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1.1 Introduction

The recommended book for this course is Ahlfors’ excellent work; be wary, however,
since while it appears to be “informal” each sentence has in fact been written very
carefully; every word matters. This is perhaps the best bookfor one who wants to be
good at mathematics. At the other end of the spectrum, Stewart-Tall’s book is good
for passing exams with, though somewhat pretentious and overcomplicated. In be-
tween, Jameson or Whittaker-Watson’s now-amusingly titled “Modern Analysis” are
good. The preious year’s lecture notes are available online; however, do note that the
schedules have changed; the lecturer has so far only noticedelements being removed
but presumes something has also been added to the course.

1.2 Cplx Differentiation

Notations:a ∈ C, r > 0 ∈ R. Call D (a, r) = {z ∈ C : |z − a| < r}, an open disc or ball,
also calledB (a, r) or∆ (a, r); this is the cplx analogue of(a, b).

An open subset ofC is aU ⊂ C st∀A ∈ U∃r > 0 : D (a, r) ⊂ U; in particular for
anya, r, D (a, r) is an open subset ofC (D(z, r − r′) ⊂ D(a, r) wherer′ = |z − a|).

A curve (inC) is a cnts mapγ : [a, b] → C for [a, b] some closed interval in
R. General curves can be somewhat counterintuitive (e.g. space-filling curves, such
as curves whose image is the entire unit square, exist). We say a curveγ is cntsly
diffable orC1 if γ′(t) (at the endpoints, we take this to be the one-sided derivative)
exists∀t ∈ [a, b] and is cnts.

An open setU is (path-) connected if∀z,w ∈ U∃ some curveγ : [0, 1] → U :
γ(0) = z, γ(1) = w.

Without pf: if an open setU is path-connected then any 2 pts of it can be joined
by a curve which is polygonal i.e. made up of [presumably finitely many, otherwise
pointless] line segments.

NoteC � R by (x, y) 7→ x + iy

Defn

A domainis a non-empty connected open subset ofC e.g. a disk, orC
some finite set of points .

We are generally interested in functionsf : U → C whereU is an open set or a
domain inC.
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Given such anf , we can writef = u(x, y) + iv(x, y) whereu, v are real-val’d funcs
on the domain (identified w/ an open subset ofR2).

Defn

i) f : U → C is diffable @w ∈ U if lim z→w
f (z)− f (w)

z−w exists (and in this case it is
called the derivf ′(w) of f @ w)

ii) f : U → C is holomorphic onU if f is diffable @ every pt ofU; we say f is
holomorphic @w ∈ U if ∃r > 0 : f diffable @ every pt ofD(w, r)

Terminology

“holomorphic” is used synonymously with “regular”, and also sometimes with “ana-
lytic”.

Cplx differentiation obeys the same formal rules as real differentiation of functions
of a single variable (sum, prod, quot, chain, rules, inversefunction thm), by the same
pfs. For example, a polynomial functionf (z) =

∑

0≤n≤N cnzn is diffable everywhere.
A rational function f (z) = P(z)

Q(z) for P,Q polys is diffable everywhereQ(z) , 0, so is
holomorphic on the domainC
{ zeroes ofQ}. Also see the later section on power series.

Defn

An entire function is a holomorphicf : C→ C e.g. polynomials, and also exp, sin and
cos. Compare this with diffability of funcsR→ R2; recall that a funcu : U → R (for
U ⊂ R2 open) is diffable @ (c, d) ∈ U if ∃λ, µ ∈ R : u(x,y)−u(c,d)−λ(x−c)−µ(y−d)√

(x−c)2+(y−d)2
→ 0 as

(x, y)→ (c, d), and if soDu(c, d) defined by (λ, µ) ∈ R2 is the derivative ofu at (c, d).

1.2.1 T: “Cauchy-Riemann Eqns”

f : U → C is diffable @w = c + id ∈ U iff the functionsu, v : U → R are diffable
@ (c, d) (as funcs of two real vars) andux(c, d) = vy(c, d), uy(c, d) = −vx(c, d). If so,
then f ′(w) = ux(c, d) + ivx(c, d) = vy(c, d) − iuy(c, d): from the defnf will be diffable
@ w = (c, d) w/ deriv f ′(w) = p + iq iff limz→w

f (z)− f (w)− f ′(w)(z−w)
|z−w| = 0 or equivalently

(considering the real and imaginary parts separately)

lim
(x,y)→(c,d)

u(x, y) − u(c, d) − p(x − c) + q(y − d)
√

(x − c)2 + (y − d)2
= 0

and

lim
(x,y)→(c,d)

v(x, y) − v(c, d) − q(x − c) + p(y − d)
√

(x − c)2 + (y − d)2
= 0

i.e. iff u is diffable @ (c, d) w/ deriv (p,−q) andv is diffable @ (c, d) w/ deriv (q, p)
and we are done.

Defn

The exponential function is exp(z) =
∑∞

n=0
1
n! z

n
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Prop 1.3.3

i) exp(z) is an entire function andddz exp(z) = exp(z); Use the previous Thm, STP

that series has rad of conv∞, but since
zn

n!
zn−1
(n−1)!

= z
n → 0 asn → ∞∀z ∈ C, by the

ratio test the series converges∀z; differentiating term by term, exp′ = exp

ii) exp(z + w) = exp(z) exp(w); let a = w + z, g(z) = exp(a − z) exp(z); this is
holomorphic onC with derivative− exp(a − z) exp(z) + exp(a − z) exp(z) = 0 so
must be constant, and thus= g(0) = exp(a), i.e. exp(w + z) = exp(w) exp(z);
puttingw = −z we have exp(z) exp(−z) = 1 so exp(z) , 0∀z

iii) If z = x + iy, x, y ∈ R, exp(z) = ex(cosy + i siny) since it is exp(x) exp(iy) by ii),
then compare with the Taylor series forex, cosy, siny

iv) exp(z) = exp(w)⇔ z−w = 2πin somen ∈ Z; by ii), STP exp(z) = 1⇔ z = 2πin;
let z = x + iy, then exp(z) = 1⇔ ex(cosy + i siny) = 1 and we have the result

v) ∀w , 0 ∈ C∃z ∈ C : exp(z) = w; this also follows from iii) by expressingw in
“polar co-ordinates”

Rk

One can also definethe trigonometric and real exponential functions in terms of this
definition of the complex exponential and these properties,and then prove their more
usual definitions.

Ex

Define forz ∈ C, sin(z) = exp(iz)−exp(−iz)
2i , cos(z) = exp(iz)+exp(−iz)

2 . From ii) we can then
easily deduce sin(z + w) = sinz cosw + cosz sinw etc.

From now on we shall use the standard (abuse of) notation thatez = exp(z).

Logarithm

If z ∈ C we sayw ∈ C is a logarithm ofz if ew = z; eitherz has no logarithm (z = 0) or
z has infinitely many (z , 0), since ifew = z thenew+2πin = z∀n ∈ Z. In general there
is no “canonical” choice for a logarithm ofz, so log(z) is a “multivalued function” of
z ∈ C \ {0}.

It is often necessary to select a particular logarithm. IfU ⊂ C, 0 < U by a branch
of the logarithm we mean a cnts (in fact holomorphic) fnl : U → C s.t.∀z ∈ U, l(z) is a
logarithm ofz (or equivalently exp(l(z)) = z∀z ∈ U. A standard choice isU = C \ {x ∈
R | x ≤ 0}; we define the principal branchof the logarithm to be the func Log :U → C
by Log(z) = ln |z| + i arg(z) where we take arg(z) ∈ (−π, π).

Prop 1.3.4

i) ∀z ∈ U, exp(Log(z)) = z by 1.3.3; exp(Log(z)) = eln |x|(cos argz + i sin argz) = z

ii) Log(z) is holomorphic onU w/ deriv 1
z : Log(z) is cnts onU (since|z|, argz are) so

we can apply the formula for the derivative of an inverse fn; 1= d
dz (Logz) exp(Logz) =

d
dz (Logz)z
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iii) ∀z with |z| < 1, Log(1+ z) =
∑∞

n=1(−1)n−1 zn

n : let l(z) =
∑

n≥1(−1)n−1 zn

n ; this
has rad of conv 1 by ratio test.l(z) is holomorphic onD(0, 1) and l′(z) =
∑

n≥1(−1)n−1zn−1 = 1
1+z =

d
dz (Log(1+ z)) so l(z) − Log(z) is constant on{|z| < 1};

puttingz = 0 we find this constant is 0

It is natural to try to extend Log(z) to a cns func onC\{0} but this is impossible since
e.g. limθ→π− Log(eiθ) = limθ→π− iθ = iπ but limθ→π+ Log(eiθ) = limθ→π+ i(θ−2π) = −iπ.
More generally we will see there is no branch of the logarithmon any set of the form
{z ∈ C : 0 < |z| < r}. We say thatz = 0 is a branch pointfor the logarithm function.

There is a similar picture for “functions”z 7→ z
1
n ; there is no canonical choice of

thenth root ofz , 0 if n > 1. The simplest way to deal with this is:

Defn

For a ∈ C the principal branchof zα is zα = exp(αLogz), z ∈ U = C \ {x ∈ R : x ≤ 0}.
Whenα ∈ Z this gives the correct functionzα since exp(Logz) = z.

E.g.

α = 1
2 , z

1
2 = |z| 12 e

1
2 i arg(z) for −π < arg(z) < π. From the defnzα is holomorphic onU w/

d
dz zα = α 1

z exp(αLogz) = αexp(− Logz) exp(αLogz) = αexp(α − 1) Logz = αzα−1.
Note that it isnot generally the case that (zw)α = zαwα, or that Log(zw) = Log(z) +
Log(w).

1.3 Conformal Mapping

SayU ⊂ C open,w ∈ C, f : U → C holomorphic.
Supposef ′(w) , 0. Letγ : [−1, 1]→ U be a simple(γ(t1) , γ(t2)∀t1 , t2) C curve

w/ γ(0) = w, γ′(0) , 0. Letγ′(0) = r(cosφ + i sinφ); φ is then the angle of the tangent
to γ at w. Let δ be the image ofγ under f , i.e. δ(t) = f (γ(t)), thenδ′(t) = γ′(t) f ′(γ(t))
andδ′(0) = arg(γ′(0))+ arg(f ′(w))+ 2πn somen ∈ Z, i.e. the angleδmakes atw is the
angleγ makes atw+ a constant indep ofγ; the mappingf preserves anglesat w. This
is said to be conformal

A particular important case is whenf : U → C, f holomorphic onU, f ′ , 0 on
U and f is a bijectionU → f (U); we sayf is a conformal equivalencebetweenU and
f (U), or sometimes simply a conformal mapping.

Exercise: Möbius transformationsf (z) = az+b
cz+d , a, b, c, d ∈ C, ad − bc , 0 are

conformal mappings from the riemann sphereC ∪ {∞} to itself.
Exercise:n ≥ 1, f (z) = zn is a conformal equivalence between{z ∈ C \ {0} : 0 <

arg(z) < πn } and{z ∈ C : Im(z) > 0}.
expz = expw ⇔ z = w + 2πin; z 7→ expz is a conformal equivalence between

{z ∈ C : −π < Im(z) < π},C \ {x ∈ R : x ≤ 0}.
Using such functions we can build quite complex conformal equivalences; the im-

portant Riemann Mapping Theoremimplies if £D£ is a domain inC bounded by a
simple closed curve∃ a conformal equivalencef : D→ D(0, 1).
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2 Complex Integration

2.1 Integral along curve

If f : [a, b] → C is a (for now, continuous) cplx-vald fn on a real interval, def
∫ b

a
f (x)dx :=

∫ b

a
Re(f (x))dx + i

∫ b

a
Im( f (x))dx.

Prop 2.1.1

For a < b and f cnts,
∣

∣

∣

∣

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b − a) supa≤x≤x | f (x)| w/ equality iff f (x) is

constant: letθ = arg
∫ b

a
f (x)dx (if the integral is 0 we are done). LetM = sup| f (x)|.

|
∫ b

a
f (x)dx| = e−iθ

∫ b

a
f (x)dx =

∫ b

a
Re(f (x)e−iθ)dx since the imaginary part is 0. But

this is≤
∫ b

a
| f (x)|dx ≤ (b − a)M. For f not identically 0 equality holds iff both these

inequalities are equalities; the second is an equality iff | f (x)| = M∀x i.e. | f | is constant,
and the first is iff e−iθ f (x) = | f (x)|, i.e. θ = arg f (x) so argf is also constant andf is
constant.

Let γ : [a, b] → C cntsly diffable andγ(t) = x(t) + iy(t), then|γ′(t)| =
√

x′2y′2, so

reasonable to define length(γ) =
∫ b

a
|γ′(t)|dt, since forγ a simple curve this is just the

length of its image inC.

Defn

Let f : U → C cnts on an openU ⊂ C and γ : [a, b] → U a C1 curve. Def
∫

γ
f (z)dz =

∫ b

a
f (γ(t))γ′(t)dt.

Basic properties

Linearity:
∫

γ
c1 f1(z) + c2 f2(z)dz = c1

∫

γ
f1(z)dz + c2

∫

γ
f2(z)dz.

Additivity: for a < a′ < b, γ1 : [a, a′] → U, γ2 : [a′, b] → U defd byγi(t) = γ(t)
have

∫

γ
f (z)dz =

∫

γ1
f (z)dz +

∫

γ2
f (z)dz.

Inverse path: forγ : [a, b] → U def−γ : [−b,−a] → U by (−γ)(t) = γ(−t), then
∫

−γ f (z)dz = −
∫

γ
f (z)dz.

Reparamaterisation: ifφ : [a′, b′] → [a, b] is C1 andφ(a′) = a, φ(b′) = b, if
δ = γ ◦ φ (δ(t) = γ(φ(t))∀t ∈ [a′, b′]) then

∫

γ
f (z)dz =

∫

δ
f (z)dz (this is analagous to

change of variables in conventional integration). In particular, since we can always find
φ : [0, 1]→ [a, b] we can restrict our attention to curvesγ : [0, 1]→ C.

Let γ : [a, b] → C be cnts and suppose havea = a0 < a1 < · · · < an = b s.t. on
each interval [ai−1, ai] γ is cntsly diffable, then we sayγ is piecewiseC1 and can def
∫

γ
f dz =

∑

i

∫

γi
f (z)dz where theγi : [ai−1, ai] → C are defd byγi(t) = γ(t); by the

second property above this does not depend of the wayγ has been decomposed.
It is convenient to “add” curves: ifγ : [a, b] → C, δ : [c, d] → C are curves with

γ(b) = δ(c) then we defineγ + δ : [a, d − c + b] → C by t 7→ γ(t) for a ≤ t ≤ b,
δ(t − b + c) for b ≤ t ≤ d − c + b, thus the aboveγ is simplyγ1 + · · · + γn.

From now on by “curve” we shall mean “piecewiseC1 curve” unless otherwise
stated.
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Prop 2.1.2

If f : U → C is cnts andγ : [a, b] → U is any curve then
∣

∣

∣

∣

∫

γ
f dz
∣

∣

∣

∣

≤ length(γ) supγ | f |
(supγ | f | = supt∈[a,b] | f (γ(t))| exists sincet 7→ f (γ(t)) is a cnts map on the closed
bounded interval [a, b]): by additivity we can wlog takeγ C1. Let M = supγ | f |, then
∣

∣

∣

∣

∫

γ
f dz
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a
f (γ(t))γ′(t)dt

∣

∣

∣

∣

≤
∫ b

a
| f (γ(t))γ′(t)|dt ≤ M

∫ b

a
|γ′(t)|dt, which isM length(γ)

as required.

Prop 2.1.3

Supposef , fn (a sequence forn ∈ N) are continuous functions on an openU ⊂ C and
γ : [a, b] → U is a curve such thatfn → f uniformly onγ (by which we of course mean
γ([a, b]) ⊂ U), then

∫

γ
fn(z)dz→

∫

γ
f (z)dz: let Mn = supγ | fn− f |; by the def of uniform

convergenceMn → 0, and by the previous result
∣

∣

∣

∣

∫

γ
f − fndz

∣

∣

∣

∣

≤ Mn length(γ) → 0 as
n→ ∞.

Thm 2.1.4 (Fundamental Theorem of Calculus)

If F : U → C is holomorphic (andF′ continuous - but we will later (2.5.2) see this is
automatically the case) andγ : [a, b] → U is any curve then

∫

γ
F′(z)dz = F(γ(b)) −

F(γ(a)); in particular ifγ is closed, that is,γ(a) = γ(b), then
∫

γ
F′(z)dz = 0: take wlog

γ C1 by additivity, then
∫

γ
F′(z)dz =

∫ b

a
F′(γ(t))γ′(t)dt =

∫ b

a
(F(γ(t))′dt = F(γ(t)) |ba.

A trivial corollary is that if f is the derivative of a holomorphic function then
∫

γ
f dz

depends only on the endpoints ofγ.

Example

f (z) = zn, γ = a circleγ(t) = Re2πit, t ∈ [0, 1] for somen ∈ Z,R > 0.If n , −1, zn =
d
dz (

zn+1
n+1 ) on C \ {0} (and evenC for n ≥ 0), which containsγ, so by the theorem,

∫

γ
zndz = 0 for n , −1. If n = −1 we don’t know a holomorphic function onC\{0}with

derivative1
z (the “obvious” choice, Logz, is only holomorphic onC \ {x ∈ R : x ≤ 0}.

So we instead compute the integral directly:
∫

γ

1
z dz =

∫ 1

0
1

Re2πit 2πiRe2πitdt = 2πi. Since
this, 0, there cannot exist anF holomorphic onC \ {0} (or even on any open subset
of C containing a circle about the origin{|z| = R > 0}) with derivative1

z , so there is no
branch of the logarithm on these sets.

Theorem 2.1.5 (Converse of FTC)

If f : D → C is cnts on a domainD and
∫

γ
f dz = 0 for every closed curveγ in D

then f has an antiderivative onD, i.e. ∃F : D → C holomorphic withF′ = f on
D: pick a0 ∈ D, and for eachw ∈ D pick γw some curve froma0 to w (which we
can do since domains are path-connected). LetF(w) =

∫

γw
f dz =. For anyw, pick

r > 0 soD(w, r) ⊂ D. For |h| < r, the line segment fromw to w + h, δh : [0, 1] → C
given byδh(t) = w + th lies in D. By hypothesis the integral off around the closed
curveγw + δh + (−γw+h) is 0 (andF(w) is well defined, i.e. independent of the choice
of γw). So F(w + h) =

∫

γw+h
f (z)dz =

∫

γw
f (z)dz +

∫

δh
f (z)dz = F(w) +

∫

δh
f (z)dz =

F(w) + h f (w) +
∫

δh
f (z) − f (w)dz since

∫

δh
dz = h.
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∣

∣

∣

F(w+h)−F(w)
h − f (w)

∣

∣

∣ =

∣

∣

∣

∣

1
h

∫

δh
f (z) − f (w)dz

∣

∣

∣

∣

≤ |h−1| length(δh) supδh | f (z) − f (w)| ≤
sup|z−w|≤h | f (z) − f (w)| → 0 as|h| → 0 sincef is cnts, soF′(w) = f (w).

We will also need a slight variant of this theorem:

Lemma 2.1.6

Let D be a disc(or, more generally, a convex or starlike domain:D is starlikeif ∃a0 ∈
D : ∀z ∈ D the line segment [a0, z] lies in D, and convexif the line segment [z1, z2]
lies in D∀z1, z2 ∈ D. Clearly all discs are convex and all convex domains are starlike.
The only really interesting starlike domain isC \ {x ≤ 0}, the set on which the principal
branch of the logarithm is defined). If

∫

γ
f dz = 0 for every triangleγ in D, then f has an

antiderivative onD: DefineF(w) in the above as
∫

γw
f (z)dz whereγw is a line segment

from a0 to w, then the closed curveγw + δh + (−γw+h) is a triangle so by hypothesis the
integral of f around it is 0, then we proceed as above.

The astute reader will notice that combined with the FTC, this result implies that
for a starlike domain, if the integral around any triangle is0 then so is that around any
closed curve.

2.2 Cauchy’s Theorem for a disc

If f : D → D is holomorphic andγ : [a, b] → D is a closed curve, then under suitable
conditions onγ,D,

∫

γ
f dz = 0.

There are various forms of this theorem depending on the nature of the condition;
for now we shall proove a “local version of Cauchy’s theorem”, the case whereD is a
disc.

2.2.1 Theorem

If f : U → C is holomorphic (forU ⊂ C open) and∆ ⊂ U a trinagle then
∫

∂∆
f dz = 0;

by∆we mean the (solid) triangle with verticiesa, b, c,∂∆ is the boundary therof viewed
as a simple closed curve; say wlog anticlockwise.

The proof of this is by bisection: letL = Length(∂∆), I =
∣

∣

∣

∫

∂∆
f (z)dz

∣

∣

∣. Subdivide

∆ =
⋃4

i=1∆
(i) by bisecting the edges, and note

∑4
i=1

∫

∂∆(i) f (z)dz =
∫

∂∆
f (z)dz, since

each of the internal edges is integrated along once in each direction. Therefore for
some 1≤ j ≤ 4,

∣

∣

∣

∫

∂∆(i) f (z)dz
∣

∣

∣ ≥ I
4. Put∆1 = ∆

( j), then similarly bisect∆1 to find∆2

and so on, so that we have∆ = ∆0 ⊃ ∆1 ⊃ . . . with length(∂∆n) = 1
2n L,
∣

∣

∣

∣

∫

∂∆n
f (z)dz

∣

∣

∣

∣
≥

1
4n I. Consider

⋂

n≥0∆n this is a single point{w} (it is clearly at most one point since
length(∆n) → 0, and if we pickwn ∈ ∆n for eachn thewn form a Cauchy sequence so
converge to somew, and since∆n is closed∀n,w ∈ ∆n∀n). Sincef is holomorphic the

functiong(z) = f (z)− f (w)
z−w − f ′(w), g(w) = 0 is a cnts func onD. So 4−nI ≤

∣

∣

∣

∣

∫

∂∆n
f (z)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

∂δn
f (z) − f (w) − (z − w) f ′(w)dz

∣

∣

∣

∣

since
∫

γ
dz =

∫

γ
zdz = 0 for any closedγ by FTC. So

this is
∣

∣

∣

∣

∫

∂∆n
(z − w)g(z)

∣

∣

∣

∣

≤ length(∂∆n). sup∂∆n
|(z−w)g(z)| ≤ 2−nL×2−nL× sup∆n

g(z) ∴

I ≤ L2 sup∆n
|g(z)| → 0 asn→ ∞.

It is important to know this holds under an apparently weakerhypothesis:
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2.2.2 Theorem

Let S ⊂ U be a finite set,f : U → C continuous onU and holomorphic onU \ S .
Then for any triangle∆ ⊂ U,

∫

∂∆
f (z)dz = 0.

By subdividing∆ we can assumeS = {a}, a ∈ ∆. Let M = sup∆ | f |. We can choose
an arbitrarily small triangle∆′ such thata ∈ ∆′, a < ∂(∆ \ ∆′) (if a is on the edge of∆,
we choose∆′ against the same edge, and similarly). Subdividing∆ into subtriangles
and using the previous result we have

∫

∂∆
f dz =

∫

∂∆′
f dz. As

∣

∣

∣

∫

∂∆′
f dz
∣

∣

∣ ≤ length(∂∆′)M

and∆′ is arbitrarily smass, this means
∫

∂∆
f dz = 0.

2.2.3 Cauchy’s Theorem for a disc

Let D be a disc (or starlike domain) andf : D → C holomorphic, except possibly on
a finite set of points where it remains continuous. Then for every closed curveγ in D,
∫

γ
f dz = 0: by 2.2.2

∫

γ
f dz = 0 for every triangleγ, so by 2.1.6f has an antiderivative

F on D, so by FTC
∫

γ
f dz = 0 for every closedγ.

2.3 Cauchy integral formula (1st form)

2.3.1 Theorem

Let D = D(a, r) be a disc,f : D → C holomorphic. For everyw ∈ D andρ with
|w − a| < ρ < r, f (w) = 1

2πi

∫

γ

f (z)
z−w dz whereγ(t) = a + ρe2πit, t ∈ [0, 1]; in an abuse of

notation we call this integral
∫

|z−a|=ρ
f (z)
z−w dz.

Notice this means ifρ is fixed, the values off (w) for |w− a| < ρ are determined by
those for|w − a| = ρ.

To proove this we apply 2.2.3 tog(z) = f (z)− f (w)
z−w , g(w) = f ′(w) which is holo-

morphic onD \ {w} and continuous atw. So
∫

γ

f (z)
z−w dz =

∑∞
n=0 f (w)

∫

γ

(w−a)n

(z−a)n+1 dz =
∑∞

n=0 f (w)(w − a)n
∫

|z|=ρ
dz

zn+1 = 2πi f (w) since
∫

dz
zn+1 = 2πi for n = 0 and 0 otherwise;

this worked by using the geometric series1z−w =
1

(1− w−a
z−a )(z−a) =

∑∞
n=0

(w−a)n

(z−a)n+1 . Note this

series is uniformly continuous on{z | |z− a| = ρ} so we can interchange integration and
summation.

2.3.2 Corollary

If f : D(w,R) → C holomorphic then∀r ∈ (0,R), f (w) =
∫ 1

0
f (w + re2πit)dt; this is

sometimes called the “mean-value property” since it is the statement thatf (w) = the
mean value off on the circle|z − w| = r. The proof comes from simply puttinga = w

in 2.3.1 and writing out the integral:
∫

γ

f
z−w dz =

∫ 1

0
f (w+re2πit)

re2πit 2πire2πitdt = 2π
∫ 1

0
f (w +

re2πit)dt.

2.4 Applications

2.4.1 Theorem (Liouville’s Theorem)

Every entire function which is boundedis constant: sayf is a bounded entire function,
i.e. f : C→ C holomorphic and| f (z)| < M∀z ∈ C. If w ∈ C,R > |w| then | f (w) −
f (0)| = 1

2π

∣

∣

∣

∣

∫

|z|=R
f (z)
z−w −

f (z)
z dz
∣

∣

∣

∣

by the CIF,= 1
2π

∣

∣

∣

∣

∫

|z|=R
f (z) w

z(z−w)dw
∣

∣

∣

∣

≤ 1
2π2πRM |w|

R(R−|w|) →
0 asR→ ∞, so f (w) = f (0) and f is constant.
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This tells us that e.g. sinz is unbounded onC, since it is an entire function.

2.4.2 Theorem (Fundamental Theorem of Algebra)

Every non-constant polynomial with complex coefficients has a root inC. Let P(z) =
zn + cn−1zn−1+ · · ·+ c0, of degreen > 0. Then|P(z)| → ∞ as|z| → ∞, so∃R : |z| > R⇒
|P(z)| > 1.Considerf (z) = 1

P(z) ; if P has no zero thenf is an entire function,| f (z)| < 1
for |z| > R and f is continuous so bounded on the closed and bounded set{z : |z| ≤ R}.
Thus f is bounded onC, so constant, a contradiction sinceP is non-constant.

2.4.3 Theorem (Local maximum modulus principle)

If f : D(a, r) → C is holomorphic and| f (z)| ≤ | f (a)|∀z ∈ D(a, r) then f is constant,

as by corollary 2.3.2 for any 0< ρ < r, | f (a)| = 1
2π

∣

∣

∣

∣

∫ 2π

0
f (a + ρeit)dt

∣

∣

∣

∣

≤ sup|z−a|=ρ | f (z)|
with equality iff f is constant (proposition 2.1.1). By assumption this is≤ | f (a)| so
t 7→ f (a + ρeit) is constant for everyρ > 0, and| f (z)| = | f (a)|∀z ∈ D(a, r) which
implies f is constant (using the Cauchy-Riemann equations; see the example sheet).

2.5 Taylor Expansion

2.5.1 Theorem

If f : D(a, r)→ C is holomorphic thenf has a convergent power series representation
on D(a, r), f (z) =

∑∞
n=0 cn(z − a)n wherecn =

f (n)(a)
n! = 1

2πi

∫

|z−a|=ρ
f (z)

(z−a)n+1 dz for any
0 < ρ < r.

2.5.2 Corollary

If f is a holomorphic function on some openU ⊂ C then its derivatives of all orders
exist and are holomorphic, as fora ∈ U,∃r > 0 such thatD(a, r) ⊂ U and by the
above theoremf can be represented by a convergent power series onD(a, r), then
apply theorem 1.3.2; in particular iff is holomorphic so isf ′ (as we assumed earlier).

Proof of theorem

By CIF, if |w − a| < ρ < r then f (w) = 1
2πi

∫

|z−a|=ρ
f (z)
z−w dz; recall 1

z−w =
∑∞

n=0
(w−a)n

(z−a)n+1 and

this is uniformly convergent for|z−a| = ρ (see proof of CIF), sof (w) = 1
2πi

∫

∑∞
n=0

f (z)
(z−a)n+1 (w−

a)n =
∑∞

n=0 cn(w − a)n wherecn =
1

2πi

∫

|z−a|=ρ
f (z)

(z−a)n+1 dz, since asf is bounded on
{|z − a| = ρ} the series is uniformly convergent so we can interchange integration and
summation.

So for fixedρ, 0 < ρ < r, f is represented by the convergent power series
∑

cn(z −
a)n onD(a, ρ), so it has derivatives of ll orders, withf (n)(a) = n!cn. Socn is independent
of the choice ofρ.

Remark

A function f : U → C is said to be analyticif ∀a ∈ U∃D(a, r) ⊂ U such thatf
can be represented by a convergent power series onD(a, r). The previous theorem
shows that this is equivalent to being holomorphic (and manybooks use the terms
interchangeably throughout); however, in realanalysis a functionf : (a, b) → Rn
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is said to be real analyticif ∀c ∈ (a, b)∃(c − r, c + r) ⊂ (a, b) such thatf can be
represented on (c − r, c + r) by a power series. Any suchf is infinitely differentiable,
but the converse is false: there exists (though it is a surprisingly difficult exercise to find
such anf ) an infinitely differentiablef on (−1, 1) such that the Taylor series

∑ f (n)(0)
n!

only converges atx = 0, and also infinitely differentiablef : (−1, 1) → R whose

Taylor series converges but to a differentfunction, e.g. f (x) = e−
1
x2 , f (0) = 0 has

f (n)(0) = 0∀n.
Henceforth we will use “analytic” and “holomorphic” interchangeably.
Our final application is a “converse” to Cauchy’s Theorem:

2.5.3 Corollary (Movera’s Theorem) (2.5.3)

Let f : D = D(a, r)→ C be continuous on a disc such that∀γ closed inD,
∫

γ
f (z)dz =

0. Then f is holomorphic: By 2.1.5f = F′ for some holomorphicF, but thenF has
derivatives of all orders so so doesf .

Application: Caroll (2.5.4)

For U ⊂ C open, [a, b] ⊂ R let φ : U × [a, b] → C be continuous and such that∀s ∈
[a, b] the functionz 7→ φ(z, s) is holomorphic. Theng(z) =

∫ b

a
φ(z, s)ds is holomorphic

on U: without loss of generality we can takeU to be a disc. Letγ : [0, 1] → U be a

closed curve, then
∫

γ
g(z)dz =

∫ 1

0

(

∫ b

a
φ(γ(t), s)ds

)

γ′(t)dt, but by lemma 2.5.5, below,

this is
∫ b

a

(

∫ 1

0
φ(γ(t), s)γ′(t)dt

)

ds =
∫ b

a

(

∫

γ
φ(z, s)dz

)

dz, but the inner integral is 0 by

Cauchy’s theorem sinceφ is holomorphic for any fixeds. So by Movera’s theoremg is
holomorphic.

Lemma (2.5.5)

Let f : [a, b] × [c, d] → R be continuous, then the functionsf1 : x 7→
∫ d

c
f (x, y)dz, f2 :

y 7→
∫ b

a
f (x, y)dx are continuous on [a, b], [c, d] respectively and

∫ b

a
f1(x)dx =

∫ d

c
f2(y)dy.

This is a very simple form of Fubini’s Theorem. f is continuous on a compact set so
uniformly continuous, i.e.∀ǫ∃δ > 0 : |x − x0| < δ ⇒ | f (x, y) − f (x0, y)| < ǫ i.e.
| f1(x) − f1(x0)| < ǫ(d − c) so f1 is continuous, and similary so isf2.

Now recall that a step functionon [a, b] × [c, d] is a finite linear combination of
characteristic functions of rectangles [a′, b′] × [c′, d′] ⊂ [a, b] × [c, d] [note the steps
can go down as well as up]. By the same argument as in the 1D caseevery continuous
function on [a, b]× [c, d] is a uniform limit of step functions. But any step function is of

the form f (x, y) = g(x)h(y) for some step functionsg, h, so clearly
∫ b

a

∫ d

c
f (x, y)dydx =

∫ d

c

∫ b

a
f (x, y)dxdy for these and we are done.

Note that this result can be false for anf which is discontinuous at only one point.
Let f : D(w,R)→ C be holomorphic, and write it as a power series

∑∞
n=0 cn(z−w)n

for z ∈ D)w,R). If f is not identically zero (on thisD) then we havecn , 0 somen; let
m = min{n : cn , 0} ≥ 0. Then f (z) = (z − w)mg(z) whereg(z) =

∑∞
n=0 cm+n(z − w)n,

holomorphic onD(w,R) with g(w) , 0. If m > 0 we say f has a zero of orderm at

z = w. Clearlym is the leastn such thatf (n)(w) , 0.
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Theorem 2.5.6 (Principle of isolated zeroes)

Let f : D(w,R) → C holomorphic and not identically zero, then∃r > 0 such that
f (z) , 0 for 0 < |z − w| < r: if f (w) , 0 then by continuity∃r > 0 : | f (z) − f (w)| <
| f (w)|∀z ∈ D(w, r) so f (z) , 0 onD(w, r); if f (w) = 0 then write f (z) = (z − w)mg(z)
with m > 0, g(w) , 0, g holomorphic and apply the previous argument tog.

There are essentially two branches to complex analysis; local analysis concerns
the behaviour of functions on discs, with results such as Taylor’s theorem, Cauchy’s
theorem, and the integral formula for discs, while globalanalysis looks at the behaviour
of functions on more general domains, with results like Liouville’s theorem and more
general forms of Cauchy’s theorem we shall see later. The relation between these two
areas is given by analytic continuation.

2.6 Analytic Continuation

2.6.1 Theorem (Principle of analytic continuation)

Let D′ ⊂ D be domains andf : D′ → C be analytic, then there is at most one analytic
g : D → C such thatf (z) = g(z)∀z ∈ D′ (note that we use “analytic” rather than
“holomorphic”; inR this result only holds for functions with power series, not general

infinitely differentiable functions. For example,f (x) = e−
1
x2 for x > 0 and 0 forx ≤ 0

is infinitely differentiable and hasf (n)(0) = 0∀n ≥ 0). Such ag (if it exists) is said to
be an analytic continuationof f to D:

Let g1, g2 : D → C be analytic continuations off , thenh = g1 − g2 is analytic on
D and≡ 0 onD′. DefineD1 = {w ∈ D : h ≡ 0 on someD(w, r), r > 0},D2 = {w ∈ D :
h(n)(w) , 0 somen ≥ 0}; as we saw aboveD = D1∪D2,D1∩D2 = ∅. Clearly we have
bothD1 andD2 open, so sinceD is connectedone of theDi is empty; it cannot beD1

sinceD′ ⊂ D1 soD2 = ∅ andD = D1, soh ≡ 0 onD andg1 = g2 on D.
Combining this and 2.5.6 we have:

2.6.2 Corollary (Identity Theorem)

Let f , g : D → C be analytic on a domainD. If S = {z ∈ D : f (z) = g(z)} contains a
non-isolated point thenf = g on D, i.e. S = D, as letw ∈ S be a non-isolated point
i.e. ∀ǫ > 0, S ∩ D(w, ǫ) , {w}. The functionf − g is holomorphic onD and vanishes
on S so by 2.5.6 ifD(w, r) ⊂ D then f − g ≡ 0 onD(w, r), so by 2.6.1f ≡ g on D. So
if f , g : C→ C are analytic then to showf ≡ g it is enough to e.g. showf = g onR.

Remark

In general it is difficult to tell whetherf : D′ → C has an analytic continuation to
D ⊃ D′, e.g. f (z) =

∑∞
n=0 on D(0, 1) has analytic continuation toC \ {1} by 1

1−z , but
∑

zn2
has no such analytic continuation (and prooving this is hard).

3 Complex integration (II)

3.1 Winding Numbers

Sayγ : [a, b] → C \ {w} a closed curve. We want to make sense of “the number of
timesγ winds aroundw”. Suppose we can sriteγ(t) = w+ r(t)eiθ(t) with r, θ continuous
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functions [a, b] → R and wlog takingr(t) > 0 (we never haver(t) = 0 sinceγ does not
pass throughw, sor(t) is either always positive or always negative). Then “the angle
the line joiningw to γ(t) sweeps out” isθ(b)− θ(a), and we define the winding number

(or index) of γ aboutw to be [I(γ; w) =] θ(b)−θ(a)
2π ; note that this is an integer since

γ(b) = γ(a).
We say thatθ is a continuous choice of argumentfor γ(t) − w; if θ1 is another such

choice of arcument thenθ−θ1 is a continuous function with values in 2πZ so is constant,
and in particularθ1(b) − θ1(a) = θ(b) − θ(a) and our definition is independent of the
choice ofθ.

However, the existance ofθ is nontrivial.

3.1.1 Theorem

If γ : [a, b] → C is a continuous curve then∃ a continuousθ : [a, b] → R such that
γ(t) = w + r(t)eiθ(t) wherer(t) = |γ(t) − w|.

The naive approach would be to setθ = arg(γ(t) − w) [taking the principal branch
of arg], adding or subtracting 2π each timeγ crosses the line{w − x|x ≥ 0}; however,
even a continuously differentiableγ can cross this line infinitely many times.

We first note that ifγ lies in the half-planeU = {z ∈ C : Re(z − w) > 0} then the
principal branch of the argument is continuous, so we can take θ = arg(γ(t) − w) for
this case. More generally, if the image ofγ lies in {z : Re)(z-w

eiα )} for some fixedα then

we can takeθ(t) = arg(γ(t)−w
eiα ) + α.

For a generalγ, we first take wlogw = 0 by translation, then (by replacingγ(t) by
γ(t)
|γ(t)| ) we wlog take|γ(t)| = 1∀t; now sinceγ is continuous on the closed interval [a, b]

it is uniformly continuous, so∃ǫ > 0 : ∀s, t ∈ [a, b], |s− t| < ǫ ⇒ |γ(s) − γ(t)| <
√

2.
Now we can subdivide [a, b] asa = a0 < a1 < · · · < aN = b with an − an−1 < 2ǫ∀n

so the image underγ of [an−1, an] lies inside a half-plane with boundary a line through
0. By the above, for eachn we haveθn : [an−1, an] → R continuous and such that
γ(t) = eiθn(t)∀t ∈ [an−1, an].
θn+1(an) = θn(an) + 2πBn for someBn ∈ Z, so by adding multiples of 2π to θn we

can arrange thatBn = 0∀n and then theθn together define a continuous functionθ with
the required properties.

The relation of this with complex integration is:

3.1.2 Proposition

Let γ be a (piecewiseC1) closed curve,γ : [a, b] → C \ {w}. ThenI(γ; w) = 1
2πi

∫

γ

dz
z−w ;

note one can also take this to be the definitionof the winding number for piecewiseC1

curves, as is done in e.g. Ahlfors, but then we have an almost equal amount of work to
the above prooving this is always an integer.

Write γ(t) = w + r(t)eiθ(t); sinceγ is piecewise continuously differentiable so are

r(t), θ(t) and
∫

γ

dz
z−w =

∫ b

a
γ′(t)dt
γ(t)−w =

∫ b

a
r′(t)
r(t) + iθ′(t)dt = [ln r(t) + iθ(t)]b

a = i(θ(b) − θ(a)) =
2πiI(γ; w).

3.1.3 Proposition

If γ : [a, b] → C is a (continuous) closed curve withγ(t) ∈ D(w0,R)∀t and w <
D(w0,R) then I(γ; w) = 0; wlog takew0,w ∈ R by linear transformation, then as
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in the proof of theorem 3.1.1 we have a continuous choice of argument by simply
θ(t) = arg(γ(t) − w soθ(b) = θ(a) andI(γ; w) = 0.

Remark

For piecewise continuously differentiable curves, we could take a sledgehammer ap-
proach by applying 3.1.2 and Cauchy’s theorem for a disc.

Definition

Let U ⊂ C be open.
A closed curveγ : [a, b] → U is homologous to 0(in U) if I(γ; w) = 0∀w < U, e.g.

for U = C \ {0} a curve about 0 is not homologous to 0, but one not around 0 is.
U is said to be simply connectedif every closedγ in U is homologous to 0, e.g.

C\{0} is not simply connected, but by 3.1.3 any disc is, and more generally any starlike
domain is simply connected. Note that this is not the usual definition (which applies
to a general topological space, and uses homotopy), but is equivalent to it for open
subsets ofC. Also note (without proof) that this definition is equivalent if we consider
all continuousγ, all piecewise continuously differentiableγ, or even just all polygonal
γ.

It is sometimes useful to generalise the notion of a closed curve slightly: if U ⊂ C
is open a cyclein U is a formal finite sum of closed curves inU, Γ = γ1 + · · · + γn.

If Γ is a cycle andf is continuous onU, we define
∫

Γ
f (z)dz =

∑

i

∫

γi
f (z)dz and for

w ∈ C,w < γi∀i we defineI(Γ; w) =
∑

i I(γi; w); we sayΓ is homologous to zero inU
if I(Γ; w) = 0∀w ∈ U.

Clearly if γi is homologous to 0 inU∀i so isΓ = γ1 + · · · + γn but th econverse is
not true, e.g. takeU = {z ∈ Z : |z| > 1}, Γ = γ1 + γ2, γ1(t) = reit, γ2(t) = Re−it, both
for t ∈ [0, 2π], with r,R > 1. I(γ1; 0) = 1, I(γ2; 0) = −1 ∴ I(Γ; 0) = 0 and similarly
I(Γ; w) = 0∀w : |w| ≤ 1 soΓ is homologous to 0 inU even though theγi are not; this is
why we introduced this notion.

3.2 Cauchy’s integral formula (general case)

3.2.1 Theorem

Let D be a domain,γ a closed curve (or cycle) inD homologous to 0 inD, and f :
D → C holomorphic. Then∀w ∈ D not in the image ofγ, 1

2πi

∫

γ

f (z)
z−w dz = I(γ; w) f (w)

(1) and
∫

γ
f (z)dz = 0 (2).

Remark

If D is a disc then any closed curve inD is homologous to 0 inD and we recover 2.3.1
(by takingγ to be a circle).

Consider the function onD × D given byg(z,w) = f (z)− f (w)
z−w for z , w and f ′(w)

for z = w. We claimg is continuous; this is clearly true forz , w, and if a ∈ D
and D(a, r) ⊂ D then f can be represented by a power series onD(a, r), so by the
remark following Theorem 1.3.2g is continuous onD(a, r) × D(a, r) and we are done.
Also, for fixedz, g is an analytic function ofw. We want to show that forw ∈ D \ γ
∫

γ
g(z,w)dz = 0 so then

∫

γ

f (z)
z−w dz − 2πi f (w)I(g; w) = 0; consider this integral as a

function of w; let h(w) =
∫

γ
g(z,w)dz for w ∈ D \ γ and

∫

γ

f (w)
z−w dz for w ∈ E = {w ∈
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C \ γ : I(γ; w) = 0}. We haveD ∪ E = C[\γ] sinceγ is homologous to 0 inD, and for
w ∈ D ∩ E,

∫

γ

f (w)
z−w dw = 2πi f (w)I(γ; w) which is 0 sinceI(γ; w) = 0, so our definition

is consistent andh is a functionC[\γ] → C. Sinceg is continuous onD × D and
analytic inw, by 2.5.4h is analytic; moreover ifR is sufficiently large thatγ ⊂ D(0,R)

then∀w : |w| > R, I(γ; w) = 0 (by 3.1.3) so|h(w)| =
∣

∣

∣

∣

∫

γ

f (z)
z−w dz

∣

∣

∣

∣

≤ length(γ) supγ | f |
|w|−R → 0

as |w| → ∞, so by Liouville (2.4.1)h(w) = 0, then for (2) we just apply (1) to the
holomorphic functionz 7→ (z − w) f (z) for anyw < γ.

3.2.2 Corollary (Cauchy’s Theorem for simply connected domains)

If D is simply connected, ∀ holomorphic f : D → C and closed curvesγ in D,
∫

γ
f (z)dz = 0 sinceγ is homologous to 0 inD.

3.3 Laurent Series and singularities

For f holomorphic onD(a,R) we know we can writef (z) =
∑∞

n=0 cn(z − a)n for some
cn ∈ C. For f holomorphic onD(a, r)\{a} (a punctured disc; a is an isolated singularity
of f ) we will show we can expressf (z) as

∑∞
n=−∞ cn(z − a)n; in fact more is true:

3.3.1 Theorem

For f holomorphic onA = {z ∈ C : r < |z − a| < R} (an annulus) with 0 ≤ r <
R ≤ ∞, (1) f has a convergent series expansion onA, f (z) =

∑∞
n=−∞ cn(z − a)n (*),

which we define to be
∑∞

n=0 cn(z − a)n +
∑∞

m=1 c−m(z − a)−m, for someci ∈ C, (2)
cn =

1
2πi

∫

|z−a|=ρ
f (z)

(z−a)n+1 dz∀ρ ∈ (r,R) and (3) forr < ρ′ ≤ ρ < R (*) converges absolutely
uniformly on{z : ρ ≤ |z−a| ≤ ρ} ⊂ A. The expansion (*) is called the laurent expansion
of f in A.

Particularly, forr = 0, A = D(a,R) \ {a}.
For (1), letw ∈ A and chooseρ1, ρ2 with r < ρ2 < |w − a| < ρ1 < R and letγ =

γ1+ (−γ2) whereγi is the circle|z− a| = ρi; I(γ; w) = 1−0 = 1. Thenγ is homologous
to 0 in A, so f (w) = 1

2πi

∫

γ

f (z)
z−w dz == 1

2πi

∫

γ1

f (z)
z−w dz + −1

2πi

∫

γ2

f (z)
z−w dz = f1(w) + f2(w); as in

the proof of Taylor series an expand the integralf1 as a geometric series to getf1(w) =
∑∞

n=0 cn(w−a)n wherecn =
1

2πi

∫

γ1

f (z)
(z−a)n+1 dz. For f2 we use −1

z−w =
1

w−a

1− z−a
w−a
=
∑∞

m=1
(z−a)m−1

(w−a)m

onγ2 since| z−a
w−a | < 1, so f2(w) =

∑∞
m=1 dm(w − a)−m wheredm =

1
2πi

∫

γ2

f (z)
(z−a)−m+1 dz∀m ≥

1 and we have the result. Now consider (*) andρ2 < ρ
′ ≤ ρ < ρ1. Then the power

series
∑∞

n=0 cn(z− a)n must have radius of convergence≥ ρ1 so converges uniformly on
{z : |z−a| ≤ ρ}; similarly writeu = 1

z−a , then
∑∞

n=1 c−nun has radius of convergence≥ 1
ρ2

so converges uniformly for|u| ≤ 1
ρ2

. So (*) converges uniformly forρ′ ≤ |z − a| ≤ ρ
and then

∫

|z−a|=ρ
f (z)

(z−a)n+1 dz =
∫

|z−a|=ρ
∑∞

m=−∞ cm(z − a)m−n−1dz =
∑∞

m=−∞ cm

∫

|z−a|=ρ(z −
a)m−n−1dz since the series converges uniformly, and this integral is 0for m , n, 2πi for
m = n so this is 2πicn. Since we can chooseρ1, ρ2 arbitrarily close tor,R this holds
∀ρ ∈ (r,R).

Remark

This proof shows we can write a holomorphic functionf on A as f1 + f2 with f1
holomorphic onD(a,R) and f2 holomorphic on{z : |z − a| > r}.
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A function f holomorphic on the “punctured disc”D0(a,R) = D(a,R) \ {a} (a
special case ofA above withr = 0) is said to have a an isolated singularityat z = a; we
want to consider the possibilities for “what can happen atz = a”.

Classification of isolated singularities

Let f (z) =
∑∞

n=−∞ cn(z − a)n be the Laurent expansion off on D0(a,R). Then there are
three possibilities:

1) cn = 0∀n < 0, i.e. the Laurent series is a power series so defines a holomorphic
function onD(a,R). We sayf has a removable singularityatz = a; this typically arises

when f is given by an explicit formula which is not defined atz = a, e.g. f (z) = ez−1

z is
undefined atz = 0 but its power seriesf (z) =

∑∞
1

1
n! zn−1 tells us that by settingf (0) = 1

we can makef analytic everywhere.
2) ∃k > 0 such thatc−k , 0 butcn = 0∀n < −k; in this case we sayf has a poleof

orderk at z = a, e.g. ez

z3 at z = 0.
3) cn , 0 for infinitely manyn < 0; we sayf has an essential singularityat z = a,

e.g.e
1
z =
∑∞

n=0
1

n!zn .

3.3.2 Proposition

(We are still assumingf is holomorphic onD0(a,R))
f has a removable singularityat z = a if and only if limz→a(z − a) f (z) = 0; if we

have a removable singularityf is represented by a power series onD(a,R) so limz→a(z−
a) f (z) = 0, and for the converse defineg(z) = (z − a)2 f (z) for z , a, 0 atz = a. Thisg
is clearly holomorphic onD0(a,R), and we haveg(z)−g(a)

z−a = (z − a) f (z) → 0 asz → 0
sog is holomorphic atz = a with g′(a) = 0 = g(a). Thusg is represented by a power
series onD(a,R) with the first two terms 0, so dividing by (z − a)2 f is represented by
a power series onD(a,R) and we have the result.

3.3.3 Proposition

f has a pole atz = a if and only if | f (z)| → ∞ asz → a; moreover TFAE: 1)f has
a pole of orderk at z = a. 2) f (z) = (z − a)−kg(z) with g holomorphic atz = a and
g(a) , 0. 3) f (z) = 1

h(z) whereh has a zero of orderk at z = a.

The equivalence of 1) and 2) is obvious;f (z) = c−k(z − a)−k + . . . with ck , 0
corresponds withg(z) = c−k + c1−k(z − a) + . . . , g(a) = c−k , 0. For the equivalence of
2) and 3), if f (z) = (z − a)−kg(z) then 1

f = (z − a)kg(z)−1 and sinceg(a) , 0, g(z)−1 is

holomorphic atz = a. Conversely ifh has a zero of orderk, h(z) = (z − a)kq(z) someq
with q(a) , 0 so f (z) = 1

h(z) = (z − a)−kq(z)−1 has a pole of orderk.

If f has a pole then by 3)| 1f | → 0 so| f | → ∞ [asz→ a]; conversely if| f (z)| → ∞
then | 1

f (z) | → 0 and alsof (z) , 0 for 0 < |z − a| < r for sufficiently smallr, so 1
z

is holomorphic onD0(a, r) and by 3.3.2 has a removable singularity atz = a so ∃
holomorphich with h(z) = 1

f (z)∀z ∈ D0(a, r) and thenh(a) = limz→a
1

f (z) = 0 so 3)
holds.

If f has a removable singularity then limz→a f (z) = c0 exists, so:
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3.3.4 Corollary

f has an essential singularity atz = a if and only if | f | has no limit inR∪{∞} asz→ a;
cf the second example sheet for this course for the Cassorati-Weierstrauss and Picard
theorems.

Remark: “Poles are not really singularities at all”

Consider the Riemann SphereC ∪ {∞}, also writtenĈ or CP1 the “complex projective

line”. A holomorphic functionD0(a,R)→ C with a pole atz = a extends to a continu-
ous functionf : D(a,R)→ CP1 by settingf (a) = ∞ (this is continuous by 3.3.3). We
can regard thisf as a “holomorphic mapping”D(a,R) → CP1. So when we use the
Riemann sphere poles are no longer singularities, and the only “genuine” singularities
are the essentialones.

Definition

If D is a domain andS ⊂ D a set of isolated points, a functionf : D \ S → C
holomorphic with only poles at the points ofS is said to be meromorphic.

Definition

The residue off (z) at z = a is Resz=a f (z) = c−1, the coefficient of 1
z−a in the Laurent

expansion.
The principal part off at z = a is the series

∑−1
n=−∞ cn(z − a)n; this is the “simplest”

expression which we can subtract fromf to remove the singularity. Iff has a pole of
orderk (¿0) atz = a then its prncipal part is a polynomial in (z − a), the unique such
for which f − P has a removable singularity atz = a, P(z) = c−k

(z−a)k + · · · + c−1
z−a .

Proposition 3.3.7

If γ is a closed curve inD0(a,R) then
∫

γ
dz = 2πiI(γ; a) Resz=a f (z): by uniform con-

vergence of the Laurent expansion on{z : ρ1 ≤ z − a ≤ ρ2} for any 0< ρ1 ≤ ρ2 < R we
have

∫

γ
f (z)dz =

∫

γ

∑∞
n=−∞ cn(z − a)ndz =

∑∞
n=−∞ cn

∫

γ
(z − a)ndz = 2πic−1I(γ; a).

Remark

The fundamental theorem of calculus and its converse implyf has an antiderivative on
D0(a,R) if and only if

∫

γ
f (z)dz = 0∀ closed curvesγ ⊂ D0(a,R), i.e. if and only if

Resz=a f (z) = 0.
Supposef meromorphic onD and{a1, . . . , am} some of the poles off on D. Let fi

be the principal part off at z = ai. Then f − fi has a removable singularity atz = ai

and fi is holomorphic onC\ {ai}, sog(z) = f (z)−∑n
i=1 fi(z) has removable singularities

at all theai; we can then proove:

Theorem 3.3.8 (Residue Theorem)

Let f be meromorphic onD andγ a closed curve (or cycle) inD homologous to 0 onD,
with f having no poles onγ and only a finite number of polesz = a for which I(γ; a) ,
0. Then

∫

γ
f (z)dz = 2πi

∑

1≤i≤m I(γ; ai) Resz=ai f (z). Notice this includes Cauchy’s
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theorem (whenf holomorphic) and the Cauchy Integral Formula (by applying it to f (z)
z−w

which has residuef (w) at z = w) as special cases.
We can wlog assumef holomorphic onD \ {ai : 1 ≤ i ≤ m}, since replacingD

by D′ = D \ {w ∈ D : f has a singularity atw andI(γ; w) = 0} does not change the
hypotheses. Then we sawf = g +

∑

fi where thefi are the principal parts off at ai

andg is holomorphic onD. So
∫

γ
f dz =

∫

γ
gdz +

∑

∫

γ
fidz; by Cauchy’s theorem and

3.3.7 this is 0+ 2πi
∑

I(γ; ai) Resz=ai f .

Remarks

Without changing the proof, we can relax the conditions to allow a function with any
isolated singularities, not just poles.

We can show that the set of polesw with I(γ; w) , 0 is alwaysfinite for γ homolo-
gous to 0 inD: let V = {w ∈ C : I(γ; w) = 0} and as seen on the second example sheet
V is openin C; it contains a “neighbourhood of infinity”{z : |z| > R} for someR by
3.1.3. Sinceγ is homologous to 0 inD, D ∪ V = C, so the complementK = C \ V is
a closed and bounded i.e. compact subset ofD; since f has only isolated singularities,
by Bolzano-Weierstrauss only finitely many of them are∈ K. Thus we did not need the
hypothesis that only a finite number of poles haveI(γ; a) , 0.

For some applications it is useful to have another form of theresidue theorem for
simple closed curvesγ (that is,γ for which t , t′ ⇒ γ(t) , γ(t′) if {t, t′} , {a, b}):
traditionally (and even now in many applied mathematics books) Cauchy’s theorem and
similar results were formulated as “iff is holomorphic on and inside a simple closed
curveγ then

∫

γ
f dz = 0” and similar; however this is only well defined if “inside” is; in

fact it is, since we have the Jordan Curve Theorem: the complement of a simple closed
curveγ is the disjoint union of two domainsD1 y D2, where exactly one of these,
wlog D2, is unbounded, and the bounded componentD1, the “inside” ofγ, is simply
connected. However, proof of this is difficult; for our purposes we can avoid doing so
by using the winding number:

Definition

A closed curve or cycleγ bounds a domainD if ∀w ∈ D, I(γ; w) = 1 and∀w < D ∪
γ, I(γ; w) = 0.

Supposeγ bounds a domainD and let f be holomorphic onD ∪ γ (i.e. on an open
setU ⊃ D∪γ), then by definitionγ is homologous to 0 onU, so we can apply Cauchy’s
theorem and similar to obtain:

Theorem 3.3.9

Supposeγ boundsD, then:
If f is holomorphic onD∪γ then

∫

γ
f (z)dz = 0 (Cauchy’s Theorem) and

∫

γ

f (z)
z−w dz =

2πi f (w)∀w ∈ D (Cauchy’s Integral Formula).
If f is meromorphic onD∪γwith no poles onγ then

∫

γ
f dz = 2πi

∑

{polesa of f in D}Resz=a f (z)
(Residue Theorem).

[Lecture missed at this point]
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Example
∫ ∞
0

xα

x2+1dx for 0 < α < 1; we integratef (z) = zα

1+z2 and since we want to evaluate
this for z real and more generally in the upper half-plane we pick the branch ofzα =
eα logz = |z|αeiαargz for − π2 < argz < 3π

2 . Then we integrate around the (closed) curve
γ = γ1 + γ2 + γ3 + γ4 whereγ4 is the semicircle|z| = R [in the upper half-plane,
paramaterised anticlockwise],γ2 the semicircle|z| = R [paramaterised clockwise], and
γ1, γ3 are the real intervals from−R to −r andr to R respectively. Then

∫

γ3
f (z)dz =

∫ R

r
xα

1+x2 dx. Forγ1, let (−γ1)(t) = −t for t ∈ [r,R]. Then
∫

γ1
f (z)dz = −

∫ R

r
(−x)α

1+(−x)2 ×−1dx

which is (*) eπiα
∫ R

r
xα

1+x2 dx.
∣

∣

∣

∣

∫

γ4

zα

1+z2 dz
∣

∣

∣

∣

≤ πR Rα

R2−1 → 0 asR → ∞ since 0< α < 1,

but also
∣

∣

∣

∣

∫

γ2

zα

1+z2 dz
∣

∣

∣

∣
≤ πr rα

1−r2 → 0 asr → 0. We have
∫

γ
f (z)dz = 2πi Resz=i f (z) =

2πi zα

z+i |z=i= πiα by the residue theorem, so limr→0,R→∞(1 + eiπα
∫ R

r
xα

1+x2 dx = πiα =

πeiπ α2 = · · · ∴
∫ ∞

0
xα

1+x2 dx = 2π
cosπα [or possibly another similar function; the lecturer

was unsure].
This method wouldn’t work for (for example)

∫ ∞
0

xα

x4+x+3dx, since the step (*) re-
lied on the denominator of the integrand being an evenfunction; however, we could
substitutex 7→ x2 and then proceed as above. Alternatively we could integratedirectly
around a “key-hole” contour consisting of the lines at angles±ǫ above and below the
x-axis, and a large and small circle missing the short sections from angleǫ to −ǫ.

3.5 The argument principle and Rouche’s Theorem

Proposition 3.5.1

Let f have a zero (or pole) of orderk ≥ 1 atz = a, then the “logarithmic derivative”f
′

f

has a simple pole atz = a with residuek (respectively−k): we havef (z) = (z− a)kg(z)
with g holomorphic and, 0 atz = a, so f ′(z)

f (z) =
k

z−a +
g′(z)
g(z) with g′

g holomorphic atz = a
so we have the result; the proof for poles is similar.

Remark
f ′

f is not necessarilyddz (log f (z)) since logf (z) need not be well defined.

Theorem 3.5.2 (Argument Principle)

Let γ be a closed curve (or cycle) bounding a domainD and let f be meromorphic on
D ∪ γ with no zeroes or poles onγ. If f hasN zeroes andP poles onD, counted with
multiplicity (i.e. we count each pole or zero of degreek k times) (by the remark after the
Residue Theorem (3.3.8) these numbers are finite) thenN − P = 1

2πi

∫

γ

f ′(z)
f (z) dz = I(Γ; 0)

whereΓ = f ◦ γ is the image ofγ under f . For the first equality we just apply the
Residue Theorem tof

′

f ; the sum of residues of this inD is N − P by (3.5.1). For

the second equality notice 0 is not onΓ since f , 0 on γ so I(Γ; 0) = 1
2πi

∫

Γ

dw
w =

1
2πi

∫

γ

f ′(z)
f (z) dz (this is integration by substitutionw = f (z)).

Supposeγ is a closed curveγ : [0, 1]→ C, then the theorem says 2π(N − P) is the
change in the argument off (z) asz tracesγ, hence the name of the theorem.
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Definition

Let f be holomorphic atz = a and non-constant withf (a) = b. Then the local degree
of f at z = a, degz=a f (z), is the order of the zero off (z) − b at z = a; note this is a
(strictly) positive integer.

Proposition 3.5.3

degz=a f (z) = I( f ◦ γ; f (a)) for any circleγ(t) = a + re2πit, t ∈ [0, 1] with r sufficiently
small: apply the argument principle tof (z) − f (a). Since its zero atz = a must be
isolated,N = degz=a f (z) for r sufficiently small.

Theorem 3.5.4 (Local Mapping Theorem)

Let f : D(a,R) → C be holomorphic and non-constant with degz=a f (z) = d ≥ 1,
then if r > 0 is sufficiently small,∃ǫ > 0 such that∀w ∈ C with |w − f (a)| < ǫ, the
function f (z) − w has exactlyd zeroes inD(a, r), all of them simple ifw , f (a). For
f (a) = 0,w , a and|w − a| sufficiently small, the number of solutions off (z) = w is
the order of the zero off atz = a: let x = f (a) and chooser > 0 such that bothf (z)−b
and f ′(z) are nonzero for 0< |z − a| < r; we can do this sincef is non-constant sof ′

is not identically 0. Letγ be the circleγ(t) = a + re2πit, t ∈ [0, 1], thenΓ = f ◦ γ is
a closed curve not containingb; chooseǫ > 0 such thatD(b, ǫ) doesn’t meetΓ. Then
by 3.5.2, if |w − b| < ǫ the number of zeroes off (z) − w in D(a, r) is I(Γ; w), but this
is I(Γ; b = d for anyw ∈ D(b, ǫ) by continuity of the winding number (which we have
not actually prooven, but is true by continuity of the integral definition of the winding
number). Sincer is chosen such thatf ′ , 0 onD(a, r) \ {a}, the zeroes are simple for
w , b.

Corollary 3.5.5 (“Holomorphic mappings are open”)

This is a corollary to the Argument Principle: forD a domain andf : D → C holo-
morphic and nonconstant, the images underf of open sets are open sets; we sayf is
an openmapping: it suffices to proove that∀a ∈ D∃D(a, r) ⊂ D such thatf (D(a, r)) ⊃
someD( f (a), ǫ) which follows from the previous result, since ifw ∈ D( f (a), ǫ) then
f (z) − w has at least one zero inD(a, r).

Remark

Exercise: this gives another proof of the maximum modulus theorem (2.4.3).

Theorem 3.5.6 (Rouch́e’s Theorem)

Let γ be a closed curve bounding a domainD. Let f , g be holomorphic onD ∪ γ and
| f (z)| > |g(z)|∀z ∈ γ. Then f and f + g have the same number of zeroes inD [counted
with multiplicity] (note the hypothesis impliesf , f + g are nonzero onγ: it suffices to
proove thath = f+g

f = 1 + g
f has the same number of zeroes as poles inD; applying

the argument principle it suffices to prooveI(h ◦ γ; 0) = 0, but the hypothesis implies
|h(z) − 1| < 1∀z on γ, soh ◦ γ is contained inD(1, 1), which does not contain 0, so
I(h ◦ γ, 0) = 0 by (3.1.3).

We can use this to (approximately) locate zeroes of functions:
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Example

P(z) = z4 + 6z + 3; on γ = the circle|z| = 2, |z4| = 16 > 15 ≥ |6z + 3| so (taking
f = z4, g = 6z + 3) all the zeroes ofP have|z| < 2. Now consider the circle|z| = 1;
|6z| = 6 > 4 ≥ |z2 + 3| soP(z) has the same number of zeroes with|z| < 1 as f (z) = 6z,
namely 1, so 3 zeroes ofP satisfy 1< |z| < 2 while the fourth has|z| < 1.

We can also estimate the number of zeroes in a half-plane by taking γ to be a
semicircle and letting its radius→ ∞; see the example sheet for more on this.

3.6 Uniform Limits of analytic functions

Definition

Let U ⊂ C be open andfn : U → C a sequence of functions. We say (fn) is
locally uniformly convergentif ∀a ∈ U∃D(a, r) ⊂ U such that (fn) converges uni-
formly on D(a, r).

Examples

fn = 1
1−zn converges uniformly tof (z) = 1 on anyD(0, r) with r < 1 (since| f − fn| =

| zn

1−z2 | ≤ rn

1−rn ) but (fn) is notuniformly convergent onD(0, 1) since sup|z|<1 | f − fn| = ∞,
so (fn) is locally uniformly convergent onD(0, 1) but not uniformly convergent.

Theorem 3.6.1

A sequence of functionsfn : U → C is locally uniformly convergent onU if and only
if it converges uniformly on every compactsubset ofU; if fn → f uniformly on every

compact subset ofU then∀a ∈ U andr > 0 such thatD(a, r) = {z : |z− a| ≤ r} ⊂ U the
sequence converges uniformly onD(a, r) so also onD(a, r) and (fn) is locally uniformly
convergent onU; conversely suppose (fn) → f locally uniformly onU andK ⊂ U
compact, then for eacha ∈ K∃ra0 such thatD(a, ra) ⊂ U and fn → f uniformly on
D(a, ra); asK is compact we have some finite setS ⊂ K such thatK =

⋃

a∈S D(a, ra);
then fn → f uniformly onK (since if fn → f uniformly onX1, . . . , Xd then fn → f on
⋃

Xi.

Theorem 3.6.2

Let ( fn) be a sequence of analytic functions onU ⊂ C which is locally uniformly
convergent, thenf = lim fn is analytic onU and (f ′n) → f ′ locally uniformly onU:
let D = D(a, r) ⊂ U be any disc, thenf is continuous since it is a uniform limit of
continuous functions, and by Cauchy’s theorem

∫

γ
fn(z)dz = 0 for any closed curveγ

in D. Since the image ofγ is a compact subset ofD ⊂ D, fn → f uniformly onγ by
3.6.1, so

∫

γ
f dz = lim

∫

γ
fndz = [, so by Movera’s theoremf is analytic on any suchD,

and thus inU. Next,∀w ∈ D(a, r
2), | f ′(w) − f ′n(w)| = 1

2π

∣

∣

∣

∣

∫

|z−a|=r
f (z)− fn(z)
(z−w)2 dz

∣

∣

∣

∣

(assuming

D(a, r) ⊂ U) which is≤ r sup|z−a|=r
| f (z)− fn(z)|

r2
4

→ 0 asn → ∞ since fn → f uniformly

on the circle{|z − a| = r}, so (f ′n)→ f ′ uniformly onD(a, r
2).

This result is complemented by a theorem of Weierstrauss: every analytic function
is a locally uniform limit of rational functions. This is very much not the case for the
reals, since on [0, 1] another theorem of Weierstrauss tells us that every continuous
function is a uniform limit of polynomials.
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Applications

1) f (z) =
∑∞

n=−∞
1

(z−n)2 converges forz ∈ C \ Z (by comparison with
∑∞

1
1
n2 ); more

precisely f (z) =
∑N

n=−N
1

(z−n)2 + fN (z) where for |z| ≤ R, fN (z) converges uniformly

on {z : |z| ≤ N} by comparison with
∑∞

n=N
1

(n−N)2 . So f (z) represents a meromorphic

function onC with a pole at eachz = n ∈ Z with principal part 1
(z−n)2 . Now consider

g(z) = π2

sin2 πz
which has the same poles asf ; asz→ 0, z2g(z) = π2z

sin2 πz
→ 1 andg is even

so the principal part ofg atz = 0 is 1
z2 . Also g(z+1) = g(z) so∀n ∈ Z the principal part

of g at z = n is 1
(z−n)2 . We claim f = g, i.e. (⋆) π2 cosec2 πz =

∑∞
n=−∞

1
(z−n)2 . Note that

f = g+h whereh is entire; also f (z+1) = f (z), g(z+1) = g(z) so it suffices to show that
|h(z)| is bounded on{z = x+iy : x ∈ [− 1

2 ,
1
2]} and|h(x+iy)| → 0 as|y| → ∞ uniformly in

x ∈ [− 1
2 ,

1
2], then we can apply Liouville’s theorem toh. In fact bothf andg satisfy this:

| f (x+iy)| ≤ 1
y2+2

∑∞
n=1

1
|y|2+(n− 1

2 )2 → 0 as|y| → ∞.(by comparing the sum with
∫

1
y2+t2 dt)

and|g(x + iy)| ≤ 4π2

|eπiz−e−πiz |2 ≤
4π2

(eπy+e−πy)2 → 0 as|y| → ∞. Some related formulae (with

proofs left as exercises for the reader) areπ cotπz = 1
z +
∑∞

n=1( 1
z−n +

1
z+n ) = 1

z +
∑∞

n=1
2z

z2−n

(this converges by comparison with
∑ 1

n2 ; note we do not write
∑∞

n=−∞
1

z−n since this
does not converge (a sketch of the proof is to differentiate both sides to obtain (⋆)
showing that the difference is constant, then the constant must be 0 since both sides are
odd), and sinπz = z

∏∞
n=1(1− z

n )(1+ z
n ) = z

∏∞
n=1(1− z2

n2 ) (this is proven by computing

the logarithmic derivativef ′

f of each side).

2) TheΓ functionis defined byΓ(s) =
∫ ∞
0

e−tts−1dt for s ∈ C,Re(s) > 0 (this last

condition implies the integral converges). WriteΓN(s) =
∫ N

1
N

e−tts−1dt; this represents

an analytic function ofs ∈ C (by 2.5.4) and our error terms
∫ ∞

N
e−tts−1dt→ 0 uniformly

for σ1 ≤ Re(s) ≤ σ2 and
∫ 1

N

0
e−tts−1dt → 0 uniformly providedσ1 > 0 [where theσi

are presumably1N ,N respectively]. So by the theorem in the previous lecture,Γ(s) is
analytic on{Re(s) > 0}. If we integrate by parts,Γ(s) = [e−t ts

s ]∞0 +
1
s

∫ ∞
0

e−ttsds =
1
sΓ(s + 1) for Re(s) > 0, i.e. Γ(s + 1) = sΓ(s). SinceΓ(1) =

∫ 1

0
e−tdt = 1 this implies

Γ(k) = (k − 1)!∀k = 1, 2, . . . . So for Re(s) > −n with N ≥ 0 ∈ Z we can defineΓ(s) =
1
sΓ(s + 1) = · · · = 1

s(s+1)...(s+N−1)Γ(s + N) which defines a meromorphicfunction with

simple poles ats = 0,−1,−2, . . . and Ress=−k Γ(s) = Γ(k)
−1×−2×···×−k =

(−1)k

k! , soΓ(s) has an
analytic continuation to a meromorphic function onC with poles ats = 0,−1,−2, . . . .
We can also show thatΓ(s) , 0 for s ∈ C and in fact 1

Γ(s) is entire with zeroes at

0,−1,−2, . . . ; it = eγs
∏∞

n=1(1 + s
n )e−

s
n whereγ = limn→∞(1 + 1

2 + · · · +
1
n − logn),

Euler’s constant.
By this point we have almost certainly reached the end of the examinable portion

of this course, but the remainder is retained for interest:
3) The Riemannζ function: ζ(s) =

∑∞
n=1

1
ns . |n−s| = n−Res so this converges for

Re(s) > 1 and converges uniformly on{s : Re(s) ≥ σ} for anyσ > 1 so represents
an analytic function on the half-plane Re(s) > 1. This ζ has two particularly nice
properties:

a) ζ can be extended to an analytic function onC \ {1} with a simple pole ats = 1:
we use thatΓ(s)ζ(s) =

∫ ∞
0

∑∞
n=1 n−sts−1e−tdt (we have interchanged integration and

summation, but this is valid). We substitute byt → nt, then this is
∫ ∞

0

∑∞
n=1 e−ntts−1dt =

∫ ∞
0

ts−1

et−1 dt. We split this as
∫ 1

0
ts−1

et−1 dt +
∫ ∞
1

ts−1

et−1 dt.
∫ ∞

1
ts−1

et−1 dt defines an analytic function
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on s ∈ C by the same argument as forΓ(s); for the other integral we expandt
et−1 =

t
t+ 1

2! t2+...
=
∑∞

k=0 Bk
tk

k! where theBk are the “Bernoulli numbers”; these are∈ Q with

b0 = 1, B1 = − 1
2 , B2 =

1
6 , B3 = B5 = b7 = · · · = 0, and the evenBi continue (B12 =

− 691
2370; informally, this is the only place 691 appears in mathematics, so if 691 pops out

of an equation then it is likely the Bernoulli numbers are somehow involved). This is
∑N

k=0
Bktk

k! + tN+1FN(t) so our integral
∫ 1

0
ts−1

et−1 dt =
∑N

k=0

∫ 1

0
Bktk

k! ts−2 +
∫ 1

0
tN+s−1FN(t)dt =

∑N
k=0

Bk
k!

1
k+s−1+ a remainder which is analytic for Re(s) 1 − N. SoΓ(s)ζ(s) extends to

a meromorphic function onC with poles of order≤ 1 at s = 1, 0,−1, . . . ; the residue
at 1− k is Bk

k! . But Γ(s) has poles ats = 0,−1, . . . and no zeroes soζ(s) extends to a

function onC with a pole ats = 1 with residue 1 and∀k ≥ 1, ζ(1− k) = Bk
k!

(−1)k−1
(k−1)! =

(−1)k−1 Bk
k . ζ(s) =

∑∞
n=1

1
ns =

∏

p prime(1 +
1
ps +

1
p2s + . . . ) wheren = pr1

1 + · · · + prm
m

for the pi prime, which is
∏

p
1

1− 1
ps

. This implies the number of primes is infinite (as

otherwise we would have no pole ats = 1) and (though the proof of this result takes an
entire course in part II) that the number of primes≤ X as a function ofX ∼ X

logX , the
prime number theorem; it also leads to many other important results in number theory.

22


