???]; we must have the sol taking the form φ = Ucθ

(
r +Br−2

)
;

the BC at r = a gives 1 − 2Ba−3 = 0 so φ = Ucθ

(
r + a3

2r2

)
; then ~u = ∇φ =

(
Ucθ

(
1 − a3

r3

)
,−Usθ

(
1 + a3

2r3

)
, 0

)
[the third coord being 0 by symmetry); this

has ur = 0 at r = a satisfying the BC, and uθ 6= 0 as we would expect, since
although this is not strictly a BC it would be odd to have flow completely still
on the surface of the sphere.

If we draw the streamlines we find they are more crowded at the points B
on the sphere where θ = π

2 , and the point θ = 0 is in fact a stagnation point,
though there is flow near it. Though beautiful this sol is entirely unlike RL; even
a tiny nonzero viscosity drastically alters the solution, completely destroying the
“front-back” symmetry of the streamlines amongst other things.

Next we consider the same cross-section as the above, but rather than a
sphere we have a cylinder - we can just consider 2D flow past a disc. Again

φ → Urcθ as r → ∞ and ∂φ
∂r

= 0 at r = a. Then φ = Ucθ

(
r + a2

r

)
+ κ

2π θ

for arbitrary constant κ, giving ~u =
(
Ucθ

(
1 − a2

r2

)
,−Usθ

(
1 + a2

r2

)
+ κ

2πr

)
;

we find the line integral of ~u around a closed curve about the cylinder is κ, the
circulation. It is essential to specify this if we want a unique solution; we cannot
just assume it is 0.

3.3 Pressure in potential flows with conservative forces

ρ (ut + (~u · ∇) ~u) = −∇ (p+ χ); (~u · ∇) ~u = ∇
(

1
2u

2
)

+ ~ω × ~u = ∇
(

1
2u

2
)

and
∂u
∂t

= ∇
(
∂φ
∂t

)
so we have ∇

(
ρ∂φ
∂t

+ 1
2ρu

2 + p+ χ
)

= ~0, everywhere, so ξ (~x, t) =

ρ∂φ
∂t

+ 1
2ρu

2 + p+ χ = f (t) independent of ~x (generally we will ignore the time
dependence and just use that ξ ( ~x1) = ξ ( ~x2) at fixed time. The reader should
pay attention to some important points raised on the example sheets for this
course.

As an example, consider the fast (i.e. we ignore gravity) jet generator; a large
container from x = −ξ to x = 0 discharging via a thin tube from x = 0 to x = l

into an atmosphere at pa. We have p (x = 0) = p0 (t)+ pa for some function p0;
the fluid starts from rest so it is irrotational so velocity potential. We assume
the flow in the thin tube is uniform. ~u = (U (t) , 0, 0) gives φ = U (t)x (+h (t)
but we neglect this term as it does not affect ~u); we can now compare f (t) at
x = 0, l; the reader should do this as an exercise.

ρU̇0 + 1
2ρU

2 + p0 (t) + pa = ρU̇L + 1
2ρU

2 + pa so U̇ = p0(t)
ρL

. u (t) =
1
ρL

∫ t
0
p (s) ds = p⋆t

ρL
where p⋆ = p0 (t).

Next we consider the fast jet generator with conditions at x = −ξ, namely
pressure p1 (t) + pa. We have φ ≈ 0, u ≈ 0 here since the container is large, so
p1 (t) + pa = ρU̇L + 1

2ρU
2 + pa [I am unsure of the case of many of the Us in

this lecture], a first order nonlinear DE for U . Consider p1 (t) = p2 constant for
t > 0; when t = 0 ρU̇L+ 1

2ρU
2 = p2 w/ u = 0 when t = 0. We nondimensionalize
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by considering a velocity scale
√

2p2

ρ
= U0[I am unsure as to whether ρ is also

square rooted] and time scale 2L
U

= t0; we consider non-dimensional variables
η = u

u0
, τ = t

t0
and the eqn becomes dη

dτ
= 1− η2, η (0) = 0; the sol is η = tanh τ

or u = u0 tanh
(
u0t
2L

)
; this technique is more useful when we cannot solve our

equations or they are not accurate enough, since it indicates to us what the
length and time scales are.

Free oscillations of a manometer

This is a tube (of constant cross section for now) curved into a U shape. Say
external pressure is pa, use an arclength coordinate s; s = l + h (t) at one
end of the fluid and −l + h (t) at the other where l is the undisturbed length,
both ends being at angle α above the horizontal; we must consider gravity g

since it is the cause of oscillation. The fluid starts from rest so ∇2φ = 0; We use
unsteady bernoulli. φ = ḣs, ∂φ

∂t
= ḧs, u = ḣ. We compare the two surface points;

ρḧ (−l+ h)+ 1
2ρḣ

2 + pa− ρgsα (−l+ h) = ρḧ (l + h)+ 1
2ρḣ

2 + pa + ρgsα (l + h)

[sic; not necessarily correct] so lḧ + gsαh = 0 giving SHM w/ freq
√

gsα

l
; this

agrees surprisingly well with experiment, viscosity does not affect the frequency
significantly, just damps the oscillations. Note:

1. Since we compared only the two ends, what happens away from the free
surfaces is irrelevant, e.g. the cross section in the middle of the tube may
change

2. The reader should attempt to extend this to the situation where the two
ends are at different angles

3. A harder problem: vary the cross-sectional area at the two ends. This and
the previous problem give a nonlinear eqn.

3.6 Bubbles

3.6.1 General Theory for spherically symmetric motions

It is often appropriate to assume bubbles are spherical, though this does not
work for big bubles (since their shape is altered by instability and their wakes)
or strange fluids. Surface tension helps keep the bubble spherical but does not
affect its dynamics, as will be seen in the part II course nonlinear dynamics.

Say the radius of the bubble is a, in a liquid of pressure p (x, t) (we consider
only radial x since everything is spherically symmetric) where p (∞, t) is given
as a func of time; we seek p (a, t) and a as a function of time; u (r) ∝ 1

r2

since ∇ · u = 0 in the liquid;
∫
ur2dr must be the same over a sphere of any

rad R about the origin. We neglect gravity as it is generally uninfluential;
u (r = a) = ȧ so ~u = ȧa2

r2
r̂ meaning φ = − ȧa2

r
; ∂φ
∂t

= − äa2+2aȧ2

r
; comparing at

r = a,∞ −ρ (äa2+2aȧ2)
r

+ 1
2ρȧ

2 a4

r4
+ p (r, t) = p (∞, t)(1); on r = a p (∞, t) −

p (a, t) = −ρäa− 3
2ρȧ

2(2) (We could differentiate between p (a+, t) and p (a−, t)
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due to surface tension but will not in this course); Multiplying this by a2ȧ

we have d
dt

(
1
2ρa

3ȧ2
)

= (pa − p∞) a2ȧ (3); the way to interpret this is that
d
dt

(KE) = rate of working by pressure at r = a on the whole liquid, since KE =
1
2ρ

∫ ∞
a
u2dV = 1

2ρ
∫ ∞
a

ȧ2a4

r4
4πr2dr = 2πρȧ2a3 [lower limit is 0 in my notes], and

rate of working is force×velocity or δp4πa2 × ȧ where δp = pa − p∞. Then
eliminating ä between eqns 1,2 we have p(r, t) = p (∞, t)+(p (a, t) − p (∞, t)) a

r
+

1
2pȧ

2
(
a
r
− a4

r4

)
; we call the last term here T2 and the other two terms T1. For

p∞ > pa we have T1 being pa at r
a

= 1 and tending monotonically but at
gradually decreasing rate up to p∞ as r

a
→ ∞, so ∂T1

∂r
< 0 meaning Du

Dt
< 0;

we have decelleration. The reader should consider the case pa > p∞. If we
plot 2T2

ρȧ2 we have a “bump” rising from 0 at r
a

= 1 to a peak at 4
1
3 ≈ 1.58 and

then decaying exponentially; we have decelleration for r
a
< 4

1
3 , accelerating for

r
4 > 4

1
3 .

3.6.2 Small oscillations of a gas bubble

a (t) = a0 + η (t) with |η| << a0; we are considering rapid adiabatic oscillations
of air in a bubble, which satisfy the gas law that pvγ is constant where γ is
the ratio of specific heats. δp

p
= −γ δv

v
which is −3γ η

a0
since v ∝ a3. If we

linearise eqn 2 we have η̈+
(

3γp∞
ρa2

0

)
η = 0 so we have SHM w/ freq

√
3γp∞
ρa2

0
; this

is ∼ 2 × 104s−1 for a 1mm bubble and 2 × 102s−1 for a 1cm bubble.

3.6.3 Collapse of cavities

In many flows around bodies e.g. propellors U increases to the extent that
mathematically we would expect p to decrease to below 0. Physically this is
impossible; instead a bubble filled with vapour forms, with pressure << that at
∞, which will therefore rapidly collapse.

Consider a spherical cavity at zero internal pressure pa = 0 initially at rest
(ȧ = 0 when t = 0) in constant background pressure p⋆; applying 3 above we
have 1

2ρ
d
dt

(
a3ȧ2

)
= −p⋆a2ȧ; taking an integral 1

2ρa
3ȧ2 = 1

3p⋆
(
a3
0 − a3

)
(where

a0 = a (0)) so ȧ
r

a3
0

a3 −1

= −
√

2
3
p⋆

ρ
(4) (we take the −ve root since we know

from the physics the cavity will be shrinking); notice there is a singularity as
a → 0 with ȧ ∝ a−

3
2 ; there are huge velocities as the cavity collapses. 4 can

only be integrated numerically, but the reader can see that there will be some

finite collapse time and should be able to derive that this time is ∝
√

ρa2
0

p⋆
; in

fact the constant of proportionality is 0.92. As a → 0 the maximum pressure
is ∼ ȧ2 ∼ a−3, e.g. pwater ≈ 103kgm−3, p⋆ = 1atm ≈ 105Pa; when a = 1

10a0

ȧ ≈ 260ms−1, pmax ≈ 160atm; this effect is known to melt propellors.
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3.7 Translating Accelerating Spheres

Say we have a uniformly moving sphere; relative to the sphere fluid is moving

at speed U in the θ = 0 direction; we have φ = Ucθ

(
r + a3

2r2

)
, ~u = ∇φ =

(
Ucθ

(
1 − a3

r3

)
,−Usθ

(
1 + a3

2r3

)
, 0

)
so u on r = a is 3

2Usθ [in the radial di-

rection]. ∂t ≡ χ ≡ 0 so we can find the pressure by 1
2ρ

(
3
2Usθ

)2
+ p (a, θ) =

1
2ρU

2 + p∞ giving p (a, θ) = p∞ + 1
2ρU

2
(
1 − 9

4s
2
θ

)
; as we would expect the

pressure is large at θ = 0, π and small at θ = ±π
2 . However, the symmetry

of pressure (fore/aft and sideways) means that in potential flow there can be
no drag or lift on a sphere; this is clearly false IRL, a problem made worse by
D’Alembert’s paradox: on a general 3D body there can be no drag (i.e. force ‖
the stream) in a uniform flow; the “solution” to this is of course that viscosity
is critically important in these problems and cannot be neglected. The part II
course returns to this problem.

However, potential flow works well for bubbles as above, and this example
which is probably its greatest success:

3.4 Flows w/ free surface

The usual example of these is an air/water interface; we have ρa << ρw, and
often put p = pa at the interface. This is useful for modelling water waves,
tides, floods on rivers and over land, control of weirs and more.

Governing Eqns

We assume the flow is irrotational (say motion starts from rest) so we have
potential flow: ~u = ∇φ,∇2φ = 0; the dynamics are that ρ∂φ

∂t
+ 1

2ρ |∇φ|
2 + p+

ρgz = f (t) where z is the vertical axis. We ignore surface tension; it can play
a role in this situation but doesn’t for larger waves, in the case of air/water
those of wavelength >∼ 23cm; so we set the pressure on the surface to be
pa and then ρ∂φ

∂t
+ ρ

2 |∇φ|2 + pgz = f1 (t) (we have absorbed pa into f) on
z = ξ (x, y, t) where this is the height of the surface. The kinematics are that
∂ξ
∂t

+ u ∂ξ
∂z

+ v ∂ξ
∂y

= w = ∂φ
∂z

on z = ξ [At this point I cease to understand the
lectures and merely transcribe].

3.4.2 Linear water waves

We have a see surface at undisturbed level z = 0 with the ocean floor or similar
at z = −h; the full nonlinear problem is ∇2φ = 0 for −h ≤ z ≤ ξ with BC
∂φ
∂z

= 0 on z = −h (there is no vertical flow through the sea bed); ∂ξ
∂t

+ ∂φ
∂x

|ξ
∂ξ
∂x

+ ∂φ
∂y

|ξ ∂ξ
∂y

= ∂φ
∂z
, ρ∂φ

∂t
+ 1

2ρ |∇φ|
2
+ ρgξ = f (t) independent of x, y on z = ξ.

We linearize; we assume ξ << h, ∂ξ
∂x
, ∂ξ
∂y
<< 1; amplitude a is << wavelength λ.

This is approprate to many situations; on the cam, a ∼ 2cm and λ ∼ 1m while
in the ocean a ∼ 2m but λ ∼ 100m. We therefore discard all quadriatically
small terms and apply the BCs on z = 0 rather than ξ i.e. we are using the
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Taylor series ∂φ
∂z

|z=ξ= ∂φ
∂z

|z=0 +ξ ∂
2φ
∂z2

|z=0 + . . . and then discard all but the
first term of this.

The problem is now ∇2φ = 0 on −h ≤ z ≤ 0, ∂ξ
∂t

= ∂φ
∂z

on z = 0 and
∂φ
∂t

+ gz = f (t) on z = 0 (we have divided through by ρ and absorbed this into
f)

Sols

There are three methods to find sols to this:

1. Look for seperable sols φ (x, y, z, t) = Z (z)Y (y)X (x) T (t); then X (x) =
eikx, Y (y) = eily , T (t) = e−iωt.

2. A better approach; use the fact that this is a linear problem and invariant
wrt translations in x, y, t

3. Use physics; take the 2D case so ∂y = 0; ξ (x, t) = aei(kx−ωt) but ξ is
real so must be ℜ

(
aei(kx−ωt)

)
= a1 cos (kx− ωt+ ψ) for some phase ψ.

φ (x, z, t) = S (z) ei(kx−ωt) where S is some structure function; note this
is one fourier mode. The real elevation E (x, t) =

∫ ∞
−∞ a (k) ei(kx−ω(k)t)dk;

we seek S (z) , ω (k) and an eigenval or dispersion relationship. ∂t =
iω, ∂x = ik, ∂2

xx = −k2,∇2 = ∂2
zz − k2 so S′′ − k2S = 0 on −h < z < 0,

S′ = 0 on z = −h and −iωξ = ∂φ
∂z

on z = 0 where S is a pure func of
z. We must have f (t) = 0 since S is not a func of x so −iωφ + gξ = 0
at z = 0. This is a second order DE with 3 BCs, but these are actu-
ally split BCs as there is some interdependence; ω (k) is the eigenval [?],
S = Aekz +Be−kz ; φz = 0 on z = −h so S = A coshk (z + h); ξt = φz so
iωa = kA sinh kh meaning S (z) = −iωa cosh k(z+h)

k sinh kh . −iω a
k

cothkh+ga = 0

so ω2 = gk tanh kh; k is the wavenumber 2π
λ

. c2 = ω2

k2k
so the wave goes like

eik(x−ct); c is the wave speed. c2 = g
k

tanh kh. Long waves have k small,
short waves have it large (though once waves get too small surface tension
becomes important and this model becomes less valid); however, longer
waves have smaller freqency and higher speed and vice versa. kh = 2πh

λ
;

for kh small ω ∼ k
1
2 and c ∼ k−

1
2 .

Special Cases

1. Deep water waves kh >> 1 i.e. λ << h have tanh kh ∼ 1 so ω ≈√
gk, c ≈

√
g
k
; note this speed is independent of h; short wavelength

waves propagate independently of the water depth, e.g. in the atlantic
the dominant wavelength is ∼ 400m (period ∼ 16s) << h ∼ 4km so
c = λ

T
≈ 25ms−1; a storm will propagate less rapidly so the waves “bring

notice”. tanhπ ≈ 0.9963 so h > 1
2λ⇒ ω2 = g

k
to within 1%.

2. Shallow water waves kh << 1 i.e. λ >> h; ω ≈
√
ghk, c ≈

√
gh indepen-

dent of wavelength e.g. flood waves on a river have h ∼ 2m, c ∼ 4.5ms−1,
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tidle waves, storm surges in shallow seas, or tsunamis which are virtually
non-dispersive because their wavelengths are so long.

Sound waves are very linear; they have almost no dispersion from both freq and
amplitude, in stark contrast to water waves. We can see ourselves as being very
lucky in this, since speech and music would be impossible without it, or we can
see it as an example of the anthropic principle.

Without proof until part II: phases move at phasespeed c = ω
k

but groups
of waves, and energy, move at a group vel cg = dω

dk
which is generally 6= ω

k
; this

corresponds with observation.

3.5.2 Partical Paths

φ = ℜ
(
− iωa

k

cosh k(z+h)
sinh kh ei(kx−ωt)

)
so ~u = ∇φ = ℜ

(
aω

sinh kh (cosh k (z + h) ,−i sinhk (z + h)) ei(kx−ωt)
)

=

(u,w); u is in phase with ξ, w is out of phase by π
2 - horizontal vel on the surface

is maximal at the peaks (and in the other direction at the troughs), vertical vel
maximal at the undisturbed height. u >> w if kh << 1 i.e. shallow water e.g.
rivers; this case is covered above [allegedly]. When kh >> 1 i.e. deep water
u ∼ w.

We find the particle paths by integrating d~x
dt

= ~u (~x, t); using linearization we

integrate at the mean value (x0, z0); x (t) = ℜ
(
x0 + ia cosh k(z0+h)ei(kx0−ωt)

sinhkh

)
, z (t) =

ℜ
(
z0 + ia sinh k(z0+h)ei(kx0−ωt)

sinhkh

)
[if I ever write sh this is sinh; this was used in

the lecture but I am avoiding it since it’s incredibly lame]. So the particle paths
are ellipses, with radii decaying exponentially with z; in deep water kh >> 1
these become circles while in shallow water u >> w the horizontal displacement
is Â» the vertical displacement.

Note Aei(kx−ωt) is a progressive wave moving to the right with speed ω
k
;

A
(
ei(kx−ωt) + ei(kx+ωt)

)
is a standing wave.

This section as a whole is perhaps the greatest success of irrotational inviscid
fluid mechanics; however, a much harder and still essentially unsolved problem
is how waves are generated by wind over the surface of the water.

3.5.3 Deep water standing waves in a box

Say we are restricted to 0 ≤ x ≤ a, 0 ≤ y ≤ b, z ≤ 0 [since linearizing]; ξ (x, y, t)
is the height of the free surface with undisturbed height z = 0; we look for
linearized standing waves. ∇2φ = 0 on this area, φx = 0 on x = 0, a (since
there is no normal flow through the walls of the container), φy = 0 on y = 0, b,
∇φ → 0 as z → −∞, and ξt = φz and φt + gξ = 0 on z = 0. We try and
find a seperable sol; the BCs imply one of the form A cos mπx

a
cos nπy

b
ekze−iωt;

∇2φ = 0 ⇒ −m2π2

a2 − n2π2

b2
+ k2 = 0; only discrete values of k are allowed;

compare this with QM.
ξt = φz |z=0 so ξ = iAk

ω
cos mπx

a
cos nπx

b
e−iωt; −iωξ = kφ, φt + gξ = 0 ⇒

ω2 = gk as before, which we would expect since we have the same field eqn.
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This is for where we have density 0 above the free surface, ρ below it, but
density 0 below and ρ above gives the same eqn but g → −g, so ω2 = −gk, ω =
±i√gk; the surface behaves like e−iωt = e±

√
gkt; the fluid disturbance increases

exponentially with time. This is again as we would expect thinking about the
physical situation; this is the Rayleigh-Taylor instability.

3.7.2 Accelerating motion of sphere

Take axes fixed in space; we have a sphere of radius a at position ~x0 (t), moving
in a fied direction at speed ~U (t); for a general vector ~x define ~r = − (~x− ~x0) =
~x0 − ~x.

∇2φ = 0 for r ≥ a, ∇φ→ 0 as r → ∞, ∂φ
∂r

|t= ~U ·r̂ on r = a, where r̂ = ~x− ~x0

|~r| .
There is no t dependence in the field eqn so we have an instantaneous response

i.e. φ = − 1
2 |U | a3

r3
cos θ = − ~U(t)·(~x− ~x0)a

3

2|~x− ~x0|3 ; recall that ~x0 is a function of t. The
eqn must hold when U =constant, but recall that then there is no force on the

sphere; ∂φ
∂t

|r= − ~̇U · ~r a3

2r3 + ~U · . . . where the second term contributes no force.
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