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We shall consider a sender who has a message m which they transform into
a coded message c⋆(m); it is then sent over some channel to a receiver who
decodes c⋆(m) to recover m; each of these steps is interesting and we shall study
them in this course.

Our central idea, originally found by Shannon, is to consider the information
content of the message; no compression method can reduce this, since if we did
that we would then not be able to recover the original message.

0.1 Defns

An alphabet A is a finite set of symbols, called leters. A message or word

is a finite sequence of symbols from the alphabet; we write these by simple
concatenation m = a1a2 . . . an. The set of all messages from the alphabet A is
calledA⋆.

To convey m we will need to transform it into some new alphabet, the
transmission alphabet [?] B, so we need a coding function c : A → B⋆ which

encodes each element of A as a word from B; then c⋆(m) = c(a1)c(a2) . . . c(an).

1 Things we will consider

The requirement that we can decode a message places some restrictions on this
coding function; what are they?

Most channels have some cost to sending long messages - how ca we encode
our messages most efficiently? This relates to the notion of information content.

Can we encode in such a way that we can correct small errors in the trans-
mitted message, for use in noisy channels?

Encryption
Examples are ASCII, morse code, reed-solomon error correction, “txtish”,

gzip, and the encryption applied to messages between ATMs and their bank;
we won’t consider “lossy compression” at all.

For background the reader should be familiar with the concepts of finite
probability spaces, expectation and the WLLN from the Probability course,
modulo arithmetic and Euclid’s algorithm from Numbers and Sets, vector
spaces from Linear Algebra and finite fields from GRM.

The recommended books for this course are Goldie and Pinch’s Communi-
cation Theory (which follows this course most closely since it was written for
an earlier version of this course), Welsh’s Codes and Cryptography (a slightly
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more understandable work written for an equivalent course in Oxford), Cover
and Thomas’ Elements of Information Theory (a very large, mathematically
interesting tome, which is more focussed on ideas of information than the cod-
ing aspects), plus two other books mentioned in the schedules the notes about
which I lacked the time to take down.

2 Entropy

Let (P,Ω) be a discrete probability on a sample space; for each A ⊂ Ω the
information of A is I(A) = − log2 P(A) (In this course, logs are always base 2
unless otherwise stated, and I shall write P instead of P due to laziness); it
is clear that this is ≥ 0 with equality if and only if P(A) = 1. Since e.g. the
information of a sequence of results from N fair coin tosses is N, but we could
also regard such a sequence of results as a string of N bits, we consider the unit
of information to be bits. We shall see this definition is reasonable and gives
reasonable results; a problem which is not an issue at this stage but will become
one later is that this is not defined for A for which P(A) = 0.

Let X be a discrete random variable on Ω; for each x, {X = x} has an
information value as above; the expected value of this, H(X) = −∑

x P(X =
x) log2 P(X = x) is called the entropy of X. Note that this does not depend

on the particular values X takes, only their probabilities. This definition fails
when one of the {X = x} has probability 0, but if we define −p log2 p = 0 when
p = 0 (which is the correct limit, from the graph of this as a function of p),
then everything works. Entropy is also ≥ 0, with equality iff X is almost surely
constant (i.e. takes a particular value with probability 1).

If Y = f (X), intuitively Y can contain no more information than X, and in-
deed this is so, since P( f (X) = y) =

∑

x: f (x)=y P(X−x) so H( f (X)) = −∑

y P( f (X) =
y) log P( f (X) = y) = −∑

x P(X = x) log P( f (X) = f (x)) ≤ −∑

x P(X = x) log P(X =
x) = H(X), since P(X = x) ≤ P( f (X) = f (x)).

Example

Let X : Ω → {0, 1} be a Bernoulli random variable taking the values 1 with
probability p and 0 otherwise; then H(X) = −p log p− (1−p) log(1−p), a concave
function of p, with maximal value 1, obtained when p = 1

2 .
The entropy is the average amount of information that we gain by knowing

the value of X; we will see later it is (to within 1) the expected number of yes/no
questions we would need to ask to establish the value of X. We will use Entropy
to measure the amount of information in a message, and thus determine how
much it can be compressed.

2.1 Lemma: Gibbs’ Inequality

Let X be a discrete random variable that takes different values with probabilities
pk (

∑

pk = 1). If qk is another set of positive numbers summing to 1 then
−∑

pk log pk ≤ −
∑

pk log qk with equality iff pk = qk∀k: the inequality is implied
by −∑

pk ln pk ≤ −
∑

pk ln qk ⇐
∑

pk(ln qk − ln pk) ≤ 0⇐ ∑

pkln
qk

pk
≤ 0. Now ln is

strictly concave so its graph lies below the tangent to it at (1, 0); that is, ln t ≤ t−1
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with equality only when t = 1, so the above is ≤ ∑

pk(
qk

pk
− 1) =

∑

qk − pk = 0

with equality iff
qk

pk
= 1∀k.

Example

A random variable that takes K different values with equal probability 1
k has

entropy log K; if X is any random variable that takes K different values then its
entropy is at most log K; the entropy is maximised when the values taken by
X are all equally likely (compare this with the concept of etropy in thermody-
namics)

Let X,Y be two random variables, then the entropy of the vector-valued
random variable (X,Y) is called the joint entropy of X and Y; from 2.1 we have:

2.2 Corollary

H(X,Y) ≤ H(X) +H(y) with equality iff X,Y independent: H(X,Y) = −∑

P(X =
x,Y = y) log P(X = x,Y = y);

∑

P(X = x)P(Y = y) = 1 so by Gibbs this is
≤ −∑

P(X = x,Y = y) log P(X = x)P(Y = y) = −∑

P(X = x,Y = y)(log P(X =
x) + log P(Y = y) = −∑

P(X = x) log P(X = x) − ∑

P(Y = y) log P(Y = y) with
equality if and only if P(X = x,Y = y) = P(X = x)P(Y = y)∀x, y i.e. X,Y
independent.

Example

If X1, . . . ,XN are independent random variables with the distribution in the
previous examplethen (X1, . . . ,XN) has entropy N log K.

We can refine corollary 2.2 by considering conditional distributions: if x is
a value taken by X with nonzero probability then the conditional distribution

of Y given X = x is P(Y = y|X = x) =
P(X=x,Y=y)

P(X=x) ; we can see this as giving a

new random variable Y | X = x. Now observe that H(X,Y) − H(X) =
∑

P(X =
x,P = p) log P(X = x,Y = y)−∑

P(X = x,Y = y) log P(X = x) = −∑

P(X = x,Y =

y) log
P(X=x,Y=y

P(X=x) = −∑

P(X = x)P(Y = y|X = x) log P(Y = y|X = x) =
∑

P(X =

x)H(Y|X = x); this is called the conditional entropy H(Y|X) = H(X,Y) − H(X);

observe that ∀X H(Y|X = x) ≥ 0 with equality if and only if Y|X = x is almost
surely constant; H(Y|X) ≥ 0 with equality iff Y is almost surely a function of X.
SO H(X) +H(Y) ≥ H(X,Y) ≥ H(X).

3 Coding

3.1 Prefix-free Codes

We encode a message m = a1 . . . an using the function c : A → B⋆ by replacing
each letter a with the code word c(a); the entire message is then coded as
c⋆(m) = c(a1) . . . c(aN); c⋆ : A⋆ → B⋆ is the induced map. We want c⋆ to be
injective, so we can recover m from c⋆(m); in this case we say c is decodable or
decipherable. It is clearly necessary that c is injective, but this is not sufficient,

as e.g. c given by a 7→ 1, b 7→ 11 is injective. Some obvious ways to make a
decipherable code are fixed-length codes like ASCII, or “comma codes” like
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morse code where a special symbol is used to indicate the end of a codeword;
however, we will consider the following more general class of codes:

Let w ∈ B⋆; then w′ ∈ B⋆ is a prefix of w if w = w′w′′ for some w′′ ∈ B⋆. A

code c : A→ B⋆ is prefix-free if c(a) is never a prefix of c(a′)∀a, a′ ∈ A. Prefix-

free codes are decipherable by “greedy matching”;we look at the first n letters of
the message, and if they form a codeword we remove it and continue, otherwise
we look at the first n+1 letters and so on. However, ot all decipherable codes are
prefix-free, e.g. c : {0, 1, 2, 3} → {0, 1}⋆ given by 0 7→ 0, 1 7→ 10, 2 7→ 110, 3 7→ 111
is prefix-free, but the same code with each codeword reversed is not prefix-free,
but still decipherable as we could apply the same method to the message in
reverse. But we will concentrate on prefix-free codes because they have many
nice properties; for example, we can decode them “on the fly” as it is received
rather than having to wait for the entire message before decoding; and we will
see later they are in some sense “as good as” any other decipherable code.
Prefix-free codes are also called instantaneous or self-punctuating.

We can consider prefix-free codes in terms of trees; we use the empty string
φ as the root of the tree (“level 0”), then the verticies at level N are all the
possible code words of length N, where each node’s parent is the same word
without its final letter. Then a code is prefix-free if the path from each codeword
up to the root contains no other codeword.

3.2 Kraft’s Inequality

Proposition (Kraft’s Inequality I): Let c :A→ B⋆ be a prefix-free code, with the
length of each codeword c(a) being l(a), then

∑

a∈AD−l(a) ≤ 1 where D = |B|. Let
L = maxa l(a), then in the tree constructed as above there are clearly DL verticies
at level L; a codeword c(a) is a prefix of DL−l(a) verticies at level L [if we consider
a word is a prefix of itself, which it technically is], so since D is prefix-free the
total number of level L verticies with code words as prefixes is

∑

a DL−l(a) ≤ DL

the total number of verticies there, so
∑

a D−l(a) ≤ 1. Conversely:
Proposition (Kraft’s Inequality II): Let A,B (finite) alphabets, |B| = D, then

if l(a) > 0∀a with
∑

a D−l(a) ≤ 1 then ∃ a prefix-free code c : A→ B⋆, where
each c(a) has length l(a): we re-order the ai so we ahve l1 ≤ l2 ≤ · · · ≤ lK, then
define c inductively: choose c(a1) of length l1, then having chosen c(a j)∀ j < k
with c(ai) never a prefix of c(a j) for i < j < k (we do not have to check the

j < i case by our ordering), consider the words of length lk; there are Dlk of
them; Dlk−l j of them have c(a j) as a prefix for each j, but by the inequality

1 +
∑k−1

j=1 Dlk−l j =
∑k

j=1 Dlk−l j ≤ Dlk , so we can choose a word of length lk to be
c(ak); note that this construction is not unique.

McMillan showed that Kraft’s inequality holds for any decodable code;
thus, if we only wish to minimise the lengths of codewords, we only need to
consider prefix-free codes:

Proposition (McMillan): Let c : A→ B⋆ be a decodable code with c(a)
having length l(a), then

∑

a D−l(a) ≤ 1 where D = |B|: let L = maxa l(a), then

consider
(

∑

a Dl(a)
)R

for R ∈ N; expanding this bracket we obtain a sum of the

form
∑

a1,...,aR∈AD−(l(a1)+l(a2)+···+l(aR)); we can also view the sum as running over
words a1 . . . aR of length R. Now the word w = c(a1)c(a2) . . . c(aR) ∈ B⋆ has
length |w| = l(a1) + · · · + l(aR) ≤ RL; every such word can come from at most
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one sequence a1 . . . aR so
(

∑

a D−l(a)
)R ≤ ∑RL

m=1 n(m)D−1 where n(m) is the number

of words of length m of the form c(a1) . . . c(aR); this is ≤ Dm so the above is

≤ ∑RL
m=1 DmD−m = RL; taking the Rth root we have

∑

a D−l(a) ≤ R
√

RL and taking
the limit as R→ ∞we have the result.

4 Efficient Codes

We want to minimise the expected length of codewords; a code where this
length is as small as possible is called optimal.

4.1 Shannon-Fano Codes

Let c :A→ B⋆ be a code; assume decodable, more, prefix-free; we want to min-
imise E(|c(a)|); to do this we need to fix a probability distribution onA so p(a) is
the probability of choosing the letter a. Then the expected length of a code word

is
∑

a p(a)|c(a)|. If we let A be a random variable taking values inA with proba-
bility p(a) then this is just E|c(A)|. By Kraft’s inequality we have that l(a) = |c(a)|
satisfies

∑

D−l(a) ≤ 1, and for any set of such l(a) we know how to construct a
prefix-free code with code word lengths l(a), so we reduce to the optimization
problem of minimizing

∑

p(a)l(a) over integers l(a) subject to
∑

D−l(a) ≤ 1.

Proposition: for any decodable c : A→ B⋆ we have E|c(A)| ≥ H(A)
log2 D : by

Kraft we have
∑

D−l(a) ≤ 1; set S =
∑

D−l(a), q(a) = D−l(a)

S . Then
∑

q(a) = 1
and by Gibbs, −∑

p(a) log p(a) ≤ −∑

p(a) log q(a) =
∑

p(a)(l(a) log D + log S) =
(
∑

p(a)l(a)) log D + log S ≤ (
∑

p(a)l(a)) log D as required.
We cannot always achieve equality in the above, but we can easily get close:
Proposition: Shannon-Fano encoding: for A as above there is a prefix-free

code c : A→ B⋆ for which E|c(A)| < 1+
H(A)
log D : by Kraft, sufficient to find l(a) such

that
∑

p(a)l(a) < 1+
H(A)
log D ,

∑

D−l(a) ≤ 1. We want to take l(a) = − logD p(a) but the

l(a) must be integers so we instead take ⌈− logD p(a)⌉. Then we have− logD p(a) ≤
l(a) so p(a) ≥ D−l(a), so

∑

D−l(a) ≤ 1 and we can find a prefix-free code with such

l(a), and we have
∑

p(a)l(a) <
∑

p(a)(1−logD p(a)) = 1−∑p(a) logD p(a) = 1+
H(A)
log D

as required. The code constructed by this is called a Shannon-Fano code; while
it is not optimal it is easy to construct and its exected word lengths are close to
their optimal value.

By the two above propositions we have:
Theorem: Shannon’s noiseless coding theorem. For A as above an optimal

code c satisfies
H(A)
log D ≤ E|c(A)| < H(A)

log2 D + 1.

Example: if we ask yes/no questions how many do we need to ask to
determine the value of A? Each question can be considered a mapA → {0, 1};
thus by the sequence of questions we have a code c : A → {0, 1}⋆; the answers
determine A iff this is decodable, so by this theorem we can choose the questions
so H(A) ≤ E|c(A)| < H(A)+ 1; thus the average number of questions required is
within 1 of H(A), as asserted earlier.
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4.2 Huffman Codes

This is an optimal code; for simplicity we shall only consider the caseB = {0, 1};
the codes are defined inductively and we shall proove they are optimal. Label
the ai so that the pk = p(ak) satisfy p1 ≥ p2 ≥ · · · ≥ pk; for k = 2 we have
h : {a1, a2} → {0, 1} given by h(a1) = 0, h(a2) = 1, which is clearly optimal.
Now supposing we have defined the Huffman code for alphabets of size k − 1;
form the alphabet Ã = {a1, . . . , ak−2, ak−1 ∪ ak} where the new letter ak−1 ∪ ak has
probability pk−1 + pk. Then take h̃ : Ã→ {0, 1} to be a Huffman code for Ã, then
the Huffman code forA is given by h(a j) = h̃(a j) for 1 ≤ a j ≤ k − 2, h̃(ak−1 ∪ ak)0

for j = k − 1 and h̃(ak−1 ∪ ak)1 for j = k; this is clearly prefix-free.
Theorem: Huffman codes are optimal: we label the a j, p j as above; then the

average code length is E|c(A)|.
Lemma: Optimal codes. There is an optimal code c : A → {0, 1}⋆ with

lengths ordered inversely to probabilities so l1 ≤ l2 · · · ≤ lk, such that the code
words c(ak−1), c(ak) have the same length and differ only in the last bit: we know
there is a prefix-free code for A; let its expected code word length be C, then
there are only a finite number of codes c with

∑

pklk ≤ C, so there must be an
optimal one. For the first property, if pi ≥ p j but li > l j then we could reduce
∑

pklk by exchanging their codewords c(ai), c(a j) so we have l1 ≤ · · · ≤ lk; fir
the second, let L be the maximum codeword length lk. Then, deleting the final
bit from c(ak) to get a new codeword w would reduce

∑

pklk, so there must be
another codeword with w as a prefix, so we have some c(a j) of length L differing
from c(ak) only in the last bit; by permuting the codewords of length L we can
choose it to be c(ak−1).

Now, to proove the above theorem: induct on the size k of A (base case
2); assume it is true for alphabets of size k − 1, then let h : A → {0, 1} be a
Huffman code and c : A → {0, 1} a Huffman code. By construction of the
Huffman code we have a Huffman code h̃ on Ã = {a1, . . . , ak−2, ak−1 ∪ ak}; then
E|h(A)| = E|h̃(Ã)|+ (pk−1 + pk), where Ã is a random variable takiing values in Ã
with the obvious probabilities. By the lemma we can take c(ak−1), c(aK) differing
only in their last bit; wlog c(ak−1) = w0, c(ak) = w1 for some word w. Define
c̃(ak−1 ∪ ak) = w, c̃(ak) = c(a j)∀ j ≤ k − 2; this is a code on Ã, clearly prefix free,

with E|c(a)| = E|c̃(Ã)| + (pk−1 + pk). By inductive hipothesis E|h̃(Ã)| ≤ E|tildec(Ã)|,
so E|h(a)| ≤ E|c(A)| so by minimality of c we have equality and h is optimal.

5 Compression

We takeA an alphabet of K letters; we want to send messages m = a1a2 . . . from
A⋆. Let A j be a random variable giving the jth letter, with each A j identically
distributed with p(A j = a) = p(a); we are encoding with strings from B with
D = |B|.

5.1 Block codes

For a code c : A → B⋆, the expected code length is E|c(A1)| = ∑

p(a)|c(a)|; by
the noiseless coding theorem above there is an optimal code c with H(A1) ≤
E|c(A)| < 1+H(A1). However, rather than encoding each message, we can divide
m into blocks of length r; consider each block as an element of a new alphabet
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Ar, then we can find an optimal code cr : Ar → B⋆ with H(A1, . . . ,Ar) ≤
E|cr(A1, . . . ,Ar)| < 1+H(A1, . . . ,Ar); this is called a block code. Then the average

code length per letter is
E|cr(A1,...,Ar)|

r , with
H(A1 ,...,Ar)

r ≤ E|cr(A1,...,Ar)|
r < 1

r +
H(A1,...,Ar)

r ;

thus [for large r] the expected code length per letter is approximately
H(A1,...,Ar)

r .
Far above we have H(A1, . . . ,Ar) ≤ H(A1) + · · · +H(Ar) with equality when the
letters are independent; since all our A j have the same distribution we have
H(A1, . . . ,Ar) ≤ rH(A1).

If the A j are independent this is an equality so we have H(A j) ≤ E|cr(A1,...,Ar)|
r <

1
r +H(A1), so the expected code length per letter→ H(A1) as r→∞.

Now we consider the case where P(A j = a j) depends only on the previous
letter A j−1, and this is independent of j [i.e. a Markov chain model]; then
P(A j = a j | A1 = a1, . . . ,A j−1 = a j−1) = P(A j = a j | A j−1 = a j−1) so H(A j |
A1, . . . ,A j−1) = H(A j | A j−1) = H(A2 | A1). Now we have H(A1, . . . ,Ar) =
H(Ar | A1, . . . ,Ar−1)+H(A1, . . . ,Ar−1) = H(Ar | Ar−1)+H(Ar−1|Ar−2)+ · · ·+H(A2 |
A1) + H(A1) = (r − 1)H(A2 | A1) + H(A1) so the expected code length per letter
→ H(A2 | A1) as r→ ∞.

5.2 Compression

The maximum value for H(A1) occurs when all the K letters are equally likely;

in this case it is log K and the optimal code satisfies logD K =
H(A1)
log D ≤ E|c(A1)| <

1+
H(A1)
log D = logD(DK); there are K possible letters in A and D possibilities for each

letter of c(a), so the number of code words of length L is DL; this = K when L =
logD K and this is approximately the expected code length, so the optimial code
does not gain us any compression. However, for a non-uniform distribution
of the letters, the entropy H(A1) < log K so the optimal code compresses the
message; if we use block codes and the letters are not independent then there

will be much better compression, since we have
H(A1 ,...,Ar)

r < H(A1), so the

expected code length per letter is < 1
r + H(A1); the entropy

H(A1 ,...,Ar)
r is the

amount of information per letter in a block of length r, and gives a limit on the
best we can compress the message (on average).

6 Noisy Channels

Here we consider the case where there is a small but nonzero probability that
a letter will be altered in the channel; we want to devise codes which detect or
correct these errors.

6.1 Memoryless Channels

If the probability of any letter bn of a coded message b1 . . . bN ∈ B⋆ being altered
in the channel is independent of the other letters then we say the channel
is memoryless; write Bn for the random variable giving the nth letter of the

transmitted message and B′n for the same thing for the received message, then

P(b′
1
. . . b′

N
| b1 . . . bN =

∏N
n=1 P(B′n = b′n | Bn = bn); we have a transition matrix

Pi j = P(B′n = i | Bn = j); we are assuming the probability of an error is small, i.e.
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Pii is close to 1. We will assume that the channel is time independent; that is,

the transition matrix is the same ∀n.
For example, suppose B = {0, 1, . . . , 9} and P ji =

3
4 when j = i, 1

4 when
j = i + 1, 0 otherwise. Then if we naively encode an N letter message the
probability it is correctly received is only ( 3

4 )n; if we send each letter 3 times and
assume that if two out of the three received letters are the same this is the correct
letter, the probability a letter is received correctly is 27

32 >
3
4 so we increase the

probability of decoding the message without error to ( 27
32 )N, though at the cost

of sending a message three times as long. However, we can do much better
by only using the letters {0, 2, 4, 6, 8} in our encoding; then we can decode the
message perfectly.

6.2 The Binary Symmetric Channel

We take B = {0, 1} for simplicity. Then the binary symmetric channel is a time

independent, memoryless channel with transition matrix

(

1 − p p
p 1 − p

)

; p is

the probability of an error in a single bit, usually small. If p = 0 there are no
errors, if p = 1

2 then no information is transmitted, only noise.
As an example, consider computer punch cards; we can use a check digit

every 8 bits; for x1, . . . , x7, x8 is chosen so that x1+ · · ·+x8 ≡ 0mod2(⋆). If p = 0.1
the probability of a correct transmission of all 8 bits is 0.48, and the probability
that 1 error occurs in the 8 bits and is therefore detected is 0.33. Note that if 2
errors occur, (⋆) holds and the errors are not detected.

6.3 Check digits

Example: ISBN-10s are codes for identifying books; we have x1 . . . x9 identifying
the books, and x10 ∈ {0, . . . , 9,X} is a check digit such that 10x1+ 9x2+ · · ·+ x10 ≡
0mod11. This means that if we alter any single digit or transpose two adjacent
digits we will obtain an invalid code, so we can detect such errors.

6.4 The Hamming Code

This is in a way a converse to the fact that we can compress a message that
contains redundant information; here we expand a code to add redundant
information, allowing us to detect or even correct errors. Hamming1s code is
a binary code that encodes binary words of length 4 as words of length 7; it is
capable of correcting any single bit error in the 7 bits; when we receive a word
we look for the closest possible code word, and this works.

Consider a binary string of length N as a vector in the N-dimensional vector
space FN

2
; then Hamming’s code is given by the linear map C : F4

2
→ F7

2
given

by the matrix C =



















































1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1



















































. Thus C~x =



















































x1

x2

x3

x4

x2 + x3 + x4

x1 + x3 + x4

x1 + x2 + x4



















































; the first 4 bits
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carry the data, the remaining 3 are check digits. For ~y = C~x we can verify we
will always have y1+ y3+ y5+ y7 = 0, y2+ y3+ y6+ y7 = 0, y4+ y5+ y6+ y7 = 0(†)
since this is true for each column of C. The converse is also true; if ~y satisfies
these equations then they determine y5, y6, y7 in terms of y1, y2, y3, y4 (and any
set of values for y1, y2, y3, y4 gives a codeword), so ~y is a codeword precisely

when (†) are satisfied. We can rewrite these equations as S~y = ~0 where the

syndrome matrix S =

















1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

















; we have seen SC~x = 0∀~x ∈ F4
2
,

i.e. S ◦ C = 0 and the image C(F4
2
) = ker S.

If one error occurs in transmission, say in the jth bit, then we receive ~y =
C~x + ~e j; we then have the syndrome S~y = SC~x + S~e j = S~e j, the jth column of S;
notice this is the binary representation of j in reverse, e.g. 6 = 110 in binary, and
the sixth column of S is 011. So we can tell in which bit the error occurred, and
therefore correct it. If there are two errors, e.g. ~y = C~x+~ei+~e j, then S~y = S~ei+S~e j;
this is the sum of two different syndromes so nonzero, which tells us that errors
have occured; however, this is insufficient to correct the errors, because we
cannot tell whether a given syndrome e.g. 100 is the result of one error or two
errors. So the Hamming code detects 2 errors and can correct 1 error.

If we measure the distance between ~y,~z ∈ FN
2 by the Hamming distance

d(~x, ~y) = |{ j : y j , z j}|, this is a metric; it is the number of bit errors required
to change ~y to ~z. If x, x′ are two different strings in F4

2
and C~x, c~x′ their corre-

sponding codewords, then their difference C~x′ −C~x = C(~x′ − ~x) is [lecturer says
a sum of, but I think lol] a column of the matrix C, so has at least 3 nonzero bits;
d(C~x′,C~x) ≥ 3 (the distance can be exactly 3). So if there is one error in ~y we use
the syndrome to find the unique ~x ∈ F4

2 with d(~y,C~x) = 1; if our received y has
had two errors, it may not even have a unique closest C~x; it could be distance
2 from each of two possible C~x.

7 Error correcting codes

In this section we consider codes c : A→ BN of constant length N; we use the
discrete metric on B and the Hamming distance on BN as above.

Say a codeword~b is sent through a noisy channel and received as ~v. We will
consider three possible decoding rules:

Ideal observer: decode ~v by the codeword ~b such that P(~b|~v) maximal; this
is sensible if we can calculate it, but usually we cannot.

Maximum likelihood: decode ~v by the codeword ~b with P(~v | ~b) maximal;
this is easier to calculate in general.

Minimum distance: decode ~v by the codeword ~b with d(~b, ~v) minimal.
Proposition: if all the code words are equally likely then the first two rules

give the same result, since P(~v | ~b) =
P(~v∩~b)

P(~b)
= P(~b | ~v)

P(~v)

P(~b)
.

Proposition: if letters are transmitted through a binary symmetric channel
with error probability p < 1

2 then the second and third rules give the same

result, since P(~v | ~b) =
∏N

j=1 P(v j | b j) = pd(1 − p)N−d = (1 − p)N(
p

1−p )d where d is

the Hamming distance; this is clearly maximal when d is minimal.
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We will generally use the minimum distance rule.
In this section we will use binary codes for simplicity; write K for the

number of code words. The volume of B(~b, r) is the number of points it contains,

|B(~b, r)| = ∑

0≤k<r

(N
k

)

. This is independent of ~b; denote it by V(N, r).
A code c : A → {0, 1}N is e-error-detecting if when at most e letters of a

codeword are altered the result is never a different codeword, i.e. we can
tell there have been errors if there have been at most e of them. The code
is e-error correcting if when at most e letters of a codeword are altered, the

codeword is still decoded correctly using the minimum distance rule.
The minimum distance for a code δ is the minimum distance between two

different codewords. We immediately have:
Proposition: For c with minimum distance δ > 0, c is (δ − 1)-error detecting

and not δ-error detecting, and c is ⌊ 1
2 (δ − 1)⌋-error correcting but not ⌊ 1

2 (δ+ 1)⌋-
error correcting (by the triangle inequality).

Observe that c is e-error correcting precisely when the B(c(a), e + 1)∀a are
disjoint.

Proposition (Hamming’s bound): If c : A → {0, 1}N is an e-error correcting

code with K codewords, then K ≤ 2N

V(N,e+1) . We say a code is perfect when we

have equality in this bound; the balls cover all of {0, 1}N, e.g. Hamming’s code
is perfect.

Proposition (Gilbert-Shannon-Varshamov bound): There is an e-error de-

tecting code with K ≥ 2N

V(N,e+1) : choose a maximal set C of codewords such that

no c(a′) lies within B(c(a), e + 1) (which is clearly a necessary condition). Now
if there were any ~v <

⋃

~c∈C B(~c, e + 1) then we could add it to C, contradicting
maximality, so this union is precisely {0, 1}N. Since the volume of each ball is
V(N, e + 1) the volume of this union is at most KV(N, e + 1) and we have the
result.

Corollary: for c a code with minimum distance δ, K ≤ 2N

V(N,⌊ 1
2 (δ+1)⌋) ; there is a

code with minimum distance δ and K ≥ 2N

V(N,δ) .

We want asymptotic estimates on the size of error correcting codes using
the previous bounds; for this we need bounds on the volumes V(N, r). It will
be useful to talk obut the entropy of a Bernoulli random variable taking two
values with probability q and 1 − q, h(q) = −q log q − (1 − q) log(1 − q).

Lemma: for 0 ≤ r ≤ N, 1
N+1 2Nh(q) ≤ (N

r

) ≤ 2Nh(q), where q = r
N : let X be

a binomial B(N, q) random variable, P(X = k) =
(N

k

)

qk(1 − q)N−k; the entropy
H(X) = Nh(q). We can find that this probability is maximal when k = r = qN,

so P(X = r) ≤ ∑N
k=0 P(X = k) = 1 ≤ (N + 1)P(X = r); thus 1

N+1 ≤ P(X = r) =
(N

r

)

qr(1 − q)N−r =
(N

r

)

2−Nh(q) ≤ 1. Since 2−Nh(q) = qNq(1 − q)N(1−q) = qr(1 − q)N−r we
have the result.

Proposition: For N and 0 < r < 1
2 N, V(N, r) ≤ 2Nh(q) for q = r

N , and
1

N+1 2Nh(q′) ≤ V(N, r) where q′ = (⌈r⌉ − 1)/N: V(N, r) =
∑

0≤k<r

(N
k

)

; since q =
r
N ≤ 1

2 , qk(1 − q)N−k ≤ qr(1 − q)N−r∀0 ≤ k < r, so 1 =
∑

0≤k≤N

(N
k

)

qk(1 − q)N−k ≥
∑

0≤k<r

(N
k

)

qk(1− q)N−k ≥
(

∑

0≤k≤r

(N
k

)

)

qr(1− q)N−r = V(N, r)qr(1− q)N−r so V(N, r) ≤
2Nh(q). For the second part let k = ⌈r⌉ − 1, then V(N, r) ≥ (N

k

) ≥ 1
N+1 2Nh(q′) by the

above lemma.
For c : A → {0, 1}N, if A is a random variable taking values in A then
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information is transmitted through the channel at the rate
H(A)

N ; this is lagest

when A is equally distributed over its K possible values, then it is
log2 K

N . If we

take q with 0 < q < 1
2 , then by Hamming’s bound

log2 K

N ≤ 1 − log2 V(N,qN)

N for
(qN− 1)-error correcting codes; by the previous proposition the right hand side
→ 1−h(q) as N →∞; similarly by the Gilbert-Shannon-Varshamov bound there

are (qN − 1)-error detecting codes with information rate
log2 K

N ≥ 1 − log V(N,qN)

N ,
and the right hand side→ 1 − h(q) as N →∞.

8 Information Capacity

We want to determine how much information can be passed through a noisy
channel per bit transmitted; consider a time-independent, memoryless chan-
nel. Say B ∈ B transmitted and B′ ∈ B, possibly different, received. The
average information given by B is H(B); the average information received is
H(B′) but this is partly due to noise. The conditional entropy H(B′|B) is the
information due to the noise in the channel, so the remaining informationhe
mutual information of B and B′, I(B′,B) := H(B′) − H(B′|B) is the information
due to the B that was sent.

Proposition: this satisfies I(B′,B) = H(B′) + H(B) − H(B′,B) = I(B,B′) since
from section 2, H(B′|B) = H(B′,B) − H(B) so I(B′,B) = H(B′) − H(B′ | B) =
H(B′) − H(B′,B) + H(B), a) I(B′,B) ≥ 0 with equality iff B,B′ independent b)
I(B′,B) ≤ H(B′) with equality iff B′ is a function of B c)I(B′,B) ≤ H(B) with
equality iff B is a function of B′ by the symmetry above.

From the distribution P(B = b) and transition probabilities P(B′ = b′ | B = b),
which we are taking to both be known, we can calculate P(B′ = b′,B = b) =
P(B′ = b′|B = b)P(B = b) and P(B′ = b′ =

∑

b P(B′ = b′|B = b)P(B = b); therefore
we can find the entropies H(B),H(B′)H(B′,B) and the mutual information.

The information capacity of the channel is the supremum of I(B′,B) over

all possible distributions of B. A probability distribution of B is given by a
point ~p = (p(b1), . . . , p(bk)) in the compact set [0, 1]k; the mutual information is
a continuous function of ~p so the supremum is attained by some distribution.
Note that the information capacity depends only on the transition probabilities
P(B′|B).

Proposition (Information capacity of a BSC): a binary symmetric channel
with probability p of errors has information capacity 1 − h(p): let t = P(B = 1),
then H(B) = H(1 − t, t) = h(t); H(B′|B) = P(B = 1)H(B′|B = 1) + P(B = 1)H(B′|B =
0) = tH(1−p, p)+ (1− t)H(p, 1−p)= h(p); P(B′ = 1) = t(1−p)+ (1− t)p = t+p−2tp
so H(B′) = h(t + p − 2tp), so I(B′,B) = H(B′) − H(B′|B) = h(t + p − 2tp) − h(p); we
have free choice of 0 ≤ t ≤ 1, and the maximum value for h(t + p − 2tp) is 1,
attained by t = 1

2 so t + p − 2tp = 1
2 , so the information capacity is 1 − h(p).

We often want to consider repeated use of the same channel, e.g. sending
a word from {0, 1}N through a BSC; we can consider this as having N copies of
the channel in parallel, and sending one bit through each. It is then simple to
compute the capacity:

Proposition (capacity of parallel channels): for Q a channel transmitting
letters of Bwith capacity Cap(Q), the capacity of a new channel QN that trans-
mits an N-tuple (b1, . . . , bN) ∈ BN one letter at a time through Q with each use

independent of the others is NCap(Q): let ~B = (B1, . . . ,BN) be a random variable
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taking values inBN, ~B′ the random variable we receive; for each~b′ = (b′
1
, . . . , b′N)

we have H(~B|~B′ = ~b′) = ∑

H(B j|B′j = b j) since each B j is independent of all the

others, so H(~B|~B′) = ∑

H(B j|B′j); also H(~B) ≤ ∑

H(B j) with equality iff the B j are

independent, so I(~B′, ~B) = H(~B)−H(~B|~B′) ≤ ∑N
j=1 H(B j)−H(B j|B′j) =

∑N
j=1 I(B′

j
,B j)

with equality iff the B j are independent; thus Cap(QN) ≤ NCap(Q). Now if we
choose the B j to be independently distributed with I(B′

j
,B j) =Cap(Q) then we

have I(~B′, ~B) = NCap(Q) so we have the result. We can similarly show that the
capacity of independent channels Q j in parallel is

∑

Cap(Q j).
We will later proove Shannon’s Coding Theorem, which shows the exis-

tence of very good codes for noisy channels; however Shannon’s argument is
nonconstructive and it is difficult to construct such codes in practise.

Suppose we want to transmit a message of size K fromA; let A be a random
variable taking values in A. Then H(A) ≤ log K with equality when all letters
inA are equally likely; we shall assume this is so.

We take a constant length code c : A→ BN to encode the message one letter

at a time. This gives a random variable ~B = c(A) taking values in ~BN; since c is

decodable A determines ~B and v.v., so H(A) = H(~B). Each bit of c(a) is passed

through a channel, giving a new string c(a)′ ∈ BN; let ~B′ = c( ~A)′. Let c(a′) be the
closest codeword to c(a)′, then we decode this as a′ ∈ A; A′ is the obvious thing,

and H(A′) ≤ H(~B′). The probability of an error is
∑

AP(error|a)P(A = a); we
want this to be small; however, what we really want is to make the probability
of an error small ∀a ∈ A, so we want the maximum error ê(c) = max{P(error|a) :
a ∈ A} to be small.

The rate of transmission for c is ρ(c) =
H(A)

N =
log K

N ; we want this to be as
large as possible. We aim to relate this to the information capacity of the
channel.

Theorem (Fano’s inequality): Let X,Y random variables taking values in
A, |A| = K. Then H(X|Y) ≤ p log(K − 1) + h(p) where p = P(X , Y); we will
apply this where X = A,Y = A′; then p is the probability of error. For the
proof of the theorem, recall H(X, I) = H(X|I) + H(I) for a random variable I;
conditioning on Y = y we have H(X, I|Y = y) = H(X|I,Y = y) + (I|Y = y) and
so H(X, I|Y) = H(X|I,Y) + H(I|Y). Let I be the indicator random variable that
X , Y. then H(X, I|Y) = H(X|Y) as I is determined by X,Y. H(X|I,Y) = P(I =
0)H(X|I = 0,Y) + P(I = 1)H(X|I = 1,Y) = (1 − p)0 + pH(X|I = 1,Y) ≤ p log(K − 1)
as if I = 1 there are K− 1 possible values for X|Y. H(I|Y) = H(I,Y)−H(Y) ≤ H(I)
so H(X|Y) ≤ p log(K − 1) + H(I); since I takes only the two values 0,1 we have
H(I) = h(p) and the result.

We can think of the two terms of Fano’s inequality as h(p) = H(I) giving
the information given by knowing whether there is an error, and p log(K − 1)
measuring the information on what the error is, when it occurs. The statement
and proof of Fano’s theorem do not depend on Y.

Using Fano’s inequality we can compare the rate of transmission of infor-
mation to the capacity of the channel; we have H(A|A′) ≤ h(p) + p log(K − 1) <
h(p)+ P log K so we have I(A′,A) = H(A)−H(A|A′) ≥ log K − (h(p)+ p log K), so

NCap(Q) ≥ (1−p) log K−h(p); dividing by N we have Cap(Q)+
h(p)

N ≤ (1−p)ρ(c).
Theorem (Shannon’s Noisy Coding Theorem I): Let c : A→ BN where each

letter of a codeword is transmitted through a time-independent memoryless
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channel with capacity Cap. Let p be the probability of decoding incorrectly.

Then the rate of transmission satisfies ρ(c) ≤ log K

N ≤ Cap

1−p +
h(p)

N(1−p) ; as we let p→ 0

downwards, 1 − p→ 1 from below and h(p)→ 0 from above so
Cap

1−p +
h(p)

N(1−p) →
Cap from above; hense if we can find codes c j with probabilities of error p j that
degrease to 0 and transmission rates that→ a limit ρ, then ρ ≤ the information
capacity of the channel.

9 Shannon’s Noisy Coding Theorem

Theorem (Shannon’s Noisy Coding Theorem: For any ǫ > 0, for a binary
symmetric channel of capacity Cap, for sufficiently large N there are codes

cN : AN → {0, 1}N with rate of transmission ρ(cN) =
log2 |AN |

N ≥ Cap − ǫ and
maximum error ê(cN) < ǫ. Unfortunately, constructing these codes is difficult
in practice.

Theorem (Chebyshev’s Inequality): For X a real-valued discrete random

variable with mean EX, variance var(X), P(|X− EX| ≥ t) ≤ var(X)
t2 (the inequality

also holds for X non-discrete provided var(X) exists): var(X) = E|X − EX|2 =
∑

P(X = x)|x − EX|2 ≥ ∑{P(X = x)t2|x − EX| ≥ t} = t2P(|X − EX| ≥ t).
Proof of Shannon’s Noisy Coding Theorem: choose codewords in {0, 1}N at

random, independently of each other and the channel; we shall proove that on
average this gives the inequalities we want, therefore there must be at least one
choice of codewords for which the inequalities hold. Let the error probability
of the BSC be 0 ≤ p < 1

2 . Then Cap = 1 − h(p); set KN = ⌊2N(Cap−ǫ)⌋ (note
this is much less than 2N), and let AN be such that |AN| = KN . For a letter
a0 ∈ AN choose a random code word ~c0 = cN(a0) ∈ {0, 1}N, uniformly and
independently of anything else. Say it is sent through the channel and ~c′0 is
received; we want this to be close to ~c0. The Hamming distance d(~c,~c′) is a
B(N, p) random variable, so has mean Np, variance Np(1 − p); by Chebyshev

we have P(d(~c0,~c′0) ≥ r) ≤ Np(1−p)

(r−Np)2 for r > Np; take q > p and set r = Nq, then

P(d(~c0,~c′0) ≥ r) ≤ p(1−p)

N(q−p)2 (1). Now for anothe rcodeword ~c = cN(a) for some

a , 0, we have P(d(~c,~c′0) < r) = P(~c ∈ B(~c′0, r)) =
V(N,r)

2N ≤ 2Nh(q)

2N = 2−N(1−h(q)). So
the probability that d(~c,~c′

0
) < r for at least one of the KN − 1 codewords ~c , ~c0 is

≤ KN2−N(1−h(q)) = 2N(Cap−ǫ−(1−h(q))); since Cap = 1 − h(p) this is ≤ 2N(h(q)−h(p)−ǫ) (2).
We shall use the minimal distance decoding rule, so we make an error and

decode a0 as a , a0 only when d(~c0,~c′0) ≥ r or d(~cN(a),~c′0) = 0. So the probability

of an error is ≤ p(1−p)

N(q−p)2 + 2N(h(q)−h(p)−ǫ) by (1) and (2). Take q with p < q < 1
2 , h(q) <

h(p) + ǫ which we can do as 0 ≤ p < 1
2 ; then

p(1−p)

N(q−p)2 ≤ ǫ
2 , 2

N(h(q)−h(p)−ǫ) ≤ ǫ
2 for

sufficiently large N; for such N the probability of an error is < ǫ. This was the
average for a random choice of codewords, so we must be able to choose the
codewords for cN such that the probability of error is < ǫ. So we now have
that the mean probability of an error is < ǫ; we need that the maximum error
ê(cN) < ǫ.

We have that the average error probability 1
|An |

∑

a P(error|a sent) < ǫ, so for

at least half of the letters in AN we have P(error|a sent) < 2ǫ; take these 1
2 Kn

letters as our new alphabet A′N, then the maximum error for this alphabet is
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< 2ǫ, and we have |A′
N
| = 1

2 |AN| = 2N(Cap−ǫ)−1 so the rate of transmission is
log |A′

N
|

N = Cap − ǫ − 1
N .

9.1 Typical Sequences

We are going to reinterpret the entropy H(A) in terms of a “typical sequence”
given by a sequence (An) of random variables IID with the same distribution as
A.

Recall the WLLN from IA probability: we say a sequence of random vari-
ables Sn converge to a random variable L in probability if P(|Sn −L| ≥ ǫ)→ 0 as

n → ∞, ∀ǫ > 0. Then the WLLN is that for X a discrete real-valued random
variable, (XN) IID with the same distribution as X, the averages Sn =

X1+···+Xn

n

converge in probability to EX as n→∞: we have ESn = EX, var(Sn) =
Var(X)

n , so

by Chebyshev we have P(|Sn − ESn| ≥ t) ≤ var(Sn)
t2 i.e. P(|Sn − EX| ≥ t) ≤ varX

nt2 and
the RHS→ 0 as n→∞.

Now, the reinterpretation: recall that the entropy of A is H(A) = −∑

a P(A =
a) log P(A = a); this is the expectation of the real-valued random variable X(ω) =
− log P(A = A(ω) (i.e. X takes the values − log pk with probability pk, where A
takes values ak with probabilities pk). Similarly we define Xn from An, so the

Xn are IID with the same distribution as X. By the WLLN, X1+···+Xn

n → EX in

probability as n→ 0, so ∀ǫ > 0∃N(ǫ) : P(|X1+···+Xn

n − EX| ≥ ǫ) ≤ ǫ∀n ≥ N(ǫ).
For a particular sequence of values (a j) fromA, the probability of obtaining

this as (A j) is P(A j = a j∀ j) =
∏n

j=1 P(A = a j); if we do have A j = a j then
X1+···+Xn

n = −∑

log P(A = A j) = − log
∏

P(A = a j), so |X1+···+Xn

n − EX| < ǫ is

equivalent to 2−n(H(A)+ǫ) < P(A j = a j∀ j) < 2−n(H(A)−ǫ)(⋆), so the probability of
obtaining (a j) for which (⋆) holds is at least 1 − ǫ for n ≥ N(ǫ); such sequences
are “typical sequences” and we have proven the following:

Theorem (Asymptotic equipartition property): Let A be a random variable
taking values inAwith entropy H(A); let (An) as before; then ∀ǫ > 0∃N(ǫ) ∈N
such that ∀n ≥ N(ǫ)∃T ⊂ An : P((A j) ∈ T) > 1 − ǫ and 2−n(H(A)+ǫ) < P(A j =

a j∀ j) < 2−n(H(A)−ǫ)∀(a j) ∈ T; we call the sequences in T “typical” and those not in
T are “atypical”. The sequences of T have approximately the same probability
2−nH(A) of arising, so we say the sequence of random variables (An) has the
asymptotic equipartition property.

10 Linear Codes

There is a finite field Fq, unique up to isomorphism, of q elements iff q = pn for

some prime p, e.g. Fp =
Z

pZ ; its multiplicative group is denoted F×q . This is a

cyclic group of order q − 1; any generator therof is called a primitive element

for Fq: for such an α the elements of Fq are α, α2, . . . , αq−1, all distinct. The order

of αk is
q−1

(q−1,k) , so the number of primitive elements is given by Euler’s totient

function as φ(q− 1) := |{1 ≤ k ≤ q− 1 : (q− 1, k) = 1}. For example, the primitive
elements for F7 are 3, 5.

We shall consider alphabets which are finite dimensional vector spaces over
Fq, e.g. FN

q ; this has the usual scalar product. The scalar product allows us to

14



identify the dual space (FN
q )⋆ with FN

q : every linear map A : FN
q → Fq in this

dual space is given by x 7→ x · y for some vector y. More generally, for any finite
S, the set V of functions f : S→ Fq is a vector space over Fq of dimension |S|.

We have the ring Fq[x] of polynomials over Fq by the usual definition; we
have degrees of polynomials as usual with deg 0 := ∞; then deg is a Euclidean
function and the ring becomes a Euclidean Domain. Then we have X−α | A⇔
A(α) = 0 for A ∈ Fq[x] and also that the polynomials form a PID; for any ideal

I ⊳ Fq[x] the quotient
Fq[x]

I is a ring and we have the quotient homomorphism.
The quotient is a vector space over Fq with dimension deg D where I = (D).

An important example is
Fq[x]

(xn−1) = {a0 + a1x + · · · + an−1xn−1 : ai ∈ Fq}, a vector

space of dimension n.
Suppose we are considering codes c : A → BN; if the orders of both alpha-

betsA,BN are powers of the same prime power q then we can consider them as
vector spaces over Fq; then c is a map FK

q → FN
q [note that this is not in general

the same N as previously in this paragraph; lol the lecturer] for some K,N. Such
a map can be much more easily specified when it is linear, as then we only need
to specify the images of a basis for its domain; in fact such a map makes both
coding and decoding considerably easier.

Definition: write F for a general finite field, then a code is linear if it is given
by an injective linear map c : FK → FN. The image of c, a subspace of FN, is
called the code book of c; it has dimension rkc. Example: Hamming’s code is a
linear code.

A linear code c : FK → FN can be given by an N × K matrix C; since c is
injective the matrix has nullity 0 and rank K. We are interested only in the code
book, which can be specified by giving a basis for the image of C; the columns
of C are one such basis. By column operations we can rearrange C to be in the

form

(

I
A

)

where I is the K × K identity and A is some general (N − K) × K

matrix; then the code is ~x 7→
(

~x
A~x

)

, so the first K terms of the codeword carry

information about x and the remainder are check digits.
For a linear code c, the image of c is a subset of FN of dimension K. So

we can construct a linear map s : FN → FN−K with ker s = ℑc; such an s is
called a syndrome of c. For example, if we have written our matrix C for c

in the standard form above, S =

(

−A
I

)

is a syndrome for c: ker S = {
(

~u
~v

)

:

−A~u + ~v = 0 = {
(

~u
A~u

)

: u ∈ Fk} = ℑC.

We can use the syndrome to easily check whether ~x ∈ FN is a code word -
we simply check whether S~x = 0. We can define a code by giving a syndrome;
its code book is then ker s.

Example: for d ∈ N there are N = 2d − 1 nonzero elements of Fd
2; take these

to be the columns of a d ×N matrix S; then the kernel of S is the code book for
a Hamming code c : FN−d

2
→ FN

2
(e.g. d = 3 gives the earlier Hamming code),

which will be a perfect 1-error correcting code.
The code c : FK → FN and syndrome s : FN → FN−K are dual to each other:

their dual maps are s⋆ : FN−K → FN, c⋆ : FN → FK with ker c⋆ = ℑc⊥ = ker s⊥ =
ℑs⋆ so s⋆ is a linear code with c⋆ as its syndrome, i.e. ST is the matrix for a
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linear code with CT as its syndrome.
The minimum distance for a code is the minimum Hamming distance be-

tween two (distinct) codewords; for a linear code we have d(~c′,~c) = d(~0,~c −
~c′) so the minimum distance is min d(~0,~c) over nonzero codewords ~c. The
weight of a codeword ~x is its Hamming distance from 0, so the minimum dis-

tance is the minimum weight of a nonzero codeword.
We use minimum distance decoding; suppose we receive ~x ∈ FN. If s(~x) = 0

then ~x is a codeword, otherwise errors have occured and we must find the
codeword closest to ~x: for every ~y ∈ FN−K, let u(~y) be the vector ~z ∈ s−1(~y) with
minimum weight; if FN−K is not too large we can do this in advance for every
~y ∈ FN−K before receiving any messages; we have s(u(~y)) = ~y. Now decode ~x as
~c0 = ~x− u(s(~x)); since s(~x− u(s(~x))) = s(~x)− s(u(s(~x))) = 0 ~c0 really is a codeword.
For any other codeword ~c we have d(~c, ~x) = d(0, ~x − ~c), but s(~x − c) = s(~x) so by
the definition of u, d(0, ~x − ~x) ≥ d(0, u(s(~x))) = d(0, ~x − ~c0) i.e. d(~c, ~x) ≥ d(~c0, ~x) so
~c0 is the codeword closest to ~x.

Reed-Muller Codes

This is a construction of linear coodes which are useful in dealing with very
noisy channnels. Let S = FM

2
, a finite set with 2M elements; let V be the set of

f : S → F2. Then the functions 1~y(~x) = 1 for ~x = ~y, 0 otherwise are a basis

for V, so dim V = 2M; using this basis we have the Hamming distance in V is
d( f , y) = |{~x ∈ S : f (~x , g(~x}|. Defineπi : ~x 7→ xi; for I = {i(1), . . . , i(r)} ⊂ {1, . . . ,M}
define πI : ~x 7→ π(1)(~x) . . . πi(r)(~x) =

∏

i∈I xi; this is a function in V. In particular,
we have π∅ : x 7→ 1.

Lemma: the set of πI for I ⊂ {1, . . . ,M} forms a basis for V, as we can wrute
1~y(~x) =

∏M
i=1(xi − yi + 1) =

∑

I αI(
∏

i∈I xi for some scalars αI ∈ F2 depending on ~y,

so we can write 1~y =
∑

I αIπI, so the πI span V; since there are 2M = dim V such
πI they must form a basis for V.

By this lemma we can write any f ∈ V as f =
∑

I αIπI. The Reed-Muller code RM(M, r)

has code book {∑(αiπI : |I| ≤ r) : αI ∈ F2}; this is a subspace of dimension
(M

0

)

+
(M

1

)

+ · · · + (M
r

)

, so gives a linear code of this rank and length dim V = 2M.
For example, RM(M, 0) has two codewords 0,1 so is the repitition code repeating
each bit 2M times; we have d(0, 1) = 2M so this is also the minimum distance
for RM(M, 0). RM(M, 1) has dimension 1 +M and the functions π j as a basis;
the Hamming distance has d(0, π j) = 2M−1 and we can see this is the minimum
distance for RM(M, 1).

Proposition: The Reed-Muller code RM(M, r) has minimum distance 2M−r

for 0 ≤ r ≤ M: we shall induct on M, and have the result for the base case
M = 1. Suppose we have the result for M − 1∀r. Let J = {1, . . . , r}; then
d(0, πJ) = 2M−r so the minimum distance is at least this large. For a nonzero
f =

∑

I αIπI in RM(M, r), split this according to whether I ∋ M or not, then
f =

∑

I∋M αIπI+
∑

I=M αIπIπM = f0+ f1πM; f0, f1 are not dependent on xM, we can
think of them as functions on FM−1

2
. Then f0 ∈ RM(M−1, r), f1 ∈ RM(M−1, r−1);

let dM, dM−1 be the Hamming distances in FM
2
, FM−1

2
respectively, and observe

f (x1, . . . , xM − 1, 0) = f0(x1, . . . , xM−1 on the set where xM = 0, f (x1, . . . , xM−1, 1) =
( f0 + f1)(x1, . . . , xM−1 on the set where xM = 1. Since f is nonzero, then f0 or
f0 + f1 is nonzero; if f0 = 0 we have f1 nonzero and dM(0, f ) = dM−1(0, f1) ≥
2(M−1)−(r−1); if f0 , 0, f1 = − f0 then f0 = − f1 ∈ RM(M − 1, r − 1) and we similarly
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have dM(0, f ) = dM−1(0, f0) ≥ 2(M−1)−(r−1). Finally for f0 , 0, f1 , − f0 we have
dM(0, f ) = dM−1(0, f0) + dM−1(0, f0 + f1) ≥ 2 × 2M−1−r since both f0, f0 + f1 are
nonzero elements of RM(M − 1, r) so, in all cases dM(0, f ) ≥ 2M−r as required.
Example: the RM(5, 1) code as used for the Mariner mission to mars has rank
1 + 5 = 6 and length 25 = 23, so its rate of transmission is 6

32 =
3
16 ; by this

proposition it has minimum distance 24 = 16 so it is 15-error detecting and
7-error correcting.

11 Cyclic Codes

A linear code is cyclic if for any codeword c1c2 . . . cN, cNc1 . . . cN−1 is also a

codeword, i.e. the shift map T : FN → FN : ~x 7→

























xN

x1

. . .
xN−1

























maps the code book

into itself. These are more easily described by identifying FN with F[x]
xN−1

; then T
corresponds to the map P(X) 7→ XP(X). Let q be the quotient homomorphism

F[x]→ F[x]
xN−1

.

Proposition: For W a vector subspace of F[x]
xN−1
, J = q−1(W), W is the code book

for a cyclic code iff J is an ideal of F[x]: the quotient map q is linear, so J is a
vector subspace of F[x]. Suppose W is the codebook for a cylic code, then P(x) ∈
W ⇒ xP(x) ∈ W∀P(x), so P(x) ∈ J ⇒ xP(x) ∈ J, so A(x)P(x) =

∑

akXkP(x) ∈ J for
any polynomial A(x), so J is an ideal of F[x]; conversely, if J ⊳ F[x] and P(x) ∈W
then P(x) ∈ J so xP(x) ∈ J, so xP(x) ∈W and W is a codebook as required.

Corollary (Generators of cyclic codes): Any W which is the codebook for

a cyclic code in F[x]
XN−1

has W = {A(x)G(x) : A(x) ∈ F[x]} for some generator

polynomial G(x) ∈ F[x]; also G(x) is a divisor of xN − 1: by the proposition
J = q−1(W) ⊳ F[x]; since F[x] is a PID this implies J = G(x)F[x] for some G(x), so
we have the first part; then 0 = q(xN − 1) ∈W so xN − 1 ∈ J, so G(x) | xN − 1. Take
G(x) monic, then it is uniquely determined by the cyclic code book W; since
G(x) | xN − 1 write xN − 1 = G(x)H(x); H(x) is called the check polynomial of the

code, and is unique up to scalar multiplication.
Proposition: let G(x) as above, D = deg G. then G(x), xG(x), . . . , xN−D−1G(x)

form a basis for the code book in F[x]
xN−1

, so the code book has rank N−D: we have

xkG(x) ∈ J∀k, so xkG(x) ∈W∀ j [note I am not distinguishing, as the lecturer did,

between classes xkG(x) + (xN − 1)F[x] ∈ F[x]
xN−1

and polynomials xkG(x) ∈ F[x]].

Every vector of W is G(x)P(x) for some P(x); by reducing G(x)P(x) modulo xN−1
we may take deg P < N −D, so G(x)P(x) = p0G(x) + · · · + pN−D−1XN−D−1G(x) for
some pi; this was true for a general element of W, so G(x), xG(x), . . . , xN−D−1G(x)
span W; if we have p0G(x)+ · · ·+ pN−D−1XN−D−1G(x) = 0 for some pi then let P(x)
be defined by these pi, then P(x)G(x) = 0 so (xN − 1) | P(x)G(x), so H(x) | P(x);
since deg P < N−D = deg H this means P(X) = 0, so our spanning set is linearly
independent so forms a basis as required.

Using the above basis for the code book, a matrix for the code is given by the
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N×(N−D) matrix



















































g0 0 0 . . . 0
g1 g0 0 . . . 0
. . . . . . . . . . . . . . .
gD gD−1 . . .
0 gD . . .
. . . . . .
0 . . . . . . 0 gD



















































where G(x) = g0+g1x+· · ·+gDxD.

Let S be the D × N matrix

































0 0 . . . h1 h0

0 0 . . . h0 0
. . . . . .
0 hN−D . . . 0 0

hN−D hN−D−1 . . . 0 0

































where H(x) =

h0+h1x+· · ·+hN−DxN−D. Then hN−D , 0 so the rows of S are linearly independent,
so S has rank D so its nullity must be N−D; however, we have that each column
is in the kernel of S, as G(x)D(x) = xN − 1 so

∑

j hM− jg j = 0∀0 < m < N. So
the kernel of S is spanned by the columns of C, so ker S = W = ℑC and S is a
syndrome matrix for the code.

12 BCH Codes

Recall the definition of the characteristic of a finite field; we shall take fields of
characteristic 2 (so of order 2r, but the arguments generalise to other character-
istics.

We know that any cyclic code has a generator polynomial G(X) with G(X) |
(XN − 1), where N is the length of the code; assume N odd. From Galois theory
we know there is a splitting field K for XN − 1/F.

Lemma: XN−1 has N distinct roots in K forming a cyclic group: suppose we
had a repeated root α so XN − 1 = (X − α)2P(X) for some polynomial P; taking
the formal derivative, NXN−1 = 2(X − α)P(X)+ (X − α)2P′(X) = (X − α)(2P(X)+
(X−α)P′(X)), so X−α divides XN−1 and NXN−1; since N is odd, N1 , 0 so X−α
divides the highest common factor of XN−1,XN−1, but this is 1, a contradiction.
So the set S of roots of XN − 1 in K contains N elements; it is a subgroup of the
cyclic group K×, so cyclic.

By the above lemma we can find a primitive root α of XN − 1 in the field

K, with the other roots being α2, . . . , αN−1; this is not true for N even, e.g.
X2 − 1 = (X − 1)2.

12.1 BCH Codes

Let F a finite field of characteristic 2, N an odd integer, K a splitting field for
XN − 1 over F, α a primitive root of XN − 1 in K. The BCH code with design
distance δ ∈ 1, 2, . . . ,N is a cyclic code of length N in F defined by the ideal
J = {P(X) ∈ F[x] : P(α) = P(α2) = · · · = P(αδ−1) = 0}. The generating polynomial
for this code is the minimal polynomial in F[x] with zeroes at α, α2, . . . , αδ−1 in
K; it is therefore the lcm of the minimal polynomials of these, so clearly a factor
of XN − 1, so the BCH code is a cyclic linear code of length N.

Lemma (van der Monde determinants): the determinant∆(X1,X2, . . . ,XK) =

18



∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X1 X2 . . . XK

X2
1

X2
2
. . . X2

K
. . . . . . . . . . . .
XK

1
XK

2 . . . XK
K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

has ∆(X1, . . . ,XK) = (
∏K

k=0 Xk)(
∏

i< j(Xi − X j)): induct on

K, clearly true for K = 1. Consider ∆(X1, . . . ,XK as a polynomial in XK with
coefficients polynomials in X1, . . . ,XK−1; it is of degree K. When XK = 0 or one of
the Xi, the determinant is clearly 0, so XK(

∏

i<K(Xi−XK) divides the determinant,
i.e. ∆(X1, . . . ,XK) = c(X1, . . . ,XK−1XK(

∏

i<K(Xi −XK)) for some polynomial c; the
leading coefficients of both sides here are ∆(X1, . . . ,XK−1), c(X1, . . . ,XK−1), so
∆(X1, . . . ,XK) = ∆(X1, . . . ,XK−1)XK(

∏

i<K(Xi − XK)) as required.
Theorem: the minimum distance for a BCH code with design distance δ is

≥ δ: let P(X) = p0 + · · ·+ pN−1XN−1 a nonzero polynomial in the codebook, then

A

















p0

. . .
pN−1

















=

















0
. . .
0

















, where A =

























α α2 . . . αN−1

α2 α4 . . . α2(N−1)

. . . . . . . . . . . .
αδ−1α2(δ−1) . . . α(N−1)(δ−1)

























.

By a lemma, above, any δ − 1 columns of A are linearly independent, because
no two of the N powers of α are equal or 0. So we must have at least δ − 1 of
the pk being 0, so the minimum distance is at least δ − 1.

Now, how to decode: by a proposition above our code is t-error correcting
where t = ⌊ 1

2 (δ − 1)⌋; suppose ~c is sent and we receive ~r = ~c + ~e, for an error
vector~e with at most t non-zero entries. Let C(X),R(X),E(X) be the polynomials
corresponding to ~c,~r,~e, of degrees < N; we have that C(α) = C(α2) = · · · =
C(αδ−1) = 0, so R(α) = Eα, . . . ,R(αδ−1) = E(αδ−1). Therefore, we calculate R(α j)
for j = 1, . . . , δ − 1; if these are all 0 R(X) is a codeword and there have been no
(or at least δ + 1) errors; otherwise let ǫ = {i : ei , 0} be the set of indicies at
which errors occur; the error locator polynomial is σ(X) =

∏

i∈ǫ(1 − αiX); this is

a polynomial (over K) of degree |ǫ|; once we know it we can find which α−1 are
the roots of it, and hence find the indicies at which errors have occured, and
then by changing these entries correct the error.

Consider the power series η(X) =
∑∞

j=1 E(α j)X j (the coefficients repeat since

αN = 1); we have E(α j) = R(α j) for j = 1, 2, . . . , δ − 1, so we can calcu-
late these coefficients in terms of ~r: η(X) =

∑∞
j=1 E(α j)X j =

∑∞
j=1

∑

i∈ǫ α
i jX j =

∑

i∈ǫ
∑∞

j=1 α
i jX j =

∑

i∈ǫ
αiX

1−αiX
; write this as

ω(X)
σ(X) where ω(X) =

∑

i∈ǫ α
iX

∏

j,i(1 −
α jX); note that both σ and η have degree |ǫ| ≤ t. So σ(X)η(X) = ω(X); using
E(αk) = R(αk) for k = 1, 2, . . . , 2t we have (σ+ · · ·+σtX

t× (R(α)X+ · · ·+R(α2t)X2t+

E(α2t+1)X2t+1 + . . . ) = ω0 + · · · + ωtX
t; the coefficients of Xn for t < n ≤ 2t give

∑t
j=0 σ jR(αn− j) = 0, which do not involve the terms E(αk)Xk, so we get the equa-

tions

























R(αt+1) R(αt) . . . R(α)
R(αt+2) R(αt+1) . . .R (α2)
. . . . . . . . . . . .

R(α2t . . . R(αt)

























~σ = ~0; the matrix is a t× (t+1) matrix

so has a vector σ , 0 in its kernel; this σ gives us the error locator polynomial
σ(X) as required.

The special case F = Fq,N = q − 1 is called a Reed-Solomon code.
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13 Linear Feedback Shift Registers

Suppose we have K registers each taking values in the finite field F = Fq;
initially they are set to x0, . . . , xK−1, called the initial fill; at each time step we
shift the values in the registers down, and fill the final register with a new value
determined by the old values in the registers, i.e. if the register i takes the value
Xi(t) at time t = 0, 1, . . . , we have Xi(t+1) = Xi+1(t)∀0 ≤ i ≤ K−2, and XK−1(t+1) =
f (X0(t), . . . ,XK−1(t)), where f is some feedback function. We call this system a
linear feedback shift register when f is linear, say f (X0, . . . ,XK−1) = −c0X0 −
· · · − cK−1XK−1; then c0X0(t) + · · · + cK−1XK−1(t) + XK(t) = 0∀t.

This system gives (and is determined by) a stream of values X0(0),X0(1), . . . ;
this begins with the initial fill X0(0) = x0,X0(1) = x1, . . . ,X0(K − 1) = xK−1, and
satisfies the recurrence relation c0X0(t) + c1X0(t + 1) + · · · + cK−1X0(t + K − 1) +
X0(t + K) = 0; the feedback polynomial C(X) = c0 + c1X + · · · + cK−1XK−1 + XK

is the characteristic polynomial for this recurrence relation, so determines the
solutions. The stream of values from a system such as this appears superficially
random, but is not.

We shall assume c0 , 0; otherwise, the value in the 0th register does not
affect anything, so we can consider the LFSR formed by the remaining K − 1
registers.

Proposition: a LFSR is periodic: let the vector ~V ∈ FK be given by Vi(t) =

X0(t + i). There are only finitely many vectors in FK, so the sequence (~V(t))
for t ∈ N must eventually repeat an earlier value; suppose this first occurs

when ~V(N) = ~V( j) for some 0 ≤ j < N. Then we have by the definition of

the LFSR that ~V(t + 1) = M~V(t) where M =

































0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
−c0 −c1 −c2 . . . −cK−1

































;

this has determinant ±c0 , 0 so is invertible. We have ~V(t) = Mt~V(0), so

MN ~V(0) = M j~V(0); if j , 0 then multiplying by M−1 we have an earlier repeat,

so j = 0, MN ~V(0) = ~V(0) and the squence of ~V(t) is periodic with period N, so
the sequence X0(t) is also.

We clearly have M~0 = ~0, so the largest possible period is N = qK − 1; in this

case the sequence ~V(0), . . . , ~V(N − 1) takes each value in FK \ {0} exactly once;
therefore in any period of length qK − 1 the number 0 occurs qK−1 − 1 times
and every other number of F occurs qK−1 times; therefore in a very weak sence
the sequence appears random, but it is entirely predictable given one complete
period.

Say we have a LFSR of period N; define ~W(t) ∈ FN by Wi(t) = X0(t + i),

then ~W(t + 1) is a cyclic shift of ~W(t), as X0(t + N) = X0(t); we also have

c0
~W(0)+c1

~W(1)+ · · ·+cK−1
~W(K−1)+ ~W(K) = ~0. So the vectors ~W(0), . . . , ~W(K−1)

span the code book for a cyclic code of length N.
If we receive a sequence at elements of F from a linear feedback shift

register, and want to determine the register which produced it, we simply
need to solve linear equations to find the coefficients of the feedback poly-
nomial: suppose the LFSR had K registers and feedback polynomial C(X) =
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c0 + · · · + cK−1XK−1 + XK. Then we have c0at + · · · + cK−1at+K−1 + at+K = 0, i.e.
























a0 a1 . . . aK−1 aK

a0 a2 . . . aK aK+1

. . . . . . . . . . . . . . .
aK aK+1 . . . a2K−1 a2K

















































c0

. . .
cK−1

1

























= ~0(⋆), so the matrix here has deter-

minant 0. Therefore, to find the LFSR, following Berlekamp and Massey, we
take the smallest possible value of K and compute the determinant of that ma-
trix; if it is nonzero we cannot solve the problem with K registers, so increment
K and continue. If the determinant is 0 we find the c j by solving (⋆), then
check whether this works (i.e. set up a LFSR with the feedback polynomial
C(X) = c0 + c1X + · · · + cK−1XK−1 + XK and initial fill a0, . . . , aK−1, then check
whether this produces the same stream as that we received); if this does not
work then we consider other possible solutions c j, or increase K if there are no
such.

13.1 Power Series

Let A(x) = a0 + a1x + · · · + aDxD,B(x) = 1 + b1X + · · · + bKxK ∈ F[x]. Writing
B(x) = 1 − β(x) we have 1

B(x) =
1

1−β(x) =
∑∞

j=0 β(x) j; expanding the powers of β(x)

we obtain a formal power series for 1
B(x) . Multiplying this by A(x) we have a

formal power series
A(x)
B(x) =

∑∞
j=0 u jx

j. We are not concerend with convergence

here, but only require that the coefficients of each power of x on both sides
of the equation match; thus we need A(x) = B(x)

∑∞
j=0 u jx

j, or equivalently

an =
∑n

j=0 b jun− j∀n ∈ 0, 1, . . . . So the sequence u j satisfies un = an−
∑n

j=1 b jun− j for

n ∈ 0, 1, . . . ,D and un = −
∑n

j=1 b jun− j for n > D. Thus the sequence is the stream

output by a LFSR with feedback polynomial C(x) = bK+bK−1x+ · · ·+b1xK−1+xK.
Therefore, determining whether a stream of elements of F is the output of a

LFSR is equivalent to determining whether a formal power series is a quotient
of two polynomials; compare with the method of decoding BCH codes, above.

Exercise: a decimal repeats iff it represents a rational number; relate this to
LFSRs and the periodicity proven in the above proposition.

14 Cryptography

Suppose we are transmitting a message, the plaintext, from a finite alphabet

A; the encrypting function ek : A→ B is taken as varying depending on a key

k from some finite set K ; the encrypted text is then the ciphertext; since we

must be able to decipher the message there is a decrypting function dk : B → A
such that dk(ek(a)) = a∀a ∈ A. For example, in a [monoalphabetic] substitution
cipher the key is a permutation κ ofA and eκ(a) = κ(a); for an English message
this is easy to decode by frequency analysis.

We shall assume an attacker knows the encryption method (i.e. the functions
ek, dk) but not the specific k we are using; levels of attack we might consider are
1) a ciphertext only attack, where the attacker has only a piece of ciphertext 2)
a known plaintext attack, where the attacker knows some plaintext and corre-
sponding ciphertext, and finally 3) a chosen plaintext attack, where the attacker
can choose arbitrary plaintexts and obtain the corresponding ciphertext.
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A simple substitution cipher or even the Vigenère cipher are vulnerable at
level 1 given a sufficiently long ciphertext; for a modern cipher we want to be
resistant to a level 3 attack. Of course every cipher is vulnerable to such an
attack in some sense: we can perform a brute force attack by encrypting some
fixed plaintext with every possible key k ∈ K , but we can hope to make the
amount of work involved prohibitively large.

14.1 Equivocation

Suppose we choose a random plaintext message M according to some prob-
ability distribution on the set of possible messages M, then independently
choose a random key K ∈ K . The ciphertext is then a random variable
C = cK(M). Consider this as transmitting M through a noisy channel to pro-
duce C; the noise comes from the choice of key. We call the entropy H(M|C)
the message equivocation; this measures the amount of uncertainty we have

about the plaintext given the ciphertext; similarly we have the key equivocation

H(K|C); we unsurprisingly have:
Proposition: the message equivocation is ≤ the key equivocation: M is a

function of (K,C) so we have H(K|C) = H(K,C) − H(C) = H(K,M,C) − H(C) =
H(K,M,C) −H(M,C) +H(M,C) −H(C) = H(K|M,C) +H(M|C) ≥ H(M|C).

We say a cipher has perfect secrecy if the ciphertext gives us no information

about the plaintext: H(M|C) = H(M), i.e. H(M,C) = H(M) + H(C) so M,C are
independent (Equivallenty I(M,C) = 0).

Proposition: if a cipher has perfect secrecy, there must be at least as many
possible keys as possible plaintext messages (by which we mean, keys/messages
with strictly positive probabilities): fix a message m0 ∈ M and key k0 ∈ K ,
both with strictly positive probability; then c0 = ek0

(m0) has strictly positive
probability. For any message m, we have P(C = c0) = P(C = c0|M = m), so
∃k ∈ K with c0 = ek(m); if two message m1,m2 give the same key then we have
ek(m1) = c0 = ek(m2) ∴ m1 = m2, so we have an injective map m 7→ k.

This result means perfect secrecy is usually impractical; a one-time pad
cipher is an example of perfect secrecy (if our key is k1k2 . . . and |A = q, our
message m = a1a2 . . . aN is enciphered as b1 . . . bN with bi = ai + ki mod q; then

P(M = ~m|C = ~c) = P(M = ~M,K = ~c − ~m) = P(M = ~m)P(K = ~c − ~m) = 1
qN P(M = ~m)

(working modulo q), so M,C are independent.
As well as the key length issue, a one-time pad requires a genuinely random

key sequence, which is difficlet to produce. If we try and use some pseudo-
random sequence, e.g. the output of a LFSR, then we are vulnerable; in this case
a level 2 attack will work, since given a plaintext and ciphertext we can com-
pute the key sequence, then use Berlekamp-Massey to compute the feedback
polynomial and hence the key.

14.2 Unicity

When trying to break a simple substitution cipher by frequency analysis, we
are aided by the fact that we know the original message made sense and, for a
long enough ciphertext, there is only one key giving a sensible message for the
plaintext. We ask: how long must our ciphertext be for this to apply?
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Suppose m = a1 . . . aN; the letters are random variables A j giving a random

message ~M = A1 . . .AN. Assume the entropy of this sequence is NH for some
constant H, the entropy per letter (cf section 5). When this is enciphered we get

a ciphertext ~C = C1 . . .CN; the unicity is the least N for which H(K|~C) = 0.

K, ~M determine ~C and conversely K, ~C determine ~M, so we have H(K|~C) =

H(K, ~C)−H(~C) = H( ~M,K, ~C)−H(~C) = H( ~M,K)−H(~C) = H( ~M)+H(K)−H(~C); we
assume the ciphertext will be uniformly distributed (as is the case with most

useful ciphers) so H(~C) = N log |C|, and K was chosen uniformly from K , so

H(K) = log |K| and we have 0 = NH + log |K| −N log |C|, so N =
log |K|

log |C|−H . So we

should not use a single key for messages longer than this N.
Example: for English, H ≈ 1.2; suppose we use a substitution cipher with

alphabets the 26 letters plus space, then |K| = 27!, log |K| = 93.14, |C| = 27 ∴
N = 93.14

log 27−1.2 ≈ 26.2; thus we expect to be able to find the key uniquely if the

ciphertext is longer than 26 letters.
[I had stopped attending lectures in this course quite early on; at this point I

stopped writing my notes, which are after all merely reworkings of the available
online notes for the course]
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