
Algebraic Topology

May 14, 2008

The main book for this course is Armstrong’s ”Basic Topology”; there is
also a useful set of lecture notes from a previous version of this course available
online. Allen Hatcher’s Algebraic Topology, available freely on the internet, is
good for the homotopy part of this course, but uses a different definition of
homology to that we will be using.

We shall write Rn = {(x1, . . . , xn) : xi ∈ R}, real n-dimensional Euclidean
(or affine) space, Sn = {x ∈ Rn+1 : ‖x‖ = 1} the n-sphere, Bn = {x ∈ Rn :
‖x‖ ≤ 1} the n-ball, I = {x ∈ R1 : 0 ≤ x ≤ 1} the unit interval, T = S1 × S1

the torus, and S1 × I the annulus.
Definition: for a setX with a collection τ of subsets ofX ,X is a topological space

if ∅, X ∈ τ , U,U ′ ∈ τ ⇒ U ∩ U ′ ∈ τ , and Uj ∈ τ [∀j] ⇒
⋃
j∈J Uj ∈ τ . The ele-

ments of τ are called open subsets of X ; the complements of open subsets are
called closed subsets.

Suppose f : X → Y is a function of topological spaces; then f is continuous
if f−1(U) is open in X for any open U ⊂ Y . Clearly the same definition with
“closed” in place of “open” is equivalent. Such an f is called a “map”.

f is called a homeomorphism if it has an inverse map (i.e. a map g such
that fg = 1Y , gf = 1X . If such an f exists we say X and Y are homeomorphic.

Definition: forX,Y topological spaces, the product space isX×Y = {(x, y) :
x ∈ X, y ∈ Y } with open subsets unions of sets of the form U × V where
U ⊂ X,V ⊂ Y open.

Definition: for X a set and ∼ an equivalence relation, the quotient X
∼ is the

set of equivalence classes of elements of X under ∼. We have a natural function
p : X → X

∼ by p(x) = [x], the equivalence class of x. If X is a topological space

then we define a topology on X
∼ by U ⊂ X

∼ is open if p−1(U) is open.

Definition: RPn, real n-dimensional projective space, is Sn

∼ where ∼ is the
identification of antipodal points; there is no useful picture of this for n > 1.

Definition: let f, g : X → Y be maps of topological spaces. A homotopy
from f to g is a map F : X × I → Y such that F (x, 0) = f(x), F (x, 1) = g(x);

we write f
F
≃ g or just f ≃ g. For A ⊂ X , F is a homotopy relative to A if

F (a, t) = F (a, 0)∀t ∈ I, a ∈ A.
Lemma: Homotopy (and homotopy relative to some A) is an equivalence

relation on the space of maps X → Y : we have f ≃ f (relative to any A), than
f ≃ g ⇔ g ≃ f is trivial, and that f ≃ g, g ≃ h ⇒ f ≃ h the lecturer did not
feel worth proving.

Lemma: suppose f, f ′ : X → Y, g, g′ : Y → Z; if f ≃ f ′, g ≃ g′ then
gf ≃ gf ′ ≃ g′f ≃ g′f ′: by assumption we have a homotopy G : Y × I → Z
such that G(x, 0) = g(x), G(x, 1) = g′(x). Then we have a map φ : X ×
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I → Y × I by (x, t) 7→ (f(x), t); then H = Gφ : X × I → Z is a homo-
topy: H(x, 0) = G(φ(x, 0)) = G(f(x), 0) = g(f(x)), H(x, 1) = G(φ(x, 1)) =
G(f(x), 1) = g′(f(x)), so gf ≃ g′f [the lecturer again didn’t deign to prove the
rest of this].

Lemma/definition: suppose f, g : X → Y ⊂ Rn where Y is convex, or more
generally where the line segment joining f(x), g(x) lies in Y for every x ∈ X .
Then f ≃ g: define : X × I → Y by F (x, t) = (1 − t)f(x) + tg(x). Note that
this same proof is valid for homotopy relative to some A ⊂ X .

Definition: topological spaces X,Y are homotopy equivalent or of the same
homotopy type if ∃f : X → Y, g : Y → X with fg ≃ 1Y , gf ≃ 1X ; in this case
f or g is called a homotopy equivalence. We write X ≃ Y .

Lemma: this is an equivalence relation on the class of topological spaces:
clearly X ≃ X and X ≃ Y ⇔ Y ≃ X . given X ≃ Y by f : X → Y, g : Y → X
and Y ≃ Z by h : Y → Z, e : Z → Y we have (hf)(ge) ≃ 1Z , (ge)(hf) ≃ 1X so
we have the result.

Definition: X is contractible if X ≃ a single point.
Example: X ≃ Rn is contractible: fix p ∈ X , let Y = {p}, then define

f : x ∈ X 7→ p ∈ Y, g : p ∈ Y 7→ p ∈ X . Then fg = 1Y , and gf = x 7→ p is
≃ 1X by linear homotopy. This proof holds for any convex subset of Rn

Definition: For A ⊂ X a map r : X → X is called a retraction of X onto A
if r |A= 1X and r(X) ⊂ A. If r ≃ 1X then we say r is a deformation retraction
of X onto A.

Definition: A path in X from x0 to x1 is a map α : I → X with α(0) =
x0, α(1) = x1. When x0 = x1 α is called a loop based at x0. X is callex path-
connected if ∀x0, x1 ∈ X∃ a path between them; path-connected components
are defined in the obvious way.

Example: the well-known topologist’s sin curve.
Definition: Let αi : I → X be paths from xi−1 to xi. The product α1 · α2 ·

· · · · αn : I → X is defined as α1 · · · · · αn(t) = α1(nt) for 0 ≤ t ≤ 1
n
, α2(nt− 1)

for 1
n
≤ t ≤ 2

n
, and so on until αn(nt− (n− 1)) for n−1

n
≤ t ≤ 1.

Definition: The inverse α−1 is defined by α−1(t) = α(1 − t); the reader
should verify (α · β)−1 = β−1 · α−1.

Lemma: For α, β, α′, β′ paths in X , such that α ≃ α′ relative to {0, 1} and
β ≃ β′ relative to {0, 1}, α · β ≃ α′ · β′; also α−1 ≃ α′−1 relative to {0, 1}: Say
our homotopies are F : I × I → X from α to α′, G : I × I → X from β to β′.
Then we can define H : I × I → X from αβ to α′β′ by H(x, t) = F (2x, t) for
0 ≤ x ≤ 1

2 , G(2x− 1, t) for 1
2 ≤ x ≤ 1; for the inverse we define E : I × I → X

by E(x, t) = F (1 − x, t).
Lemma: Assume α, β, γ paths in X from xi−1 to Xi, then firstly (α ·β) ·γ ≃

α · (β · γ) ≃ α · β · γ relative to {0, 1}, secondly if ex0
is the constant path

at x0 then e0 · α ≃ α relative to {0, 1} and α · ex1
(where ex1

is the obvious
thing) ≃ α relative to {0, 1}, and finally α · α−1 ≃ ex0

relative to {0, 1}: For
the first, we will only show (α · β) · γ ≃ α · β · γ, the other parts being similar:
we have (α · β) · γ = α(4t) for 0 ≤ t ≤ 1

4 , β(4t− 1) for 1
4 ≤ t ≤ 1

2 and γ(2t− 1)
for 1

2 ≤ t ≤ 1 and α · β · γ = α(3t) for 0 ≤ t ≤ 1
3 , β(3t − 1) for 1

3 ≤ t ≤ 2
3

and γ(3t − 2) for 2
3 ≤ t ≤ 1, so define a map f : I → I by f(t) = 4

3 t for
0 ≤ t ≤ 1

2 ,
2
3 t + 1

3 for 1
2 ≤ t ≤ 1. Then we have f ≃ 1I relative to {0, 1} as

I is convex, so (α · β) · γ = (α · β · γ)f ≃ (α · β · γ)1I = α · β · γ relative to
{0, 1}. For the second part, we define f : I → I by f(t) = 0 for 0 ≤ t ≤ 1

2 ,
2t − 1 for 1

2 ≤ t ≤ 1, then αf(t) = ex0
· α(t). But 1I ≃ f relative to {0, 1} so
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ex0
· α = αf ≃ α1I = α relative to {0, 1}. For the final part, let g = 1I ; we

have g · g−1 (considering g as a path I → I ≃ the constant map at 0 relative to
{0, 1}. Now α ·α−1 = α(g · g−1) ≃ α(0) = ex0

relative to {0, 1}; the other cases
are similar.

Definition (fundamental group): the fundamental group of x0 ∈ X , π1(X,x0),
is the set of equivalence classes of loops based at x0 under homotopy relative to
{0, 1}, with group operation [α][β] = [α · β].

Theorem: This is a group: we have associativity from that of paths, above;
the identity is [ex0

], and the inverse of [α] is [α−1].
Example: For X ⊂ Rn corvex, any loop at x0 is homotopic to ex0

, so
[α] = [ex0

]∀α and π1(X,x0) = 0.
[I have begun rewriting a lot of this, as the lecturer appears unable to re-

member all the bits of many theorems]
Theorem: Any [continuous?] f : X → Y with f(x0) = y0 induces a homo-

morphism f⋆ : π1(X,x0) → π1(Y, y0) such that f ≃ f ′ rel {0, 1} ⇒ f⋆ = f ′⋆,
(1X)⋆ is the identity, and for f : X → Y, g : Y → Z, (gf)⋆ = g⋆f⋆: De-
fine f⋆(α) = fα for any path α on X . Then, defining f⋆([α]) = [f⋆(α)],
this is a homomorphism: f⋆[αβ] = [f⋆(αβ)] = [f⋆αf⋆β] = [f⋆α][f⋆β]; we have
f⋆[ex0

] = [fex0
] = [ey0 ], and f⋆[α

−1]f⋆[α] = [f⋆(α ·α
−1)] = f⋆[ex0

] = f⋆[α ·α
−1].

Now we have those properties: if f ≃ f ′rel{x0} then f⋆(α) ≃ f ′
⋆(α)rel{0, 1}

so f⋆[α] = f ′
⋆[α], the second property is trivial, and for the final one (gf)⋆(α) =

gf(α) = g(f(α)) = g(f⋆α) = g⋆f⋆(α).
Theorem: For γ : I → X a path from x0 to x1, we have an isomorphism

γ# : π1(X,x0) → π1(X,x1) such that γ ≃ γ′rel{0, 1} ⇒ γ# = γ′#, (ex0
)# is the

identity, (γ · λ)# = λ#γ# where λ is a path from x1 to x2, and if f : X → Y
is a map with f(x0) = y0, f(x1) = y1 then (f⋆γ)#f⋆ = f⋆γ#: define γ# by
γ#(α) = γ−1 · α · γ; this is clearly a homomorphism. [γ−1αγ] = [ex1

] ⇒
γ−1 · α · γ ≃ ex1

rel{0, 1} ⇒ γ · γ−1 · α · γ · γ−1 ≃ γex1
γ−1 = ex0

rel{0, 1}, i.e.
α ≃ ex0

rel{0, 1}, so the homomorphism is injective. For any [β] ∈ (X,x1) we
have γ#(γβγ−1) = γ−1γβγ−1γ ≃ βrel{0, 1}, so the homomorphism is surjective
and thus an isomorphism as required.

For the properties, γ#(α) = γ−1 · α · γ ≃ γ′−1 · α · γ′ = γ′(α)rel{0, 1}, the
second property is clear, for the third (γ ·λ)#(α) = (γ ·λ)−1α·γ ·λ = λ−1 ·γ−1 ·α·
γ ·λ = λ−1 ·γ#(α)·λ = λ#γ#(α). For the fourth let α : I → X be a loop based at
x0; (f⋆γ#)[α] = f⋆(γ

−1 ·α · γ) = f⋆γ · f⋆α · f⋆γ−1 = (f⋆γ)#[f⋆α] = (f⋆γ#)f⋆[α].

Theorem: suppose f
F
≃ g [the F should be *below* the ≃ throughout this

course, but I have insufficient latex skillz], f, g : X → Y . Let γ be the path from
f(x0) to g(x0), γ(t) = F (0, t). Then γ#f⋆ = g⋆: let αI → X be a loop based
at x0. Define G(s, t) = F (α(s), t)¡ then we want to show [γ−1(f⋆α)γ] = [g⋆α].
Define H : I × I → Y from γ−1 · f⋆α · γ to g⋆α by H(s, t) = γ−1(3s) for
0 ≤ s ≤ 1−t

3 , G(3s+t−1
2t+1 , t) for 1−t

3 ≤ s ≤ 2+t
3 , γ(3s − 2) for 2+t

3 ≤ s ≤ 1, and
this is a homotopy (the idea behind this map is to distort our existing homotopy
between f⋆α and g⋆α to one relative to {0, 1} by smoothly adding γ and γ−1

to the f⋆α end. We have H(s, 0) = γ−1(3s) for 0 ≤ s ≤ 1
3 , G(3s − 1, 0) (i.e.

f⋆α(3s− 1)) for 1
3 ≤ s ≤ 2

3 , and γ(3s− 2) for 2
3 ≤ s ≤ 1 and H(s, 1) = γ−1(0)

for s = 0, (g⋆α)(s) for 0 ≤ s ≤ 1, and γ(1) for s = 1, so we have a homotopy as
required.

Corollary: let f : X → Y be a homotopy equivalence. Then π1(X,x0) ≃
π1(Y, y0) for f(x0) = y0: let f ′ be the inverse of f . We have f⋆ : π1(X,x0) →
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π!(Y, y0) and f ′
⋆ : π1(Y, y0) → π1(X, f

′(y0)). By definition f ′f ≃ 1X , ff
′ ≃ 1Y ,

so (f ′f)⋆ = f ′
⋆f⋆ is an isomorphism so f ′

⋆ is surjective; similarly f⋆f
′
⋆ is an

isomorphism so f ′
⋆ is injective, so f ′

⋆ is an isomorphism; we cannot directly
use the same argument for f⋆ as we have two slightly different f⋆ in play [lol
lecturer], but the situation is symmetric in f, f ′ so f⋆ is also an isomorphism.

Example: Suppose X is contractible, i.e. X is of the same homotopy type
as a single point. Then by this corollary π1(X,x0) = 0∀x0 ∈ X .

As an aside, we usually write fundamental groups multiplicatively, but we
still sometimes use 0 for their identities [lol us]. Also, we write π1 because other
homotopy groups π2, . . . exist, though we will not see them in this course.

Remark: If X is path-connected then π1(X,x0) ≃ π1(X,x1) and we some-
times write π1(X) for this common value.

Definition: X is simply connected if X is path-connected and π1(X) = 0.

Covering Spaces

Assume X is path-connected. A covering space is another space X̃ 6= ∅ with a
covering map p : X̃ → X such that ∀x ∈ V ∃U ∋ x open such that p−1(U) is a
disjoint union of open subsets V such that p |V : V → U is a homeomorphism;
such a U is called elementary.

Examples: p : R1 → S1 p(t) = e2πit, p : S1 → S1 p(z) = zn for an
integer n, p : Sn → RPn p(x) = [x] = {x,−x}, and extensions of these e.g.
p : R1 × S1 → S1 × S1 p(t, z) = (e2πit, z).

Lemma (path-lifting): Let p : X̃ → X be a covering map, x0 ∈ X , x̃0 ∈ X̃
such that p(x̃0) = x0, and α a path in X with α(0) = x0. Then ∃! path α̃ ∈ X̃
with α̃(0) = x̃0, p⋆(α̃) = α: for each x ∈ X take Ux a corresponding elementary
open set; thus X =

⋃
x∈X Ux. Then I =

⋃
x∈X α

−1(Ux); I is compact so we

have a finite subcover I =
⋃n
i=1 α

−1(Ui). We can divide I into [k−1
m
, k
m

] for

some m in such a way that α([k−1
m
, k
m

]) ⊂ Ui, for some i, for each m; this is
valid though nontrivial, induct from the case n = 2. Since each of these Ui is
elementary we can find a path β̃1 which is a lift of β1 where β1 is the path given
by [0, 1

m
] (we have Ũi homeomorphic to Ui); then inductively we can find b̃k

similarly. Then α̃ = β̃1 · · · · · β̃m is as required.
Lemma (homotopy-lifting): let p : X̃ → X be a covering map, F : I×I → X

and F̃ : I × {0} → X̃ such that p(F̃ (s, 0)) = F (s, 0). Then there is a unique
extension of F̃ to I × I such that pF̃ = F : cover X by elementary open sets
as above, getting a finite subcover I × I =

⋃n
i=1 F

−1(Ui); again find m such
that F (σk,l) ⊂ Ui for some i∀l,m where σk,l = [k−1

m
, k
m

] × [ l−1
m
, l
m

]. Now

F (σ1,1) ⊂ Ui so since Ui is elementary we can extend F̃ over σ1,1 uniquely;

continuing inductively we can extend F̃ over all of I × I.
Now the remainder of both lemmas follows from this:
Claim: Let p : X̃ → X be a covering map and Y a connected space; suppose

f, g : Y → X̃ are maps such that pf = pg. Then the set A = {y ∈ Y : f(y) =
g(y)} is ∅ or Y : it is enough to prove A is open and closed, then we are done
by connectedness of Y . Take y ∈ Ā; put x = pf(y) = pg(y), take U ∋ x
elementary. There are components V,W of p−1(U) such that f(y) ∈ V, g(y) ∈
W , so f−1(V ), g−1(W ) both intersect A; by the definition of A this means they
intersect [I’m sure the lecturer is wrong here - they intersect because the place
where they intersect A is the same. This whole proof is very perverse] Now

4



p |V : V → U is a homeomorphism so f(y) = g(y); thus y ∈ A so A is closed;
similarly A is open.

Corollary: Let p : X̃ → X be a covering map, x0 ∈ X, x̃0 ∈ X̃ such that
p(x̃0) = x0. If α ≃ β (relative to {0, 1}) are paths in X such that α(0) = β(0) =
x0 then the lifts α̃ ≃ β̃ relative to {0, 1} such that α̃(0) = β̃(0) = x̃0: this is
immediate by the homotopy lifting lemma (the endpoint is the same since it is
the same in a basic neighbourhood in X).

Example: π1(S
1) = Z: set x0 = (1, 0) ∈ S1, let p : R1 → S1 be the covering

map p(t) = e2πit. Take x̃0 = 0 ∈ R. Then for a loop α based at x0, there is a
unique lift α̃ of α; we know that α̃(1) = n ∈ Z. If n = 0 then α ≃ the constant
loop at x0; if n > 0 take β̃ to be a “simple” path in R1 from 0 to n; since R1

is contractible, α̃ ≃ β̃rel{0, 1} so α = p⋆α̃ = p⋆β̃ =: β. If γ is a “simple” path
from 0 to 1 then [α] = [p⋆α̃] = [p⋆β] = [p⋆γ]

n; the rest of the example is left as
an exercise.

Example: T = S1 × S1; by example sheet this implies π1(T ) = π1(S
1) ×

π1(S
1) = Z × Z.

Example: π1(R1 × S1) = π1(R1) × π1(S
1) = Z

Example: π1(S
1 × I) = Z

Example: π1(S
n) = 0 if n ≥ 2 (outline): take x0 ∈ Sn and α : I → Sn a

loop based at x0. If α is not surjective, by the example sheet α ≃ ex0
rel{0, 1}

so [α] is trivial in π1(S
n); if α is surjective, take x 6= x0 ∈ Sn, and let U be a

small open neighbourhood of x homeomorphic to an n-ball in Rn. Now α−1(U)
is open in I so is the disjoint union of intervals, but α−1({x}) is compact so
must be contained in finitely many of these intervals. Thus we can construct a
loop β ≃ αrel{0, 1} which is non-surjective [by perturbing α finitely many times
to run along the boundary of U rather than through x], and then we have the
result by the previous case.

Example: the Möbius strip M has π1(M) = Z, as seen on the example sheet;
likewise π1(RPn) = Z

2 for n ≥ 2 (we cannot use the theorem below since Sn is
not simply connected)

Action of groups

Aut(X), the set of homeomorphisms X → X , is a group (under composition)
which acts on X . Let G ⊂ Aut(X) be a subgroup. Define X

G
to be the set of

classes {f(x) : f ∈ G} for x ∈ X .
Theorem: suppose G ⊂ Aut(X) (“G acts on X as homeomorphisms”), and

X is simply connected, and assume ∀x ∈ X∃U ∋ x : U ∩ g(U) = ∅∀g 6= 1
with U open. Then π1(

X
G

) = G: let x0 ∈ X and p : X → X
G

be the quotient
map. For any g ∈ G choose a path γg from x0 to g(x0). Now define a map
θ : G → π1(

X
G
, p(x0)) by g 7→ [p⋆γg]. We see the path g(γg′) starts at g(x0)

and ends at gg′(x0); we can take γgg′ to be the product γg · g(γg′), so gg′ 7→
[p⋆γgg′ ] = [p⋆(γg · g(γg′)]. So θ(gg′) = θ(g)θ(g′), and θ is a homomorphism.
For injectivity suppose θ(g) = [p⋆γg] = the identity of π1(

X
G
, p(x0)). From our

assumption p is a covering map; we can lift p⋆γg (uniquely) to a path starting
at x0, which will be the same as γg; by homotopy lifting this must be homotopic
to ex0

relative to {0, 1}; this means γg must be a loop based at x0; in particular
γg(1) = γg(0) = x0 so g(x0) = x0 and g = 1.

Suppose α is a loop based at p(x0); by path lifting we have a lift α̃ such
that α̃(0) = x0; since α is a loop α̃(1) ∈ [x0] and ∃g ∈ G : α̃(1) = g(x0). By
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construction α̃ ≃ γgrel{0, 1}, so θ is surjective. Thus θ is an isomorphism.

Example: G = Z acts on R1 by gx = x+ g; R
1

Z
= S1 so π1(S

1) = Z.

Example: G = Z

2 = {e, g} acts on Sn by ex = x, gx = −x; by definition
Sn

Z

2

= RPn. If n ≥ 2, π1(RPn) = Z

2 .

Example: G = Z × Z acts on R2 by g = (m,n) : (x, y) 7→ (x + m, y + n);
R

2

Z×Z
= T so π1(T ) = Z × Z.

Free groups, generators, relations

Let X be a set. Define a word to be a finite “product” xn1

1 . . . xnm
m with xi ∈

X,ni ∈ Z (including the empty word). We say a word is reduced if x1 6=
xi+1, ni 6= 0, ∀i. The set of reduced words forms a group with the empty word
as the identity and the product being the reduced word of the concatenation of
two words. We call this group f(X), the free group generated by X .

Example: f({x}) = Z.
If we have a bijection X → Y this gives an isomorphism f(X) → f(Y ).
If G is a group and ∃X ⊂ G with f(X) = G then we call G a free group.
Theorem: A group G is the free group generated by X ⊂ G iff for any

function f : X → H where H is a group, there is a unique extension f̄ : G→ H
which is a (group) homomorphism.

Most groups are, alas, not free groups, e.g. Z

3 = {0, 1, 2}.
Let G be a group and X ⊂ G. We say X generates G if there is a surjective

homomorphism f(X) → G. Let N be the kernel of this homomorphism, then
N ⊳ f(X); if R ⊂ N is such that N is the smallest normal subgroup containing
R then R [with X ] determines N , and X,R together determine G.

Elements of X are called generators; elements of R are called relations. X,R
is a presentation of G. When X,R are finite X = {x1, . . . , xm}, R = {r1, . . . , rl}
we can write G = {x1, . . . , xm|r1, . . . , rl} or {x1, . . . , xm|r1 = 1, . . . , rl = 1}.

Example: G = {x : xn = 1} is Zn.
Free product of groups: suppose G,H are groups, then the free product

G ⋆ H is the set of reduced words xn1

1 . . . xnm
m such that xi ∈ G∪̇H (where ∪̇

denotes disjoint union) and xi, xi+1 are never in the same group, xi is never the
identity, and ni is never 0, with product as before and identity the empty word.

Theorem: for G,H,K groups, K = G ⋆ H iff there are homomorphisms
α : G → K,β : H → K such that for any group E with homomorphisms
γ : G→ E, λ : H → E there is a unique θ : K → E such that γ = θ◦α, λ = θ◦β
(we would like to use this as the definition of a free product of groups, but then
we would need to prove that it exists, which is nontrivial).

Example: G = Z = H , Z ⋆ Z = f({x1, x2}); note this is 6= Z × Z = {x1, x2 :
x1x2x

−1
1 x−1

2 = 1}.
If G = {x1, . . . , xm|r1 = 1, . . . , rl = 1}, H = {y1, . . . , ys|t1 = 1, . . . , tp = 1}

then G ⋆ H = {x1, . . . , xm, y1, . . . , ys : r1 = 1, . . . , rl = 1, t1 = 1, . . . , tp = 1}.
[A seemingly arbitrary aside from the lecturer: Given the square, if we

identify two opposite edges in parallel we have a cylinder; if we identify them in
the other direction we have a Möbius strip. If we take the Möbius strip and then
identify the other two edges in the same direction this gives the Klein bottle; in
the opposite direction we obtain RP2].
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Let G = {x, y : xyxy−1 = 1}. Then G acts on R2 by x(s, t) = (s +

1, t), y(s, t) = (1 − s, t + 1). Now R
2

G
= K the Klein bottle; by our theorem

above, G = π1(K).
Van Kampen Theorem: If X = U ∪ V for U, V open and U, V, U ∩ V path-

connected, then consider the natural homomorphisms π1(U) → π1(X), π1(V ) →
π1(X), π1(U ∩ V ) → π1(U), π1(U ∩ V ) → π1(V ). Then π1(X) = π1(U) ⋆ π1(V )
relative to π1(U ∩ V ): take the smallest normal subgroup N of π1(U) ⋆ π1(V )

such that the homomorphisms θ : π1(U ∩ V ) → π1(U), π1(U) → π1(U)⋆π1(V )
N

,
π1(U)⋆π1(V )

N
→ X , σ : π1(U ∩ V ) → π1(V ), π1(V ) → π1(U)⋆π1(V )

N
all commute.

N is the normal subgroup generated by elements of the form (θ[α])(σ[α])−1 and
vice versa for [α] ∈ π1(U ∩ V ); as before we could define our free product in
terms of homomorphisms to another group E.

Now the theorem is that π1(U)⋆π1(V )
N

≃ π1(X).
Corollary: Under the assumptions of the theorem, if U ∩ V is simply con-

nected then π1(X) = π1(U) ⋆ π1(V ).
Definition: for Xi spaces and xi ∈ Xi, the “wedge sum” ∨Xi is the disjoint

union of the Xi under identification of all the xi
Example: X = S1 ∨S1. Take x, y points on the two different circles, neither

being the “special” intersection point. Set U = X \ {x}, V = X \ {y}. Then,
up to homotopy, U = S1 = V . U ∩ V is contractible so simply connected,
so π1(X) = Z ⋆ Z. More generally for X = S1 ∨ · · · ∨ S1 n times, a “flower
petal” space, let xi be in “S1 number i” and 6= x, the point of intersection;
let U = X \ {x1}, V = X \ {x2, . . . , xn}. Then U ∩ V is simply connected so
π1(X) = π1(U)⋆π1(V ) = π1(U)⋆Z; inductively this is Z⋆ · · ·⋆Z n times, which
is the free group generated by n elements.

Example: Y = R2 \ {x}, X = R2 \ {x, y} for x 6= y. By projections (in the
exam, arguing from geometry like this is valid, but we must specify precisely
which projections we are doing) X ≃ S1 ∨ S1.

Example: X = S1 ∨ S2; as before take x ∈ S1, y ∈ S2, and set U = X \
{x}, V = X \{y}, then π1(U) = π1(S

2) = 0, π1(V ) = π1(S
1) = Z, π1(U∩V ) = 0

so π1(X) = Z.
Example: X = Sn for n ≥ 2; take x 6= y ∈ Sn and let U = X \ {x} ≃ Rn ≃

X \ {y} = V , then π1(X) = π1(U) ⋆ π1(V )relπ1(U ∩ V ) = 0 (irrelevant what
π1(U ∩ V ) is).

Example: X = the punctured torus. T is the quotient of a square by iden-
tifying opposite edges in the same direction (alternatively T = S1 × S1. Take
D (the puncture, a closed disc) in the interior of I × I, then X is the quotient
of I × I \ D by the same relation as before. By projection from the centre
of D, which is a deformation retraction, I × I \ D is homotopic to ∂(I × I).
Now X is of the same homotopy type as the quotient of the boundary of I × I,
since removing D does not affect the boundary or the quotient. But this is just
S1 ∨ S1, so π1(X) = Z ⋆ Z.

Sketch proof of theorem: we already have a natural homomorphism Φ :
π1(U)⋆π1(V )

N
→ π1(X). Surjectivity of Φ is equivalent to surjectivity of the

natural homomorphism φ : π1(U) ⋆ π1(V ) → π1(X). Let [α] ∈ π1(X) such that
α is a loop based at x0. We can write [α] = [α1] · · · · · [αm] with each αi a path
inside U or inside V (as we did when proving path lifting). We can choose a path
γi from x0 to αi(1); if αi(1) ∈ U∩V then take γi to be contained in U∩V (which
we can do by path-connectedness). Then [α] = [α1 ·γ

−1
1 ][γ1α2γ

−1
2 ] . . . [γm−1αm],
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and this is a word in π1(U)⋆π1(V ) (since all the elements are equivalence classes
of loops), and its image under φ is [α].

Now injectivity of Φ; this is equivalent to kerφ = N . Recall φ([α1][α2] . . . [αn]) =
[α1] . . . [αn] where the αi are loops based at x0. We define two operations and
their inverses: if [αi], [αi+1] come from the same group then we can replace them
by [αi ·αi+1] without changing the free product, and if [αi] ∈ π1(U) and αi lies
inside U ∩V then we can consider [αi] as an element of π1(V ), without changing
anything under Φ.

Now suppose φ([α1] . . . [αn]) = φ([β1] . . . [βn′ ]) = [α]. We have [α1 · · · · ·αn] =

[β1 · · · · · βn′ ] = [α], so α1 · · · · · αn
F
≃ β1 · · · · · βn′ ≃ α relative to {0, 1}; we have

a homotopy F : I × I → X . For a suitabl large m we can have F (σk,l) ⊂ U or
V (possibly both) for each k, l, where σk,l = [k−1

m
, k
m

] × [ l−1
m
, l
m

], and also have
nn′ | m; thus the “joins” in the product α1 . . . αn are at vertices of σk,l. We
relabel the σk,l as R1, R2, . . . going first along and then up the square I × I [I
*think* the first coordinate is horizontal; lecture was vastly unclear]. For any l
we choose a path γl in I × I such that γ(0) ∈ {0} × I, γ(1) ∈ {1} × I such that
γl separates R1, . . . , Rl and the other squares; we also take γ0 = I ×{0}, γm2 =
I × {1}; then each Fγl

defines a path in X which is in fact a loop based at x0.
Write F |γl

= ǫ1 · ǫ2 · · · · · ǫr such that each ǫi is a path corresponding to the side
of a single square; by construction ǫi is a path in U or V (or possibly both).
Now for any vertex v of a small square, we choose a path λv from x0 to F (v)
such that if F (v) ∈ U ∩ V , λv lies inside U ∩ V , and if F (v) = x0 we take λv to
be the constant path at x0. We see F |γl

= ǫ1 . . . ǫr = (ǫ1 ·λ−1
⋆ )(λ⋆ · ǫ2 ·λ−1

⋆ ) . . . ,
where each λ⋆ is some λv. The bracketed terms are loops, so (technically taking
classes []) this gives us a word in π1(U)⋆π1(V ). Note that [F |γl

] = [F |γl+1
] and

the difference between the words corresponding to the two paths corresponds

precisely to one of our operations; thus they define the same word in π1(U)⋆π1(V )
N

.
But γ0 gives exactly [α1] . . . [αn] and γm2 gives precisely [β1] . . . [βn′ ].

Example: T , the torus (in fact we know π1(T ) = π1(S
1 × S1) = Z × Z, and

it is much more work to find it by this method, but ultimately this method will
generalize better). Recall that the punctured torus U has π1(U) = Z ⋆ Z; let
V be the image of the interior of the square that T is a quotient of, take our
puncture D to be a disc inside the square. We have U ∩V ≃ S1 so π1(U ∩V ) =

Z, and clearly π1(V ) = 0. Thus π1(T ) = π1(U)
〈Imθ〉 where 〈Imθ〉 is the normal

subgroup generated by the image of θ, where θ is the natural homomorphism
π1(U ∩ V ) → π1(U).

Let A be a corner of the square, a, b, c, d the edges of the square taken
clockwise from A, B a point inside the square not in D, and h be a loop
clockwise around D based at B. Let p be the quotient from the square to
T , x0 = p(B), x1 = p(A), α = p⋆a, β = p⋆b, then p⋆c = α−1, p⋆d − β−1, γ =
p⋆[AB], p⋆h = λ. Then we have a · b · c ·d ≃ [AB] ·h · [AB]−1 so α ·β ·α−1 ·β−1 ≃
γ ·λ ·γ−1 relative to {0, 1}, so this is a loop based at x1 and [γ−1αβα−1β−1γ] =
[λ]. SO [λ] = [γ−1αγ][γ−1βγ][γ−1α−1γ][γ−1β−1γ] =: α′β′α′−1β′−1, so the com-
mutator [[α′], [β′]] = θ([λ]). So π1(X) = 〈[α′], [β′] : [α′][β′][α′−1][β′−1] = 1〉 =
〈t, u : tut−1u−1 = 1〉 = Z × Z.

Definition (Manifold): for n ∈ N, an n-dimensional manifold or n-manifold is
a Hausdorff space X such that each x ∈ X has a neighbourhood homeomorphic
to Rn; a 2-manifold is called a surface.

For S1, S2 surfaces, the connected sum S1#S2 is obtained by: choose “discs”
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(i.e. open sets homeomorphic to discs) D1, D2 in the respective surfaces and
consider S1 \ InD1 ⊔ S2 \ InD2 (where InD is the interior D \ ∂D); S1#S2 is
the quotient of this when we identify ∂D1 and ∂D2 via some homeomorphism.
We will see later that this space is independent both of our choice of discs and
our choice of homeomorphism between the boundaries of the discs. Note that
we did not need to embed the surfaces into some larger space, and there may
be multiple, qualitatively different ways of doing this.

Example: S1 = T, S2 = T . More generally, Xg = T# . . .#T g times is called
a closed surface of genus g. We can obtain this as the quotient of a 4g-gon P : go-
ing clockwise around the boundary, label the edges as a1, b1, a1, b1, a2, b2, a2, b2, . . . , ag, bg, ag, bg
and identify each ai with the other, where one is taken in the clockwise direc-
tion and the other in the anticlockwise direction, similarly the bi. As before, we
define U to be the image of P \D where D is an interior disc, and V = P \ ∂P .
We have U ∩ V ≃ S1, and U ≃ the quotient of ∂P , which is S1 ∨ · · · ∨ S1

2g times, so π1(U) = Z ⋆ · · · ⋆ Z 2g times. V is contractible, so π(V ) = 0.
Now if λ is a loop going once around D in P , then let θ bet the natural ho-
momorphism π1(U ∩ V ) → π1(U), and then θ(λ) =

∏g
i=1[α

′
i, β

′
i], the product

of commutators; this generates the image of θ, so by the van kampen theorem

π1(Xg) = {α′
1, . . . , α

′
g, β

′
1, . . . , β

′
g :

∏g
i=1[α

|
iprime, β

′
i] = 1}.

Covering Spaces

Take X path-connected, p : X̃ → X a covering map, p(x̃0) = x0 ∈ X , then:
Theorem: p⋆ : π1(X̃, x̃0) → π1(X,x0) is injective: if p⋆[α] = [ex0

] take a
lift of p⋆α starting at x̃0; this is the same α, but by homotopy lifting then
[α] = [ex̃0

].
Theorem: For p : X̃ → X a covering map, x0 ∈ X , {p⋆π1(X̃, x̃0) : x̃0 ∈

p−1(x0)} forms a conjugacy class of subgroups of π1(X,x0): for x̃, ỹ ∈ p−1{x0}
choose a path γ from x̃ to ỹ. We have maps p⋆ : π1(X̃, x̃) → π1(X,x0), γ# :

π1(X̃, x̃) → π1(X̃, ỹ) and p⋆ : π1(X̃, ỹ) → π1(X,x0); to “close up” this and
make a commuting diagram our fourth map is (p⋆γ)# : π1(X,x0) → π1(X,x0).

p⋆γ is a loop based at x0. If [α] ∈ π1(X̃, x̃) then [α] 7→ p⋆[α] 7→ [p⋆γ]
−1[p⋆α][p⋆γ]

or [α] 7→ [γ−1αγ] 7→ [p⋆γ
−1][p⋆α][p⋆γ], so we really do have a commutative dia-

gram, and p⋆π1(X̃, ỹ) = [p⋆γ]
−1p⋆π1(X̃, x̃)[p⋆γ] [in the lecture the middle term

was just π1(X,x0), but this is ambiguous].
Now let H be a subgroup of π1(X,x0) conjugate to p⋆π1(X̃, x̃) (with x̃ fixed).

Then by definition there is [β] ∈ π1(X,x0) such that H = [β−1p⋆π1(X̃, x̃)[β];
by path lifting we have a path β̃ starting at x̃, the endpoint of which must be
some ỹ ∈ p−1{x0}. Then choose γ = β̃. Thus we have the theorem.

We have an action of π1(X,x0) on p−1{x0}, acting from the right, defined
by for [α] ∈ π1(X,x0), x̃ ∈ p−1{x0}, x̃ · [α] = α̃(1) where α̃ is a lift of α
starting at x̃. We clearly have x̃ · [ex0

] = x̃, and the reader may verify that
x̃ · ([α][β]) = (x̃ · [α]) · [β], so this really is an action.

Note that the orbit of x̃ under this action is p−1{x0} by the above; in fact
there is a bijection between elements of this orbit and right cosets of p⋆π1(X̃, x̃)
in π1(X,x0). Note p⋆π1(X̃, x̃) = {[α] ∈ π1(X,x0) : x̃ · [α] = x̃.

Corollary: p−1{x0} bijects with p−1{y0} for all x0, y0 ∈ X .
Definition: a space X is locally path-connected if ∀x ∈ X∀ neighbourhoods

U ∋ x∃ open V ⊂ U , V ∋ x such that V is open and path-connected; note that
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unlike most “locally” properties this is a much stronger condition than being
path-connected.

Suppose p : X̃ → X is a covering map, f : Y → X a map and f(y0) = x0 =
p(x̃). We call f̃ : Y → X̃ a lift of f if f = pf̃ and f̃(y0) = x̃0.

Theorem: for p : X̃ → X a covering map, X path connected and f : Y → X
a map with f(y0) = p(x̃0) = x0, Y connected and locally path-connected,
there is a lift of f iff f⋆π1(Y, y0) ⊂ p⋆π1(X̃, x̃0): if there is a lift, then clearly
f⋆π1(Y, y0) ⊂ p⋆π1(X̃, x̃0) since we have p⋆ : π1(Y, y0) → π1(X,x0) = p⋆ ◦ f .
Conversely if we have f⋆π1(. . . ) = p⋆π1(. . . ), for any y ∈ Y choose a path α
from y0 to y. Now f⋆α is a path in X from x0 to f(y); lift this path to X̃ starting

at x̃0, obtaining f̃⋆α. Define f̃(y) = f̃⋆α(1); this is well defined, since if β is
another path from y0 to y then αβ−1 is a loop based at y0, so [αβ−1] ∈ π1(Y, y0)
and by assumption f⋆[αβ

−1] ∈ p⋆π1(X̃, x̃0). So f⋆[αβ
−1] is the image of some

loop based at x̃0, so its lift ˜f⋆[αβ−1] is a loop based at x̃0; ˜f⋆[αβ−1] = f̃⋆αf̃⋆β

so f̃⋆α(1) = f̃⋆β(1) and f̃ is well defined; we have pf̃ = f by construction. We
now just need continuity of f̃ :

Assume V ′ ⊂ X̃ is open; to prove f̃−1V ′ is open, it is enough to prove this
for V ′ ⊂ U ′ where U ′ is a component of p−1U for some elementary U ⊂ X (so
U ′ ≃ U): let V = p(V ′) ≃ V ′. Now for any y ∈ f̃−1V ′, since f is a map f−1V
is open, so there is an open W ⊂ f−1V with W ∋ y and W path-connected.
Now f(W ) ⊂ V , so f̃(W ) ⊂ V ′; f̃(y) ∈ V ′¡ and f̃(W ) ⊂ p−1V , but W is path-
connected, so the image of W is path-connected: for γ a path in V starting at
y, take a lift of fγ starting at f̃(y). So f̃(W ) ⊂ V ′, since p−1 is a disconnected
union of copies of V (and we get the right one because f(y) ∈ V ), so f̃−1V ′ is
open and f̃ is a map.

Addendum: This f̃ is unique, which follows from our much earlier claim that

if Y is connected, f : Y → X , p : f̃ → f a covering, f̃ , ˜̃f both maps Y → X̃

with pf̃ = p
˜̃
f = f , then {y : f̃(y) =

˜̃
f(y)} is either ∅ or Y (then we have the

result as f̃(y0) =
˜̃
f(y0) = x̃0).

Definition: for X path-connected, a covering space p : X̃ → X is called a
universal cover if X̃ is simply connected.

Suppose X̃ is a universal cover of X , and X̃ ′ any covering of X , p(x̃0) =
x0 = p′(x̃′0). By the theorem there is a lift p̃ : X̃ → X̃ ′. Now if X̃ ′ is also
universal, we also have a lift p̃′ : X̃ ′ → X̃; in this case p̃p̃′ = 1X̃′ , p̃′p̃ = 1X̃ .
So there is a sense in which universal covers are unique [a better lecturer might
perhaps have told us what this sense is; ah well].

Assume p : X̃ → X is universal; suppose U ⊂ X is elementary, V ⊂ p−1(U)
homeomorphic to U (by p |V ). Take x̃0 ∈ V, x0 ∈ U ; then we have maps com-
muning maps π1(V, x̃0) → π1(X̃, x̃0), π1(U, x0) → π1(X,x0), p⋆ : π1(X̃, x̃0) →
π1(X,x0) and π1(V, x̃0)

∼
→ π1(U, x0), but π1(X̃, x̃0) = 0, so each x0 ∈ X has a

neighbourhood U such that the natural map π1(U, x0) → π1(X,x0) is trivial.
Example: Take Qn to be the circle in R2 of centre ( 1

n
, 0) of radius 1

n
(i.e.

through 0) [set X =
⋃
n∈N

Qn, with the topology inherited from R2]; then any
neighbourhood U of x0 = (0, 0) will contain a loop going aroung one of the
circles (in fact, infinitely many such), so the image of π1(U, x0) → π1(X,x0) is
not 0. By the above result this means X cannot have any universal cover.

Theorem: Let X be path-connected and locally path-connected, and p :
X̃ → X a universal cover. Then for any conjugacy class of subgroups of π1(X),
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there is a covering space corresponding to it: let H be a subgroup of π1(X).
Then there is a bijection between the set of [γ] for γ paths in X starting at x0

and points of X̃ by [γ] 7→ γ̃(1): the inverse of this is x̃ 7→ [p⋆α] where α is a
path from x̃0 to x̃; this is well defined as X̃ is simply connected.

Now define an equivalence relation by x̃ ∼ ỹ if p(x̃) = p(ỹ) and [γx̃ ·γ
−1
ỹ ] ∈ H ;

this is an equivalence relation: x̃ ∼ x̃ since p(x̃) = p(x̃) and [γx̃·γ
−1
x̃ ] = [ex0

] ∈ H ;
if x̃ ∼ ỹ then p(ỹ) = p(x̃) and [γỹ · γ

−1
x̃ ] = [γx̃ · γ

−1
ỹ ]−1 ∈ H , so ỹ ∼ x̃. If x̃ ∼ ỹ

and ỹ ∼ z̃ then p(x̃) = p(ỹ) = p(z̃) and [γx̃γ
−1
z̃ ] = [γx̃γ

−1
ỹ ][γỹγ

−1
z̃ ] ∈ H so x̃ ∼ z̃.

Now put XH = X̃
∼ ; we have natural maps r : X̃ → XH , the quotient map,

and q : XH → X such that p = qr. Take the quotient topology on XH ; r is
then continuous so XH is path-connected. For any x ∈ X , U an elementary
open set containing x, p−1U is a disjoint union of “copies” of (i.e. regions
homeomorphic to) U ; take V and W to be two components of p−1U .Assume
r(V ) ∩ r(W ) 6= ∅; take x̃ ∈ V, ỹ ∈ W such that r(x̃) = r(ỹ); by the definition
of XH x̃ ∼ ỹ, i.e. [γx̃ · γ−1

ỹ ] ∈ H . Let α, β be lifts of γx̃, γỹ starting at x̃0;

let z̃ ∈ V, t̃ ∈ W such that p(z̃) = p(t̃). Choose a path λ in V from x̃ to z̃,
and let θ be the corresponding path from ỹ to t̃ in W , so p⋆λ = p⋆θ. Now
[p⋆(αλ) · p⋆(βθ)−1] = [p⋆α · p⋆λ · p⋆θ−1 · p⋆β−1] = [p⋆α · p⋆β−1] ∈ H , but this is
[γz̃ · γ

−1
t̃

], so z̃ ∼ t̃ ∴ r(z̃) = r(t̃), so r(V ) = r(W ). Therefore r : XH → X is a

covering map, because q−1(U) is a disjoint union of “copies” of U .
Put xH0 = r(x̃0); if µ is a loop in XH based at xH0 then q⋆µ is a loop

based at x0 in X , so x̃0 ∼ q̃⋆µ(1) ⇒ [p⋆q̃⋆µ · e−1
x̃0

] ∈ H , i.e. [q⋆µ] ∈ H , so

q⋆π1(XH , x
H
0 ) ⊂ H .

Now let [γ] ∈ H , then γ̃(1) ∼ x̃0 so r⋆γ̃ is a loop in XH based at xH0 . But
[q⋆(r⋆γ̃)] = [γ] ∈ H , so q⋆π1(XH , x

H
0 ) = H .

If H ′ = h−1Hh with h = [γ], take γ̃ a lift of Y to XH , going from xH0
to some point yH0 ; the image of the same q : XH → X taken as a map from
π1(XH , y

H
0 ) → π1(X,x0) rather than π1(XH , x

H
0 ) → π1(X,x0) has image H ′.

Take X path-connected and locally path-connected (this is not really part
of this definition, but many books like to take all surfaces path-connected and
locally path-connected when covering these subjects). Suppose that ∀x ∈ X
there is a neighbourhood U ⊂ X , U ∋ x such that the natural map π1(U, x) →
π1(X,x) is trivial. Then we say X is semilocally simply connected

Theorem: A space X which is path-connected, locally path-connected and
semilocally simply connected has a universal cover; we shall not prove this
theorem, but the cover is given by setting X̃ to be the set of [γ] for all paths γ
starting at x0.

Example: this theorem applies for any connected manifold X .

Homology Theory

In contrast to π1(X), the groups Hi(X,Z) which we will study in this section
are easy to calculate but quite hard to define; we shall do so over the course of
the next through lectures.

Simplicial complexes: Suppose a0, . . . , an ∈ Rn. We say these are independent
(in the affine sense) if a1−a0, . . . , aN −a0 are independent vectors in Rn; equiv-
alently if there are λi with

∑
λiai = 0 and

∑
λi = 0 then λi = 0∀i.
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Suppose we have a0, . . . , an ∈ RN independent. We define the n-dimensional
simplex σ = (a0 . . . an) to be {

∑
λiai :

∑
λi = 1, λi ≥ 0}. This is the convex

hull of the ai, i.e. the smallest convex set containing all the ai. In fact for a
point in this set the λi are unique (and this is even true in the plane generated
by the ai); they are called the barycentric coordinates.

If τ is a complex such that the vertices of τ are a subset of the vertices of σ
then we write τ ⊂ σ; we can write τ < σ to mean τ ≤ σ and τ 6= σ. If τ < σ we
call τ a proper face of σ. By convention we take ∅ to be a simplex, with ∅ ≤ σ
for any simplex σ.

The interior of σ is σ0 := {
∑
λiai :

∑
λi = 1, λi > 0}. The barycentre of σ

is σ̂ := 1
n+1 (a0 + · · · + an).

A (finite) complexK is a collection of simplexes such that if σ ∈ K and τ ≤ σ
then τ ∈ K, and if σ, τ ∈ K then στ̂ ∈ K [by which we mean the intersection
of the interiors of σ, τ , not the intersection of their vertices. I think].

For a simplex σ = (a0 . . . an) we call n the dimension of σ; for a complex K,
dimK = maxσ∈K dimσ.

A subcomplex of a complex K is a complex L such that L ⊂ K.
For a complex K we define |K| to be the polyhedron of K, i.e. the union of

all the georemtric points of K
⋃
σ∈K |σ|, where |σ| is the set of points of σ in

RN . We take the induced topology from RN on |K|; clearly under this |K| is
compact.

We want to “approximate” all “nice” spaces by deforming them into com-
plexes, e.g. S1 is homeomorphic to a triangle (without interior), S2 to a tetra-
hedron. This is nice because complexes are, in some piecewise sense, “linear”;
then maps can be deformed into “linear” maps between complexes.

Suppose K,L are complexes. A simplicial map s : K → L is a function
from the vertices of K to the vertices of L such that if σ = (a0 . . . an) then
{s(a0), . . . , s(an)} are precisely the vertices of some simplex of L (but we don’t
say (s(a0) . . . s(an)) is a simplex of L because we want to allow the case where
some of the s(ai) are equal to each other). We can extend S to a map s : |K| →
|L|: for any σ ∈ K we extend s from the vertices of σ = (a0 . . . an) to all points
of σ by s(

∑
λiai) =

∑
λis(ai). We call s an isomorphism if it is bijective.

Lemma: For K a complex, |K| =
⊔
σ∈K σ

0: clearly |K| ⊃
⊔
σ0; now if

x ∈ |K| then take σ ∈ K such that x ∈ σ, then x ∈ τ0 for some τ ≤ σ.
Definition: For K a complex, a a vertex of K, we define star(a, t) by⋃

σ∈K,σ∋a σ
0

Definition: Suppose f : X → Y is a map withX = |K|, Y = |L|. A simplicial
map s : K → L is a simplicial approximation of f if f(star(a,K)) ⊂ star(s(a), L)
[∀a ∈ |K|?].

Examples: 1) f : I → I f(x) = x; consider the first space X = I as the com-
plex K with vertices 0, 1

2 , 1; similarly Y is the complex K with vertices 0, 1
3 , 1.

Define s(0) = 0, s(1
2 ) = 1

3 , s(1) = /1, but this is not a simplicial approximation
because f(star(0,K)) = f([0, 1

2 )), star(s(0), L) = [0, 1
3 ). 2) f : X = I → Y = I

f(x) = x2. Let K = the complex with vertices 0, 1
2 , 1, L have vertices 0, 1

4 , 1,
then s : 0 7→ 0, 1

2 7→ 1
4 , 1 7→ 1 is a simplicial approximation.

In the first example, we cannot directly get a simplicial approximation. How-
ever, if we add the points 1

4 ,
3
4 to K then 0 7→ 0, 1

4 7→ 0, 1
2 7→ 1

3 ,
3
4 7→ 1

3 , 1 7→ 1 is
a simplicial approximation.

Definition: 1) We say a topological space X is triangulated if there is a
(simplicial) complex K and homeomorphism f : |K| → X . 2) For K a complex,
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σ ∈ K a simplex we define star(σ,K) =
⋃
σ≤τ∈K τ

0 (note this agrees with our
earlier definition of the star of a vertex).

Lemma: For K a complex and a0, . . . , an vertices of K,
⋂
i star(ai,K) is

non-empty only when the ai are all vertices of some simplex σ ∈ K. In this
case, star(σ,K) =

⋂n
i=0 star(ai,K): Suppose x ∈

⋂n
i=0 star(ai,K), so ∃!σ′ ∈ K

such that x ∈ σ′0 and a0, . . . , an are vertices of σ′. Put σ = (a0 . . . an) ≤ σ′;
clearly star(σ,K) ⊃

⋂
i star(ai,K). Now for any x ∈ star(σ,K), ∃!τ ∈ K with

x ∈ τ0, σ ≤ τ . Since τ contains all the vertices a0, . . . , an, x ∈ star(ai,K)∀i, so
x ∈

⋂
i star(ai,K).

Theorem: Let K,L be complexes, f : |K| → |L| and s : K → L a simplicial
approximation of f . Then f ≃ srel{x ∈ |K| : f(x) = s(x)}: Let x ∈ |K|.
∃!σ ∈ K with σ0 ∋ x, say σ = (a0 . . . an). So x ∈ star(σ,K) =

⋂
i star(ai,K).

Thus by the definition of a simplicial approximation, f(x) ∈ f(
⋂
i star(ai,K) ⊂⋂

i f(star(ai,K)) ⊂
⋂
i star(s(ai), L) 6= ∅. Thus {s(a0), . . . , s(an)} are the ver-

tices of a simplex τ ∈ L, so f(x) ∈ star(τ,K). Again since s is simplicial,
s(σ) = τ ; in particular s(x) ∈ τ . Now ∃!τ ′ ∈ L such that f(x) ∈ τ ′0 and
τ ≤ τ ′, so s(x), f(x) are both ∈ τ ′. Since τ ′ is a convex set, we can apply linear
homotopy.

Remark: We have proved that the smallest simplex in L that contains f(x)
also contains s(x). Suppose that we have this property (but don’t assume s
is simplicial); then we want to show f(star(a,K)) ⊂ star(s(a), L) and we will
have that this is equivalent to s being simplicial: suppose x ∈ star(a,K), then
∃!σ ∈ K such that x ∈ σ0, so s(x) ∈ s(σ)0. But also ∃!µ ∈ L such that
f(x) ∈ µ0. Now by the property above s(x) ∈ µ, and by the definition of a
complex s(σ) ∩ µ ≤ µ, and s(σ) ∩ µ ≤ s(σ); since s(σ) ∩ µ contains an interior
point of s(σ), s(σ) ∩ µ = s(σ). Therefore s(σ) ≤ µ. Now s(a) is a vertex of
s(σ) and of µ; since f(x) ∈ µ0, f(x) ∈ star(s(a), L) and we have the result.
In practice it is often more convenient to use this rather than the “official”
definition of being simplicial.

Definition: For K a complex, the first derived barycentric subdivision of K
is K(1) := {(σ̂0σ̂1 . . . σ̂n) : σ0 < σ1 < · · · < σn ∈ K} (recall σ̂ is the barycentre
of σ). Then we define inductively K(r) = (K(r−1))(1).

Definition: For K a complex, the mesh of K is the maximum diameter of
any simplex of K.

Lemma: For any complex K, for any ǫ > 0 there is an r such that the mesh
of K(r) is smaller than ǫ; the proof of this is an exercise in elementary geometry.

Theorem: For K,L complexes and any f : |K| → |L|, for some r there is
a simplicial approximation s : |K(r)| → |L| of f (this is meaningful because
|K(r)| = |K|): Take r to be large enough that f(star(a,K(r)) ⊂ star(b, L)
for some vertex b of L (not necessarily unique) [presumably we take r such
that this holds for all a?] Choose one such b and call it s(a); this gives us
a function s : {vertices of K(r)} → {vertices of L}. Now for any σ ∈ K(r),
σ = (a0 . . . an), choose x ∈ σ0. By assumption f(xx) ∈ star(s(ai), L)∀i, i.e.
f(x) ∈

⋂
i star(s(ai), L), so this intersection is nonempty and by the lemma

above (previous to the one immediately preceding this), {s(a0), . . . , s(an)} is the
set of all the vertices of some simplex of L. So s is a simplicial approximation
of f .

Example: X = I, Y = S2. Let γ : I → S2 be a path of S2. We can
triangulate S2 by the complex L of a cube with one diagonal on each face, and
we can choose this to be done in such a way that γ(0), γ(1) are vertices of L.
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So γ is homotopic to a path along the edges of L, and the fundamental group
of S2 is the edge group of L.

Homology Groups

Definition: A sequence of abelian groups and homomorphisms G = · · · →

G−2
∂2→ G−1

∂1→ G0
∂0→ G1

∂−1

→ G−2 → . . . is a chain complex if ∂i∂i+1 = 0
[∀i]. It is exact or an exact sequence if ker ∂i = Imδi+1. An exact sequence
0 → G′ → G→ G′′ → 0 is called a short exact sequence.

For a chain complex as above, the homology groups are defined as Hi(G) =
ker ∂i

Im∂i+1
; if G is exact then Hi(G) = 0∀i and vice versa.

An ordered simplex is a simplex σ = (a0 . . . an) where the order of a0, . . . , an
is considered.

Let K be a (simplicial) complex. The ith chain group Ci(K) is defined
as the quotiend of the free abelian group generated by ordered i-simplexes
by 〈σ − (sgnπ)πσ〉 for (every) π ∈ Si+1, the symmetric group on i + 1 ele-
ments (i.e. the free abelian group generated by i-simplexes with two possible
orderings), Ci(K) = 0 for i < 0 and i > dimK. We also define homomor-
phisms ∂i : Ci(K) → Ci+1(K) by for σ an i-simplex, ∂i(σ = (a0 . . . ai)) =∑i

j=0(−1)j(a0 . . . âj . . . ai) (i.e. the summand is (a0 . . . aj−1aj+1 . . . ai) (so e.g.
for σ = (a0a1a2), ∂2(σ) = (a1a2)− (a0a2) + (a0a1) = (a0a1) + (a1a2) + (a2a0)).
∂i is called a boundary homomorphism (or operator).

We have a sequence C = · · · → C2(K)
∂2→ C1(K)

∂1→ C0(k)
∂0=0
→ 0 and this is

a chain complex as ∂i∂i+1 = 0: let σ = (a0 . . . ai+1) be an i + 1-simplex, then

∂i∂i+1(σ) = ∂i(
∑i+1

j=0(−1)j(a0 . . . âj . . . ai+1 =
∑i+1

j=0(−1)j
∑i+1

k=j+1(−1)k−1(a0 . . . âj . . . âk . . . ai+1)+∑i+1
j=0(−1)j

∑j−1
k=0(−1)k(a0 . . . âk . . . âj . . . ai+1); each simplex appears twice in

this with different signs (−1)j+k−1 and (−1)j+k, so this is 0. So we can define the
homology of K to be Hi(K) = Hi(C) = ker ∂i

Im∂i+1
. We usually call Zi(K) := ker ∂i

the group of i-cycles and Bi(K) := Im∂i+1 the group of i-boundary chains.
Example: For K a complex, H0(K) is the free abelian group generated

by the connected components of K: suppose a, b are vertices of K: 1) in the
case a, b belong to the same component, by the example sheet there is an edge
path connecting a, b, i.e. there are vertices a1, . . . , an such that we have a path
(aa1)+(a1a2)+ · · ·+(anb); this is a 1-chain in G(K) and its boundary (applying
∂1) is a1−a+a2−a1+· · ·+b−an = b−a, so b−a ∈ B0(K), but C0(K) = Z0(K),
so if a, b are in the same component then a = b ∈ H0(K). 2) Suppose a, b are
not in the same component, then it is easy to see that b − a /∈ B0(K) so b 6= a
is H0(K). So H0(K) is a free abelian group with rank equal to the number of
connected components.

Remark: By the definition of homology groups Hi(K) is a finitely generated
abelian group. So we can write Hi(K) = Fi⊕Ti where Fi is the free part and Ti
is the torsion part. The ith Betti number is defined as rank(Fi); we sometimes
write bi or βi.

Example: A cone: suppose K is a complex, |K| ⊂ RN ; take a ∈ RN+1 \ RN

and define the cone CK over K as K ∪ {a} ∪ {(aa0 . . . an) : (a0 . . . an) ∈
K}; obviously CK is connected, so H0(CK) = Z. We define a homomor-
phism di : Ci(K) → Ci+1(K) by di(σ = (a0 . . . ai)) = (aa0 . . . ai) if σ ∈ K,
di(σ) = 0 if σ /∈ K. Now for i.0, (∂i+1di)(σ = (a0 . . . ai)) = (a0 . . . ai) +
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∑i+1
j=0(−1)j+1(aa0 . . . âj . . . ai), and σ−(di+1∂i)(σ) = (a0 . . . ai)−di−1(

∑
j(−1)j(a0 . . . âj . . . ai)) =

(a0 . . . ai) +
∑

j(−1)j+1(aa0 . . . âj . . . a), so if σ ∈ K then ∂i+1di(σ) = σ −
di−1∂i(σ); clearly this also holds for σ /∈ K. In particular if z ∈ Zi(CK) then
∂i+1di(z) = z, so Zi(CK) = Bi(CK) so Hi(CK) = 0 for i > 0.

Examples: Let σ = (a0 . . . an) be an n-simplex and K the set of faces
of σ, L = K \ {σ}. Then K is a cone (just by picking a vertex and the
face opposite it), so Hi(K) = 0∀i > 0 and H0(K) = Z. Consider 0 →
Cn−1(L) → Cn−2(L) → · · · → C0(L) → 0; take n 6= 0, 1. We have a cor-
responding Cn(K) → Cn−1(K) → Cn−2(K) → · · · → C0(K) → 0; we have
Cn−1(K) = Cn−1(L), Cn−2(K) = Cn−2(L) and so on, and the ∂s for these
are also equal. So Zi(K) = Zi(L)∀i ≤ n − 1 and Bi(K) = Bi(L)∀i ≤ n − 2.

Bn−1(L) = 0; we know Hn−1(K) = 0 = Zn−1(K)
Bn−1(K) so Zn−1(K) = Bn−1(K) but

this also = Zn−1(L). So Hn−1(L) = Zn−1(L)
Bn−1(L) = Bn−1(K)

0 = Bn−1(K). Note

that Cn(K) = 〈σ〉 = Z, so Bn−1(K) = ImCn(K) = Z. So Hn−1(L) = Z. Thus
H0(L) = Z, Hi(L) = 0∀0 < i < n− 1, Hn−1(L) = Z.

Remark: For n = 2, π1(|L|) = H1(L) = Z. In general,H1(X) = π1(X)
[π1(X),π1(X)]

the abelianization of π1(X).
Remark: |L| is homeomorphic to Sn−1; if we accept for now that homology

groups are invariant under homeomorphisms, we have that Hi(S
n−1) = Hi(L).

Our main goals for the next few lectures are: define Hi(X) for more spaces
X , and prove that if maps f, g : X → Y are homotopic then the induced
homomorphisms f⋆ : Hn(X) → Hn(Y ) = g⋆ : Hn(X) → Hn(Y )∀n.

Definition: Let K,L be complexes and s, t : K → L simplicial maps. We say
that s and t are contiguous if for any σ ∈ K, ∃τ ∈ L such that s(σ), t(σ) are
faces of τ . The smallest such τ is called the carrier of σ. By linear homotopy,
this implies s ≃ t.

Lemma: Suppose s, t : K → L are simplicial maps which approximate a
map f : |K| → |L|. Then s, t are contiguous: let σ ∈ K, take x ∈ σ0. We
already know that the smallest τ ∈ L with τ ∋ f(x) also contains s(x), t(x), so
s(σ, t(σ) ≤ τ .

Definition (chain map): Suppose we have twto chain complexes G : · · · →

Gn
∂G

n→ Gn−1 → . . . ,F : · · · → Fn
∂F

n→ Fn−1 → . . . . A chain map d : G → F
is a collection of homomorphisms dn : Gn → Fn which give us a commutative
diagram, i.e. ∂Fn dn = dn−1∂

G
n∀n.

Definition (chain homotopy): We say chain maps d, d′ : G → F are chain
homotopic if there are homomorphisms en : Gn → Fn+1 such that dn − d′n =
en−1∂

G
n + ∂Fn+1en (this definition appears bizzare, but it will turn out to be

precisely what we need for the homology groups to be the same).
Lemma: Suppose d, d′ : G → F are chain homotopic chain maps. Then they

induce the same homomorphisms d⋆ = d′⋆ : Hn(G) → Hn(F): first we explain
how a chain map induces homomorphisms d⋆ : Hn(G) → Hn(F). From the
definition of a chain map we have dn(Zn(G)) ⊂ Zn(F), dn(Bn(G)) ⊂ Bn(F) so

we have natural homomorphisms d⋆ : Zn(G)
Bn(G) → Zn(F)

Bn(F) , i.e. d⋆ : Hn(G) → Hn(F).

Now since d, d′ are chain homotopic, dn − d′n = en−1∂
G
n + ∂Fn+1en. To see that

d⋆ = d′⋆, it is enough to apply the formula to z ∈ Zn(G): dn(z) − d′n(z) =
en−1∂

G
n (z) + ∂Fn+1en(z). The first term is 0 since z is a cycle by definition;

the second term lies in Bn(F), so the entire thing is 0 in Zn(F)
Bn(F) = Hn(F). So
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d⋆(z) = d′⋆(z).
Definition/Lemma: Suppose s : K → L is a simplicial map. Then s in-

duces homomorphisms s⋆ : Hn(K) → Hn(L) in the following way: enough to
show s induces a chain map s : C(K) → C(L): we want to define homomor-
phisms sn : Cn(K) → Cn(L). For σ ∈ Cn(K) an (oriented) simplex, σ =
(a0 . . . an) we define sn(σ) = {0 if dim s(σ) < n, (s(a0) . . . s(an)) if dim s(σ) =
n}. To show that this gives a commutative diagram it is enough to show
∂Ln sn(σ) = sn−1∂

K
n (σ) for σ = (a0 . . . an) ∈ Cn(K) an n-simplex: ∂Ln sn(σ) = 0 if

dim s(σ) < n,
∑n

i=0(−1)i(s(a0) . . . ŝ(ai) . . . s(an)) otherwise, sn−1∂
K
n (σ) = 0 if

dim s(σ) < n−1, (−1)j(s(a0) . . . ŝ(aj) . . . s(an))+(−1)k(s(a0) . . . ŝ(ak) . . . s(an))

if dim s(σ) = n−1 and s(aj) = s(ak) (taking j < k),
∑

j(−1)j(s(a0) . . . ŝ(aj) . . . s(an))

is dim s(σ) = n. (−1)k(s(a0) . . . ŝ(ak) . . . s(an)) = (−1)k(−1)k−j−1(s(a0) . . . ŝ(aj) . . . s(an))
as we have to perform k and then k − j − 1 swaps to switch aj and ak, so the
dim s(σ) = n− 1 case is actually = 0, and s gives a chain map as required.

Lemma: Let s, t : K → L be contiguous simplicial maps, then s⋆ = t⋆
as maps Hn(K) → Hn(L): for each simplicial map we get a chain map, sn :
Cn(K) → Cn(L) and tn : Cn(K) → Cn(L), each of which individually gives a
commutative diagram together with the ∂ : Cn+1(K) → Cn(K) and the same
for L. We want to prove that s, t are chain homotopic; by convention we first
set e−1 = 0. Let σ ∈ C0(K); we define e0(σ) = 0 if s(σ) = t(σ), (s(σ)t(σ)) if
s(σ) 6= t(σ). So we get a homomorphism C0(K) → C1(L); it is easy to see that
∂L1 e0 + e−1∂

K
0 = t0 − s0 (notice e0(σ) = t0(σ) − s0(σ). Now suppose we have

already constructed e−1, e0, . . . , en−1 with 1) ∂Li+1ei + ei−1∂
K
i = ti − si∀0 ≤

i ≤ n − 1 and 2) if σ ∈ Ci(K) is a simplex, then ei(σ) ∈ Ci+1(L) is a chain
in the carrier of σ (i.e. we require ei(σ) = α =

∑
mkτk to have τk ∈ the

carrier of σ ∀k; saying τ is the carrier our condition is ei(σ) ∈ Ci+1(τ)) (recall
the carrier of σ is the smallest simplex in L containing both s(σ) and τ(σ))
∀0 ≤ i ≤ n − 1. Let Z = tn(σ) − sn(σ) − en−1∂

K
n (σ) ∈ Cn(L) for σ ∈ Cn(K).

∂Ln (Z) = ∂Ln (tn(σ)−sn(σ)−en−1∂
K
n (σ)) = ∂Ln tn(σ)−∂Ln sn(σ)−∂Ln en−1∂

K
n (σ) =

∂Ln tn(σ) − ∂Ln sn(σ) − tn−1∂
K
n (σ) + sn−1∂

K
n (σ) + en−2∂

K
n−1∂

K
n (σ) (substituting

for ∂Ln en−1). Then ∂Ln tn(σ) = tn−1∂
K
n (σ) and similarly for s since t, s are

chain maps, but ∂Kn−1∂
k
n = 0, so this whole expression is 0. So Z ∈ Zn(L), so

Z ∈ Cn(τ) where τ is the carrier of σ considered as a complex. On the other
hand τ is a cone and so Hn(τ) = 0 ∴ Bn(τ) = Zn(τ), so Z ∈ Bn(τ) and there
is x ∈ Cn+1(τ) such that ∂n+1(x) = Z (Cn+1(τ) ⊂ Cn+1(L)). So choose such
an x and define en(σ) = x. Then ∂Ln+1en + en−1∂

K
n = tn − sn. So by induction

we can construct ei : Ci(K) → Ci(L) which show that s, t are chain homotopic,
so we have the result.

Suppose f : |K| → |L| is a map. Now if s : K(r) → L is a simplicial
approximation of f , we have homomorphisms s⋆ : Hn(K

(r)) → Hn(L). Suppose
t : K(r′) → L is another simplicial approximation; we also have t⋆ : Hn(K

(r′)) →
Hn(L). Then we have natural isomorphisms Hn(K) → Hn(K

(r)) and the same
for r′, so we have an isomorphism Hn(K

(r)) → Hn(K
(r′)) (wlog take r′ ≥ r),

and these form a [commuting] diagram with s⋆, t⋆. So f⋆ : Hn(K) → Hn(L) :=
s⋆ ◦ the isomorphism Hn(K) → Hn(K(r)) is well defined.

Now suppose f : |K| → |L|, f : |L| → |M | are maps. We then have f⋆ :
Hn(K) → Hn(L), g⋆ : Hn(L) → Hn(M). Then for gf : |K| → |M |, (gf)⋆ =
g⋆f⋆ by combinatorics [yes, the lecturer really did just say that]. Also, clearly
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f = I ⇒ f⋆ = I [I here means the identity, not the unit interval as it will
shortly mean].

Exercise: Suppose K,L are complexes. Then there is an ǫ > 0 (depending
only on L) such that if f, g : |K| → |L| are maps satisfying d(f, g) < ǫ (where
d(f, g) = sup{d(f(x), g(x)) : x ∈ |K|}) then there is a simplicial map s : K(r) →
L which approximates both f and g.

Theorem: If f, g : |K| → |L| are homotopic maps, then f⋆ = g⋆ : Hn(K) →
Hn(L): we have a homotopy F : |K| × I → |L|. So if m is sufficiently large and
fk(x) := F (x, k

m
) for 0 ≤ k ≤ m, then d(fi, fi+1) < ǫ∀i with f0 = f and fm = g,

so by the exercise ∃ simplicial maps si : K(r) → L which each approximate fi
and fi+1. So both si and si+1 approximate fi+1; we prooved that this implies
si, si+1 are contiguous, so si⋆ = si+1⋆ as maps Hn(K

(r) = Hn(K) → Hn(L). So
f⋆ = g⋆ : Hn(K) → Hn(L).

Theorem: Let f : |K| → |L| be a homotopy equivalence. Then f⋆ : Hn(K) →
Hn(L) is an isomorphism ∀n: let g be the inverse of f . We have gf ≃ 1|K|, fg ≃
1|L|, so f⋆ is injective, g⋆ surjective, g⋆ injective and f⋆ surjective, so f⋆, g⋆ are
isomorphisms.

If X is a space which has a triangulation (a homeomorphism |K| → X) then
we can define homology groups by Hn(X) := Hn(K). If |L| → X is another
triangulation then |K|, |L| are homeomorphic, so this is well defined.

If f : X → Y is a map of triangulable spaces, then f⋆ : Hn(X) → Hn(Y )
can be defined by taking triangulations |K| → X and |L| → Y and take f ′ :
|K| → |L| to be the induced map, then define f⋆ = f ′

⋆ : Hn(K) → Hn(L).
Suppose σ = (a0 . . . am) is anm-simplex. We already know that Hn(|σ|) = Z

if n = 0, 0 if n > 0. Hn(|∂σ|) = Z if n = 0, 0 for 0 < n < m − 1, and Z for
n = m−1. We have |∂σ| ≃ Sm−1, so Hn(S

m−1) = Z if n = 0, 0 if 0 < n < m−1
and Z if n = m− 1. Hn(S

m−1) = 0 if n > m− 1, because dim ∂σ = m− 1.
Corollary: Sm and Sm

′

are not of the same homotopy type unless m = m′.
Corollary: Rm is homeomorphic to Rm

′

exactly whenm = m′, as if f : Rm →
Rm

′

is a homeomorphism then Rm \ {0} is homeomorphic to Rm
′

\ {f(0)}.
Corollary (Brower fixed point theorem): Any map f : Bm → Bm has a fixed

point: suppose f : Bm → Bm has no fixed point. Define a map g : Bm →
∂Bm = Sm−1 by letting g(x) be the intersection of the line joining x, f(x) [with
∂Bm] in the direction of x. We have that if x ∈ Sm−1 then g(x) = x. So we have
a diagram: inclusion i : Sm−1 → Bm, g : Bm → Sm−1 and 1 : Sm−1 → Sm−1,
and have corresponding maps i⋆ : Hm−1(S

m−1) → Hm−1(B
m), g⋆ and 1⋆ = 1.

But Hm−1(B
m) = 0 and Hm−1(S

m−1) = Z * 0, so we have a contradiction.
Example: consider K to be a “bowtie” of two triangles meeting at a single

vertex a0, not including the interiors. It is homeomorphic to S1∨S1. H0(K) = Z

since K is connected. H1(K) = Z1(K)
B1(K) ; we have 0 = C2(K) → C1(K)

∂
→

C0(K) → 0 so B1(K) = 0 and H1(K) = Z1(K). If we let the two triangles
be a0a1a2 and a0a3a4 then a typical element z ∈ G(K) is written as z =
m1(a0a1)+m2(a0a2)+m3(a0a3)+m4(a0a4)+m5(a1a2)+m6(a3a4) so ∂1(z) =
m1a1 − m1a0 + m2a2 − · · · + m6a4 − m6a3; for this to be =0 we must have
m1 +m2 +m3 +m4 = 0,m1 = m5,m2 = −m5,m3 = m6,m4 = −m6. So there
are only two degrees of freedom; given e.g. m1,m3 the rest are determined, so
Z1(K) = Z2 so H1(K) = Z2. Now π1(K) = Z⋆Z [so H1(K) is the abelianization
of this, as we expect].

Similarly, H1(S
1 ∨ · · · ∨ S1 m times) = Zm.
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Example: K =the same thing but including the interior of the second tri-
angle. H0(K) = Z, H1(K) = H1(∂σ) where σ = (a0a1a2) = H1(S

1) = Z, since
K ≃ a triangle.

Theorem (Mayer-Vietoris Sequence)

Let K be a complex and L,M ⊂ K subcomplexes. Then there is an exact

sequence · · · → Hn(L ∩M)
φ⋆
→ Hn(L) ⊕Hn(M)

ψ⋆
→ Hn(K)

∆⋆→ Hn−1(L ∩M) →
. . . , where φ⋆(z) = (i1⋆z,−i2⋆z), ψ⋆(x, y) = i3⋆(x) + i4⋆(y) for the obvious
inclusions i1, i2, i3, i4.

For example, in the case of the “bowtie” above, taking L,M to be the two
triangles so L ∩M = {a0}, we have 0 → H1(L ∩M) → H1(L) ⊕ H1(M) →
H1(K) → H0(L ∩ M) → H0(L) ⊕ H0(M) → H0(K) → 0, i.e. 0 → 0 →

Z ⊕ Z → H1(K)
∆⋆→ Z

φ⋆
→ Z ⊕ Z

ψ⋆
→ Z = 0. ψ⋆ : (x, y) 7→ x + y has kerψ⋆ =

{(x,−x)} = {(la0,−la0) : l ∈ Z} ≃ Z, so Imφ⋆ ≃ Z, so kerφ⋆ = 0. Thus
Im∆⋆ = kerφ⋆ = 0. So we get an exact sequence 0 → Z ⊕ Z → H1(K) → 0. So
H1(K) ≃ Z ⊕ Z = Z2.

Proof of the theorem: We have an exact sequence 0 → Cn(L∩M)
φn
→ Cn(L)⊕

Cn(M)
ψn
→ Cn(K) → 0 by φn(z) = (ii⋆(z),−i2⋆(z)), ψn(x, y) = i3⋆(x) + i4⋆(y).

Clearly ψnφn = 0 : z 7→ (z,−z) 7→ z + (−z) = 0. Everything is clear; we
just need to check that kerψn = Imφn: suppose ψn(x, y) = 0. Write x =
x′ + x′′, y = y′ + y′′, with x′ an n-chain in L ∩M but every term in x′′ coming
from L \ (L ∩M) [and similarly for y]. Then ψn(x, y) = ψn(x

′ + x′′, y′ + y′′) =
i3⋆(x

′)+i3⋆x
′′+i4⋆(y

′)+i4⋆(y
′′). If this = 0 we thus have that i3⋆(x

′)+i4⋆(y
′) = 0

(since this is the only part in L ∩M) and similarly i3⋆(x
′′) = i4⋆(y

′′) = 0 so
x′′ = 0, y′′ = 0, y′ = −x′ i.e. (x, y) = (x′,−x′) ∈ Imφn.

We thus have a commutative diagram in which rows, but not columns, are
exact:

. . . . . . . . .
↓ ↓ ↓

. . . → Cn+1(L ∩M) → Cn+1(L) ⊕ Cn+1(M) → Cn+1(K) → 0
↓ ∂ ↓ ∂ ↓ ∂

. . . → Cn(L ∩M) → Cn(L) ⊕ Cn(M) → Cn(K) → 0
↓ ∂ ↓ ∂ ↓ ∂

. . . → Cn−1(L ∩M) → Cn−1(L) ⊕ Cn−1(M) → Cn−1(K) → 0
↓ ↓ ↓
. . . . . . . . .

Another way of writing this is 0 → C(L∩M) → C(L)⊕C(M) → C(K) → 0;
there is a general theorem in homological algebra which says that for any short
exact sequence of chain complexes we get an exact sequence like that in the
statement of this theorem.

We define ∆⋆ as follows: suppose z ∈ Hn(K) = Zn(K)
Bn(K) , and identify z

with some representative z ∈ Zn(K) ⊂ Cn(K). Take z′ ∈ Cn(L) ⊕ Cn(M)
such that ψ⋆(z

′) = z (we can do this because our rows are exact), so ∂z′ ∈
Cn−1(L)⊕Cn−1(M). We see that ψn−1∂(z′) = ∂ψn(z

′) = ∂z = 0 as z ∈ Zn(K),
so ∂z′ ∈ kerψn−1; by exactness, ∂z′ ∈ Imφn−1 ∴ ∃!z′′ ∈ Cn−1(L∩M) such that
φn−1(z

′′) = ∂z′ (this is unique since φn−1 is injective). We define ∆⋆(z) to be
this z′′, considered as an element of Hn−1(L ∩M).
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We have φn−2∂z
′′ = 0 ⇔ ∂z′′ = 0. φn−2∂z

′′ = ∂φn−1z
′′ = ∂∂z′ = 0, so

z′′ ∈ Zn−1(L∩M). So this definition is valid - we can consider z′′ as an element of

Hn−1(L∩M) = Zn−1(L∩M)
Bn−1(L∩M) . We need to prove that ∆⋆(z) is independent of our

choice of z, z′, z′′; assume we have chosen z̄, z̄′, z̄′′ instead. Then z = z̄ ∈ Hn(K),
i.e. z − z̄ ∈ Bn(K) as elements of Zn(K), so ∃u ∈ Cn+1(K) such that z − z̄ =
∂u. Again by exactness of rows in our diagram, ∃v ∈ Cn+1(L) + Cn+1(M)
such that u = ψn+1(v); ∂ψn+1(v) = z − z̄, so ψn∂v = z − z̄. Now if we
calculate ψn(z

′ − z̄′ − ∂v) = ψn(z
′) − ψn(z̄

′ − ψn∂v) = z − z̄ − (z − z̄) = 0,
so z′ − z̄′ − ∂v ∈ kerψn ⇒ ∃w ∈ Cn(L ∩M) such that φn(w) = z′ − z̄′ − ∂v.
∂φn(w) = ∂(z′− z̄′−∂v) = ∂z′−∂z̄′−∂∂v = ∂z′−∂z̄′ = φn−1(z

′′)−φn−1(z̄
′′),

but also ∂φnw = φn−1∂w = φn−1(z
′′)− φn−1(z̄

′′)− φn−1(z
′′ − z̄′′) (φ is linear).

Therefore, since φn−1 is injective, ∂w = z′′ − z̄′′ ⇒ z′′ − z̄′′ ∈ Bn−1(L ∩M), so
z′′ = z̄′′ as elements of Hn−1(L ∩M), so ∆⋆ is well defined.

This proof method is called “diagram chasing”. To prove that the sequence
we get is actually exact, we can use the same arguments - the reader may finish
this as an exercise, or just accept it as a fact.

Examples: X = S1 × I has X ≃ S1
∴ Hn(X) = Hn(S

1) = Z for n = 0, 1, 0
for n ≥ 2.

Example: X = T = S1 × S1; take L to be a (triangulation of a) “strip”, a
cylinder made of one section of the “tube” of the torus, and M to be the tube
the rest of the way around, so the intersection |L| ∩ |M | is two disjoint circles.
By MV we have an exact sequence 0 → H2(L ∩ M) → H2(L) ⊕ H2(M) →
H2(X) → H1(L ∩M) → H1(L) ⊕H1(M) → H1(X) → H0(L ∩M) → H0(L) ⊕
H0(M) → H0(X) → 0, which since |L| ≃ S1, |M | ≃ S1 is 0 → 0 → 0 ⊕ 0 →

H2(X) → Z ⊕ Z → Z ⊕ Z → H1(X)
∆⋆→ Z ⊕ Z

φ⋆
→ Z ⊕ Z → Z → 0. Then

Imφ⋆ = ker(Z ⊕ Z → Z) ≃ Z ∴ kerφ⋆ ≃ Z ≃ Im∆⋆ so we get 0 → H2(X) →

Z ⊕ Z α
→ Z ⊕ Z → H1(X) → Z → 0. α comes from H1(L ∩M) → H1(L) ⊕

H1(M). L ∩M is two circles, so H1(L ∩M) is generated by the cycles x, y
around them; then L is a cylinder with ends the two circles, so we have H1(L∩
M) → H1(L) by mx + ny 7→ (m + n)x, and similarly for M . So Imα ≃ Z so
0 → H2(X) → Z ⊕ Z → Z → 0 and 0 → Z → H1(X) → Z → 0 are exact, so
H2(X) = Z, H1(X) = Z ⊕ Z = π1(X) as always.

Example: X = RP2, the disc S2 where we identify opposite boundary points.
We can quite easily take a triangulation and calculate the homology groups
directly from this, but we want to use M-V. Set L ⊂ X to be (the image of)
a triangle inside S2, M = X \ L0. We have L ≃ a single point, M ≃ the
quotient of the boundary of the disc (by projection from a point in L). So we

have a deformation retraction M → S1

∼ = RP1 ≃ S1. L∩M = the (topological)

boundary of L ≃ S1. So M-V exact sequence is 0 → 0 → 0 ⊕ 0 → H2(X)
∆⋆→

Z
φ⋆
→ 0 ⊕ Z → H1(X) → Z → Z ⊕ Z → Z → 0. So Z → Z ⊕ Z is injective so

H1(X) → Z must be surjective, so we can write the end of the sequence as
· · · → H1(X) → 0 (this will always be the case if all the spaces are connected).
φ⋆ : H1(L ∩M) → H1(L) ⊕ H1(M) = H1(M) i.e. H1(S

1) → H1(RP1). This
will be the same as the corresponding homomorphism π1(S

1) → π1(RP1), which
we saw on the example sheet is n 7→ 2n. So Imφ⋆ = 2Z and we have a short
exact sequence 0 → H2(X) → Z → Imφ⋆ ≃ Z → 0. Now since Imφ⋆ = 2Z, ∆⋆

is injective. But Im∆⋆ = ker(Z → Imφ⋆) = 0, so H2(X) = 0. Also we have
Imφ⋆ → Z → H1(X) → 0; Imφ⋆ = 2Z so H1(X) = Z

2Z
= Z2 = π1(X).
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We knowH0(T ) = Z, H1(T ) = Z2, H2(T ) = Z, andH0(RP2) = Z, H1(RP2) =
Z2, H2(RP2) = 0.

Reminder: An n-manifold is a Hausdorff space X such that each x ∈ X has
a neighbourhood homeomorphic to Rn. A surface is a 2-manifold. A closed
surface is [the lecturer was utterly incomprehensible here].

Theorem (Classification of closed surfaces): Every connected closed surface
is homeomorphic to one of 1) S2 2) Mg = T# . . .#T g times (recall X#Y is
given by removing the interior of a small disc from each of X,Y , then identify
the boundaries of the removed discs by x ∼ h(x) for some homeomorphism
h : S1 → S1) or 3) Ng = RP2# . . .#RP2 g times. 1) and 2) are orientable, but
3) is not orientable (a closed surface X is orientable if we can triangulate X and
orient each triangle in a compatible way)

Note: T#RP2 = RP2#RP2#RP2,RP2#RP2 = K the Klein bottle.
Example: H0(S

2) = Z, H1(S
2) = 0, H2(S

2) = Z.
Example: Mg can be realized as the quotient of a 4g-gon where we identify

edge n in the clockwise direction with edge n+ 2 in the anticlockwise direction
for n ≡ 1, 2 mod 4. Take α an interior circle, γ a path from the “first” vertex to a

point of α. Then γαγ−1 ≃ the boundary of the 4g-gon, so γαγ−1

∼ is the quotient
of the boundary. Take a triangulation of our 4g-gon which gives a triangulation
of the quotient (this is always possible). To calculate the homology groups we
take L to be a triangle in the interior of P , K = Mg \ L0. L ≃ a single point,
L ∩ K ≃ S1, K ≃ S1 ∨ · · · ∨ S1 2g times (see the similar exercise when we
were applying the Van Kampen theorem). Then we have an exact sequence

0 → 0 → 0 ⊕ 0 → H2(Mg)
∆⋆→ Z

φ⋆
→ 0 ⊕ Z2g ψ⋆

→ H1(Mg) → 0. Since Mg is
orientable, we can orient all the triangles in a compatible way, i.e. such that if
σi are our triangles then ∂(

∑
σi) = 0. So Z2(Mg) 6= 0 since

∑
σi ∈ Z2(Mg).

But B2(Mg) = 0 as teh surface is 2D, so H2(Mg) =
Z2(Mg)
B2(Mg) 6= 0. So Im∆⋆ 6=

0 ⇒ kerφ⋆ 6= 0. Since Z2g is a free group, Imφ⋆ = 0 or Imφ⋆ ≃ Z ⇒ kerφ⋆ = 0,
so Imφ⋆ = 0 ⇒ ∆⋆ is surjective, so an isomorphism. So we se H2(Mg) = Z;
similarly ψ⋆ is an isomorphism and H1(Mg) = Z2g.

Facts: Suppose that 0 → G′ → G → G′′ → 0 is a short exact sequence
of finitely generated abelian groups. Then rankG = rankG′ + rankG′′. Let

0 → Gm → Gm−1
θ
→ · · · → G1 → 0 be an exact sequence of finitely generated

abelian groups, then rankGm − rankGm−1 + rankGm−2 − · · · = 0; we have 0 →
Gm → Gm−1 → Imθ → 0 and 0 → Imθ → Gm−2 → Gm−3 → · · · → G1 → 0, so
this follows from the previous fact by induction.

Recall Ng = RP2# . . .#RP2 g times. We will use the MV exact sequence
again; we have Ng = RP#Ng−1. To aid computation, set N ′

g = Ng∪ the

interior of the disc which was removed when taking the #, so Ng = N ′
g \ disc0.

Set L = RP2,K = Ng−1 so N ′
g = L ∪ K,L ∩ K = B2 ≃ a single point.

By MV we have an exact sequence 0 → 0 → 0 ⊕ H2(Ng−1) → H2(N
′
g) →

Z2 ⊕ H1(Ng−1) → H1(N
′
g) → Z → Z ⊕ Z → Z → 0. Suppose that we have

computed H1(Ng−1) = Z2 ⊕ Zg−2, H2(Ng−1) = 0 (this is true for g = 1, so the
induction starts). Then we get 0 → H2(N

′
g) → 0 → Z2

2 ⊕ Zg−2 → H1(N
′
g) → 0.

Thus H2(N
′
g) = 0 and H1(N

′
g) = Z2

2 ⊕ Zg−2.

Again apply MV, now to L = RP2,K = Ng so L∩K = RP2 \(B2)0, L∪K =
N ′
g. RP2 \ (B2)0 is the quotient of a square with the interior of a disc removed

by identifying opposite sides in a clockwise direction, so ≃ the quotient of the
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boundary of said square which is RP1. So the sequence is 0 → 0 → 0⊕H2(Ng) →
0 → Z → Z2 ⊕H1(Ng) → Z2

2 ⊕ Zg−2 → Z → Z ⊕ Z → Z → 0. So H2(Ng) = 0
and H1(Ng) must be Zg−1 or Z2 ⊕ Zg−1. To distinguish between these two
we could calculate the homomorphism Z2

2 ⊕ Zg−2 → Z explicitly and find its
kernel, but instead we will apply MV again, this time to L = B2,K = Ng,K ∩
L = S1,K ∪ L = N ′

g. Then by MV we have 0 → 0 → 0 ⊕ 0 → 0 → Z →
0 ⊕ H1(Ng) → Z2

2 ⊕ Zg−2 → 0 → Z → Z ⊕ Z → Z → 0. So combining these,
H1(Ng) = Z2 ⊕ Zg−1.

Homology of closed surfaces: 1) H0(S
2) = Z, H1(S

2) = 0, H2(S
2) = Z.

2) H0(Mg) = Z, H1(Mg) = Z2g , H2(Mg) = Z. 3) H0(Ng) = Z, H1(Ng) =
Z2 ⊕Zg−1, H2(Ng) = 0. Recall 1, 2 are orientable, but 3. non-orientable, so we
have:

Corollary: a closed surface is orientable iff H2 = Z ⇔ H2 6= 0.

Relation of homolo with the fundamental group

Euler characteristic:
Definition: Let K be a complex. The Euler characteristic is defined as

χ(K) = #vertices − #edges + #triangles − . . . .
Theorem (Euler-Poincaré): Let X = |K|, K a complex. Then χ(X) =∑n

0 (−1)iβi where n = dimK,βi = rankHi(X). In particular, since the Hi

are invariant under homotopy equivalence, χ(X) = χ(Y ) if X ≃ Y (and in
particular if X = |K| = |L| then χ(K) = χ(L)). Example: X = S1; χ(X) =
β0 − β1 = 1 − 1 = 0. X = S2 has χ(X) = β0 − β1 + β2 = 1 − 0 + 1 = 2.
X = S1 ∨ · · · ∨ S1 n times has χ(X) = β0 − β1 = 1 − n.

Definition: A graph Γ is a connected complex of dimension ≤ 1. A graph Γ
is a tree if it is contractible.

Theorem: Let Γ be a graph. Then χ(Γ) ≤ 1 with equality exactly when
Γ is a tree: by definition χ(Γ) = β0 − β1 = 1 − β1 ≤ 1. If Γ is a tree then
χ(Γ) = 1 − 0 = 1. If Γ is a graph such that χ(Γ) = 1 then β0 − β1 = 1 = v − e
where v is the number of vertices, e the number of edges. So there is a vertex
x ∈ Γ which belongs to at most one edge; define Γ′ to be Γ with x and any edge
containing it removed. Put vprime to be the number of vertices of Γ′, e′ to be
the obvious thing, then χ(Γ′) = v′ − e′ = v − 1 − (e − 1) (now we neglect the
silly case where x is not in an edge [lolecturer]) = v − e = 1, by induction Γ′ is
a tree so Γ is a tree.

We have now finished the examinable part of this course.
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