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1.1 Introduction

The recommended book for this course is Ahlfors’ excelleotkwbe wary, however,
since while it appears to be “informal” each sentence haséh heen written very
carefully; every word matters. This is perhaps the best Hookne who wants to be
good at mathematics. At the other end of the spectrum, Stévallis book is good
for passing exams with, though somewhat pretentious anctonglicated. In be-
tween, Jameson or Whittaker-Watson’s now-amusinglydtitidodern Analysis” are
good. The preious year’s lecture notes are available grio@ever, do note that the
schedules have changed; the lecturer has so far only natleatents being removed
but presumes something has also been added to the course.

1.2 Cplx Differentiation

Notations:ae C,r > 0€ R. CallD(a,r) ={ze C:|z-a < r}, an open disc or ball,
also calledB (a,r) or A (& r); this is the cplx analogue ¢, b).

An open subset af isaU c CstYAe U3r > 0: D(ar) c U; in particular for
anya,r, D(a r) is an open subset @f (D(z r —r’) c D(a,r) wherer’ = |z— &)).

A curve (inC) is a cnts mapy : [a,b] — C for [a, b] some closed interval in
R. General curves can be somewhat counterintuitive (e.gcesfilling curves, such
as curves whose image is the entire unit square, exist). We sairvey is cntsly
diffable orC! if y/(t) (at the endpoints, we take this to be the one-sided derejati
existsYt € [a, b] and is cnts.

An open selU is (path-) connected i¥zw € Udsome curve : [0,1] —» U :
¥(0)=zy(1)=w.

Without pf: if an open seU is path-connected then any 2 pts of it can be joined
by a curve which is polygonal i.e. made up of [presumablydigimany, otherwise
pointless] line segments.

NoteC = R by (X,y) — X+ iy

Defn

A domainis a non-empty connected open subset @.g. a disk, oC
some finite set of points .

We are generally interested in functiohs U — C whereU is an open set or a
domain inC.



Given such arf, we can writef = u(x,y) + iv(x, y) whereu, v are real-val'd funcs
on the domain (identified yan open subset Gf?).

Defn

121 exists (and in this case it is

i) f:U — Cisdiffable @w € U if lim .
called the derivf’(w) of f @ w)

i) f:U — Cisholomorphic orlJ if f is diffable @ every pt otJ; we sayf is
holomorphic @w € U if Ir > 0 : f diffable @ every pt oD(w, )

Terminology

“holomorphic” is used synonymously with “regular”, and @lsometimes with “ana-
Iytic”.

Cplx differentiation obeys the same formal rules as refédintiation of functions
of a single variable (sum, prod, quot, chain, rules, invéusetion thm), by the same
pfs. For example, a polynomial functioi{z) = Y o<n<n Cn2" is diffable everywhere.
A rational functionf(2) = % for P, Q polys is difable everywher€(2) # 0, so is
holomorphic on the domaii
{ zeroes ofQ}. Also see the later section on power series.

Defn

An entire function is a holomorphit: C — C e.g. polynomials, and also exp, sin and
cos. Compare this with fiability of funcsR — R?; recall that a funa : U — R (for

2 i i . u(xy)-u(c.d)-A(x—c)—pu(y—d)
U c R< open) is difable @ €,d) € U if 3, u e R : Voo 0 — 0as
(x,y) = (c,d), and if soDu(c, d) defined by 4, ) € R? is the derivative ofi at (c, d).

1.2.1 T:*“Cauchy-Riemann Egns”

f : U — Cis diffable @w = c + id € U iff the functionau,v : U — R are ditable
@ (c.d) (as funcs of two real vars) ang(c, d) = w(c, d), uy(c,d) = —vx(c,d). If so,
then f’(w) = ux(c, d) + ivk(c, d) = w(c, d) — iuy(c, d): from the defnf will be diffable
@w = (c,d) w/ deriv f/(w) = p+iqiff lim, 1@-Tw-CWEwW _ g or equivalently

z—w|

(considering the real and imaginary parts separately)

u(xy) —u(c.d) - p(x-c) +qy-d) _
b= 69 V(x=c)? + (y - d)?

0

and
vixy) -v(ed) —gx—9) + ply—-d) _

i.e. iff uis diffable @ €, d) w/ deriv (p,—q) andv is diffable @ €, d) w/ deriv (g, p)
and we are done.

Defn

The exponential function is exg(= X0, %z”



Prop 1.3.3
i) exp(@ is an entire function ang‘; exp@ = exp@; Use the previous Thm, STP

Pl
that series has rad of coww, but sinces- = £ — 0 asn — ¥z € C, by the
ratio test the series convergés differentiating term by term, exg- exp

i) expz+ w) = exp@expiw); leta = w+z9(2 = exp@ - 2 exp@; this is
holomorphic onC with derivative— exp@ — z) exp(@) + exp@ — 2) exp@) = 0 so
must be constant, and thesg(0) = exp@), i.e. expWv + 2 = expw) exp@);
puttingw = —zwe have ex) exp(-2) = 1 so expg) # 0vz

i) If z=x+1iy,xy € R, exp@ = e*(cosy + i siny) since it is expK) exp(y) by ii),
then compare with the Taylor series &t cosy, siny

iv) exp(@ = expw) © z—w = 2rinsomen € Z; by i), STP expg) = 1 © z = 2rin,
letz= x+ iy, then expf) = 1 & e*(cosy + i siny) = 1 and we have the result

V) Yw # 0 € CJz e C : exp@@ = w; this also follows from iii) by expressing in
“polar co-ordinates”
Rk

One can also definthe trigonometric and real exponential functions in terrhthis
definition of the complex exponential and these propertied,then prove their more
usual definitions.

EXx

Define forz € C,sin(@) = 22E-20CR cogp) = 20MA120CR  From ji) we can then
easily deduce sia(+ w) = sinzcosw + coszsinw etc.
From now on we shall use the standard (abuse of) notatiortaexp@).

Logarithm

If ze C we sayw € C is a logarithm oz if € = z eitherz has no logarithmz = 0) or
z has infinitely many % # 0), since ife" = zthene"*?i" = zvn € Z. In general there
is no “canonical”’ choice for a logarithm af so logg) is a “multivalued function” of
ze C\ {0}

It is often necessary to select a particular logarithnJ IE C,0 ¢ U by a branch
of the logarithm we mean a cnts (in fact holomorphic) filJ — Cs.t.Yze U,I(2)isa
logarithm ofz (or equivalently exd(2)) = z¥z € U. A standard choiceigl = C\ {x €
R | x < 0}; we define the principal branaf the logarithm to be the func Logy — C
by Log@@) = In|Z + i arg@) where we take arg) € (-, 7).

Prop 1.3.4

i) Vze U,exp(Log@) = zby 1.3.3; exp(Log®)) = €"M(cosarg + i sinargz) = z

i) Log(2) is holomorphic orJ w/ deriv%: Log(2) is cnts orlJ (sincelZ, argzare) so
we can apply the formulafor the derivative of an inverse fg; g’;(Log 2) exp(Logz) =
4(Log2)z



iy Vzwith |2 < 1, Log(1+2) = T2,(-1)"Z: letl(d) = Tpi(-1)"1E; this
has rad of conv 1 by ratio testl(2) is holomorphic onD(0,1) andl’'(2) =
Sea(-1)12 1 = L = d(Log(1+ 2) sol(2) - Log(z) is constant orflZ] < 1};
puttingz = 0 we find this constant is 0

Itis natural to try to extend Log) to a cns func o€\ {0} but this is impossible since
e.g. limy_._ Log(€’) = limy_,_i0 = iz butlimy_,, Log(€?) = limy_, i(6—2x) = —in.
More generally we will see there is no branch of the logaritmany set of the form
{ze C:0< |4 < r}. We say that = 0 is a branch poinfior the logarithm function.

There is a similar picture for “functions — z; there is no canonical choice of
thenth root ofz# 0 if n > 1. The simplest way to deal with this is:

Defn

Fora € C the principal branclf z* is 2 = exp@Logz),ze U =C\ {xe R : x < 0}.
Whena € Z this gives the correct functiart since exp(Log@) = z

E.g.

1,23 = |22€2'290 for -z < arg@) < 7. From the defre* is holomorphic orlJ w/

d%z“ = a% expl Logz) = aexp-Log2z) exp@Logz) = aexp@ - 1) Logz = az*L.
Note that it isnot generally the case thatw()® = Zw?, or that Logéw) = Log(2) +
Log(w).

a =

1.3 Conformal Mapping

SayU c Copenwe C, f : U — C holomorphic.

Supposd’(w) # 0. Lety : [-1,1] — U be a simpldy(t;) # y(t2)Vt1 # t2) C curve
w/ y(0) = w,y’(0) # 0. Lety’(0) = r(cos¢ + i sing); ¢ is then the angle of the tangent
toy atw. Let§ be the image of underf, i.e. §(t) = f(y(t)), thens’(t) = v/ (1) f'(y(t)
and¢’(0) = arg@’(0)) + arg(f’(w)) + 2rn somen € Z, i.e. the anglé makes atv is the
angley makes atv+ a constant indep of; the mappingf preserves angletw. This
is said to be conformal

A particular important case is wheh: U — C, f holomorphic onJ, f’ # 0 on
U andf is a bijectionU — f(U); we sayf is a conformal equivalendeetweerJ and
f(U), or sometimes simply a conformal mapping

Exercise: Mobius transformationgz) = z—jg,a,b, c,d € C,ad —bc # 0 are
conformal mappings from the riemann sph€re {c} to itself.

Exercise:n > 1, f(2) = 2" is a conformal equivalence betwegne C \ {0} : 0 <
arg@ < z}and{ze C:Im(z > 0}.

expz = expw & z = W+ 2zin; z — expzis a conformal equivalence between
{zeC:-n<Im(® <n},C\{xeR:x<0}.

Using such functions we can build quite complex conformaiielences; the im-
portant Riemann Mapping Theoreimplies if £D£ is a domain irC bounded by a
simple closed curvda a conformal equivalenceé: D — D(0, 1).




2 Complex Integration

2.1 Integral along curve

If f : [ab] - Cis a (for now, continuous) cplx-vald fn on a real intervalf de
[ fdx:= [ Reg)dx+i [ Im(f(x)dx.

Prop2.1.1

Fora < bandf cnts, |fab f(x)dx| < (b — @) sup. I T(X)] W/ equality & f(x) is
constant: lep = argfab f(x)dx (if the integral is O we are done). L& = sup|f(X)|.
|fab f(x)dx = e fab f(x)dx = fab Re(f(x)e?)dx since the imaginary part is 0. But
this is < fab|f(x)|dx < (b-a)M. For f not identically 0 equality holdfi both these
inequalities are equalities; the second is an equdlity(x)| = MV¥xi.e.|f|is constant,
and the first isff e'f(x) = |f(X)|, i.e. 8 = argf(X) so argf is also constant antl is
constant.

Lety : [a,b] — C cntsly difable andy(t) = x(t) + iy(t), thenly’(t)] = +/x2y2, so
reasonable to define lengif)(= fab [y’ (t)|dt, since fory a simple curve this is just the
length of its image irC.

Defn

Letf : U — Ccnts on an opetd ¢ Candy : [a,b] —» U aC?! curve. Def
b ’
[ t@dz= [ f(®)y ().

Basic properties

Linearity: fycl f1(2) + c2f2(2)dz = clfy f1(2dz + czfy f,(2)dz

Additivity: fora< a < b,y : [a,@] — U,y, : [@,b] = U defd byy;(t) = y(t)
havefy f(2)dz= fn f(2)dz+ fyz f(2)dz

Inverse path: foy : [a,b] —» U def—y : [-b,—-a] — U by (—y)(t) = y(-t), then
f_y f(9dz= - fy f(29dz

Reparamaterisation: if : [&/,b] — [a,b] is C! and¢(a) = a,¢(’) = b, if
§=1vyode (6(t) = y(p)Vt € [&,b]) thenfy f(2dz = [ f(2dz (this is analagous to
change of variables in conventional integration). In gaittir, since we can always find
¢ : [0, 1] — [a, b] we can restrict our attention to curves [0, 1] — C.

Lety : [a,b] — C be cnts and suppose haae- ap < a3 < --- < a, = bs.t. on
each interval§_1, a] v is cntsly difable, then we say is piecewiseC! and can def
fy fdz = 3 f% f(2)dz where they; : [a_1,&] — C are defd byy;(t) = y(t); by the
second property above this does not depend of theywegs been decomposed.

It is convenient to “add” curves: if : [a,b] — C,§ : [c,d] — C are curves with
v(b) = 6(c) then we defines +6 : [a,d—c+b] - Cbyt > y(t)fora<t < b,
o(t—b+c)forb<t<d-c+b,thusthe above is simplyys + --- + yn.

From now on by “curve” we shall mean “piecewi€ curve” unless otherwise
stated.



Prop 2.1.2

If f:U — Ciscntsandy : [a,b] — U is any curve thevi\fy fdz‘ < lengthty) sup, | f|
(sup, Ifl = supepap IT(¥(1)I exists sincet — f(y(t)) is a cnts map on the closed
bounded intervald, b]): by additivity we can wlog takes C1. LetM = sup, |f], then

b b b o
'fyfdz‘ = fa f(y(t))y’(t)dt| < fa [f(y(1)y' (D)t < Mfa [y’ (t)|dt, which isM length¢y)
as required.

Prop 2.1.3

Supposdf, f, (a sequence fan € N) are continuous functions on an opgnc C and
v :[a b] = Uisacurve such thdt, — f uniformly ony (by which we of course mean
y([a,b]) c U), thenfy fo(2dz — fy f(2dz letM, = sup, | f,— f[; by the def of uniform

convergencél, — 0, and by the previous reSLm f- fndz| < Mplengthfy) — 0 as

n — oo.

Thm 2.1.4 (Fundamental Theorem of Calculus)

If F: U — Cis holomorphic (andr’ continuous - but we will later (2.5.2) see this is
automatically the case) and: [a,b] — U is any curve therfy F’'(2dz = F(y(b)) -

F(y(a)); in particular ify is closedthat is,y(a) = y(b), thenfy F’(2dz = O: take wlog

e , b_, , b ,
y C! by additivity, thenfy F'(9dz= [ F'(y()y'®)dt = [ (Fly®)dt = F((1)) 5.

Atrivial corollary is that if f is the derivative of a holomorphic function th§ynfdz
depends only on the endpoints)of

Example

f(2) = 2",y = acircley(t) = Re*"',t € [0,1] for somen € Z,R > 0.If n # —1,7" =
d%(%) on C \ {0} (and evenC for n > 0), which containgy, so by the theorem,

fy Z'dz=0forn # —1. If n = -1 we don't know a holomorphic function an\ {0} with
derivative% (the “obvious” choice, Log, is only holomorphicorC \ {x € R : x < 0}.
So we instead compute the integral direci\/%dz = fol = 2riRe”tdt = 2ni. Since
this # 0, there cannot exist aR holomorphic onC \ {0} (or even on any open subset

of C containing a circle about the orig{fg = R > 0}) with derivative%, so there is no
branch of the logarithm on these sets.

Theorem 2.1.5 (Converse of FTC)

If f: D — Ciscnts on a domailD andfy fdz = O for every closed curve in D
then f has an antiderivative ob, i.e. 3F : D — C holomorphic withF’ = f on

D: pick ag € D, and for eactw € D pick y,, some curve fromay to w (which we
can do since domains are path-connected). H(gl) = fyw fdz =. For anyw, pick

r > 0soD(w,r) c D. For|h| < r, the line segment fromtow + h, 6, : [0,1] —» C
given bydn(t) = w + th lies in D. By hypothesis the integral df around the closed
curveyy + 6n + (—ywsh) is 0 (andF(w) is well defined, i.e. independent of the choice
of yu). SOF(W+h) = fmh f(9)dz = fyw f(2)dz + fﬁh f(2dz = F(w) + féh f(2)dz =
F(w) + hf(w) + féh f(2) - f(w)dzsinceféh dz=h.



| PR ()| = '%Lh f(2) - f(w)dz| < |hYlengthgr) sup, 1T(2) - F(W)| <
SUR,_yi<n | T(2) — f(W)| — 0 aslh| — O sincef is cnts, saF’(w) = f(w).
We will also need a slight variant of this theorem:

Lemma2.1.6

Let D be a disdqor, more generally, a convex or starlike domélnis starlikeif Jag €

D : Vz € D the line segmentg, 7] lies in D, and convexf the line segment4,, ]
lies inDVz, 7 € D. Clearly all discs are convex and all convex domains ardilstar
The only really interesting starlike domainGs, {x < 0}, the set on which the principal
branch of the logarithm is defined).fyf fdz = O for every triangley in D, thenf has an

antiderivative orD: DefineF(w) in the above aiw f(2dz wherey, is a line segment
from ap to w, then the closed curvey + 6n + (—yw-h) is a triangle so by hypothesis the
integral of f around it is O, then we proceed as above.

The astute reader will notice that combined with the FTG; thisult implies that
for a starlike domain, if the integral around any triangl@ ihen so is that around any
closed curve.

2.2 Cauchy’s Theorem for a disc

If f : D — Dis holomorphicand : [a,b] — D is a closed curve, then under suitable
conditions ony, D,fy fdz=0.

There are various forms of this theorem depending on the@afithe condition;
for now we shall proove a “local version of Cauchy’s theorethé case wherB is a
disc.

2.2.1 Theorem

If f:U — Cis holomorphic (fold c C open) andA c U a trinagle thenfaA fdz=0;
by A we mean the (solid) triangle with verticiagh, c, dA is the boundary therof viewed
as a simple closed curve; say wlog anticlockwise.

The proof of this is by bisection: lét = LengthgA), | = | [ f(2)dZ. Subdivide
A = UL, AY by bisecting the edges, and naf¢,, [, f(2dz = [, f(2)dz since
each of the internal edges is integrated along once in eaebtidin. Therefore for
some 1< j < 4’”;9A(i) f(2d4 > 4. PutAy = AD, then similarly bisect; to find A,
and so on, so that we have= Ag > A; O ... with lengthgA,) = L, |f[,)An f(z)dz‘ >
#1. Consider) 50 An this is a single poinfw} (it is clearly at most one point since
length(A,) — 0, and if we pickw, € A, for eachn thew, form a Cauchy sequence so
converge to some, and since\, is closedvn, w € A,¥n). Sincef is holomorphic the
functiong(z) = 121" _ £/(w), g(w) = Ois a cnts func 0. So 4" < UM” f(z)dz’ =

'f%n f(2) - f(w) - (z— W)f’(W)dZ' sincefy dz= fyzdz: 0 for any closed by FTC. So
this is'faAn(z— w)g(z)' < length@An). sup, 1(z-=w)g(2)l < 27"Lx 27"L x sup, 9(2) -

| < L?sup, 9(2)] — 0 ash — oo.
It is important to know this holds under an apparently wedkgrothesis:



2.2.2 Theorem

Let S c U be a finite setf : U — C continuous orlJ and holomorphic otJ \ S.
Then for any trianglé\ c U, fﬁA f(2dz=0

By subdividingA we can assum8 = {a},a€ A. LetM = sup, |f|. We can choose
an arbitrarily small trianglé’ such thata e A’,a ¢ d(A \ A) (if ais on the edge oA,
we choose\’ against the same edge, and similarly). Subdividinigto subtriangles
and using the previous result we hafje fdz= [, fdz As|[ , fdZ < lengthgA")M

andA’ is arbitrarily smass, this mea[fgﬁ fdz=0

2.2.3 Cauchy’s Theorem for a disc

Let D be a disc (or starlike domain) arfd: D — C holomorphic, except possibly on
a finite set of points where it remains continuous. Then fergelosed curve in D,
fy fdz=0: by 2.2.2[7 fdz = 0 for every triangley, so by 2.1.6f has an antiderivative

F onD, so by FTny fdz = 0 for every closeg.

2.3 Cauchy integral formula (1st form)
2.3.1 Theorem

Let D = D(a,r) be a disc,f : D — C holomorphic. For everyv € D andp with
w-al <p<r, f(W=2%[ f(Z)dzwherey(t) = a+ peit t € [0, 1]; in an abuse of

notation we call this integraf, ,  1@.dz

Notice this means i is fixed, the values of (w) for |w — a| < p are determined by
those forlw — a| = p.

To proove this we apply 2.2.3 tg(2) = 1@=I" gw) = ’(w) which is holo-

morphic onD \ {w} and continuous av. Sof f(Z)dz = Yo fw) [ et g7 =

(Z a)n+1

oo Fw)(w - a)" fz‘ . 2 = 27if(w) since [ ;% = 2xi for n = 0 and O otherwise;
this worked by using the geometric senﬁ_@ =m0 ((W 3" Note this

(- a)(Z—a) z-a)nt”
series is uniformly continuous da | |z—a| = p} so we can interchange integration and

summation.

2.3.2 Corollary

If f: D(W,R) — C holomorphic thervr € (O,R), f(w) = fol f(w + re¥it)dt; this is
sometimes called the “mean-value property” since it is tagesent thaf (w) = the
mean value of on the circlgz—w| = r. The proof comes from simply puttireg= w

in 2.3.1 and writing out the mtegraf Ldz= fl f("gf,f“)Zﬂ reitdt = 27rf0l f(w+
rerit)dt.

2.4 Applications
2.4.1 Theorem (Liouville’'s Theorem)

Every entire function which is boundésiconstant: say is a bounded entire function,
i.,e. f : C - C holomorphic andf(2)| < MYz e C. If w e C,R > |w| then|f(w) —

fO) = 2|f, .22 - 12d by the CIF= £ | [, (2550w < £2rRM s —

0 asR — o, sof(w) = f(0) andf is constant.




This tells us that e.g. sinis unbounded o€, since it is an entire function.

2.4.2 Theorem (Fundamental Theorem of Algebra)

Every non-constant polynomial with complex ¢deents has a root i€. Let P(2) =
+ch1Z 4, ofdegreen > 0. ThenP(2)| - w0 as|g — 0, s03dR: |4 >R=
|IP(2)| > 1.Considerf(2) = P(Z), if P has no zero theffi is an entire function|,f(2)| < 1
for |z > Randf is continuous so bounded on the closed and bounddd s& < R}.
Thusf is bounded ort, so constant, a contradiction sineés non-constant.

2.4.3 Theorem (Local maximum modulus principle)

If f: D(ar) — Cis holomorphic andf(2)| < |f(a)|¥z € D(a,r) thenf is constant,
as by corollary 2.3.2 forany @ p < r,|f(a)l = & 'fOZ" f(a+pe‘t)dt' < sup, 4, If(2)
with equality if f is constant (proposition 2.1.1). By assumption this:i$f(a)| so
t = f(a+ pet) is constant for every > 0, and|f(2)| = |f(a)|[¥z € D(a,r) which
implies f is constant (using the Cauchy-Riemann equations; see #mea sheet).

2.5 Taylor Expansion
2.5.1 Theorem
If f:D(ar)— Cisholomorphictherf has a convergent power series representation

) £ f
onD(ar), f(d = T3ocn(z— )" wherec, = =& = L j\‘z—alzp (Z_Sﬂddz for any
O<p<r.

2.5.2 Corollary

If fis a holomorphic function on some opehc C then its derivatives of all orders
exist and are holomorphic, as fare U,dr > 0 such thatD(a,r) c U and by the
above theorenf can be represented by a convergent power serieB(ar), then
apply theorem 1.3.2; in particular ffis holomorphic so i’ (as we assumed earlier).

Proof of theorem
By CIF, if w—al < p < r thenf(w) = f‘z si=p Zf(\ZA),dz recall .= Zn 0 ((Zwa;ﬂ and

this is uniformly convergentfde—al = p (see proof of CIF), sdi(w) o fzn 0 (ngﬂﬂ (w—

a" = Yo ,ca(w— a)" wherec, = 271Ti flz a=p (ngﬂddz since asf is bounded on
{|z— al = p} the series is uniformly convergent so we can interchanggation and
summation.

So for fixedp,0 < p < r, f is represented by the convergent power seYies(z —
a)"onD(a, p), so it has derivatives of Il orders, with" (a) = nlc,. Soc, is independent

of the choice op.

Remark

A function f : U — C is said to be analytif Ya € U3dD(a,r) c U such thatf
can be represented by a convergent power serieB(ayr). The previous theorem
shows that this is equivalent to being holomorphic (and mlaogks use the terms
interchangeably throughout); however, in realalysis a functiorf : (a,b) —» R"



is said to be real analytit Yc € (a,b)3(c —r,c +r) c (a b) such thatf can be
represented orc(-r, c + r) by a power series. Any suchis infinitely differentiable,
but the converse is false: there exists (though it is a ssingfy difficult exercise to find

such anf) an infinitely diferentiablef on (-1, 1) such that the Taylor seri€s f(";!(o)

only converges ak = 0, and also infinitely dferentiablef : (-1,1) —» R whose
Taylor series converges but to_afdrentfunction, e.g. f(x) = e’x%, f(0) = 0 has
f™(0) = ovn.

Henceforth we will use “analytic” and “holomorphic” intdrangeably.

Our final application is a “converse” to Cauchy’s Theorem:

2.5.3 Corollary (Movera’s Theorem) (2.5.3)

Letf : D = D(a,r) — C be continuous on a disc such ti¥at closed inD, fy f(29dz=
0. Thenf is holomorphic: By 2.1.5 = F’ for some holomorphi&, but thenF has
derivatives of all orders so so doés

Application: Caroll (2.5.4)

ForU c Copen, p,b] cRlet¢ : U x [a,b] —» C be continuous and such thas €

[a, b] the functionz — ¢(z s) is holomorphic. Thewy(2) = f: #(z 9)dsis holomorphic
on U: without loss of generality we can takéto be a disc. Ley : [0,1] — U be a

closed curve, theyfy g(2)dz = fol (fab d(y(b), s)ds)y’(t)dt, but by lemma 2.5.5, below,

this is [ ( F om0, s)y’(t)dt)ds =P ( e s)dz) dz, but the inner integral is 0 by
Cauchy’s theorem sinagis holomorphic for any fixed. So by Movera’s theoremis
holomorphic.

Lemma (2.5.5)

Let f : [a,b] x[c,d] — R be continuousthen the functiong; : X fcd f(x,y)dz f; :

y - fab f(x, y)dxare continuous org[ b], [c, d] respectively an(jab f1(X)dx = fcd fo(y)dy.
This is a very simple form of Fubini’s Theorenf is continuous on a compact set so
uniformly continuous, i.e.¥eds > 0 : |[X— Xo| < 6 = |f(Xy) — f(X0,Y)| < € i.e.
[f1(X) — f1(X0)| < e(d — c) so f; is continuous, and similary so fs.

Now recall that a step functioan [a, b] x [c,d] is a finite linear combination of
characteristic functions of rectangles,[o’] x [¢’,d’] < [a,b] x [c, d] [note the steps
can go down as well as up]. By the same argument as in the 10egasgcontinuous
function on g, b] x[c, d] is a uniform limit of step functions. But any step functi@af

the formf(x,y) = g(X)h(y) for some step functiong h, so clearlyfab fcd f(x, y)dydx =
fd fab f(x, y)dxdy for these and we are done.

¢ Note that this result can be false for &nvhich is discontinuous at only one point.
Let f : D(w, R) — C be holomorphic, and write it as a power se&s ; cy(z—w)"
forze D)w, R). If f is not identically zero (on thiB) then we have, # 0 somen; let
m=min{n: ¢, # 0} > 0. Thenf(2) = (z— w)"g(2) whereg(2) = X7 o Cmen(Z — W)™,
holomorphic onD(w, R) with g(w) # 0. If m > O we sayf has a zero of orden at

z = w. Clearlymis the leash such thatf ™ (w) # 0.
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Theorem 2.5.6 (Principle of isolated zeroes)

Let f : D(w,R) — C holomorphic and not identically zero, thélm > 0 such that
f(2 #0for0< |z—w < r:if f(w) # O then by continuitydr > 0 : |f(2 — f(W)| <
[f(W)[Yz € D(w,r) so f(2 # 0 onD(w,r); if f(w) = 0 then writef(2) = (z— w)™g(2
with m > 0, g(w) # 0, g holomorphic and apply the previous argumengto

There are essentially two branches to complex analysisi kotalysis concerns
the behaviour of functions on discs, with results such adoFaytheorem, Cauchy’s
theorem, and the integral formula for discs, while glodorasdlysis looks at the behaviour
of functions on more general domains, with results like hitia’'s theorem and more
general forms of Cauchy’s theorem we shall see later. Tlaioelbetween these two
areas is given by analytic continuation

2.6 Analytic Continuation
2.6.1 Theorem (Principle of analytic continuation)

Let D’ c D be domains and : D’ — C be analytic, then there is at most one analytic
g : D — C such thatf(2) = g(2Vz € D’ (note that we use “analytic” rather than
“holomorphic”; inR this result only holds for functions with power series, nehgral
infinitely differentiable functions. For exampli(x) = e ¥ for x> 0 and 0 forx <0
is infinitely differentiable and ha&™(0) = 0vn > 0). Such & (if it exists) is said to
be an analytic continuatioof f to D:

Letg;, gz : D — C be analytic continuations df, thenh = g; — g, is analytic on
D and= 0 onD’. DefineD; = {we D : h = 0on soméD(w,r),r >0},D, ={weD:
h™M(w) # 0 somen > 0}; as we saw abov® = D1 U D,, D; N D, = 0. Clearly we have
bothD; andD, open, so sinc® is connecteadne of theD; is empty it cannot beD;
sinceD’ c D; soD;, = 0 andD = Dy, soh =0 onD andg; = g, onD.

Combining this and 2.5.6 we have:

2.6.2 Corollary (Identity Theorem)

Let f,g: D — C be analyticona domaib. If S = {ze D : f(2) = g(2} contains a
non-isolated point thefi = gonD, i.e. S = D, as letw € S be a non-isolated point
i.e.Ye > 0,SN D(w,e) # {w}. The functionf — g is holomorphic orD and vanishes
onS so by 2.5.6 ifD(w,r) c D thenf —g=0onD(w,r), so by 2.6.1f = gonD. So
if f,g: C — C are analytic then to shoW = gitis enoughto e.g. sho = gonR.

Remark

In general it is dificult to tell whetherf : D’ — C has an analytic continuation to
D> D, eg. f(2 = X, onD(0,1) has analytic continuation G \ {1} by 1%2 but
> 7" has no such analytic continuation (and prooving this is hard

3 Complex integration (lI)
3.1 Winding Numbers

Sayy : [a,b] — C\ {w} a closed curve. We want to make sense of “the number of
timesy winds aroundv’. Suppose we can sritgt) = w+ r(t)e’® with r, § continuous
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functions p, b] — R and wlog taking (t) > 0 (we never have(t) = 0 sincey does not
pass throughwv, sor(t) is either always positive or always negative). Then “thglan
the line joiningw to y(t) sweeps out” i¥(b) — 6(a), and we define the winding number
(or indey of y aboutw to be [ (y;w) =]“22: note that this is an integer since
y(b) = ¥(a).

We say that is a continuous choice of argumedat y(t) — w; if 61 is another such
choice of arcument thei-6; is a continuous function with values im2 so is constant,
and in particula©,(b) — 61(a) = 6(b) — 6(a) and our definition is independent of the
choice of6.

However, the existance dfis nontrivial.

3.1.1 Theorem

If y : [&,b] — Cis a continuous curve theha continuou® : [a,b] — R such that
y(t) = w+ r(t)e?® wherer (t) = [y(t) — wl.

The naive approach would be to get arg(y(t) — w) [taking the principal branch
of arg], adding or subtractingr2each timey crosses the lingw — xx > 0}; however,
even a continuously fierentiabley can cross this line infinitely many times.

We first note that ify lies in the half-plandJ = {z € C : Re@z— w) > 0} then the
principal branch of the argument is continuous, so we caedak arg(y(t) — w) for
this case. More generally, if the imageypfies in {z: Re)(&r)} for some fixedr then
we can takey(t) = arg (2;"") +a.

For a generay, we first take wlogv = 0 by translation, then (by replacingt) by

%) we wlog takely(t)] = 1¥t; now sincey is continuous on the closed interval p]

it is uniformly continuous, s@e > 0 : Vs t € [a,b],|S—t| < € = [y(s) — y(t) < V2.

Now we can subdivided, bjasa=ap < a; < --- < ay = bwith a, — a,_1 < 2€¥n
so the image under of [a,_1, &,] lies inside a half-plane with boundary a line through
0. By the above, for each we haved, : [a,-1,an] — R continuous and such that
y(t) = €OVt € [an 1, ay).

On1(an) = On(an) + 27B;, for someB, € Z, so by adding multiples of2to 6, we
can arrange tha, = 0¥n and then the, together define a continuous functiémwith
the required properties.

The relation of this with complex integration is:

3.1.2 Proposition
Lety be a (piecewis€?) closed curvey : [a,b] — C\ {w}. Thenl(y;w) = 5 fy gz
note one can also take this to be the definitbthe winding number for piecewisg!
curves, as is done in e.g. Ahlfors, but then we have an alngpstl@mount of work to
the above prooving this is always an integer.

Write y(t) = w + r(t)e?®; sincey is piecewise continuously fierentiable so are

by bra . .

r(t),6() and [ 2 = [ 2% = [0 29 +ier(®)dt = [Inr(t) +i0)]3 = i(6(b) — 6(a)) =
2nil (y; w).

3.1.3 Proposition

If v : [a&b] — Cis a (continuous) closed curve wit{t) € D(wp, R)Yt andw ¢
D(wo, R) thenI(y;w) = 0; wlog takewp, w € R by linear transformation, then as

12



in the proof of theorem 3.1.1 we have a continuous choice gfirment by simply
o(t) = argy(t) — wsod(b) = 6(a) andl (y; w) = 0.

Remark

For piecewise continuously fiierentiable curves, we could take a sledgehammer ap-
proach by applying 3.1.2 and Cauchy’s theorem for a disc.

Definition

LetU c C be open.

A closed curvey : [a,b] — U is homologousto Qin U)if I(y;w) =0vVw ¢ U, e.g.
for U = C\ {0} a curve about 0 is not homologous to 0, but one not around O is.

U is said to be simply connectafdevery closedy in U is homologous to 0, e.g.
C\{0} is not simply connected, but by 3.1.3 any disc is, and moreggiy any starlike
domain is simply connected. Note that this is not the usufahiien (which applies
to a general topological space, and uses homotopy), butuisagnt to it for open
subsets off. Also note (without proof) that this definition is equivaléinwe consider
all continuousy, all piecewise continuously fierentiabley, or even just all polygonal
Y.

It is sometimes useful to generalise the notion of a closedecslightly: if U c C
is open a cyclén U is a formal finite sum of closed curvesh, T = y; + --- + yn.
If T is a cycle andf is continuous orJ, we definefF f(2dz = fyi f(2dz and for
w e C,w ¢ Vi we definel (T; w) = 3 | (y;; w); we sayl" is homologous to zero ibJ
if 1(T;w) =0Yw e U.

Clearly if i is homologous to 0 itUVi so isT" = y; + - - - + v, but th econverse is
not true, e.g. tak&) = {ze€ Z : |2 > 1},T = y1 + y2, 71(t) = rel, y2(t) = Re™™, both
fort € [0, 2x], with r,R > 1. I(y1;0) = 1,1(y2;0) = =1 .. I(T[; 0) = 0 and similarly
I(;w) = 0Yw : |w] < 1 sol is homologousto 0 ity even though the; are not; this is
why we introduced this notion.

3.2 Cauchy’s integral formula (general case)
3.2.1 Theorem

Let D be a domainy a closed curve (or cycle) iD homologous to 0 irD, and f :
D — C holomorphic. Thetvw € D not in the image of/, 5 fy 1@ G4z = 1 (y; w) f(w)

(1) andf f(2dz=0 (2). Zw

Remark

If D is a disc then any closed curvelhis homologous to 0 ifD and we recover 2.3.1
(by takingy to be a circle).

Consider the function o® x D given byg(z w) = W for z # wand f’(w)
for z = w. We claimg is continuous; this is clearly true far# w, and ifa € D
andD(a,r) c D thenf can be represented by a power seriesDga, r), so by the
remark following Theorem 1.3.g¢is continuous orfD(a,r) x D(a, r) and we are done.
Also, for fixedz, g is an analytic function ov. We want to show that fow € D \ y
fyg(z,w)dz = 0 so thenfy @4, 2rif(wW)l(g; w) = 0; consider this integral as a

z-W
function ofw; let h(w) = fyg(z,w)dzfor weD\y andfy Wazforw e E = {w e
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C\ vy :I(y;w) = 0}. We haveD U E = C[\y] sincey is homologous to 0 i, and for

we DNE, f f(W) wdw = 27i £ (W)l (y; w) which is O sincd (y; w) = 0, so our definition
is conS|stent andh is a functionC[\y] — C. Sinceg is continuous orD x D and
analytic inw, by 2.5.4his analytic; moreover iR is suficiently large thaty c D(0, R)
thenvw : W > R I(y;w) = 0 (by 3.1.3) sgh(w)] = | [ {@dZ] < e&Iswifl_,

: i) = 0 (by 3.1.3) soh(w)| = | [ 12d4 < <SR
as|w| — oo, so by Liouville (2.4.1)h(w) = 0, then for (2) we just apply (1) to the
holomorphic functiore — (z— w) f(2) for anyw ¢ vy.

3.2.2 Corollary (Cauchy’s Theorem for simply connected dorains)

If D is simply connectedY holomorphicf : D — C and closed curveg in D,
fy f(2)dz = 0 sincey is homologous to 0 iD.

3.3 Laurent Series and singularities

For f holomorphic orD(a, R) we know we can writef (2) = Y., cn(z — @)" for some
Cn € C. For f holomorphic orD(a, r)\ {a} (a punctured disais an isolated singularity
of f) we will show we can expresiz) as),.._., cn(z— &@)"; in fact more is true:

—00

3.3.1 Theorem

For f holomorphiconA = {ze C : r < |z—a < R} (an annuluswith 0 < r <
R < o0, (1) f has a convergent series expansionfrf(2) = >, .. ci(z—-a" (*),
which we define to b&, jcn(z — @)" + X1 C-m(z — @™, for somec; € C, (2)
Ch= 5 f\z—al:p %dz\ip e (r,R) and (3) forr < p’ < p < R(*) converges absolutely
uniformlyon{z: p < |z—a] < p} c A. The expansion (*) is called the laurent expansion
of fin A -
Particularly, forr = 0, A= D(a,R) \ {a}
For (1), letw € A and choose1,p, with r < p, < [w—a < p1 < Rand lety =
v1+ (—y2) wherey; is the c:|rcle|z a| Oi; I(y, w) =1-0= 1. Theny is homologous
to0inA, sof(w) = o [ H@dz==L [ dz+ 5L [ Bdz= fi(w) + f(w); asin

the proof of Taylor series an expand the intedteds a geometric series to gigfw) =

1 m-
Yo Cn(W—a)" wherec, = 5= f (Zf(z)mldz For f, we use-L = 1 i =y, ((Zv;f;)ml
onyz sincelZ2| < 1, sofa(w) = Xy dm(w— &)~ ™ wheredy, = ﬁ ., (Z_;(f)mdz\lmz

1 and we have the result. Now consider (*) gid< p’ < p < p1. Then the power

seriesy, ., Ca(z— &)" must have radius of convergemel SO converges uniformly on

{z:|z—4| < p}; similarly writeu = = a, then),, c_pu" has radius of convergenee—

so converges uniformly fdu| < p—lz So (*) converges uniformly fop’ < |z—a < p
f@ — 0 14, _ Voo

and thenf o awdz = J\\Z—al:p e Cm(z = @™z = TR [, (2~

a)™"-1dz since the series converges uniformly, and this integraff @ # n, 2zi for

m = n so this is Zic,. Since we can choogg, p, arbitrarily close tor, R this holds
VYp € (r,R).
Remark

This proof shows we can write a holomorphic functibron A as f; + f, with f;
holomorphic orD(a, R) and f, holomorphic onz: |z— a| > r}.
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A function f holomorphic on the “punctured dis@®°(@a,R) = D(a,R) \ {a} (a
special case oA above withr = 0) is said to have a an isolated singulagty = a; we
want to consider the possibilities for “what can happen-ai”.

Classification of isolated singularities

Let f(2 = ¥ . cn(z— @)" be the Laurent expansion 6fon D°(a, R). Then there are
three possibilities:

1)cy, = 0¥n < 0, i.e. the Laurent series is a power series so defines a hgbico
function onD(a, R). We sayf has a removable singulariaz = a; this typically arises

whenf is given by an explicit formula which is not definedzat a, e.g.f(2) = 927'1 is
undefined at = O but its power serie§(2) = }.7 n—l!z”‘1 tells us that by setting(0) = 1
we can makd analytic everywhere.

2) Ak > 0 such that_g # 0 butc, = 0Yn < —k; in this case we say has a polef
orderkatz=a, e.g.§ atz=0.

3) ¢, # 0 for infinitely manyn < 0; we sayf has an essential singulariyz = a,

1 1
e.g.eZ = Z;’;O e

3.3.2 Proposition

(We are still assuming is holomorphic orD%(a, R))

f has a removable singularigt z = a if and only if lim,_a(z— @) f(2) = 0; if we
have a removable singularifyis represented by a power seriesifa, R) so lim,_,a(z—
a)f(2) = 0, and for the converse defigéz) = (z— a?zfgz) forz+ a, 0atz=a. Thisg
is clearly holomorphic o°(a, R), and we havé’% =(z-af(® »0asz— 0
sog is holomorphic az = awith g’(a) = 0 = g(a). Thusg is represented by a power
series orD(a, R) with the first two terms 0, so dividing by € a)? f is represented by
a power series oB(a, R) and we have the result.

3.3.3 Proposition

f has a pole at = aif and only if |[f(2)] — o asz — a; moreover TFAE: 1)f has
a pole of ordek atz = a. 2) f(2) = (z— a)"¥g(2) with g holomorphic atz = a and
g@ #0.3)f(2 = le) whereh has a zero of orddcatz = a.

The equivalence of 1) and 2) is obvioulz) = c_x(z—a)™ + ... with ¢, # 0
corresponds witlg(z) = c_x + c1-k(z—a) + ..., g(a) = c_« # 0. For the equivalence of
2) and 3), iff(2) = (z— a)g(2) thent = (z— a)*g(2)~* and sincey(a) # 0, g(2) * is
holomorphic az = a. Conversely ifh has a zero of ordék, h(2) = (z— a)“q(2) someq
with q(a) £ 0 sof(2) = ﬁ = (z- a) ™ q(2)~* has a pole of ordek.

If f has a pole then by $}| — 0 so|f| — o [asz — a]; conversely if|f (2)| —
then|%| — 0 and alsof(2) # 0 for 0 < |z— & < r for suficiently smallr, so%

is holomorphic onD%a, r) and by 3.3.2 has a removable singularityzat a so 3
holomorphich with h(z) = ;¥z € D°a r) and thenh(a) = lim,a 5 = 0 so 3)
holds.

If f has aremovable singularity then lim, f(2) = ¢y exists, so:
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3.3.4 Corollary

f has an essential singularitya£ aif and only if | f| has no limit inRU {eo} asz — a;
cf the second example sheet for this course for the Casatdmdirstrauss and Picard
theorems.

Remark: “Poles are not really singularities at all”

Consider the Riemann SphefeJ {c}, also writtenC or CP* the “complex projective

line”. A holomorphic functiorD®(a, R) — C with a pole atz = a extends to a continu-
ous functionf : D(a, R) — CP?! by settingf(a) = o (this is continuous by 3.3.3). We
can regard thig as a “holomorphic mappingd(a, R) — CP!. So when we use the
Riemann sphere poles are no longer singularities, and tlye'genuine” singularities
are the essentianes.

Definition

If D is a domain ands c D a set of isolated points, a functioh: D\ S —» C
holomorphic with only poles at the points 8fis said to be meromorphic

Definition

The residue of (2) atz=ais Res_, f(2) = c_;, the codicient ofé1 in the Laurent
expansion.

The principal part of atz = ais the series’ ;2 . c\(z— @)™ this is the “simplest”
expression which we can subtract frdnto remove the singularity. If has a pole of
orderk (¢0) atz = a then its prncipal part is a polynomial iz € a), the unique such

for which f — P has a removable singularity at a, P(2) = (Zc_*g)k +oo 4+ 2L

Proposition 3.3.7

If v is a closed curve iD°(a, R) thenfy dz = 2nil(y; a) Res-a f(2): by uniform con-
vergence of the Laurent expansion{an p; < z—a < p} forany 0< p; < p2 < Rwe
havefy f(2)dz= fy X LC(z-a)dz= Y ¢y fy(z— a)"dz = 2ric_11(y; a).

Remark

The fundamental theorem of calculus and its converse irhjbigs an antiderivative on
D%a, R) if and only if fy f(2dz = OV closed curvey c D%a,R), i.e. if and only if
Res_, f(2) = 0.

Supposd meromorphic orD and{ay, . . ., an} some of the poles of onD. Let f;
be the principal part of atz = . Thenf — f; has a removable singularity at= a;
andf; is holomorphic orC\ {a;}, sog(2) = f(2) - XL, fi(2) has removable singularities
at all theg;; we can then proove:

Theorem 3.3.8 (Residue Theorem)

Let f be meromorphic o® andy a closed curve (or cycle) i homologousto 0 oD,
with f having no poles om and only a finite number of poles= afor which1(y; a) #
0. Thenfy f(2dz = 27i Y 1<m | (y; &) Res=y f(2). Notice this includes Cauchy’s
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theorem (wherf holomorphic) and the Cauchy Integral Formula (by applytrig %
which has residué(w) atz = w) as special cases.

We can wlog assumé holomorphiconD \ {g : 1 < i < m}, since replacind®
by D’ = D\ {w € D : f has a singularity av andl(y; w) = 0} does not change the
hypotheses. Then we safv= g + Y fi where thef; are the principal parts of ata
andg is holomorphic orD. Sofy fdz = fygdz+ 3 fy f,dz; by Cauchy’s theorem and
3.3.7thisis Or 27i ) I (y; &) Res-4 f.

Remarks

Without changing the proof, we can relax the conditions tovah function with any
isolated singularities, not just poles.

We can show that the set of poleswith | (y; w) # 0 is alwaysfinite for y homolo-
gousto 0inD: letV = {we C: I(y;w) = 0} and as seen on the second example sheet
V is openin C; it contains a “neighbourhood of infinity{z : |7 > R} for someR by
3.1.3. Sincey is homologous to 0 iD, D UV = C, so the complemer = C \ V is
a closed and bounded i.e. compact subs@&;dfincef has only isolated singularities,
by Bolzano-Weierstrauss only finitely many of them an€. Thus we did not need the
hypothesis that only a finite number of poles héfe a) # 0.

For some applications it is useful to have another form ofrsdue theorem for
simple closed curveg (that is,y for whicht # t' = y(t) # y(t") if {t,t'} # {a,b}):
traditionally (and even now in many applied mathematicddspGauchy’s theorem and
similar results were formulated as “ifis holomorphic on and inside a simple closed
curvey thenfy fdz = 0” and similar; however this is only well defined if “insides;iin
factitis, since we have the Jordan Curve Theortta complement of a simple closed
curvey is the disjoint union of two domain®; 1 D, where exactly one of these,
wlog D3, is unbounded, and the bounded comporintthe “inside” ofy, is simply
connected. However, proof of this isfldicult; for our purposes we can avoid doing so
by using the winding number:

Definition

A closed curve or cycler bounds a domai® if Yw € D, I(y;w) = 1 and¥w ¢ D U
¥, 1(y;w) = 0.

Supposey bounds a domai® and letf be holomorphic oD U y (i.e. on an open
setU o DuUYv), then by definitiory is homologous to 0 ob, so we can apply Cauchy’s
theorem and similar to obtain:

Theorem 3.3.9

Suppose’ boundsD, then:

If fis holomorphic orDUythenfy f(2dz = 0 (Cauchy’s Theorem) anj; %dz =
2ri f(w)Yw € D (Cauchy’s Integral Formula).

If fis meromorphic oUy with no poles ory thenfy fdz = 27 3 polesaof  in 0y R€S=a f(2)
(Residue Theorem).

[Lecture missed at this point]
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Example

00 X(Y . . _ L .
b wmzdxfor 0 < @ < 1; we integratef(z) = ;% and since we want to evaluate

this for z real and more generally in the upper half-plane we pick tleadn ofz* =
1092 = |z7°g@a9Z for —Z < argz < ¥. Then we integrate around the (closed) curve
Yy=Y1+Y2+7Y3+7Va Wherey4 is the semicircldz = R [in the upper half-plane,
paramaterised anticlockwisel the semicircléz = R [paramaterised clockwise], and
v1,v3 are the real intervals fromR to —r andr to R respectively. Therf% f(29dz =

R R (—x)
[ Z5zdx. Fory, Iet( y1)(t) = —tfort e [r,R]. Thenfy1 f(9dz=- [ li(fx)zx—ldx
which is () g™ [ 1+X2 U 1+22dz‘ < nRF= — 0 asR — o since 0< a < 1,
but aIsoU = dz’ < ar{= — 0asr - 0. We havef f(2dz = 2riRes.; f(2) =
2ni L |i= 7i® by the re5|due theorem, so iy r-e(1 + e"“’f

Z+1
ﬂeiﬂ% = fooo &dx =
was unsure].

This method wouldn’t work for (for exampleﬁ;o ﬁdx, since the step (*) re-
lied on the denominator of the integrand being an ewsrction; however, we could
substitutex — x? and then proceed as above. Alternatively we could integtiagetly
around a “key-hole” contour consisting of the lines at asgle above and below the
x-axis, and a large and small circle missing the short sesfi@m angles to —e.

1+X2dX = mi% =
[or possibly another similar function; the lecturer

COS?T(L/

3.5 The argument principle and Rouche’s Theorem
Proposition 3.5.1

Let f have a zero (or pole) of ordér> 1 atz = a, then the “logarithmic derivative£

has a simple pole at= a with residuek $respectlvely—k) we havef(2) = (z- a)kg(z)

with g holomorphic and: 0 atz = a, so f((z)) = K4 %((ZZ)) with % holomorphic az = a

so we have the result; the proof for poles is similar.

Remark

% is not necessarilgiz(log f(2) since logf (2) need not be well defined.

Theorem 3.5.2 (Argument Principle)

Lety be a closed curve (or cycle) bounding a domaiand letf be meromorphic on
D U y with no zeroes or poles op If f hasN zeroes andP poles onD, counted with
multiplicity (i.e. we count each pole or zero of degkdetimes) (by the remark after the
Residue Theorem (3.3.8) these numbers are finite) therP = 5% [ ff((zz))dz = 1(T;0)
wherel’ = f oy is the image ofy underf. For the first equallty we just apply the

Residue Theorem tér the sum of residues of this iB is N — P by (3.5.1). For

the second equality notice 0 is not drsincef # 0 ony sol(T;0) = 1 v _

T w
+ fy ff((zz))dz (this is integration by substitution = f(2)).
Suppose is a closed curve : [0, 1] — C, then the theorem saya@\ — P) is the

change in the argument #{z) asz tracesy, hence the name of the theorem.

18



Definition

Let f be holomorphic ar = a and non-constant witffi(a) = b. Then the local degree
of f atz = a, deg_, f(2), is the order of the zero off(zZ) — b atz = a; note this is a
(strictly) positive integer.

Proposition 3.5.3

deg._, f(2) = I(f o y; f(a)) for any circley(t) = a+ re*, t [0, 1] with r sufficiently
small: apply the argument principle tdz) — f(a). Since its zero at = a must be
isolated,N = deg_, f(2) for r sufficiently small.

Theorem 3.5.4 (Local Mapping Theorem)

Let f : D(a,R) — C be holomorphic and non-constant with degf(z) = d > 1,
then ifr > 0 is suficiently small,3e > 0 such thatvw € C with |w — f(a)| < e, the
function f(2) — w has exactlyd zeroes inD(a, r), all of them simple ifw # f(a). For
f(a) = O,w # a and|w — a| suficiently small, the number of solutions 6{z) = wis
the order of the zero of atz = a: let x = f(a) and choose > 0 such that botti(2) - b
and f’(2) are nonzero for & |z— @ < r; we can do this sincé is non-constant s®’

is not identically 0. Lety be the circley(t) = a + re? 't € [0, 1], thenl" = f oy is

a closed curve not containirg chooses > 0 such thaD(b, €) doesn’t meef’. Then
by 3.5.2, iflw — b| < € the number of zeroes df(z) — win D(a,r) is I(I'; w), but this
is I(T; b = d for anyw € D(b, €) by continuity of the winding number (which we have
not actually prooven, but is true by continuity of the int@gfefinition of the winding
number). Since is chosen such thdt # 0 onD(a,r) \ {a}, the zeroes are simple for
w# b.

Corollary 3.5.5 (“Holomorphic mappings are open”)

This is a corollary to the Argument Principle: f@ra domain and : D — C holo-
morphic and nonconstant, the images unfief open sets are open sets; we daig
an opemmapping: it stfices to proove thata € DAD(a, r) c D such thatf (D(a, r)) o
someD(f(a), €) which follows from the previous result, sincevif € D(f(a), €) then
f(2 — w has at least one zero D(a, r).

Remark

Exercise: this gives another proof of the maximum modulestem (2.4.3).

Theorem 3.5.6 (Rouck’s Theorem)

Lety be a closed curve bounding a dom&inLet f, g be holomorphic oD Uy and
[f(2)| > |9(2|Vze y. Thenf and f + g have the same number of zeroedificounted
with multiplicity] (note the hypothesis implie§ f + g are nonzero ow: it suffices to
proove thath = f—?g = 1+ { has the same number of zeroes as pole3;iapplying
the argument principle it stices to proove(h o y; 0) = 0, but the hypothesis implies
h(z) — 1] < 1¥zony, soh o vy is contained inD(1, 1), which does not contain 0, so
I(hovy,0)=0by (3.1.3).
We can use this to (approximately) locate zeroes of funstion
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Example

P(2 = 2 + 6z+ 3; ony = the circle|d = 2, |2 = 16 > 15 > |6z + 3| so (taking
f = 74,9 = 62+ 3) all the zeroes oP have|Z < 2. Now consider the circlgg = 1;
|67 = 6 > 4 > |22 + 3| soP(2) has the same number of zeroes with« 1 asf(2) = 6z,
namely 1, so 3 zeroes &fsatisfy 1< |7 < 2 while the fourth hagg < 1.

We can also estimate the number of zeroes in a half-planekiygta to be a
semicircle and letting its radius oo; see the example sheet for more on this.

3.6 Uniform Limits of analytic functions
Definition

Let U c C be open andf, : U — C a sequence of functions. We saf)(is
locally uniformly convergentf Ya € U3dD(a,r) c U such that {,) converges uni-
formly onD(a, r).

Examples

fn = ﬁ converges uniformly td (z2) = 1 on anyD(0, r) with r < 1 (since|f — f,| =
I%I < 1["rn) but (fn) is notuniformly convergent o(0, 1) since sup_; |f — fn| = oo,
so (fy) is locally uniformly convergent o®(0, 1) but not uniformly convergent.

Theorem 3.6.1

A sequence of function§, : U — C is locally uniformly convergent ot if and only
if it converges uniformly on every compastibset olU; if f, — f uniformly on every

compact subset df thenva e U andr > O such thaD(a,r) = {z: |z—al <r} c U the
sequence converges uniformly B(a, r) so also orD(a, r) and (f,) is locally uniformly
convergent orJ; conversely suppose{) — f locally uniformly onU andK c U
compact, then for each € K3r,0 such thaD(a,r,) c U and f, — f uniformly on
D(a,ra); asK is compact we have some finite &t K such thakK = | J,.s D(a, ra);
thenf, — f uniformly onK (since if f, — f uniformly onXy, ..., Xy thenf, — f on

U X.

Theorem 3.6.2

Let (f,) be a sequence of analytic functions Onc C which is locally uniformly
convergent, therf = lim f, is analytic onU and (f;) — f’ locally uniformly onU:
let D = D(a,r) c U be any disc, therf is continuous since it is a uniform limit of
continuous functions, and by Cauchy’s theorﬁyn%(z)dz = 0 for any closed curve
in D. Since the image oy is a compact subset @ c D, f, — f uniformly ony by
3.6.1, sofy fdz =lim fy fndz = [, so by Movera’s theorenf is analytic on any sucb,
and thus inJ. Next,Yw € D(a, §), | (w) - fi(wW)| = £ j\‘z—al:r %dz (assuming
D(a,r) c U) whichis< rsup, 5, M — 0 asn — oo sincef, — f uniformly

on the circlef|lz—al =r}, so (f;) — f’ u4niformly onD(a, §).

This result is complemented by a theorem of Weierstraussyeanalytic function
is a locally uniform limit of rational functionsThis is very much not the case for the
reals, since on [A] another theorem of Weierstrauss tells us that every ©oatis
function is a uniform limit of polynomials.

20



Applications

D@ =20 = n)2 converges foz € C\ Z (by comparison withy;{’ nz) more
preciselyf(z) Zn}N (H)z + fn(2 where for|Z < R, fn(2) converges uniformly
n{z: |7 < N} by comparison withy,” @ 1N)2 So f(2) represents a meromorphic
functlon on(C with a pole at eaclz = n € Z with principal part(Z - Now consider
92 = ”—Z — landgis even
so the pnnmpal part ofatz=0is 3 =. Alsog(z+ 1) (2 soVn € Z the principal part
ofgatz=nis n2 We claimf = g, i.e. (x) 7°coseénz= Yy Note that
f= g+hwhere is entire alsof(z+1) = f(2), g(z+1) = g(2) so it sufices to show that
Ih(2)| is bounded otz = x+iy : x € [-3, 3]} and|h(x-+iy)| — 0 aslyl — co uniformlyin
X € [-3, 3], then we can apply Liouville'’s theorem ko In fact bothf andg satisfy this:
[T (x+iy)| < +23°, tyt2+(}t 7z = Oasyl — o. (by comparing the sum witff - 7 d)

—00 zn2

and|g(x + iy)| < ‘eﬂ.z“’;_m‘z < (eﬂyi‘e_”y)z — 0 asly]| — co. Some related formulae (Wlth
proofs left as exercises for the reader)amtrz = 2+ ¥ (G +55) =1 +Zn 170
(this converges by comparison WiE]n—lz; note we do not writey> -2 5 Since thls
does not converge (a sketch of the proof is tfiadentiate both sides to obtaig)(
showing that the dierence is constant, then the constant must be 0 since betharie
odd), and simz = [, (1 - £)(1+ £) = z[12,(1 - é) (this is proven by computing
the logarithmic derivativé—’ of each side).

2) Ther functionis defined byl'(s) = f e't>"1dt for s € C,Re(S) > O (this last
condition implies the integral converges). Writg(s) = f; e 'ts1dt; this represents

N

an analytic function o € C (by 2.5.4) and our error terrq%w e'ts1dt — 0 uniformly

for o1 < Re(s) < o andfo% e't>dt — 0 uniformly provideds; > 0 [where ther;
are presumabl%, N respectively]. So by the theorem in the previous lectlite) is
analytic on{Re(s) > 0}. If we integrate by parts(s) = [e'£]5 + £ [¥e'tsds =

ir(s+ 1) for Re@) > 0, i.e.T(s+ 1) = s[(s). Sincel(1) = fol e'dt = 1 this implies
I'k) = (k—1)IVk=1,2,.... So for Ref) > —nwith N > 0 € Z we can defin&(s) =
I(s+1) = - = geen=pl (s + N) which defines a meromorphfanction with

simple polesas = 0,-1,-2,... and Reg. I'(s) = % = (k, , soI'(s) has an
analytic continuation to a meromorphic function Grwith poles ats=0,-1,-2,...
We can also show thdi(s) # O for s e Candin factr(s) is entire with zeroes at
0,-1,-2,...; it = &s[[,(1 + $)e7 wherey = limpw(l+ 3 + -+ 1 —logn),
Euler’s constant.

By this point we have almost certainly reached the end of daenénable portion
of this course, but the remainder is retained for interest:

3) The Riemani function £(s) = Y2, =. In~S = n~Res so this converges for
Re(s) > 1 and converges uniformly ofs : Re(s) > o} for anyo > 1 so represents
an analytic function on the half-plane Rp(> 1. This¢ has two particularly nice
properties:

a) ¢ can be extended to an analytic function®@h {1} with a simple pole as = 1:
we use thal'(s)¢(s) = fo‘x’ >, nstsletdt (we have interchanged integration and

summation, but this is valid). We substitutetby» nt, then this isfom >, et =

[ L2 dt. We split this asf0 Lrdt+ [7 St [7 Lt defines an analytic function
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on s € C by the same argument as fbfs); for the other integral we expangq =
= Yo Bk% where theBy are the “Bernoulli numbers”; these aeeQ with

t+ & 24
bo=1B;=-1B,=%Bs=Bs=by=--- =0, and the eveB; continue B, =
—%); informally, this is the only place 691 appears in matheosato if 691 pops out

of an equation then it is likely the Bernoulli numbers are sbow involved). This is

S, BkL!‘k + tN*IE(t) so our integra%l Ldt=3N, fol BkaktS*Z + fol tN+SIE (bdt =
Sho %H—i_ﬁ a rema_inder Wh_ich is analytic for Rg(1 — N. SoI'(s){(9) extend_s to
a meromorphic function of¢ with poles of ordex 1 ats = 1,0,-1,...; the residue

at1-kis %. ButI'(s) has poles as = 0,-1,... and no zeroes s{(s) extends to a

function onC with a pole ats = 1 with residue 1 andfk > 1,(1 - k) = %% =
(1B (9 = TR0 & = Tpprime( + # + % +...) wheren = pi +--- + piy

for the pi prime, which is[], 171_15. This implies the number of primes is infinite (as
otherwise we would have no p(gleat: 1) and (though the proof of this result takes an
entire course in part Il) that the number of primes( as a function oiX ~ % the
prime number theorem; it also leads to many other import&stlts in number theory.
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